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Abstract

Objectives: To evaluate seven bioinformatics platforms for
automated Al-based genomic variant prioritization and
classification.

Methods: An evaluation was performed of 24 genetic vari-
ants that explained the phenotype of 20 patients. FASTQ files
were simultaneously uploaded on the following bioinfor-
matics platforms: Emedgene, eVai, Varsome Clinical, Cen-
toCloud, QIAGEN Clinical Insight (QCI) Interpret, SeqOne
and Franklin. Automated variant prioritization and classi-
fication was performed using patient phenotypes. Pheno-
types were entered onto the different platforms using HPO
terms. The classification of reference was established based
on the criteria of the American College of Medical Genetics
and Genomics (ACMG) and the Association of Molecular
Pathology and ACMG/ClinGen guidelines.

Results: SeqOne demonstrated the highest performance in
variant prioritization and ranked 19 of 24 variants in the Top

*Corresponding author: Nerea Bastida-Lertxundi, Biogipuzkoa Health
Research Institute, Neurogenetics, Biology and RNA Therapies Research
Group - NeuroRNA, San Sebastian, Spain; Osakidetza, Donostialdea
Integrated Health Organization, Unit of Clinical Genetics, Donostia
University Hospital, San Sebastian, Spain; and Unidad de Genética Clinica,
Hospital Universitario Donostia, Edificio Aranzazu 3a planta, Paseo
Beguiristain S/n, 20014, San Sebastian, Spain,

E-mail: nerea.bastidalertxundi@osakidetza.eus

Itxaso Marti-Carrera, Biogipuzkoa Health Research Institute, Research
Group in Paediatrics, San Sebastian, Spain; Osakidetza, Donostialdea
Integrated Health Organization, Unit of Paediatrics, Donostia University
Hospital, San Sebastian, Spain; and Department of Paediatrics, University of
the Basque Country UPV/EHU, San Sebastian, Spain

Borja Laiia-Ruiz and Otilia Martinez-Mugica Barbosa, Osakidetza,
Donostialdea Integrated Health Organization, Unit of Paediatrics, Donostia
University Hospital, San Sebastian, Spain

Raquel Muguerza-Iraola, Raquel Saez-Villaverde and Julien S. Crettaz,
Biogipuzkoa Health Research Institute, Neurogenetics, Biology and RNA
Therapies Research Group - NeuroRNA, San Sebastian, Spain; and
Osakidetza, Donostialdea Integrated Health Organization, Unit of Clinical
Genetics, Donostia University Hospital, San Sebastian, Spain

1; four in the Top 5, and one in the Top 15, followed by
CentoCloud and Franklin. QCI Interpret did not prioritize six
variants and failed to detect one. Emedgene did not priori-
tize one and failed to detect one. Finally, Varsome Clinical
did not prioritize four variants. Franklin classified correctly
75 % of variants, followed by Varsome Clinical (67 %) and QCI
Interpret (63 %).

Conclusions: SeqOne, CentoCloud, and Franklin had the
highest performance in automated variant prioritization, as
they prioritized all variants. In relation to automated clas-
sification, Franklin showed a higher concordance with the
reference and a lower number of discordances with clinical
implications. In conclusion, Franklin emerges as the plat-
form with the best overall performance. Anyway, further
studies are needed to confirm these results.

Keywords: automated prioritization; automated classifica-
tion; artificial intelligence; whole exome; tertiary analysis;
bioinformatics tool

Introduction

Estimations indicate that 5.9 % of the population is affected
by arare disease. Over 50 % of these patients will never have a
final diagnosis [1, 2]. Patients with an uncertain diagnosis
usually go through the so-called ‘diagnostic Odyssey’, a pro-
cess that involves consultations with multiple specialists,
numerous medical imaging studies and a myriad of clinical
laboratory tests [3]. Molecular diagnosis contributes to
improving disease management and optimizing treatments
and follow-up. This approach opens the way to the delivery
of genetic counselling to patients and their family regarding
potential complications, risk of relapse and reproductive
options [4].

