Home Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media
Article
Licensed
Unlicensed Requires Authentication

Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media

  • Omar El Moutea EMAIL logo and Hassan El Amri
Published/Copyright: July 23, 2021

Abstract

This paper is concerned with numerical methods for a coupled system of two partial differential equations (PDEs), modeling flow and transport of a contaminant in porous media. This coupled system, arising in modeling of flow and transport in heterogeneous porous media, includes two types of equations: an elliptic and a diffusion-convection equation. We focus on miscible flow in heterogeneous porous media. We use the mixed finite element method for the Darcy flow equation over triangles, and for the concentration equation, we use nonconforming finite volume methods in unstructured mesh. Finally, we show the existence and uniqueness of a solution of this coupled scheme and demonstrate the effectiveness of the methodology by a series of numerical examples.

MSC 2010: 65D15

References

[1] M. Afif and B. Amaziane, Convergence of finite volume schemes for a degenerate convection- diffusion equation arising in flow in porous media, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 46, 5265–5286. 10.1016/S0045-7825(02)00458-9Search in Google Scholar

[2] M. Afif and B. Amaziane, Numerical simulation of two-phase flow through heterogeneous porous media, Numer. Algorithms 34 (2003), 117–125. 10.1023/B:NUMA.0000005357.26583.3eSearch in Google Scholar

[3] B. Amaziane and M. El Ossmani, Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 799–832. 10.1002/num.20291Search in Google Scholar

[4] B. Amaziane and J. Koebbe, JHomogenizer: A computational tool for upscaling permeability for flow in heterogeneous porous media, Comput. Geosci. 10 (2006), no. 4, 343–359. 10.1007/s10596-006-9028-4Search in Google Scholar

[5] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal curvilinear grids for multi-phase flow, ECMOR IV—4th European Conference on the Mathematics of Oil Recovery, European Association of Geoscientists & Engineers, Houten (1994), 10.3997/2214-4609.201411179. 10.3997/2214-4609.201411179Search in Google Scholar

[6] A. Badea and A. Bourgeat, Homogenization of two phase flow through randomly heterogeneous porous media, Z. Angew. Math. Mech. 76 (1996), 81–84. Search in Google Scholar

[7] A. Bourgeat and M. Kern, Simulation of transport around a nuclear waste disposal site: The couplex test cases, Comput. Geosci. 8 (2004), 81–82. 10.1023/B:COMG.0000035097.89798.f9Search in Google Scholar

[8] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Numer. Anal. 46 (2008), no. 6, 3032–3070. 10.1137/060666196Search in Google Scholar

[9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991. 10.1007/978-1-4612-3172-1Search in Google Scholar

[10] D. Bürkle and M. Ohlberger, Adaptive finite volume methods for displacement problems in porous media, Comput. Vis. Sci. 5 (2002), no. 2, 95–106. 10.1007/s00791-002-0091-7Search in Google Scholar

[11] G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986. Search in Google Scholar

[12] Z. Chen and R. E. Ewing, Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, American Mathematical Society, Providence, 2002. 10.1090/conm/295Search in Google Scholar

[13] S.-H. Chou, D. Y. Kwak and K. Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: The overlapping covolume case, SIAM J. Numer. Anal. 39 (2001), no. 4, 1170–1196. 10.1137/S003614290037544XSearch in Google Scholar

[14] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal. 39 (2005), no. 6, 1203–1249. 10.1051/m2an:2005047Search in Google Scholar

[15] L. J. Durlofsky, Upscaling and gridding of geologically complex systems, Lecture Notes, Stanford University, 2005. Search in Google Scholar

[16] O. El Moutea and H. El Amri, Combined mixed finite element, nonconforming finite volume methods for flow and transport -nitrate- in porous media, International Conference on Advanced Intelligent Systems for Sustainable Development, Springer, Cham (2018), 383–392. 10.1007/978-3-030-11928-7_34Search in Google Scholar

[17] R. E. Ewing, The Mathematics of Reservoir Simulation, SIAM, Philadelphia, 1983. 10.1137/1.9781611971071Search in Google Scholar

[18] R. Eymard and T. Gallouët, Convergence d’un schéma de type éléments finis–volumes finis pour un système formé d’une équation elliptique et d’une équation hyperbolique, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 7, 843–861. 10.1051/m2an/1993270708431Search in Google Scholar

[19] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes, IMA J. Numer. Anal. 18 (1998), no. 4, 563–594. 10.1093/imanum/18.4.563Search in Google Scholar

[20] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, North-Holland, Amsterdam (2000), 715–1022. 10.1016/S1570-8659(00)07005-8Search in Google Scholar

