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Abstract: Blood-based circulating tumor DNA (ctDNA)
analysis has emerged as a highly relevant non-invasive
method for molecular profiling of solid tumors, offering
valuable information about the genetic landscape of cancer.
Somatic mutation analysis of ctDNA is now used clinically
to guide targeted therapies for advanced cancers. Recent
advancements have also revealed its potential in early
detection, prognosis, minimal residual disease assessment,
and prediction/monitoring of therapeutic response. In
recent years, significant progress has been made with the
development of various PCR and NGS-based methods
designed for assessing gene variants in ctDNA of patients
with cancer. However, despite the transformative

possibilities that ctDNA analysis presents, challenges persist.
Standardization of preanalytical and analytical protocols,
assay sensitivity, and the interpretation of results remain
critical hurdles that need to be addressed for thewidespread
clinical implementation of ctDNA testing. In addition to so-
matic mutations, emerging studies on DNA methylation
(epigenomics) and fragment size patterns (fragmentomics)
in several types of biological fluids are yielding promising
results as non-invasive biomarkers for effective cancer
management. This review addresses the clinical applications
of somatic gene variants in ctDNA, emphasizes their poten-
tial as cancer biomarkers, and highlights essential factors
for successful implementation in clinical laboratories and
cancer management.
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Introduction

In recent years liquid biopsy has emerged as a non-invasive
method for molecular tumor profiling through the analysis
of circulating tumor components in several biological fluids,
primarily in plasma (Figure 1) [1, 2]. This approach offers
significant potential for cancer management, including
early detection and screening, prognosis, minimal residual
disease (MRD) detection, and monitoring of therapy
response [1, 3]. Among the components analyzed, circulating
tumor DNA (ctDNA) stands out for its ability to detect
somatic mutations, providing valuable clinical insights [4].
Although somatic mutations are the most advanced molec-
ular biomarkers for clinical implementation, other ctDNA
features, such as DNA methylation [5] and fragment size
patterns [6], are providing promising results for cancer
management. Recent advancements in ctDNA assays have
demonstrated their potential to guide targeted therapies for
advanced cancers, with growing evidence supporting their

integration into routine clinical practice. However, there are
still relevant challenges in the field, such as standardization,
preanalytical and analytical procedures, and result inter-
pretation [4]. This review highlights the clinical applications
of ctDNA, emphasizing its potential as a cancer biomarker. It
also addresses preanalytical and analytical factors, detection
assays, result interpretation and reporting aspects, aswell as
alternative fluids for ctDNA analysis. Altogether, we provide
an overview of the clinical utility of ctDNA, and discuss
challenges and future opportunities for its implementation
in clinical practice.

Circulating DNA

Characteristics of blood-based ctDNA

Cell-free DNA (cfDNA) consists of nuclear andmitochondrial
small fragments of double-strand DNA [7], which is mainly

Figure 1: Schematic representation of ctDNA analysis in cancer patients. Solid tumors release ctDNA into circulation (apoptosis, necrosis, secretion),
which carries specific genetic and epigenetic alterations representative of tumor molecular landscape. DNA fragments in circulation allow for potential
evaluation of ctDNA features, including point mutations, structural rearrangements, copy number variations, epigenetics (DNA methylation), fragment
size, and ctDNA levels. Currentmolecular assays for the study of ctDNAoffers the possibility of analysing specific somatic genetic alterations using dPCR or
qPCR, or molecular genotyping with NGS-based technologies. Potential clinical aplications in oncology encompass screening/early cancer detection,
treatment monitoring, detection of MDR, and resistance detection. CtDNA, circulating tumor DNA; dPCR, digital PCR; qPCR, quantitative PCR; NGS,
next-generation sequencing; LOD limit of detection, MRD, minimal residual disease. Figure created with biorender (https://BioRender.com/x96k221).
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released into bloodstream by the haematological system in
healthy individuals [8]. These DNA fragments range from
approximately 40 to 200 base pairs (bp) in length,with a peak
around 166 bp, corresponding with nucleosome-associated
DNA fragments [7, 9]. In patients with cancer, cfDNA also
contains a small subset of shorter fragments (∼145 bp)
released into bloodstream by tumor cells known as ctDNA
[10], which contributes to the elevated cfDNA levels observed
in patients with cancer [11]. ctDNA is usually more frag-
mented than cfDNA [12] and it is characterised by presenting
specific genetic and epigenetic features that provide infor-
mation about the tumor of origin [10]. The release of ctDNA
into circulation can be produced through various mecha-
nisms (Figure 1), including passive and active processes
[12, 13]. Passive release of ctDNA primarily occurs through
apoptosis and necrosis [13]. Apoptosis is thought to be the
major mechanism of shedding of ctDNA in most cancers,
leading to a ladder-like pattern of DNA fragments [14] with a
periodicity of 10 bp [11]. Although necrosis has a variable
contribution to ctDNA shedding, this mechanism usually
releases larger fragments of ctDNA,mainly >200 bp and even
longer than 10.000 bp, along with an oligonucleosomal
ladder-like pattern [13, 15, 16]. In addition, ctDNA can also be
actively released via extracellular vesicles (e.g. exosomes,
microvesicles or apoptotic bodies) [17], representing a
promising area of active research [18]. However, its exact
contribution to ctDNA is still under debate [19, 20]. On the
other hand, it is important to note that ctDNA has a short
half-life in circulation (less than 2 h) [21], which is influenced
by enzymatic cleavage in the bloodstream, its clearance by
the liver, and to a lesser extent, by the kidney [22]. Classically,
the gold standard for molecular profiling of solid tumors
has been the analysis of direct tissue biopsy. Nevertheless,
in the last decade, blood-based analysis of ctDNA has
emerged as a useful alternative [12], with increasing clinical
evidence supporting its utility for the non-invasive molecu-
lar profiling of solid tumors [23–27]. ctDNA offers an
opportunity for non-invasive analysis of tumors, providing
the possibility of serial sampling to follow tumor evolution,
with faster turnaround times, lower costs, and a more
simplified process compared to tissue biopsy. Moreover,
ctDNA allows the analysis of clonal evolution or mutational
load of the tumor [28], and can capture heterogeneity better
than tissue biopsy, which is inherently localized, and in some
cancers difficult to obtain [12, 29]. In fact, ctDNA is able to
capture tumor heterogeneity with up to 80–90 % sensitivity
[30], depending on anatomical localization, and ctDNA
abundance [31].