Whole exome sequencing (WES) has been a break-
through in genetic diagnostics. This technique allows for the
parallel sequencing of 22,000 coding genes accounting for
2% of the entire genome and containing 85 % of disease-
causing variants [5, 6]. High-throughput platforms enable
the sequencing of several exomes in a few hours at a
reasonable cost and with a significant accuracy [7]. The
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genetics industry is currently facing the era of genomic data
management. Massive data storage may be challenging
firstly due to security, privacy and traceability issues. Sec-
ondly, finding a genetic cause may be like seeking a needle in
a haystack [8, 9]. The WES of a subject comprises an average
of 100,000 variants. In the clinical setting, screening for,
prioritizing, interpreting and classifying clinically relevant
variants is the most challenging stage of genetic diagnostics
and is the bottleneck of genetic testing. Prior to the analysis
of candidate variants, the datasets generated by sequencing
platforms undergo several bioinformatic processing steps.
At this stage, clinicians rely on the use of commercially
available platforms. These platforms perform a secondary
analysis of genomic data to identify variants not aligned
with the reference genome [10, 11]. Next, these platforms
perform a tertiary analysis that involves annotating each
variant and collecting relevant information that is either
intrinsic to the variant or available in research databases
and in the scientific literature [12-17]. Finally, variants are
filtered and prioritized.

Until recently, the last step required a visual inspection
of a list of variants displayed in tables using basic filters. In
addition, variants used to be classified manually following
the criteria provided in clinical guidelines [18, 19]. As a
result, identifying the causative variant was challenging and
time-consuming.

For an optimal tertiary analysis, patient details such as
age, sex, phenotype and date of onset of symptoms, among
other data, can be entered into these platforms. HPO terms
(after ‘human phenotype ontology’) have become essential
to this process, as they provide standardized terms for
describing patient phenotypes. The use of HPO enables
platforms to link patient HPO terms with their associated
genes and related diseases, along with other parameters
during the annotation process [20].

The great novelty of these bioinformatics BI platforms is
that they are based on machine learning algorithms that
generate artificial neural networks (ANNs). These networks
correlate genotypes, genes, diseases, population databases,
variant-phenotype databases, patient predictors and symp-
toms, among other parameters, and consider the scientific
literature available. Moreover, ANNs perform automated
variant prioritization in a fast and efficient way. These
platforms integrate the criteria of the American College of
Medical Genetics and Genomics (ACMG)/Association of
Molecular Pathology (AMP) and ACMG/ClinGen guidelines
[18, 19]. This capability makes it possible to automatically
prioritize and classify variants.

The application of Al to clinical genomics will boost the
implementation of WES in clinical practice and improve
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patient access to this technology. This step forward will
certainly revolutionize healthcare [21].

To date, the literature available comparing variant
prioritization tools is limited. Most of the papers published
only evaluate open-access tools and use a phenotype-based
filtering and prioritization approach. In addition, only one
of them was based on IA-based algorithms [22-29].

The objective of this study was to perform an objective,
independent evaluation of different commercially-available
BI platforms for the interpretation of genomic data.

The ultimate purpose of this project is to implement
WES in the clinic. For such purpose, it is necessary that
objective data is available for selecting the most effective
tool. Access to a high-performing prioritization and classi-
fication tool will help clinical laboratory professionals
reduce the time required for analysis and the associated
costs, improve turnaround times, increase diagnostic yield
and meet the growing demand for this type of genomic
studies [30, 31].

Materials and methods

A retrospective WES study was carried out to randomly
select 20 patients with one or several variants related to their
phenotype. These patients had visited different Units of
Donostia University Hospital.

