9

Pablo J. Letelier, Carolina A. Chicahual, Nicolas F. Arroyo, Daniel P. Monsalves, Rodrigo E. Boguen and Neftalí H. Guzmán*

Reference intervals of hematological parameters in the Chilean adult population and the Mapuche ethnic group

https://doi.org/10.1515/almed-2024-0080 Received May 28, 2024; accepted December 2, 2024; published online January 3, 2025

Abstract

Objectives: Reference intervals (RI) are an essential tool to support clinical decisions. These may have intra- and interindividual variations associated with genetic differences and environmental factors. Given that Chile is a multiethnic territory, studying these variables is even more relevant. The purpose of this study was to establish RI for various hematological parameters in the Chilean population and the Mapuche ethnic group.

Methods: A sample of 356 adult individuals (aged 18–65 years), of which 146 belonged to the Mapuche ethnic group, was selected using the indirect a posteriori method from the database of the UC Temuco Clinical Laboratory. The analysis was conducted by sex and ethnicity. The Tukey fences method was employed to detect outliers, and the RIs were established through the non-parametric method recommended by the IFCC.

Results: The median age for the overall sample of the general population was 35 years (female) and 36 years (male). Differences (p<0.05) were found by sex in parameters dependent on hemoglobin and platelets counts. In the analysis by ethnicity, the parameters of RBC, HGB and HCT presented significant differences (p<0.0001).

Conclusions: This study shows that hematological RI vary according to sex and ethnicity, which must be considered in a multiethnic population. This understanding enhances our comprehension of the individual characteristics of each person and facilitates more accurate clinical interpretation.

*Corresponding author: Neftalí H. Guzmán, Precision Health Research Laboratory, Departmento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56. 4780000, Temuco, Chile, E-mail: nguzman@uct.cl

Pablo J. Letelier, Carolina A. Chicahual, Nicolas F. Arroyo, Daniel P. Monsalves and Rodrigo E. Boguen, Precision Health Research Laboratory, Departmento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile

Keywords: ethnicity; full blood count; hematological parameters; outliers; reference intervals

Introduction

Reference intervals (RI) are the values between the lower and upper reference limits [1] which describe the variation of biological parameters in individuals who have specific characteristics (reference individuals) [2]. They are essential in clinical decision making, supporting diagnosis, monitoring and epidemiological surveillance in different human pathologies. RI for clinical laboratory tests are generally not studied in different subpopulations, nor are they based on specific epidemiological or clinical profiles, which is a drawback for the interpretation of laboratory tests [2, 3]. The hemogram is one of the most frequently-requested laboratory tests, as it is part of the basic studies required for the diagnostic orientation and evaluation of individuals. Its validity has been maintained over time, evolving with the automation of cell counts, and the incorporation of new parameters such as erythrocyte distribution width (RDW) and platelet distribution width (PDW) [4]. The quantitative parameters of the blood count, as well as the study of the erythrocyte indices, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) and RDW, support clinical interpretations in various pathologies (polyglobulia, polycythemia, anemia, etc.). Alterations in the differential variables, such as neutropenia are common in patients undergoing chemotherapy, infections and immunological conditions, as well as neutrophilia in response to infectious diseases, inflammatory disorders and hematological malignancies [4, 5]. Additionally, the use of ratios such as the neutrophil-to-lymphocyte ratio (NLR) and the platelet-tolymphocyte ratio (PLR) has allowed for more clinical information to be covered, as both have been associated with the inflammatory state of the organism [6].

Due to the difficulty in measuring RI, laboratories usually use the figures provided by data sheets from reagent manufacturers or from international literature. The use of external RI can generate challenges in the correct

interpretation and management of patients. The evidence demonstrates significant differences in Ris across different ethnicities [7], with variations related to sex, geographic area [8] and age [9]. The Chilean Law 19,253 recognizes nine indigenous peoples [10], equivalent to 12 % of the national population (2,185,732 people), with the Mapuche group being by far the largest, accounting for 79.18 % of all indigenous individuals (approximately 1,745,147). La Araucanía region in southern Chile is one of the seven regions with the largest indigenous populations, comprising 34.35 %, equivalent to 314,174 people [10].

