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209-218

Abstract: In our paper in this journal, entitled “Remarks on L? boundedness of Littlewood—Paley operators”,
there are two incomplete statements and incompleteness in the proof of the main theorem. In this short note
we will correct them.
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In our paper [2], entitled “Remarks on L? boundedness of Littlewood—Paley operators”, there are two incom-

plete statements and incompleteness in the proof of the main theorem.
1. From line 11 to line 12 in the Introduction, the statement “gy, is bounded on L?(R") if and only if

sup
{I ESYlfl

[ weowtiogle’ x-yidxdy| <o
RAXR™
should be replaced by “under the assumption
J [Py log|E' - (x - y)l|dxdy < co forae. & e 8", (1.0)
R7XR™

gy is bounded on L*(R™) if and only if

sup | [ peopiloglg’ - (x-y)ldxdy| < oo.”
§1e5" R
2.In Remark 1.1, the statement
“QeF (ST = {Q e LY (S Y : sup j |Q(y’)|log|(;,,—1y,| do(y') <cot.”

1 -1
&lesn gnt

should be replaced by

“OeF(STh = {Q e LY(S"™ 1Y) : sup j Q(y’)log% do(y') < cot.”
&esnt Gt 18"yl

3. In line 9 on page 216, the statement “Since 1 € L (IR"), this shows the desired assertion.” should be
replaced by “Next we check (1.0). In the case n = 1, ¢’ = 1 or = -1 for ¢’ € 5%, and so we trivially have

” pC)B()l log
RIXR! \/(f' X2+ (& y)?

dx dy =1log V2|7, foré’ eS°.
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In the case n > 2, we have

YY) log 7 ldxdydo(f)— [| weowol [ rog |€ - dot¢") dxdy
Sn1 RTxR™ RMXR™ gn-1
= ” Y)Yyl j log—da(f)dxdy
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= Wn-2 ” IlP(X)WIj (log I?ll)(l - s2)"% dsdxdy
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2
= Cn "l)b"Ll(]Rn) >

where w,_» is the surface area of the unit sphere in R"! (see [1, Section 5.2.2]). Hence we get

” W)W () log ———— dxdy < co fora.e. &’ e S" L.
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Thus we have

” [YOP(y)l log 2 dxdy < co forae. &' e S"1,
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Using the above estimate, and observing the proof of estimates (2.4)—(2.11), we see that

([ weowortogte” - -y axay

R"xR"
([ woowonog e w2+ @ yn2 dxay
R"xRR"
+ J |¢(X)Wlog VIxI12 + ly|?| dx dy 13
RTxR? .

i ” (J [J’W’(TCOS 6 x")i(rsinBy’)|(cos O sin H)"

Sn-1ygn-1 0

X |10g|cos<9 + tan‘1 {’ )

|de] y2n- 1dr) do(x') do(y') < oo

fora.e. &' € S"1. Thus, by (2.12) we obtain the desired assertion.
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