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Abstract

Objectives: Early prediction of critical COVID-19 disease is
crucial for an optimal clinical management. The objective of
this study was to optimize predictive models for critical
COVID-19 disease. Clinical data, laboratory data and genetic
polymorphisms were integrated into Al models to compare
the performance of different machine learning algorithms.
Methods: Data from 155 inpatients were analyzed, 23 of
whom developed critical disease. A univariate analysis was
performed to assess potential correlations between seven
SNPs, nine clinical variables and 10 laboratory parameters at
admission.

Results: Of the 7 SNPs, only three SNPs demonstrated a sig-
nificant association with critical disase, namely: rs77534576,
rs10774671 and rs10490770. The ensemble models exhibited
the best performance: Random Forest (AUC=0.989), XGBoost
(AUC=0.954) and AdaBoost (AUC=0.927). Variable importance
varied across models, with age, C-reactive protein, heart dis-
eases and the three SNPs being the most influential features.
The predictive power of models improved with the integra-
tion of the three SNPs, as compared to previous studies where
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genetic data were not included. Internal validation confirmed
the superiority and stability of the ensemble models.
Conclusions: Machine learning models may help predict
progression into critical COVID-19-disease. The predictive
power of models improves when SNPs associated with
COVID-19 severity are integrated with laboratory and clin-
ical data. Prior to implementation in clinical practice, larger
studies in different populations are needed to validate and
support the generalization of these results.
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Introduction

The COVID-19 pandemic had a dramatic, long-lasting impact
on global healthcare. This disease challenged the adapt-
ability of health systems worldwide and disclosed de-
ficiencies so far overlooked. There is limited evidence
available on the underlying mechanisms governing the wide
variability in COVID-19 severity across patients, ranging
from mild/asymptomatic disease to critical disease [1]. The
risk of mortality is determined by a combination of factors,
including susceptibility to viral infection and predisposition
to develop lung inflammation [2]. Interestingly, the severity
of disease has changed significantly over time as a function
of the prevalent viral strain, added to other factors, where
immunization of the population has become crucial [3].
Artificial intelligence (AI) offers new opportunities
and tools, having played a key role during the COVID-19
pandemic with applications in diagnosis, monitoring, con-
tact tracing, drug and vaccine development, and in reducing
the healthcare burden, thereby facilitating crisis surveil-
lance and research efforts [4]. The global health crisis
boosted cooperation among researchers worldwide, thereby
enabling the rapid generation of crucial data on SARS-COV-2,
including reference genomes [5] and the identification of
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genetic susceptibility factors. A range of international
projects, including GWAS and whole exome studies [6, 71,
were conducted to assess between-subject variability in
susceptibility to the virus. These studies uncovered a po-
tential association between different polymorphisms (SNPs)
and genetic predisposition to develop critical disease [8-10].

To optimize the prediction of critical COVID-19 disease,
the SNPs associated with severity were integrated with
laboratory and clinical data in different machine learning
models for a comparative study. Firstly, an analysis was
performed to assess the association of candidate SNPs with
disease severity. Then, only the SNPs found to be signifi-
cantly associated with severity were incorporated into the
models. The importance of disease-associated variables in
each model was examined. Then, the contribution of the
SNPs to each prediction was determined to examine the
influence of these polymorphisms in prediction.

Materials and methods

This study included patients older than 18 years admitted to
the emergency department of Virgen Macarena University
Hospital in Seville, Spain, with a diagnosis of COVID-19
confirmed by RT-PCR (reverse transcription polymerase
chain reaction) in a Cepheid Xpert® Xpress SARS-CoV-2
system between May 2020 and January 2021. Samples were
collected by the hospital Biobank and sent to the laboratory
for genome screening for SNPs. Informed consent was ob-
tained from patients for use of their genetic material. This
study was approved by the Institutional Review Board.

The study variable, critical COVID-19 disease, is defined
as the occurrence of one or more of the following events
during hospitalization: admission to the intensive care unit
(ICU), need for invasive ventilation, or death. This definition,
based on previous studies on severe COVID-19 outcomes, was
used as a categorical variable (yes/no) for the primary
outcome [11, 12]. This information was extracted from the
electronic medical records of patients.