The diversity of patients enabled us to include a broad
variety of deleterious variants and inheritance patterns. A
total of 24 genetic variants were included and classified by
the external laboratory. Later, these variants were inspected
by professionals from the Unit of Clinical Genetics of
Donostia University Hospital (UCG-DUH), who assigned the
classification that would be used as reference (see Supple-
mentary Material, Table 1 and Table 2). The classification of
reference was established based on the criteria and recom-
mendations of ACMG/AMP and ACMG/ClinGen guidelines
[18, 19].

Six copy number variations (CNVs) were included. The
length of deletions and duplications ranged from 1.9 kb to
9.4Mb. All followed an autosomal dominant inheritance
pattern, except for an X-linked deletion (see Supplementary
Material, Table 3). 12 single nucleotide variants (SNV) were
included, of which five were missense, four were nonsense,
two were canonical splice site mutations and one was a si-
lent mutation. Five small frameshift deletions and a small
frameshift duplication were also included. These 18 variants
had heterogeneous inheritance patterns (see Supplementary
Material, Table 4). The study variants were classified as class
5 (pathogenic) o class 4 (likely pathogenic).



30 — Bastida-Lertxundi et al.: Comparing platforms for tertiary analysis of genomic data

The FASTAQ datasets obtained from genetic sequencing
were uploaded into the seven BI platforms for secondary and
tertiary analysis of genomic data. Following an analysis of
the tools currently available, the seven most popular
Al-based tools in the sector were selected, namely: Emedg-
ene ([llumina®, Inc, CA, USA.); eVai (enGenome, Pavia, Italy);
Varsome Clinical (Saphetor SA, Lausanne, Switzerland);
CentoCloud® (Centogene GmbH, Rostock, Germany); and CLC
genomics workbench for secondary analysis; and QIAGEN
Clinical Insight (QCI) Interpret for tertiary analysis (Qiagen
GmbH, Hilden, Germany); SeqOne (Montpellier, France) and
Franklin (Genoox, Tel Aviv-Yafo, Israel). Apart from genomic
data, patient phenotype was entered into each platform us-
ing HPO terms for further BI analysis (see Supplementary
Material, Table 5).

First, the performance of each platform in prioritizing
variants was evaluated. The position in which each program
ranked the 24 causative variants was analyzed. When the
variant ranked first, it was defined to be in the Top 1. When it
ranked in the top five positions, it was defined as Top 5; as
Top 10 if it was in the top 10 positions, and as Top 15 if it was
ranked within the top 15 positions. When the variant was
beyond position 16, it was defined as ‘not prioritized’ (NP).
When the causal variant was not found in the total list of
variants, it was defined as ‘not detected’ (ND). NP and ND
variants were considered an ‘event’, which indicated a
selection failure that may clearly prevent diagnosis. Secondly,
the classification automatically assigned to the 24 variants by
the platforms was compared. All platforms included in the
study classify variants automatically according to the ACMG/
AMP and ACMG/ClinGen guidelines [18, 19]. The level of
agreement between the classification assigned by each
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platform and the classification of reference was assessed. In
view that all variants were pathogenic and likely pathogenic,
when a variant was classified as pathogenic instead of likely
pathogenic and vice versa, it was identified as discordant
without clinical implications. When a variant was classified
as of uncertain significance and benign, it was identified as
discordant with clinical implications.

Results
Evaluation of automated prioritization

The best platforms, ranking in the Top 1 and Top 5, were
SeqOne, CentoCloud and eVai. Other platforms in the Top 10
were CentoCloud and Franklin (Figure 1).

Emedgene ranked 22 variants (92 %) in the Top 10. How-
ever, this platform failed to prioritize a nonsense SNV in the
PAX9 gene of patient R14 and did not detecta CNV in patient R1
(see Supplementary Material, Table 6). Varsome Clinical failed
to prioritize four variants (17 %), of which three were CNVs.
The rest of variants, 14 (58 %), were ranked in the Top 1, and
Six (25 %) in the Top 5. The QCI Interpret yielded the poorest
results, was the platform with the highest number of non-
prioritized variants (six, 25 %) and failed to detect a SNV (4 %)
in the CDKLS5 gene of patient R15 (see Supplementary Material,
Table 7). By number of events, QCI Interpret was last in the
ranking, with six non-prioritized variants and one not
detected. Emedgene ranked sixth, as it failed to detect a
variant and prioritize another. Varsome Clinical ranked fifth,
as it failed to prioritize four variants. Finally, eVai ranked
third, as it failed to prioritize a variant (Figure 2).

