Corrigendum

Kôzô Yabuta*

Remarks on L² boundedness of Littlewood-Paley operators

https://doi.org/10.1515/anly-2017-0044 Received August 17, 2017; accepted September 21, 2017

Corrigendum to: K. Yabuta, Remarks on L^2 boundedness of Littlewood–Paley operators, Analysis 33 (2003), 209–218

Abstract: In our paper in this journal, entitled "Remarks on L^2 boundedness of Littlewood–Paley operators", there are two incomplete statements and incompleteness in the proof of the main theorem. In this short note we will correct them.

Keywords: Littlewood–Paley operators, Littlewood–Paley g-function, L^2 boundedness

MSC 2010: Primary 42B25; secondary 42B20

In our paper [2], entitled "Remarks on L^2 boundedness of Littlewood–Paley operators", there are two incomplete statements and incompleteness in the proof of the main theorem.

1. From line 11 to line 12 in the Introduction, the statement " g_{ψ} is bounded on $L^{2}(\mathbb{R}^{n})$ if and only if

$$\sup_{\xi' \in S^{n-1}} \left| \iint_{\mathbb{R}^n \times \mathbb{R}^n} \psi(x) \overline{\psi(y)} \log |\xi' \cdot (x-y)| \, dx \, dy \right| < \infty.$$

should be replaced by "under the assumption

$$\iint_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\overline{\psi(y)} \log |\xi' \cdot (x - y)| | dx dy < \infty \quad \text{for a.e. } \xi' \in \mathbb{S}^{n-1},$$
(1.0)

 g_{ψ} is bounded on $L^2(\mathbb{R}^n)$ if and only if

$$\sup_{\xi' \in S^{n-1}} \left| \iint_{\mathbb{R}^n \times \mathbb{R}^n} \psi(x) \overline{\psi(y)} \log |\xi' \cdot (x-y)| \, dx \, dy \right| < \infty.$$

2. In Remark 1.1, the statement

$$``\Omega \in \mathcal{F}_1(S^{n-1}) := \left\{ \Omega \in L^1(S^{n-1}) : \sup_{\xi' \in S^{n-1}} \int\limits_{S^{n-1}} |\Omega(y')| \log \frac{1}{|\xi' \cdot y'|} \, d\sigma(y') < \infty \right\}."$$

should be replaced by

3. In line 9 on page 216, the statement "Since $\psi \in L^1(\mathbb{R}^n)$, this shows the desired assertion." should be replaced by "Next we check (1.0). In the case n = 1, $\xi' = 1$ or = -1 for $\xi' \in S^0$, and so we trivially have

$$\iint\limits_{\mathbb{R}^1\times\mathbb{R}^1} |\psi(x)\overline{\psi(y)}|\log\frac{2}{\sqrt{(\xi'\cdot x')^2+(\xi'\cdot y')^2}}\,dx\,dy=\log\sqrt{2}\|\psi\|_{L^1(\mathbb{R})}^2\quad\text{for }\xi'\in S^0.$$

^{*}Corresponding author: Kôzô Yabuta, Research Center for Mathematical Sciences, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan, e-mail: kyabuta3@kwansei.ac.jp

In the case $n \ge 2$, we have

$$\begin{split} \int\limits_{S^{n-1}} \iint\limits_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\overline{\psi(y)}| \log \frac{1}{|\xi' \cdot x'|} \, dx \, dy \, d\sigma(\xi') &= \iint\limits_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\overline{\psi(y)}| \int\limits_{S^{n-1}} \log \frac{1}{|\xi' \cdot x'|} \, d\sigma(\xi') \, dx \, dy \\ &= \iint\limits_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\overline{\psi(y)}| \int\limits_{S^{n-1}} \log \frac{1}{|\xi'_1|} \, d\sigma(\xi') \, dx \, dy \\ &= \omega_{n-2} \iint\limits_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\overline{\psi(y)}| \int\limits_{-1}^1 \left(\log \frac{1}{|s|}\right) (1-s^2)^{\frac{n-3}{2}} \, ds \, dx \, dy \\ &= C_n \|\psi\|_{L^1(\mathbb{R}^n)}^2, \end{split}$$

where ω_{n-2} is the surface area of the unit sphere in \mathbb{R}^{n-1} (see [1, Section 5.2.2]). Hence we get

$$\iint_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\overline{\psi(y)}| \log \frac{1}{|\xi' \cdot x'|} \, dx \, dy < \infty \quad \text{for a.e. } \xi' \in S^{n-1}.$$

Thus we have

$$\iint\limits_{\mathbb{R}^n\times\mathbb{R}^n} |\psi(x)\overline{\psi(y)}|\log\frac{2}{\sqrt{(\xi'\cdot x')^2+(\xi'\cdot y')^2}}\,dx\,dy<\infty\quad\text{for a.e. }\xi'\in S^{n-1}.$$

Using the above estimate, and observing the proof of estimates (2.4)–(2.11), we see that

$$\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\psi(x)\overline{\psi(y)} \log |\xi' \cdot (x - y)| | dx dy$$

$$\leq \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\psi(x)\overline{\psi(y)} \log \sqrt{(\xi' \cdot x')^{2} + (\xi' \cdot y')^{2}} | dx dy$$

$$+ \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\psi(x)\overline{\psi(y)} \log \sqrt{|x|^{2} + |y|^{2}} | dx dy$$

$$+ \iint_{S^{n-1} \times S^{n-1}} \left(\int_{0}^{\infty} \left[\int_{0}^{\frac{\pi}{2}} |\psi(r \cos \theta x')\overline{\psi(r \sin \theta y')}| (\cos \theta \sin \theta)^{n-1} \right] \times \left| \log \left| \cos \left(\theta + \tan^{-1} \frac{\xi' \cdot y'}{\xi' \cdot x'} \right) \right| d\theta \right| r^{2n-1} dr d\sigma(x') d\sigma(y') < \infty$$

for a.e. $\xi' \in S^{n-1}$. Thus, by (2.12) we obtain the desired assertion.

References

- [1] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts in Math. 249, Springer, New York, 2008.
- [2] K. Yabuta, Remarks on L² boundedness of Littlewood-Paley operators, Analysis 33 (2003), 209-218.