The predictive models were created on the basis of clin-
ical data, laboratory data and SNPs. Clinical data were
extracted from electronic medical records, including dichot-
omous variables (sex, radiological pulmonary findings,
defined as images suggestive of pulmonary abnormalities on
a radiography/CT scan; heart disease; hypertension; diabetes;
autoimmune diseases, including lupus, rheumatoid arthritis,
psoriasis and myasthenia gravis; tobacco use; and previous
respiratory infections within the last month; and a continuous
variable (age). Continuous laboratory variables, obtained
from the first laboratory analysis at admission, included
Creactive protein, creatine kinase, D-dimer creatinine,
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lymphocyte count, alanine aminotransferase, platelet, urea,
hemoglobin and lactate.

Prior to statistical analysis, an analysis of missing lab-
oratory data at admission was performed. Missing values
were imputed using the median of each variable.

The SNPs included rs10490770, located near the LZTFL1
and LOC107986083 genes on chromosome 3 [13, 14];
rs10774671, the OAS1 gene on chromosome 12; rs77534576,
between the genes on chromosome 17 [13, 14]; rs2109069, in
the DPP9 gene on chromosome 19 [15, 16]; rs74956615, near
the FDX2 and RAVERI genes on chromosome 9 [17]; and
rs2834158, in the IFNAR2 gene on chromosome 21 [6, 18], all
included in the PreMed-Covid19 study [19]. We added the
SNP rs35705950, located in the MUC5B gene on chromosome
11 [20].

Samples were collected and frozen in the laboratory,
and screening for polymorphisms was performed. Then,
DNA was extracted from peripheral blood. Screening for
genetic variants was performed by RT-PCR on a Cobas Z 480
(Roche Diagnostics GmbH) analyzer. The association be-
tween each polymorphism and critical disease was individ-
ually assessed using logistic regression. Four genetic
inheritance models were considered: dominant, recessive,
additive and codominant. Compliance with Hardy-Weinberg
equilibrium was verified using the Chi-squared test prior to
logistic regression analysis. Genotypes were coded accord-
ing to each genetic inheritance model. The most adequate
model for each SNP was determined by comparing the fitting
of the co-dominant model with the other models, based on
the likelihood ratio and the Akaike information criterion.
Finally, a p<0.20 was established for a SNP to be included in
the predictive models.

The totality of the variables available was included in all
models. In machine learning models, automated variable
selection was applied. In turn, the variables for the logistic
regression model were selected based on statistical criteria.

Logistic regression model

Firstly, quantitative variables were converted into binary
variables (age, hemoglobin, platelets, lymphocytes, dimers,
urea, creatinine, lactate dehydrogenase, alanine trans-
aminase, creatine kinase, C-reactive protein), to facilitate
clinical interpretation and implementation. Clear, optimal
decision-making thresholds were established based on ROC
curves and Youden statistics. Multicollinearity across pre-
dictive variables was assessed using the variance inflation
factor (VIF). The variables with a VIF >5 were excluded. The
individual association between each predictor and the
outcome variable was assessed by univariate analysis.
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Univariate logistic regression models were adjusted for each
variable. The variables with a prevalence of =5 % and those
with a bilateral p<0.20 on univariate analysis were included
in the multivariate logistic regression model.

Machine learning models

For data pre-processing, continuous quantitative variables
were standardized using the StandardScaler class from the
scikit-learn library, which implements Z-score normaliza-
tion During pre-processing, the dataset was split into 80 %
for training and 20 % for testing, and SMOTE was applied to
the training dataset to address class imbalance. To assess the
robustness and stability of the models, two complementary
internal validation approaches were used: 5-fold cross-
validation and hootstrap validation with 1,000 iterations,
using resampling with replacement.