B Top1s NP ]l ND

15 20 25

NP: not prioritized, ND: not detected, QCI Interpret: Qiagen Clinical Insight Interpret

Figure 1: Ranking of platforms by in variant prioritization performance. NP: not prioritized, ND: not detected, QCI Interpret: Qiagen Clinical Insight

Interpret.
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Prioritized

Figure 2: Concordances and discordances in automatic classification as compared against the classification of reference.

Table 1: Variants not detected and not prioritized.

Patient Chromosomal position Type of CNV Event Software
R1 2p16.3 Del ND Emedgene
NP VC, QCII

R4 15911.2 Del NP VC

R9 Xp22.31 Del NP VC

Patient Gene Variant Event Software

R15 CDKL5 €.283-2A>G ND QClII

R1 SPAST c.1617-2A>G NP VC

R8 EXT1 c.1037G>T NP QcI

R12 CNOTT c.2071del NP QClII

R14 PAX9 €.554C>A NP Qdl1,
Emedgene

R17 BSND €.23G>A NP eVai, QCII

R19 JAGT €.221_224del NP QCI

CNV, copy number variant; NP, not prioritized; ND, not detected; VC,
Varsome Clinical; QCII, Qiagen Clinical Insight Interpret.

In total, 14 events were identified. Emedgene failed to
detect CNV 2p16.3 (DEL). QCI Interpret did not detect the
CDKL5:¢c.283-2A>G variant. Varsome Clinical had a poor
performance in prioritizing CNVs, as it failed to prioritize
three of the six CNVs evaluated. Five variants were not
prioritized by QCI Interpret, of which two were missense, two
were frameshift and one was a nonsense mutation (Table 1).

If the platforms that failed to prioritize or detect variants
due to their clinical impact are excluded, SeqOne was the one
with the highest performance. This platform ranked 19 vari-
ants in the Top 1, four in the Top 5 and one in the Top 15. The
second with the best performance was CentoCloud, with 16
variants ranked in the Top 1, six in the Top 5, and two in the
Top 10. Finally, Franklin ranked third, with 12 variants in the
Top 1, seven in the Top 5 and five in the Top 10.

Evaluation of automated prioritization

In general, all platforms performed a high-quality auto-
mated classification according to the guidelines available
[18, 19]. The automated variant classification performed by
Franklin was strictly concordant with the classification of
reference in 18 of the 24 variants (75 %), followed by Varsome
Clinical in 16 (67 %); QCI Interpret in 15 (63 %); Emedgene in
13 (54 %); SeqOne in 12 variants (50 %); eVai in 11 variants
(46 %) and CentoCloud in 10 (42 %). Franklin performed an
adequate classification (concordant with the reference
classification and discordant without clinical implications)
in 22 of the 24 variants (92 %), followed by Varsome Clinical
in 21 variants (88 %); QCI Interpret in 20 variants (83 %);
Emedgene and eVai in 19 variants (79 %); SeqOne in 18 var-
iants (75 %); and CentoCloud in 15 variants (63 %). The plat-
forms with the highest number of discordant classifications
with clinical implications were CentoCloud, with nine of the
24 (38%) variants with a discordant classification with
clinical implications, eight of which were classified as vari-
ants of uncertain significance and one as benign. In contrast,
Franklin yielded the lowest number of discordant classifi-
cations with clinical implications, only two of the 24 variants
evaluated (8.3 %) (Figure 3).