The analysis of ctDNA features can be useful for
detecting a wide range of tumor characteristics (Figure 1)
[4, 12]. Most publications have focused on the analysis of

gene variants, such as single nucleotide variants (SNVs),
insertions and deletions (indels), copy number variations
(CNVs), and fusions. However, additional features of ctDNA
have recently gained significant attention [12]. For example,
ctDNA levels correlate with tumor size and can be used to
assess disease progression [7, 28] with lower levels associ-
atedwith better outcomes [21]. In addition, the fragment size
pattern analysis of cfDNA and ctDNA in patients with cancer
can potentially provide valuable information about the
tissue of origin [32], and it can be applied to improve ctDNA
detection [33]. Importantly, the methylation profile of ctDNA
can also offer valuable information about the tumor [5, 34],
such as tissue of origin [12, 35].

ctDNA in non-blood body fluids

In addition to blood, ctDNA can be analyzed in alternative
biological fluids, which may offer increased sensitivity in
certain situations [36, 37], with distinct benefits and limita-
tions [7, 37]. Nonetheless, its applicability in routine clinical
analysis is hampered by its lack of standardization.

Urine is a promising non-invasive source of ctDNA for
the detection of genitourinary tumors [38–41], since it can
improve the detection and management of these tumor
types [42–44]. Another non-invasive source of ctDNA is
saliva, allowing serial sampling for the analysis of head and
neck tumors [45–48]. Some studies suggest salivary ctDNA as
the preferred sample for oral tumors, which may also be
used in combination with blood-based ctDNA for other head
and neck tumors [37, 49]. On the other hand, cerebrospinal
fluid (CSF), is especially valuable for diagnosis and tracking
of central nervous system primary cancers and intracranial
metastasis [50–54]. Since the blood-brain barrier severely
limits the passage of ctDNA between the bloodstream and
the central nervous system [55], cerebrospinal fluid (CSF)
represents a specific potential source of intracranial ctDNA
[37]. This approach eliminates the need for brain tumor bi-
opsy and allows serial sampling [56]. In addition to these
fluids, the analysis of ctDNA in effusions can also provide
some advantages, since these fluids present a better ratio of
ctDNA-cfDNA than blood for proximal tumors [57]. For
example, pleural ctDNA can offer fast detection of actionable
mutations in lung cancer with more sensitivity than blood
ctDNA [37]. Whereas peritoneal ctDNA has proven to be
useful in the detection of peritoneal metastatic disease
[37, 58]. Other types of fluid sources, such as bronchial la-
vages, offer the possibility of ctDNA analysis, providing
valuable opportunities for lung cancer diagnostics [59]. This
type of fluid contains higher ctDNA levels than blood, mak-
ing it valuable formolecular profiling of lung tumors [59–61].
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Furthermore, other potential sources of ctDNA with future
clinical applicability are under investigation, including bile
for pancreatic cancer [62], and breast milk from pregnant
and postpartum women for breast cancer [63], among
others.

Preanalytical considerations of
ctDNA analysis

Preanalytical considerations (Table 1) are critical for the
reliable analysis of ctDNA, as improper handling or
processing can lead to its contamination, degradation, or low
yield [4, 64].

Specimen types

For ctDNA analysis, plasma is preferred over serum. The
coagulation process in serum can release genomic DNA
(gDNA) from leukocytes, increasing contamination, and
complicating the detection of low-frequency mutations.

Plasma minimizes gDNA contamination and provides more
reliable results for detecting low-abundance alterations [65].