The statistical analysis was carried out using Python,
where pandas (v1.2.4) was employed for data handling;
scikit-learn (v0.24.2) for developing predictive models and
computing evaluation metrics; and imbalanced-learn
(v0.8.0) to address class imbalance through SMOTE. The
XGBoost model was implemented using the xghoost library
(v1.4.2), while statistical inference was performed with
statsmodels (v0.12.2). Finally, matplotlib (v3.4.2) was used to
generate visual representations of the results.

Six models were evaluated, each based on a different
approach. The K-Nearest Neighbors (KNN) algorithm clas-
sifies instances based on similarity to neighboring data
points; Random Forest combines multiple decision trees to
enhance accuracy and reduce overfitting; AdaBoost adjusts
the weights of misclassified instances to improve model
performance; XGBoost is known for its high efficiency and
predictive power through gradient-boosted decision trees;
Support Vector Machines (SVM) with a radial basis function
(RBF) kernel aim to identify the optimal hyperplane for class
separation; and Naive Bayes applies Bayes’ theorem under
the assumption of feature independence. GridSearchCV was
used in the training cohort to optimize hyperparameters.

Model evaluation

The performance of each model was evaluated using mul-
tiple metrics, of which the area under the receiver oper-
ating characteristic curve (AUC) was the primary measure.
The AUC assesses a model’s ability to discriminate between
classes. Additional metrics included accuracy (proportion
of correct predictions); precision (ratio of true positives to
the total number of positive predictions); sensitivity (ratio
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of true positives to real positives); and F1 score (harmonic
mean of precision and sensitivity). Feature importance to
each model was analyzed using a permutation-based
approach, which estimates the impact of each feature on
model performance by randomly shuffling its values.
Values were standardized to percentages to facilitate model
comparison. Model coefficients were used for logistic
regression to quantify the influence of each predictor in the
outcome.

Results

The study cohort included a total of 155 inpatients, of whom
23 progressed into critical disease. The variables analyzed
were classified into two categories: quantitative and
dichotomous. There were missing data for creatine kinase
(CK) with 12 missing values (7.79 %); D-dimers and lactate
dehydrogenase (LDH) with four missing values each
(2.60%); and C-reactive (PCR) with one missing value
(0.65 %), which were imputed using the median value.

Dichotomous variables are summarized in Table 1. The
alleles rs77534576, rs10490770 and rs10774671 were more
frequent in critical patients, with frequencies being 17.4 %,
34.8 % and 21.7 % respectively, vs. 4.5 %, 18.9 % and 9.8 % in
non-critical patients. Additionally, hypertension and heart
diseases were more frequent in the critical group (36.4 % and
18.2 %, respectively), as compared to the non-critical group
(36.4 % and 18.2 %, respectively). As many as 73.9 % of critical
patients were admitted to the general ward, vs. 81.8 % of
non-critical patients, most of whom were directly admitted
to the intensive care unit. In contrast, differences were not as
notable in other variables such as infection, autoimmune
disease, diabetes, tobacco use, and radiological findings.

Quantitative variables are displayed in Table 2. Median
age was higher in critical patients (69 vs. 58 years). Hemo-
globin values (14.6 g/dL) were similar in the two groups, with
minimal values being lower in the critical group (12.7
vs.13.5 g/dL). Platelet count was slightly higher in the critical
group (239 vs. 221 x 10"3/uL). Dimer and creatinine concen-
trations were also higher in critical patients (585 vs. 486 ng/
mL and 1vs. 0.9 mg/dL, respectively). Lactate dehydrogenase
values were slightly more elevated in critical patients (296
vs. 275U/L), whereas creatine kinase was considerably
higher in this group (111.5 vs. 75.5 U/L). Levels of C-reactive
protein were significantly higher in critical patients (79 vs.
50.7mg/L). Urea and lymphocyte concentrations were
similar in the two groups. However, the latter were included
for analysis, since our previous study [11] uncovered broader
differences between groups.
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Table 1: Distribution of dichotomous variables.