Considering variants separately, all platforms agreed on
the classification of only four variants (SPG11:c.6832_6833del,
CLCNI1:c.742A>T, EXT2:c.514C>T and NSD1:c.4467del) and were
consistent with the classification of reference. In relation to
the SPAST:c.1617-2A>G, JAGI:c.221_224del variants, there was
a platform with a discordance without clinical implications.
Concerning the SGCE:c.884dup and CDKL5:c.283-2A>G vari-
ants, there were two platforms with a discordance without
clinical implications. Notably, all platforms were concordant



32 —— Bastida-Lertxundi et al.: Comparing platforms for tertiary analysis of genomic data

DE GRUYTER

Concordant

Concordant + Discordant without clinical implication

- Discordant with clinical implication

25
92% 88%
22 °
20 21 83% 79%
75% 20 19
18

! 67:/; 63%
Number 15
of variants 46%

10 11

5 21%
13% 13%
g I 1 4%
0 . | |
. N X, N
&o \\(\ O\
< @ &
< &
Cx &
<
AO

B Not detected

79%

19 75%

18
63%

15

2%
10 I
RS

o
O

54%

3 50%

12
%

25%
17%

1 49%

||
@ ('
o o(\

Figure 3: Comparative analysis of automatic classification vs. the reference classification. QCI Interpret: Qiagen Clinical Insight Interpret.

and classified the 2q11.1q11.2 (DEL) variant as pathogenic,
although it was classified as likely pathogenic in the classi-
fication of reference. In another 15 variants, a discrepancy
with clinical implications was detected. Finally, whereas
UCG-DUH and QCI Interpret classified the CNV 15¢11.2 (DEL)
as likely pathogenic, Emedgene, eVai and Franklin, classified
it as pathogenic, SeqOne as a variant of uncertain signifi-
cance, and CentoCloud and Varsome Clinical as a class 1
benign variant (Figure 4).

In total, there were 32 discrepancies with a potential
clinical implication concerning correct diagnosis. Three or
more platforms showed a discordance with clinical impli-
cations in relation to BSND:c.23G>A, SLC3A1:c.1011G>A,
CLCN1:c.2363A>C and 15q11.2 (DEL) (Figure 5).

Discussion

Technological advances in massive gene sequencing have
contributed to the emergence of new applications to genetic
diagnostics. These advances have increased diagnostic yield,
reduced time to diagnosis and improved turnaround time.
However, these new technologies have some drawbacks.
High-throughput platforms generate large genomic datasets
which interpretation is challenging. The processing of
genomic data involves several BI processes. It is in the

tertiary analysis after variant calling and annotation where
the variant that may cause patient phenotype is identified. In
the recent years, a variety of platforms have been developed
to help professionals filter, prioritize, classify and interpret
variants. Apart from containing automated classification
modules based on guidelines, these platforms integrate
Al-based algorithms for the automated prioritization of
variants.

This is the first study to retrospectively evaluate a pilot
group of patients to establish the criteria to validate the optimal
tertiary analysis platform for daily laboratory practice.

Variant prioritization is essential in genetic diagnostics.
Traditionally, this process was performed manually by using
different filters to reduce the number of variants until the
potential cause of the patient phenotype was identified. This
manual approach was effective but time-consuming and
complex, as it involved the analysis of large datasets of
genomic data. Following filtering, variants were classified
manually according to the criteria established in ACMG/AMP
guidelines, among others.

In relation to process optimization, automated variant
prioritization is crucial in improving the performance of
genetic diagnostics. Automation significantly reduces turn-
around time and enables the analysis of large genomic
datasets, thereby leading to a more rapid and accurate
identification of clinically relevant variants.
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Figure 4: Comparative analysis of automatic classification by variant; concordance with the classification of reference; and discordant platforms. Cento:
CentoCloud, Emed: Emedgene, Frank: Franklin, QCII: Qiagen Clinical Insight Interpret, Seq: SeqOne, Varso: Varsome Clinical.