Blood collection and transport

It is essential to consider the timing of blood collection
depending on the specific application of ctDNA analysis.
Collecting the sample before treatment helps establish a
baseline for ctDNA and initial tumor burden, during treat-
ment contributes to monitor therapeutic efficacy and detect
potential resistance, and after treatment enables the early
identification of recurrences and progression [5, 21, 66].
For blood collection, tubes with or without preservatives
can be used [67]. Among the tubes without preservatives,
those containing potassium ethylenediaminetetraacetate
(K2EDTA) as an anticoagulant are the preferred choice for
the analysis of ctDNA. Of note, blood with K2EDTA tubes
require to be processed within 2–4 h after extraction to
prevent cell lysis and gDNA contamination. On the other
hand, tubes with preservatives (e.g. Streck) are specifically
designed to stabilize nucleated blood cells, allowing for the
preservation of ctDNA in collected blood samples for up to
several days at room temperature [1, 68, 69]. Blood tubes
must be transported to the laboratory without agitation
and protected from temperature fluctuations to prevent
hemolysis and cellular damage [70]. When working with
external laboratories, it’s important to consider the use of
cell preservation tubes and adhere to proper storage times
and temperatures [64].

Plasma separation and quality control

Plasma separation typically involves two centrifugation
steps: ∼1,600 × g at 4 °C for 10 min, and a second centrifu-
gation at ∼16,000 × g at 4 °C for 10 min to obtain cell-free
plasma [5]. This process helps eliminate cellular debris
and improves ctDNA purity [65]. Factors like hemolysis,
lipemia, and icterus can affect ctDNA analysis. Therefore,
visual inspection of plasma after separation is recom-
mended. To minimize hemolysis, gentle venipuncture and
immediate inversion of collection tubes are advised [4, 64].
It is recommended to reject samples with hemolysis
[67, 70], since it can promote the release of gDNA, inter-
fering with the extraction process and reducing the pro-
portion of ctDNA [67, 71]. Regarding lipemia and icterus,
additional studies are required to determine the effect of
elevated bilirubin levels, or hyperlipidemia impact on
ctDNA levels.

Table : Preanalytical considerations for ctDNA analysis.

Step Considerations

Sample type Plasma rather than serum is recommended.
Blood collection EDTA tubes require processing within – h. Cell

preservation tubes maintain sample integrity for
several days at room temperature.

Blood transport Agitation and temperature fluctuation should be
avoided. EDTA tubes should arrive the laboratory
before – h. Cell preservation tubes can be
transported at room temperature for up to several
days without significant degradation. For longer
transport times, plasma should be separated and
frozen.

Plasma separation
and QC

Typically involves two centrifugation steps. Plasma
should be obtainedwithout disturbing the buffy coat
or red blood cells. Hemolysis, lipemia, and icterus
shoud be avoided.

Plasma storage
conditions

For long-term storage (months): − °C. For
short-term storage (up to  days): − °C. Avoid
repeated freeze-thaw cycles that can lead to ctDNA
fragmentation and a loss of analytical sensitivity.

Extraction methods Manual or automated extraction methods can be
used. Yield and purity is relevant for choosing the
methodology.

QC and storage of
ctDNA

Fluorometric or quantitative PCR are usually used to
determine ctDNA concentration. CtDNA is usually
store at − °C if not used immediately, and
repeated freeze-thaw cycles should be avoided.

QC, quality control.
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Plasma storage conditions

Plasma can be stored at −20 °C for up to 30 days if analysis
is to be performed soon [1, 65], but it should be kept at −80 °C
for long-term storage. Proper aliquoting is essential to avoid
repeated freeze-thaw cycles, which can fragment DNA and
reduce ctDNA yield, impacting assay accuracy [72].

Extraction methods of ctDNA

Extraction methods should be tailored to the characteristics
of ctDNA, which is typically found in low concentrations
and as small fragments. Several commercial kits are available
for ctDNA extraction, ensuring good recovery and reproduc-
ibility [65]. Laboratories should choose the most appropriate
method, considering both yield and purity for low-molecular-
weight DNA. Manual or automated procedures may be used,
depending on the platform’s performance and the specific
needs of the laboratory [64].

Quality assessment and storage of ctDNA

Assessing ctDNA quality is critical for downstream analyses.
Fluorometric quantification is usually used tomeasure ctDNA
concentration, while electrophoresis-based methods are
useful to verify cfDNA fragment size and confirm the absence
of gDNA contamination. When not used immediately, ctDNA
should be stored at −80 °C in multiple aliquots to prevent
degradation from repeated freeze-thaw cycles [72, 73].

Analytical considerations of ctDNA
analysis

When analyzing ctDNA, we must keep in mind several
analytical factors (Table 2) that often interfere with the

results of somatic variants, such as clonal hematopoiesis,
and the presence of germline variants. Additionally, it is
important to consider the use of both internal and external
quality controls, and to conduct thorough analytical valida-
tion to optimize ctDNA detection in routine practice,
ensuring that assays are reliable and clinically applicable.

Clonal hematopoiesis

Clonal hematopoiesis of indeterminate potential (CHIP) is an
age-related process in which somatic mutations in hemato-
poietic stem cells cause clonal expansion [4, 74] As cfDNA
largely originates from hematopoietic cells, CHIP compli-
cates ctDNA interpretation by potentially generating false
positives, particularly in genes typically associated with
solid tumors, including KRAS, GNAS, NRAS, and PIK3CA [75].
For accurate variant interpretation, it is important to prop-
erly differentiate between CHIP-related and tumor-derived
mutations, which usually implies sequencing of both cfDNA
and peripheral blood mononuclear cells (PBMCs) [76].
Approaches based on analyzing cfDNA fragment size also
may improve the accuracy of variant interpretation [33, 77].