Dichotomous General Critical Non-critical
variable (n=155) disease (n=23) disease (n=132)
rs77534576 10 (6.5 %) 4(17.4%) 6 (4.5 %)
rs10490770 33(21.3 %) 8 (34.8 %) 25 (18.9 %)
rs10774671 18 (11.6 %) 5(21.7 %) 13 (9.8 %)
Infection 4 (2.6 %) 1(4.3%) 3(2.3%)
Autoimmune disease 6 (3.9 %) 0 (0 %) 6 (4.5 %)
Hypertension 62 (40 %) 14 (60.9 %) 48 (36.4 %)
Diabetes 26 (16.8 %) 4(17.4%) 22 (16.7 %)
Heart disease 33(21.3%) 9(39.1 %) 24 (18.2 %)
Tobacco use 19 (12.3 %) 3(13%) 16 (12.1 %)
Ward admission 125 (80.6 %) 17 (73.9 %) 108 (81.8 %)
Radiological findings 115 (74.2 %) 18 (78.3 %) 97 (73.5 %)

The Table shows the number and percentage of patients with specific
characteristics in three groups: the general group (n=155); patients with
critical disease (n=23); and patients without critical disease (n=132).
Percentages were calculated from the total for each group.

Table 2: Distribution of quantitative variables.

Quantitative General Critical disease Non-critical
variable (n=155) (n=23) disease (n=132)
Age, years 59.5 [46-69] 69 [62-73.5] 58 [45-66]

Hemoglobin, g/dL
Platelets, x 10°/uL

14.6 [13.4-15.4]
222 [173-285.8]

14.6 [12.7-15.4] 14.6 [13.5-15.4]
239 [137.5-268] 221 [175.5-287]

Lymphocytes, x 1.3[0.9-1.6] 1.3[1-1.8] 1.2 [0.9-1.6]
10%/uL

Dimers, ng/mL 488 [337.2-835.2] 585[390-977.5] 486 [335-776]
Urea, mg/dL 32 [25-41] 33 [28-45] 31 [25-41]
Creatinine, mg/dL 0.9 [0.8-1.1] 1[0.8-1.2] 0.9 [0.7-1.1]
Lactate 276 [209.2-342] 296 [200-361.5] 275 [211-338.5]
dehydrogenase, U/L

Alanine 31[20-50] 27 [20.5-34.5] 32[20-51.5]

transaminase, U/L
Creatin kinase, U/L
C-reactive protein,
mg/L

79 [50-138] 111.5[58.8-213] 75.5[48-126.2]
55.8 [25.5-102.2] 79 [57.2-133.9] 50.7 [22.2-96.9]

This Table displays the median and interquartile ranges [Q3-Q1] of different
quantitative features in three groups of patients: the general group
(n=155); patients with critical disease (n=155); and patients without critical
disease (n=132).

Analysis of polymorphisms

Only three SNPs were selected for inclusion in the predictive
models. This selection was based on a thorough analysis
based on HW equilibrium and comparison of inheritance
models.

Six of the seven polymorphisms studied complied with
HW equilibrium both in cases and controls (Supplementary
Table 1). The SNPs selected included rs2834158, rs35705950,
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rs74956615, 1rs2109069, rs77534576 and 1s10490770. Chi-
squared values ranged from 0.01 to 2.46 with p-values >0.05,
which excludes significant differences between the theoret-
ical and true allelic frequencies. Of note, the polymorphism
rs10774671 uncovered a significant deviation from HW equi-
librium in the case group (x*=7.99, p=0.005), whereas equi-
librium was maintained in controls (x’=1.86, p=0.173).

Comparison of each inheritance model with the co-
dominant model (Supplementary Table 2) revealed that
three SNPs met the p<0.20 criterion for inclusion in the
predictive models. The three SNPs were rs77534576, for
which an additive inheritance model was selected;
rs10774671, which showed better fitting with a co-dominant
model; and rs10490770 with an additive model,

Models

Machine learning models were superior to logistic regres-
sion models in predicting progression into critical COVID-19-
disease. Figure 1 displays the ROC curves for each model,
which demonstrate that ensemble learning models such as
Random Forest (AUC=0.98), AdaBoost (AUC=0.87), and
XGBoost (AUC=0.91), tended to have a superior performance
in terms of AUC, as compared to individual models. Indi-
vidual models included KNN (AUC=0.84); SVM (AUC=0.36);
Naive Bayes (AUC=0.83); and Logistic Regression (AUC=0.88).