Despite high social heterogeneity, there is little research in Latin America regarding the determination of RIs in local populations [11]. Those studies that do exist are usually limited to a specific characteristic such as height [12]. In Chile, there are only two articles regarding blood RI, one on reticulocytes in a healthy pediatric population [13] and another that analyzed a sample of military personnel exposed to altitude [14]. Given this paucity of information, it is indeed relevant to determine RIs in the population of the La Araucanía region, especially as the health of the Mapuche population presents an epidemiological pattern of prolonged transition, characterized by high levels of infections and chronic degenerative diseases [15]. Thus, the aim of this study was to establish the RI of hematological parameters in the adult Chilean population and the Mapuche ethnic group.

Materials and methods

Study design

Non-experimental, retrospective study with univariate and multivariate analysis. The data were obtained from the UC Temuco Clinical Laboratory, located in the city of Temuco (Araucanía Region, Chile). By means of an indirect a posteriori method, a sample of 356 adult individuals (50 % male and 50 % female) was selected, which complies with the method currently recommended by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), where the non-parametric method requires a sufficient number of individuals (≥120). Of this sample, 146 people were of Mapuche ethnicity who were compared with 146 selected non-Mapuche people. The following hematological parameters measured by Sysmex Xs1000i (Sysmex Corporation, Japan) were studied: leukocyte count (WBC), red blood cell count (RGB), hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), RDW and platelet count (PLT). Relative differential counts of neutrophils (NEUT%),

lymphocytes (LINF%), monocytes (MONO%), eosinophils (EO%), basophils (BASO%) and the absolute differential counts of neutrophils (NEUT#), lymphocytes (LINF#), monocytes (MONO#), eosinophils (EO#), and basophils (BASO#) were also included. In addition, the NLR index (using the NEUT#/LINF# ratio) and the PLR index (using the PLT#/LINF# ratio) were calculated. The values were expressed according to the international system of measurements for blood counts.

Inclusion criteria

Members of the adult population between 18 and 65 years old, apparently healthy, who were assisted in the context of community health promotion and prevention campaigns and who met the criteria established by the Clinical Laboratory to avoid pre-analytical errors, were selected. The group was selected using strict criteria, without significant alterations in laboratory tests. We used a previously selected database, showing no biochemical parameter abnormalities, with data already published [16]. The variables considered for the analyses were sex and ethnicity. The criterion used to select ethnicity was that the person chosen had to have at least one indigenous surname [17], duly validated by the National Corporation for Indigenous Development (CONADI) of Chile, and by the electoral service of Chile (Servel).

Exclusion criteria

Geriatric and pediatric populations were excluded from the study, considering that older individuals or very young people may present physiological variations that are not representative of the typical reference range for a healthy adult population. Data that were found outside the limits obtained in the Tukey fences statistical test were considered as outliers and were excluded from the analysis. Likewise, laboratory parameters that were below or above the clinical decision limits (CDL) were excluded, this helps prevent individuals with undiagnosed underlying conditions from skewing the results, on the other hand, records with missing or inconsistent data were also excluded to avoid errors in the analysis.

Obtaining a blood sample

The samples were collected in an EDTA-K₃ tube from individuals who had fasted for between 10 and 12 h, without having performed any mild or strenuous physical activity

for at least 8 h previously. Samples were then analyzed within 4 h.

Statistical analysis

The reference values were obtained using a non-parametric method of the interpercentile interval, recommended by the IFCC [2], and the Clinical and Laboratory Standards Institute (CLSI). For each cluster, the mean and standard deviation (SD) values were calculated. The Tukey fences test was used to detect outliers, and for establishing the lower $(Q1 - (1.5 \times IQR))$ and upper $(Q3 + (1.5 \times IQR))$ limits, with IQR being the interquartile range (IQR=Q3 - Q1), then RI calculations were performed using the non-parametric indirect method based on interpercentile ranks, a method that calculates the rank numbers of the 2.5 and 97.5 percentiles as Lower limit=0.025 (n + 1) and Upper limit=0.975 (n + 1), respectively. The confidence interval of each percentile was determined using the binomial distribution. To determine the differences in the sex variable, the Mann-Whitney test was used. A p-value less than 0.05 (p<0.05) was considered to be statistically significant.

Research ethics

This study was approved by the accredited Research Ethics Committee of the Universidad Católica de Temuco (document number 011601/23) and performed in compliance with the World Medical Association Declaration of Helsinki (ethical principles for medical research involving human subjects).