Germline variants

Incidental detection of pathogenic germline variants (PGVs)
should be considered when evaluating ctDNA results,
particularly in NGS-based tests that include cancer predis-
position genes (such as BRCA1, BRCA2, PALB2) [4, 78, 79].
In this regard, the presence of a variant allelic frequency
(VAF) in circulation between 40 % and 60 % suggests germ-
line origin, while somatic variants typically have lower
VAFs [80]. However, we also have to take inmind that ctDNA
may show increased VAFs due to the presence of high tumor
burden or loss-of-heterozygosity [78, 81]. Only variants
classified as Pathogenic and Likely Pathogenic according to
American College of Medical Genetics and Genomics

Table : Analytical considerations for ctDNA assays.

Feature Considerations

Clonal hematopoiesis
(CHIP)

CHIP complicates ctDNA interpretation by potentially generating false positives. Sequencing of PBMCs avoids confounding
results from CHIP.

Internal and external QC Internal and external QC help assess the quality of ctDNA analysis.
Germline variants Pathogenic germline variants in cancer predisposition genes can be detected through ctDNA testing.
Analytical validation Analytical sensitivity (limit of detection) and analytical accuracy are key analytical performance parameters to evaluate for

validation of ctDNA assays.
Analytical limitations Limited sensitivity respect to tissue genotyping due to: i) low VAF and high fragmentation of ctDNA, ii) clonal heterogeneity,

characterized bymultiple tumor clones with differentmutations at low VAF, iii) elevated levels of cfDNA that dilute ctDNA, and
iii) limited shedding in early-stage cancers and low tumor burden.

QC, quality control; PBMCs, peripheral blood mononuclear cells.
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guidelines [82], ClinVar, and other sources, should be
considered as potential PGV [79]. According to European
Society for Medical Oncology (ESMO) recommendations,
when a potential germline variant is suspected, reflex
germline testingwith a validated assay should be carried out
to confirm their germline or somatic origin [4]. Conse-
quently, it is essential to alert clinicians to the potential
detection of germline mutations or those related to CHIP,
particularly in ctDNA assays that target frequently
mutated genes.

External and internal QC

The implementation of internal and external QCs is crucial
to ensure accuracy and reproducibility in detecting gene
variants in ctDNA from patients with cancer. Internal
controls, such as the Structural Multiplex cfDNA Reference
Standard (HD786) from Horizon Discovery, are commercially
available and help assess the quality of ctDNA analysis [83].
Additionally, external quality assessments (EQA), like those
offered for example by the European Molecular Genetics
Quality Network (EMQN), provide quality evaluation pro-
grams for ctDNA variant detection (e.g., “LUNG CANCER
(NSCLC) [Plasma],” “cfDNAMultiple Biomarkers”). The use of
these controls can help identify technical errors and ensure
reliable clinical results, essential for biomarker-driven ther-
apeutic decisions. Continuous validation through internal
standards and comparisons with external proficiency
schemes ensures the robustness of ctDNA analysis [83–85].

Analytical validation

Analytical validation must be established to optimize
ctDNA detection in routine clinical practice, and it should
be tailored to the specific patient population and the med-
ical indication for the test. Recommendations and protocols
for ctDNA assay validation include evaluating analytical
performance parameters, such as analytical sensitivity,
accuracy, repeatability, precision, and reproducibility [86,
87]. Laboratories should define and evaluate the limit of
detection for at least each variant class to ensure reliable
results at low frequencies [86]. Analytical accuracy can be
assessed by method comparison (comparing results to an
orthogonal method) or with known reference standards
[87]. Orthogonal assay confirmations for analytical valida-
tion may include quantitative PCR, digital PCR (dPCR),
droplet digital PCR (ddPCR), NGS, or any method with
sensitivity equal to or greater than that of the assay being
validated [86].

Analytical limitations

The primary limitation of ctDNA analysis is its lower sensi-
tivity compared to tissue genotyping, leading to a higher
rate of false negatives. This reduced sensitivity stems from
several factors, including the extremely low concentration
and high fragmentation of cfDNA in plasma, as well as the
low proportion of ctDNA within the total cfDNA pool, typi-
cally ranging from 0.01 to 0.1 %. Additionally, clonal
heterogeneity and elevated concentration of normal cfDNA,
often arising from non-malignant conditions or post-
operative inflammation, further dilute ctDNA, making the
detection of low-frequency variants more challenging
[88, 89]. Detection reliability is especially compromised for
mutations with low VAFs. Other contributing factors include
early tumor stage, low tumor burden, and non-shedding
tumors, all of which can reduce detection rates. The quantity
of cfDNA input is also a critical variable, since higher input is
associated with enhanced fragment depth, sensitivity, and
reproducibility [90]. On the other hand, the detection of false
positives in ctDNA analysis is relatively rare. Although false
positives tend to occur in low-frequency variants, they can
be minimized by employing unique molecular identifiers
(UMIs) and setting a minimum VAF threshold, typically
above 0.05 %, that reduces sequencing error impact [90].