Table 3 displays all model evaluation metrics, of which
area under the ROC curve (AUC) was the primary measure.
Random Forest was the model with the best performance, as
it showed the highest AUC (0.989), the highest accuracy

Comparative analysis of ROC curves

10] e

Rate of True
Positives

Rate of False Positives

Figure 1: Comparative analysis of ROC curves for the different models.
Comparative analysis of ROC curves for the different machine learning
models. The graph shows the rate of true positives against the rate of
false positives for each model. The area under the curve (AUC) is a
measure of the model’s ability to distinguish classes, in this case, critical
COVID-19 disease.
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Table 3: Model evaluation metrics.
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Model Accuracy Precision Sensitivity F1-score AUC VP FP FN VN Total
Random Forest 0.906 0.923 0.889 0.906 0.989 24 2 3 24 53
XGBoost 0.849 0.952 0.7 0.833 0.954 20 1 7 25 53
AdaBoost 0.811 0.870 0.7M 0.800 0.927 20 3 7 23 53
Logistic regression 0.877 0.750 0.261 0.387 0.881 6 2 17 28 53
Naive Bayes 0.735 0.685 0.888 0.774 0.830 24 11 3 15 53
KNN 0.679 0.639 0.852 0.730 0.823 23 13 4 13 53
SVM 0.528 0.538 0.519 0.528 0.559 14 12 13 14 53

Metrics for several classification models evaluated in terms of accuracy, precision, sensitivity, F1-Score, area under the curve (AUC) and confusion matrix
values (TP, FP, FN, TN). The models evaluated include KNN, Random Forest, AdaBoost, XGBoost, SVM, Naive Bayes and Logistic Regression.

(90.6 %), the second best precision (92.3 %), a high sensitivity
(88.9%), and the highest F1-Score (0.906), hence being
significantly superior to traditional logistic regression in all
metrics. XGBoost was the second model with the best AUC
(0.954) and the highest precision (95.2%). However, this
model had a sensitivity as low as 74.1%, below Random
Forest. Its accuracy was 84.9 % and its F1-Score was 0.833, the
second best values following Random Forest. AdaBoost had
the third best AUC (0.927), with an accuracy of 81.1%, a
precision of 87.0 %, a sensitivity of 74.1%, and a F1-Score
of 0.800.

Following application of VIF, the following variables
were included in the logistic regression model: age (=65
years); genetic markers rs10774671, rs10490770 and
rs77534576; presence of heart diseases; and arterial hyper-
tension. The laboratory parameters included in the model
were lymphocyte count (21.94 x 10°3/uL); levels of creatine
kinase (=102 U/L); C-reactive protein (=62.50 mg/L); D-dimers
(2942 ng/mL); creatinine (>1.06 mg/dL); lactate dehydroge-
nase (=296 U/L); and urea (=27 mg/dL). Although the logistic
regression model had the second best accuracy (87.7 %), it
achieved an AUC as low as 0.881, below the three ensemble
models. The logistic regression model also showed the
poorest sensitivity (26.1 %) and the lowest F1-Score (0.387) of
all models, although with moderate precision (75 %).

The remaining models exhibited variable results. Naive
Bayes achieved an AUC of 0.830, having the second highest
sensitivity (88.8 %), following SVM, but with a lower preci-
sion (68.5%). KNN achieved an AUC of 0.823, with a high
sensitivity (85.2%) but with the second poorest precision
(63.9 %). SVM, despite having the highest sensitivity (92.5 %),
had the lowest AUC (0.559) and the poorest accuracy (50.9 %),
with suggests a potential overfitting to the positive class.