[21] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, Handbook of numerical analysis. Vol. VII, North-Holland, Amsterdam (2000), 713–1020. 10.1016/S1570-8659(00)07005-8Search in Google Scholar

[22] R. Eymard, T. Gallouët and R. Herbin, A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal. 26 (2006), no. 2, 326–353. 10.1093/imanum/dri036Search in Google Scholar

[23] R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis, C. R. Math. Acad. Sci. Paris 344 (2007), no. 6, 403–406. 10.1016/j.crma.2007.01.024Search in Google Scholar

[24] R. Eymard, T. Gallouët and R. Herbin, Discretization schemes for linear diffusion operators on general non-conforming meshes, Finite Volumes for Complex Applications V, ISTE, London (2008), 375–382. Search in Google Scholar

[25] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), no. 4, 1009–1043. 10.1093/imanum/drn084Search in Google Scholar

[26] R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92 (2002), no. 1, 41–82. 10.1007/s002110100342Search in Google Scholar

[27] R. Eymard, D. Hilhorst and M. Vohralík, A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems, Numer. Math. 105 (2006), no. 1, 73–131. 10.1007/978-3-642-18775-9_26Search in Google Scholar

[28] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite Volumes for Complex Applications V, ISTE, London (2008), 659–692. Search in Google Scholar

[29] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 16–18, 1939–1959. 10.1016/S0045-7825(02)00644-8Search in Google Scholar

[30] F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 21–24, 2497–2526. 10.1016/j.cma.2007.01.005Search in Google Scholar

[31] F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes, J. Comput. Phys. 228 (2009), no. 16, 5763–5786. 10.1016/j.jcp.2009.05.002Search in Google Scholar

[32] T. Ikeda, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland, Amsterdam, 1983. Search in Google Scholar

[33] R. D. Lazarov and P. S. Vassilevski, Numerical methods for convection-diffusion problems on general grids, Proceedings of an International Conference on “Approximation Theory”, DARBA, Sofia (2002), 258–283. Search in Google Scholar

[34] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University, Cambridge, 2002. 10.1017/CBO9780511791253Search in Google Scholar

[35] I. D. Mishev, Nonconforming finite volume methods, Comput. Geosci. 6 (2002), 253–268. 10.1023/A:1021214424953Search in Google Scholar

[36] I. M. Nguena and A. Njifenjou, Some MPFA methods of DDFV type, Finite Volumes for Complex Applications V, ISTE, London (2008), 891–904. Search in Google Scholar

[37] A. Njifenjou and A. J. Kinfack, Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media, Int. J. Finite Vol. 5 (2008), no. 1, 17–56. Search in Google Scholar

[38] A. Njifenjou, M. Mbehou and I. Moukouop Nguena, Analysis on general meshes of a DDFV type method for subsurface flow problems, preprint. Search in Google Scholar

[39] A. Njifenjou and I. Moukouop-Nguena, Traitement des anisotropies de perméabilité en simulation d’écoulement en milieu poreux par les volumes finis, Proceedings of an International Conference on “Systemes Informatiques pour la Gestion de l’Environnement”, Douala (2001), 245–259. Search in Google Scholar

[40] A. Njifenjou and I. M. Nguena, A finite volume approximation for second order elliptic problems with a full matrix on quadrilateral grids: Derivation of the scheme and a theoretical analysis, Int. J. Finite Vol. 3 (2006), no. 2, 64–93. Search in Google Scholar

[41] P. Omnes, Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions, Int. J. Finite Vol. 6 (2009), no. 1, 24–41. Search in Google Scholar

[42] P. Omnes, On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay–Voronoi meshes, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 4, 627–650. 10.1051/m2an/2010068Search in Google Scholar

[43] J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of Numerical Analysis, North-Holland, Amsterdam (1991), 523–639. 10.1016/S1570-8659(05)80041-9Search in Google Scholar

[44] T. F. Russell, M. F. Wheeler and I. Yotov, Superconvergence for control-volume mixed finite element methods on rectangular grids, SIAM J. Numer. Anal. 45 (2007), no. 1, 223–235. 10.1137/050646330Search in Google Scholar

[45] S. Verdière and M. H. Vignal, Numerical and theoretical study of a dual mesh method using finite volume schemes for two phase flow problems in porous media, Numer. Math. 80 (1998), no. 4, 601–639. 10.1007/s002110050380Search in Google Scholar

[46] NF-PRO: Understanding physical and numerical modelling of the key processes in the near field, and their coupling, for different host rocks and repository strategies, contract FI6W-CT-2003-02389 (2004). Search in Google Scholar

Received: 2018-03-22
Accepted: 2021-04-25
Published Online: 2021-07-23
Published in Print: 2021-08-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2018-0019/html
Scroll to top button