Methods for the analysis of gene
variants in ctDNA

In recent years, both the scientific community and diag-
nostic companies have developed multiple methodologies to
study ctDNA in solid tumors (Figure 1). However, the
complexity and limitations of these molecular analyses have
confined their use primarily to clinical research, with only a
few approved for in vitro diagnostic (IVD). Although several
regulatory-approved tests are available for outsourcing to
private foreign laboratories (e.g., Guardant360 CDx, Foun-
dationOne Liquid CDx) for various clinical applications [91],
wewill focus on tests and technologies that can be integrated
into clinical laboratories for routine use. Table 3 summarizes
the most frequent commercial methods, detailing their
underlying technology/equipment, regulatory status,
molecular markers, assay specifications, turnaround times,
and applications.

Current molecular technologies for ctDNA analysis
include PCR-based methods and NGS technologies. PCR-
based techniques are designed to identify specific genetic
alterations and encompass real-time quantitative PCR
(qPCR) and dPCR. The main advantage of these techniques
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over NGS-based sequencing panels lies in their high sensi-
tivity and specificity for detecting variants, with the ability to
identify VAFs at 0.1 % or below [92]. However, PCR-based
methods can screen only a limited number of known vari-
ants, whereas NGS facilitates simultaneous screening of
multiple markers and samples in the same run.

Currently, several commercial qPCR-based products
are available. Real-time qPCR tests offer greater ease of use
and are designed for specific clinical applications, some
of which have been approved for routine clinical use.
DPCR-based assays include numerous assays developed
for the BioRad QX200/QX600 Droplet Digital PCR System
and Thermo Fisher Scientific Absolute Q dPCR System,
both of which offer similar sensitivity [93]. However, both
reagents and equipment are currently only available for
research use only (RUO) and these assays are currently
limited to clinical research. Rigorous analytical and clin-
ical validation is indispensable for their use in clinical
settings.

NGS-based ctDNA methods allow for the detection of
alterations across a broad spectrum of genes. Commercially
available NGS panels for ctDNA analysis include the Onco-
mine NGS assays (Thermo Fisher), Avenio ctDNA kits
(Roche), TruSight Oncology 500 ctDNA (Illumina), and QIA-
seq Targeted cfDNA Ultra Panels (Qiagen), among others.
These panels differ in the genes or regions covered, the types
of alterations they can detect, and their sensitivity for
detecting variants. However, ctDNA mutations above 0.5 %
are generally detected by these assays with high sensitivity,
precision, and reproducibility [90].

In clinical practice, given the variety of assays currently
available for ctDNA analysis, selecting the most appropriate
test should be based on availability, reimbursement status,
and the number of actionable genetic aberrations within a
tumor-specific context [4].

Comprehensive interpretation of
gene variant results in ctDNA
assays

Recommendations for identifying, interpreting, and report-
ing variants in cfDNA analysis should align with established
criteria for somatic variant interpretation and oncogenicity
classification [94]. However, it is essential to account for the
unique characteristics of ctDNA and adhere to the specific
guidelines tailored to ctDNA analysis across various tumor
types [4, 95].

Variant identification in ctDNA analysis involves
detecting SNVs, indels, fusions and CNVs. Although manyTa
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software tools automate this process, clinical laboratories
must be aware of their limitations, as ctDNA analysis pre-
sents challenges in accurately for the identification
of certain genetic aberrations, such as CNVs or fusion
variants [4, 96]. Key metrics, including sequencing
depth (coverage) and VAF, are essential for accurate
interpretation and should be carefully evaluated [97].
When interpreting ctDNA findings, it is crucial to take into
account that these assays have lower sensitivity compared
to tissue profiling, which may increase the likelihood of
false negative results. It is also important to consider the
possibility of false positive results in ctDNA analysis due to
the identification of CHIP variants, which can be detected at
low VAF (0.1–5%), leading to their misinterpretation as
tumor-derived variants [98]. As sporadic benign conditions
can contain somatic alterations in cancer driver genes,
interpretation of ctDNA assays should be done in the
context of clinical information. For example, V600E variant
has been found in plasma DNA not only in patients with
cancer but also in individuals with benign nevi [99].

It is recommended to classify gene variants by their
actionability, using current evidence to guide diagnostics,
prognostics, and eligibility for FDA/EMA-approved thera-
pies or clinical trials. In line with this, the Association for
Molecular Pathology (AMP) Tier system and the ESMO Scale
for Clinical Actionability of molecular Targets (ESCAT) both
evaluate genetic alterations based on clinical relevance.
AMP tier-based classification categorizes somatic variants
into four tiers based on their level of clinical significance:
Tier I includes variants with strong clinical relevance, Tier
II encompasses variants with potential clinical significance,
Tier III includes variants of unknown clinical significance,
and Tier IV consists of variants considered benign or likely
benign. Levels of evidence A or B (Tier I) and C or D (Tier II)
are weighted based on their significance in guiding clinical
decision-making [97]. On the other hand, ESCAT categorizes
molecular aberrations into Tiers I to V and X, based on
the available evidence supporting their value as clinical
targets. Tier I include molecular alterations with a recom-
mended specific drug suitable for routine use, while
other levels of clinical evidence (ESCAT Tier II to V) require
additional data, restricting the clinical application to
clinical trials. No clinical or preclinical evidence supports
ESCAT Tier X alterations and should not be considered for
clinical decisions [100].