Remarkable differences were observed in feature
importance between machine learning models (Table 4) and
the logistic regression model (Table 5, Supplementary
Figure 1). Random Forest identified the rs10774671 (14.14 %)
polymorphism, platelets (12.12 %), and rs77534576 (10.10 %)

and rs10490770 (7.07 %) as the most important features.
XGBoost identified heart diseases (37.25 %), creatine kinase
(11.76 %) and C-reactive protein (10.46 %) as the most rele-
vant predictors. AdaBoost prioritized C-reactive protein
(14.59 %), D-dimers (11.35%) and radiological findings
(10.81%). According to KNeighbors, the most important
features were D-dimers (54.10 %), platelets (17.21%) and
alanine aminotransferase (9.84 %). SVM showed a strong
preference for D-dimers (81.82 %), followed by lactate de-
hydrogenase (13.64 %). Naive Bayes identified age (9.14 %),
hypertension and alanine aminotransferase (8.60 % each) as
the factors with the highest influence. Finally, logistic
regression identified age 265 years (13.59 %), the rs10774671
polymorphism (12.80 %) and a lymphocyte count >1.94
(10.65 %) as the most important factors.

SNPs showed a variable importance according to the
model. The rs10774671 polymorphism was especially
important for Random Forest (14.14 %) and logistic regres-
sion (12.80 %). The rs77534576 polymorphism was found to
be the most relevant on the Random Forest model (10.10 %)
and had a moderate importance in the logistic regression
model (7.68 %). The rs10490770 polymorphism had a mod-
erate importance in the Random Forest (7.07 %) and the lo-
gistic regression (8.71 %) model.

Internal validation

Bootstrapping internal validation with 100 iterations
revealed generalized improvements with respect to the
original results (Supplementary Table 3). The Random Forest
model retained its top-rank position, with an accuracy of
95.6 % + 3.0 % and an AUC of 0.994 + 0.008, closely followed
by the XGBoost and AdaBoost models, which showed sig-
nificant improvements with respect to the initial model
(944% + 36% y 93.2% + 3.8% respectively). KNN also
experienced a significant improvement (80.6 % + 5.8 %),
whereas the logistic regression model showed a similar
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Table 4: Percentage of feature importance by IA-based model.
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Feature Random Forest, % KNeighbors, % AdaBoost, % XGBoost, % SVM, % Naive Bayes, %
Age 6.06 0.00 1.62 7.19 9.57 9.14
C-reactive protein 3.03 6.56 14.59 10.46 17.38 1.08
Heart diseases 7.07 0.00 1.62 37.25 0.35 5.38
Hypertension 1.01 0.00 2.70 9.15 12.77 8.60
Creatine kinase 5.05 1.64 2.16 11.76 4.26 2.15
rs10774671 14.14 0.00 2.16 3.92 12.41 5.91
Creatinine 8.08 0.00 7.03 0.00 0.00 484
D-dimers 0.00 54.10 11.35 5.23 0.00 4.84
Lymphocytes 2.02 0.00 1.08 0.00 0.71 6.45
Alanine aminotransferase 6.06 9.84 10.27 0.00 0.00 8.60
Platelets 12.12 17.21 5.41 0.00 2.48 0.00
Urea 0.00 0.82 9.19 0.00 3.55 2.69
Hemoglobin 0.00 0.00 0.00 2.61 6.03 1.08
rs10490770 7.07 0.00 5.41 3.27 1.77 1.61
Lactate dehydrogenase 2.02 9.84 1.08 0.65 4.26 2.15
Diabetes 10.10 0.00 0.54 0.00 0.00 5.38
rs77534576 10.10 0.00 3.24 1.31 10.99 6.99
Sex, male 1.01 0.00 5.41 2.61 1.77 5.91
Radiological 0.00 0.00 10.81 0.00 0.00 2.69
Ward admission 4.04 0.00 3.24 4.58 1.77 0.00
Tobacco use 1.01 0.00 1.08 0.00 0.00 0.54
Infection 0.00 0.00 0.00 0.00 13.12 8.06
Autoimmune 0.00 0.00 0.00 0.00 2.13 5.91

This Table shows the relative importance of each feature within the models Random Forest, K-Neighbors, AdaBoost, XGBoost, SVM, and Naive Bayes.

Table 5: Percentage of feature importance in the logistic
regression model.