Automated classification is a step forward but stays in
the background. Not all rules can be automated, since some
require external information for them to be applied, such as
the variant inheritance or familial disease segregation
pattern. In the recent years, efforts have been made to
standardize the application of rules. However, this step is
still open to subjectivity. As a result, manual classification is not
exempt from uncertainty. Some authors suggest the use of a
quantitative approach to apply guidelines [32] i.e. specifications
for the application of particular criteria [33] and specific gene
guidelines such as the guidelines for the APC, BRCA1 and BRCA2
genes [34, 35].

Considering the results of our study for variant priori-
tization, SeqOne, CentoCloud and Franklin prioritized all
variants, and eVai only failed to prioritize one of the 24
variants evaluated. Varsome Clinical demonstrated an
acceptable prioritization capability, as it ranked 83 % of
variants in the Top 5, but failed to prioritize four of the 24
variants, three of which were CNVs. Emedgene did not
prioritize a PAX9 variant, which is relevant, as it has dele-
terious effects. The nucleotide changes at position c.554,
which transforms cytosine to adenine, generates a prema-
ture stop codon. This probably results in the absence or
disruption of the protein. In addition, patient phenotype is

very specific and is extensively documented for this gene.
Emedgene also failed to detect a deletion in the NRXN1 gene
at chromosome 2p16.3. The deletion of two exons demon-
strates the intrinsic limitation of the exome for detecting
small CNVs, and the need for a CNV model for secondary
analysis. QCI Interpret is fitted with a phenotype-driven
ranking (PDR) that still needs further development. It is striking
that a variant that ranks first and is classified as pathogeinc
when PDR is applied disappears in the ocean of variants and is
classified as a variant of uncertain significance. Apparently, the
phenotype-driven ranking module of QCI Interpret is too
strictly linked to the diseases described. This rigidity does not
align adequately with patient phenotype. The evaluation of QCI
Interpret for the 24 variants was carried out using the general
list of variants. The PDR option was not used.

Franklin, QCI Interpret and Varsome Clinical demon-
strated the best performance in automated variant classifi-
cation. However, it is worth noting that the two latter failed to
prioritize a significant number of variants. In contrast, albeit
they perform a more conservative variant classification,
CentoCloud, SeqOne and eVai prioritized variants by ranking
them in the first positions but classified them as variants of
uncertain significance, thereby requiring external clinical
support.
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Figure 5: Concordances and discordances in automatic classification with respect to the classification of reference and the platforms analysed. Cento:
CentoCloud, Emed: Emedgene, Frank: Franklin, QCII: Qiagen Clinical Insight Interpret, Seq: SeqOne, Varso: Varsome Clinical.

In summary, a perfect platform is not currently avail-
able. An optimal platform must provide an automated
variant prioritization without failing to detect any causal
variant. Automated classification must also be accurate. The
data obtained in this comparative study reveal the high
performance of these platforms in variant prioritization
resulting from the use of bioinformatics and Al-based
algorithms.

These platforms are effective in general, with a notable
performance in automated variant prioritization and classi-
fication. However, some differences highlight the relevance of
appropriate prioritization for successful diagnosis. Although
automated classification is a significant added value of these
platforms, it can be modified and/or questioned by other
critical information which the analysts and clinicians may

have access to. These BI tools are constantly being improved,
with enhanced capabilities to keep up to date with scientific
advances. In general, the platforms evaluated do not only
support but also optimize the tasks of clinical laboratory
specialists and facilitate the implementation of WES in
clinical practice.

A limitation of this study is that results are provided
only for a small number of variants. For more consistent
results, larger studies are needed that do not only include
pathogenic and likely pathogenic variants, but also a selec-
tion of population variants. These studies would enable a
more accurate evaluation of the automated genotyping and
classification capabilities of each platform.

In conclusion, the Franklin platform showed a superior
overall performance. With respect to automated prioritization,
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Franklin ranked the third, following SeqOne and Cen-
toCloud. In terms of automated classification, Franklin
showed the highest concordance with the classification of
reference and has presented fewer discordances with clin-
ical implications.
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