Databases like COSMIC, ClinVar, and OncoKB are
essential tools for interpreting ctDNA analysis results of
patients with cancer (Table 4). These platforms provide
context for detected genetic variants by compiling data on
somatic variants, pathogenicity, and clinical relevance

across different cancer types, contributing also to identify
variants of uncertain significance (VUS).

To accurately interpret gene variants detected in ctDNA
assays, it is essential to establish tumor molecular boards
composed of a diverse team of healthcare professionals.
Laboratory professionals within these multidisciplinary
teams are crucial for evaluating the clinical relevance of
molecular findings. They ensure that genetic alterations are
interpreted accurately and in the context of the patient’s
overall clinical scenario. Molecular tumor boards offer
critical insights, particularly in complex cases with uncer-
tain or conflicting data. These collaborative efforts enhance
the quality of patient care by integrating various perspec-
tives and expertise, ultimately leading to better treatment
outcomes [101].

Clinical applications of ctDNA

Currently recommended applications:
advanced disease

In clinical practice, ctDNA assays are considered reliable for
genotyping advanced cancers and directing molecularly
targeted therapies, especially in situations where tissue bi-
opsies are suboptimal, or time is crucial [4]. The clinical
utility of these assays in guiding therapy for Tier I actionable
variants is supported by recent large prospective ctDNA-
based studies, which have demonstrated high accuracy for
SNVs (referring to tissue-plasma comparisons) across
various types of cancer [27, 102–104].

In ctDNA assays, high sensitivity is achieved for SNVs and
small indels. However, other aberrations such as fusions,
CNVs, or microsatellite instability (MSI) may exhibit reduced
sensitivity and should only replace tissue assessment when
tissue testing is not feasible [4, 104]. In this context, a negative
result for an actionable genetic alteration should be consid-
ered non-informative if there is no additional evidence of
sufficient ctDNA levels in the assay. In such cases, confirma-
tion with tissue testing is recommended [4, 105]. While tumor
mutation burden (TMB) has shown potential as a predictive
biomarker for immunotherapy, it remains an area of ongoing
research [4, 106].

Nowadays, general recommendations for the use of
ctDNA across various tumor types primarily target patients
who lack tissue-based genomic test results when genomic
testing is indicated, archival tissue is unavailable, or new
tumor biopsies are not feasible [4]. Table 5 presents specific
ESMO recommendations for the use of ctDNA assays in
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routine clinical practice, including Tier I actionable
molecular markers (ESCAT scale) and associated FDA-
approved drugs.

Beyond the currently recommended use of ctDNA in
routine clinical practice, recent studies further support other
clinical utilities in the context of advanced disease. In this
regard, ctDNA tumor fraction has been established as an in-
dependent prognostic biomarker across multiple cancers
[107], and ctDNA molecular profiling has shown utility in
selecting patients for early-phase targeted therapies [108].

Potential applications

Despite recent advances, there are clinical applications of
liquid biopsy that are not yet routinely implemented in the
clinic. This is the case for example of early diagnosis/
screening, detection of minimal residual disease (MRD), and
monitoring of disease during treatment. Although ctDNA
assays can improve diagnostic processes and help identify
early-stage cancers, several challenges need to be resolved
for their implementation in the clinic [4]. Achieving high

Table : Common databases used for interpretation of cancer-related gene variants.

Database Description URL

Cancer Genome Interpreter (CGI) Includes tumor alterations that drive the disease and may be therapeutically
actionable, relying on computational methods such as in silico saturation
mutagenesis of cancer genes (BoostDM and OncodriveMu) [].

https://www.
cancergenomeinterpreter.org

Cancer Hotspots Provides significant recurrent mutations identified in large-scale cancer
genomics data, detected in tumor samples using the described algorithm
[].

https://www.cancerhotspots.org

cBioPortal Interactive, open-source platform designed for the visualization, exploration,
and analysis of genomic cancer data and somatic variants across various
tumor types [].

https://www.cbioportal.org

CiVIC (clinical interpretation of
Variants in Cancer)

Provides clinically relevant interpretations of cancer genetic variants to aid
therapeutic decision-making, facilitating collaboration among researchers,
clinicians, and patients advocates [].

https://civicdb.org

CKB Core (Jackson Laboratory
Clinical Knowledgebase)

Dynamic digital resource for interpreting complex cancer genomic profiles in
the context of protein impact, therapies, and clinical trials [].

https://ckb.jax.org

ClinVar Public archive cataloging human genetic variations associated with diseases,
drug responses, and malignancies; enhancing communication and support-
ing reevaluation of variant classifications []

https://www.ncbi.nlm.nih.gov/clinvar

COSMIC (Catalogue of Somatic
Mutations in Cancer)

Source of expert-curated somatic mutation information related to human
cancers, offering a comprehensive catalog of somatic variants and associated
genes in oncology []

https://cancer.sanger.ac.uk/cosmic

DoCM (Database of Curated
Mutations)

Curated repository that aggregates gene/variant information for variants
with prognostic, diagnostic, predictive, or functional roles from various re-
sources and individual publications []

https://docm.info

Franklin AI-powered platform that automates the workflow from raw sequencing data
(FASTQ/VCF) to clinical variant reporting; providing comprehensive variant
analysis, literature evidence, automated ACMG-based classification, along
with annotations and assessment tools [].