Feature Coefficient Importance, Odds p-Value
% ratio

Age (=65) 1.16 13.59 5.81 <0.001
Gen (rs77534576) 1.10 12.80 4.39 0.04
Lymphocytes (>1.94) 0.91 10.65 254 0.10
Creatine kinase (>102) 0.90 10.56  2.85 0.03
C-reactive protein (=62.50) 0.84 9.77 392 0.01
Gen (rs10774671) 0.75 8.71 252 0.15
Gen (rs10490770) 0.66 7.69  2.05 0.14
Heart diseases 0.59 6.93 287 0.05
Hypertension 0.55 6.38  2.69 0.04
D dimers (>942) 0.34 3.95 273 0.05
Creatinine (>1.06) 0.31 3.60 242 0.08
Lactate dehydrogenase 0.27 320 1.89 0.17
(=296)

Urea (>27) 0.19 218 232 0.19

This Table summarizes the relative importance of each feature within the
logistic regression model. The cut-off point established for each
quantitative feature is shown next to their name. The column Coefficient
represents the magnitude and direction of the association between the
feature and the outcome. The column Importance (%) refers to the relative
contribution of each feature to the model. The Odds ratio shows the case-
control likelihood ratio; and the p value indicates the statistical significance
of the association. A cut-off point of p<0.20 was established for inclusion in
the model.

performance, with high variability in precision and sensi-
tivity. Naive Bayes showed stability. Finally, although SVM
performance improved slightly, it was instable. In general,
the ensemble models were superior and showed higher
stability.

Discussion

The most relevant finding in this study is that Al-based
models exhibited a higher predictive power for COVID-19
progression into critical disease, as compared to the classic
logistic regression model. Specifically, the ensemble models
were superior, with the Random Forest model showing the
best performance, with an AUC of 0.989, followed by XGBoost
with 0.954 and AdaBoost with 0.927, as compared to the lo-
gistic regression model, with an AUC of 0.881. The models
exhibited distinctive patterns in predicting critical COVID-19,
with each algorithm emphasizing different predictive fac-
tors. Random Forest revealed that elevated levels of platelets
and the presence of the rs10774671, rs77534576 and
1510490770 polymorphisms increase the risk for progression
into critical disease, with an importance of 12.12 %, 14.14 %,
10.10% and 7.07 %, respectively. XGBoost detected the
presence of heart diseases as the factor with the strongest
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predictive value (37.25 %), followed by elevated levels of
creatine kinase (11.76 %) and C-reactive protein (10.46 %).
AdaBoost pointed to elevated levels of C-reactive protein
(14.59 %) and D-dimers (11.35 %) as the factors indicating a
higher risk. Consistency among multiple models in identi-
fying these factors, especially SNPs and inflammatory
markers, supports their validity as robust predictors of
critical COVID-19, although their relative weight varies
depending on the algorithm used.

The evaluation of genetic predisposition revealed that
only three of the seven SNPs were associated with critical
COVID-19 disease in our cohort of patients (rs77534576,
rs10774671 and rs10490770). All models, except for SVM and
KNN, identified these SNPs as significant factors, although
with varying relative importance across models.

The ensemble models Random Forest, AdaBoost and
XGBoost demonstrated an optimal performance. This
finding supports their suitability for predictive purposes, as
they identify subtle but crucial patterns that identify high-
risk patients. Interestingly, the KNN model, despite its
simplicity, exhibited a respectable performance. Logistic
regression achieved a high overall accuracy, but a low
sensitivity. However, its easy interpretability still represents
a significant advantage in the clinical setting.

The integration of SNPs associated with disease
severity enhances prediction of COVID-19 progression into
critical disease. A previous study performed by our
research group [11] on critical COVID-19 disease where
SNPs were not included, the logistic regression model
achieved an AUC of 0.850. In contrast, the AUC for the
current logistic regression model, which included SNPs,
increased to 0.881. These improvements suggest that the
inclusion of genetic data has enhanced the predictive
power of the model.