https://franklin.genoox.com

My Cancer Genome Provides insights into the clinical impact of molecular biomarkers on drug use
in oncology, based on FDA labels, NCCN guidelines, clinical trials, and peer-
reviewed publications, using data from tumor samples in the AACR project
GENIE database [].

https://www.mycancergenome.org

PMKB (Precision Medicine
Knowledgebase)

An interface for collaborative editing and sharing of clinical-grade cancer
mutation interpretations, designed to support the collection, maintenance,
and reporting of interpretations for clinical cancer genomic testing [].

https://pmkb.weill.cornell.edu

OncoKB Focuses on precision oncology, providing biological and clinical data on
genomic alterations in cancer. Alterations and tumor type-specific thera-
peutic implications are classified using the OncoKB™ levels of evidence sys-
tem []

https://www.oncokb.org

VarSome Clinical A platform for variant discovery, annotation, and interpretation of NGS data,
integrating public databases and algorithms to provide detailed information on
variant pathogenicity, population frequency, and clinical significance [].

https://clinical.varsome.com/

AACR, American Association for Cancer Research; ACMG, American College of Medical Genetics and Genomics; FDA, Food and Drug Administration; NCCN,
National Comprehensive Cancer Network; NGS, Next-Generation Sequencing.
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specificity and clinically relevant sensitivity is difficult,
particularly because early-stage cancers release low levels
of ctDNA [55]. To effectively implement ctDNA assays in
clinical practice as validated screening tools, large population
studies are needed [4]. In line with this, recent studies are
increasing the evidence for using ctDNA for early detection/
screening of patients with cancer [5, 122, 123].

Regarding the detection of MRD, the analysis of ctDNA
after curative treatment in early-stage cancers predicts a
high risk of relapse with high clinical specificity [124]. In
recent years, interest in MRD has grown significantly, lead-
ing to ctDNA-guided randomized clinical trials in colorectal,
lung, and breast cancer, which are yielding promising
results for the implementation of ctDNA inMRD assessment.
In this context, post-surgical ctDNAmonitoring in resectable
colorectal cancer has proven useful for identifying patients
at high risk of recurrence and/or mortality, who are more
likely to benefit from adjuvant chemotherapy [66, 125].
Furthermore, serial ctDNA analysis in patients with colon
cancer undergoing adjuvant therapy enables treatment
escalation or de-escalation, allowing for a more precise se-
lection of patients who truly benefit from adjuvant therapy
compared to the conventional tumor/node/metastasis (TNM)
staging system [126]. Notably, a recent study in localized
colon cancer demonstrated that MRD prediction accuracy
can be enhanced by using NGS panels that track multiple
ctDNA gene variants across serial plasma samples [127]. In
early-stage non-small cell lung cancer, the detection of
residual ctDNA after treatment has shown utility in pre-
dicting early relapse [128], and in breast cancer, ctDNA
profiling is able to detect the onset of recurrences [129].

The use of ctDNA has also shown promise for moni-
toring treatment responses and resistance development in
patients with cancer [21]. Its short half-life and possibility of
real-time sampling, make ctDNA valuable for assessing
disease dynamics during therapy [4]. Studies indicate that
ctDNA levels correlate with treatment response and can
detect changes earlier than traditional clinical methods [21,
130]. However, ctDNA is not yet implemented in clinical
settings due to several limitations, such as the need for
optimal assay strategies, uncertainties about monitoring
frequency, and insufficient evidence of improvements in
patient outcomes [4].

Reporting of gene variants detected
in ctDNA

Generating reports from molecular testing is essential for
translating complex genetic data into useful clinicalTa
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information. These reports should have a standardised
format, clearly state the date of issue, and include diagnosis
details and significant medical information when available.
They should be clear and concise, presenting clinically sig-
nificant information in an easily understandable way. Addi-
tionally, reports should be formatted for easy integrationwith
electronic health records. Clinically critical information must
beplacedat thebeginning for quick access, andmore complex
data should be simplified using graphs, charts, and tables [97].

Genetic alterations should be thoroughly described,
including the involved genes, the type of variants or genomic
features detected (such as SNVs, indels, CNVs, and fusions),
and their predicted impact on protein function. Adopting
standardized nomenclature according to Human Genome
Variation Society (HGVS) guidelines (http://varnomen.hgvs.
org/) is essential to avoid confusion and clinical errors [94].
The report should include relevant elements for thorough
analysis and longitudinal comparisons, such as genomic
coordinates, the genome build, and the transcript reference
sequence. Including the VAF in reports, whenever possible
with quantitative assays, provides critical insights for eval-
uating the reliability of detected variants, particularly
regarding the risk of false negatives.

Following the AMP-Tier system, it is recommended to
report variants classified as Tier I to III in order of their
clinical significance. Generally, Tier IV variants, categorized
as benign or likely benign, should not be included. Interpre-
tative comments should be provided, particularly for Tiers I
and II gene variants. Recommendations should be evidence-
based and supported by appropriate literature citations [97].
Clinical actionability annotation is a crucial component of the
report, supporting the clinical interpretation of results. Only
likely pathogenic or pathogenic oncogenic driver alterations
should be assessed for clinical actionability using clinical
evidence-based frameworks such as ESCAT, OncoKB classifi-
cation system, or AMP tier classification [131].

On the other hand, when a gene variant is not detected,
it is preferable to use terms such as ‘non-informative’ or
‘not detected’ instead of ‘negative’ [4]. The report should
acknowledge the potential for discrepancies with tumor
testing, especially when no variant is found in plasma DNA.

The analysis of ctDNA could identify incidental germline
variants. In the case of reporting these incidental findings,
it would be convenient to clearly differentiate between
somatic and putative germline variants, as well as include
information about the need to perform confirmatory tests
in peripheral blood leukocytes, or in other normal tissue
samples [78, 79].

Methodological details and limitations should be
included at the end of the report, covering the alterations
tested, assay performance characteristics [such as the limit

of detection for each variant type and minimal sequencing
depth), and critical quality metrics [86]. Information on any
preanalytic, analytic, or postanalytic factors that might
influence clinical interpretation should be indicated. It is
important to note that assay sensitivity may depend on the
amount of input cfDNA. Therefore, when plasma cfDNA
is limited, the reported sensitivity may be adjusted or a
warning included in the report [86].

Future perspectives of ctDNA

In addition to the study of gene variants, one of the most
promising areas of ctDNA research are epigenomics (DNA
methylation) and fragmentomics. These fields have
demonstrated great promise for the early detection of
cancer, the identification of tumor origin, and the evalua-
tion of therapy response [5, 35]. It is also important to
highlight that artificial intelligence, particularly through
machine learning algorithms, is starting to play a crucial
role in the discovery and implementation of new ctDNA
biomarkers. In addition to enabling more precise and
comprehensive analyses of genomics, epigenomics, and
fragmentomics [132], artificial intelligence also facilitates
the integration of these omics approaches with clinical
data, driving further advancements in personalized cancer
care [133].

Despite these advances, several challenges need to be
addressed before ctDNA can be widely integrated into
clinical practice. One major issue is sensitivity, particularly
in early-stage cancer where ctDNA levels are typically low.
Improved sensitivity in ctDNA assays, achieved through
methods such as NGS and dPCR, represents a key area for
future research [3, 134].

The potential for ctDNA to provide real-time insights
into tumor heterogeneity is a relevant advantage. By
capturing spatial and temporal genomic variations within a
patient, ctDNA can offer a more comprehensive picture of
tumor evolution than traditional tissue biopsies. This can be
particularly beneficial in advanced cancer stages where
tumors often exhibit significant heterogeneity, contributing
to treatment resistance [4, 124]. However, false positives
remain a concern, especially when ctDNAmutations overlap
with CHIP [75], underscoring the need for robust assay
development and validation.

The clinical utility of ctDNA is also gaining traction in the
context of MRD detection. Monitoring ctDNA levels post-
treatment could help identify patients at risk of relapse,
allowing for timely therapeutic intervention [4]. Ongoing
clinical trials are expected to provide critical data on the role
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of ctDNA in MRD, tracking tumor evolution, and guiding
treatment decisions [66].

To further enhance the diagnostic utility of ctDNA, it is
crucial to standardize both preanalytical and analytical
procedures. Initiatives such as the BloodPac in the
United States and Cancer-ID in Europe are actively working
on establishing standard operating procedures for ctDNA
analysis [135, 136]. Standardization will not only improve
reproducibility but also facilitate the large-scale clinical
implementation of ctDNA testing.

Another promising area of research lies in combining
ctDNA analysis with other circulating biomarkers, such as
circulating tumor cells (CTCs) and extracellular vesicles
(EVs). This approach could provide more comprehensive
insights into tumor biology, helping to refine diagnosis and
guide treatment decisions [1]. On the other hand, the study of
ctDNA in biological fluids beyond plasma is gaining signifi-
cant attention for its potential to improve cancer manage-
ment in certain types of tumors [46, 52, 137].

Despite these advancements, the translation of ctDNA
into clinical practice remains limited due to several
technical and economic barriers. Current NGS-based
approaches, although highly sensitive, require sophisti-
cated laboratory equipment and are time-consuming,
making them difficult to implement on a large scale [138].
Further technological developments, including the creation
of more cost-effective and user-friendly assays, will be
essential to overcome these limitations [3].

Conclusions

The analysis of ctDNA is paving the way for a more
personalized cancer care. Over the past decade, advance-
ments in ctDNA technology have been substantial, with
numerous studies highlighting its potential to revolutionize
the management of patients with cancer [1]. For patients
with advanced cancer, validated and adequately sensitive
ctDNA assays have nowadays utility in identifying action-
able mutations to direct targeted therapy, and may be used
in routine clinical practice, particularly when rapid results
are needed or when tissue biopsies are not possible or
inappropriate. In addition, ctDNA analysis offers significant
potential for cancer diagnostics, detection of MRD, moni-
toring, and evaluation of therapy response [4].

In summary, ctDNA analysis offers significant potential
for advancing early cancer detection and personalized
treatment approaches, which will significantly improve
patient outcomes. However, widespread clinical imple-
mentation will require further validation, standardization,

and cost-reduction strategies. As ongoing trials continue
to yield valuable insights, it is likely that ctDNA, combined
with other circulating biomarkers, will become a corner-
stone of modern clinical laboratories.
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