Analysis of the Hardy-Weinberg equilibrium revealed
that, except for rs10774671 in the case group, all SNPs were
in equilibrium both in cases and controls. This result sup-
ports the validity of our finding that genetics are involved
in the risk for progression into critical disease. Of the seven
SNPs analyzed, three were statistically associated with
critical COVID-19: rs77534576, rs10774671 and rs10490770.
For rs77534576 and rs10490770, an additive inheritance
model was identified as the one with the best performance,
thus suggesting a cumulative effect of each allele on the risk
for developing severe disease. This is consistent with the
results obtained by Yi Lin et al. [21], where rs77534576 was
one of the SNPs associated with the risk for hospitalization
and the development of very severe COVID-19-related res-
piratory symptoms. In relation to rs10774671, our analysis
favoured a co-dominant model, thus indicating different
effects for each genotype. This result is aligned with the
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previous studies conducted by El Yousfi et al. [13] and
Huffman et al. [14], which highlighted the protective effects
of the G allele of rs10774671 against severe COVID-19 dis-
ease. A deviation from Hardy-Weinberg equilibrium was
observed for rs10774671. A lower relative proportion of
subjects in the case group had the protective allele, as
compared to controls. In relation to rs10490770, our find-
ings highlight its major role in predicting COVID-19
severity, consistently with the study by Nakanishi et al. [22].
Conversely, our results contradict the non-significant re-
sults reported by Prajjval P et al. [23] for the Indian popu-
lation. These inconsistencies emphasize the relevance of
considering genetic diversity in the population for the
interpretation of results. The rs35705950 SNP was not found
to be significant, which is in disagreement with Van
Moorsel et al., who demonstrated that the T allele of MUC5B
rs35705950 confers protection against severe COVID-19 [20].

Comparative analysis of the importance of each variable
unveiled that age, C-reactive protein, heart diseases and the
three SNPs (rs10490770, rs10774671 and rs77534576) were
relevant in all models, except for SVM and KNN, although
with varying importance. Inconsistencies in feature impor-
tance across models emphasize the complexity of the prob-
lem. This finding suggests that a multiple-model approach
would provide a more robust understanding of predictive
factors. The identification of these genetic markers not only
improves our knowledge of the underlying mechanisms of
susceptibility to severe COVID-19, but also paves the way to
the use of personalized medicine in the management of the
pandemic.

The integration of these genetic factors with clinical and
laboratory variables in predictive models is a significant step
forward towards a more precise, personalized risk stratifi-
cation. However, genetic predisposition is only a piece of the
puzzle, and its interpretation should be considered from a
broader perspective including environmental factors,
comorbidities and individual immune response. Differences
in variable importance across models demonstrate the need
for using multiple approaches to gain a more comprehensive
understanding of the problem.

This study has some limitations, including a relatively
small sample size of 155 patients, which may lead to over-
fitting in complex models. This occurs due to the imbalance
between the number of observations and the number of
predictors, thus increasing the likelihood that the model
captures sample-specific noise rather than true population-
level relationships. Additionally, it was not specified
whether baseline laboratory values were obtained at ED
admission or at ICU admission, which may influence the
interpretation of results due to variations in biomarkers
over time. Although cross-validation was applied to mitigate
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these problems, internal and external validation of these
findings in a larger diverse cohort is essential prior to their
implementation in clinical practice. The limited evidence
available in the literature on specific methods for estab-
lishing associations between SNPs and particular variables
or establishing the type of dominance model is a methodo-
logical challenge common to genetic association studies.

This study demonstrates the superiority of machine
learning algorithms, especially ensemble models, in pre-
dicting critical COVID-19 disease. The use of SNPs in combi-
nation with laboratory and clinical variables enhances the
predictive power of models. Of the seven SNPs analyzed, a
statistically significant association was observed between
three SNPs and critical COVID-19 disease, namely:
rs77534576, rs10774671 and rs10490770. As a result, these
SNPs were integrated in the predictive algorithms, thereby
suggesting a genetic predisposition to develop critical
COVID-19 disease. Further studies based on larger, more
diverse populations are needed to validate and generalize
the results obtained in this study, including external vali-
dation in independent populations.
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