Results

This study involved a sample of 356 individuals to obtain RI in the general population in Chile, with a median age of 35 years in women and 36 years in men. To evaluate potential differences associated with ethnicity, data from 146 individuals who met the criteria to be considered of Mapuche ethnicity were used, with a distribution by sex of 73 % women and 27 % men, with a median age of 34 years for the Mapuche and non-Mapuche groups. To establish RI through the non-parametric method, visual inspection was carried out on each parameter through histograms together with the Tukey fences method that allowed outlier values to be excluded. Tables 1 and 2 present the lower and upper limits of the calculated RI, outliers, mean, and SD for the 21 laboratory tests stratified by sex and Mapuche ethnicity. A low

data exclusion rate was observed, with a range of 1-24 outliers found in the parameters studied.

The RI obtained for the general adult population, separated by sex (men and women), are presented in Table 1 and the analysis according to ethnicity (Mapuche and non-Mapuche) in Table 2. Given that the sample size for individuals of Mapuche ethnicity was 146, it was not possible to segregate the analysis by sex, since the minimum number of data points of 120 for each group (men and women) recommended by the IFCC was not met.

It is observed that the RI according to sex, in most of the parameters evaluated, are statistically different in the cases of RBC, HCT, HGB, MCV, MCHC, PLT, NLR and PLR, but not for MCH, WBC, EO%, LINF%, EO# and LINF#. In general, blood count values are higher in men than in women except for MCV, PLT, WBC and absolute neutrophil value (NEUT#). The values of the parameters of the leukocyte differential formula, whether absolute or relative, are very similar in the groups studied.

The RI obtained for individuals of Mapuche ethnicity when compared with non-Mapuches, showed significant differences for RBC, HGB and HCT (p<0.0001); it is observed that the mean of the values tends to be generally higher in the Mapuche population for most of the parameters studied. To verify that these results were not associated with the size of the groups by sex, because 72 % were women and 28 % were men for the Mapuche group and 73 % were women and 27% were men for the non-Mapuche group, these 3 parameters, disaggregated by sex, were analyzed (Figure 1). The HCT was significantly different in women (90 Mapuche and 106 non-Mapuche) with a p-value of <0.0001 (Figure 1), which corroborates the significant difference observed that was not influenced by the size of the groups between men and women. In the analysis of men (Mapuche vs. non-Mapuche; n=35 and n=40 respectively), a statistically significant difference was also observed (p<0.001, Figure 1), with a trend towards higher HCT values in Mapuche men, concordant with RBC values (in both sexes; Mapuche vs. non-Mapuche) and for hemoglobin in men, but not for hemoglobin in women (p-value > 0.05; Figure 1).

Although PLT values were higher at their upper limit in the Mapuche vs. non-Mapuche group $(458 \times 10^9/L \text{ vs. } 383 \times 1$ 10⁹/L respectively, Table 2), this difference did not reach statistical significance (p-value = 0.0615).

When comparing the RI used by the UC Temuco Clinical Laboratory (data not shown), a greater similarity was observed with those obtained in non-Mapuche individuals, especially in RBC (4.4–5.6 \times 10¹²/L); HCT (37.5–47.5 L/L); HGB (125-158 g/L) and PLT $(150-450 \times 10^9/\text{L})$, which shows that this difference is not only observed in this ethnicity, but also in other populations that are studied by reagent manufacturers.

Table 1: Reference intervals of hematological parameters in the general population by gender (n=356).

Difference female to male (p-value)	SD	Mean	Outliers, n	Confidence interval (95 %)	RI	Gender	Units	Parameter
<0.0001 ^a	0.6566	4.363	4	(3.34–3.91) – (4.76–5.06)	3.84 - 4.85	F	×10 ¹² /L	RBC
	1.86	5.78	23	(4.19-4.44) - (5.69-6.12)	4.27 - 5.81	M		
<0.0001 ^a	5.108	37.55	10	(33-34.6) - (39.9-41.8)	33.8 - 40.5	F	L/L	HCT
	16.13	49.43	23	(36.1–39.1) – (47.5–49.6)	38.5 - 48.2	M		
<0.0001 ^a	17.83	126.7	14	(110–116) – (135–138)	113 – 137	F	g/L	HGB
	55.7	170.9	23	(124–133) – (166–173)	131 – 169	M		
0.3488	4.491	29.11	13	(25.3–26.8) – (31.5–33)	25.9 – 32.3	F	pg	MCH
	10.9	33.58	24	(16.1–27.8) – (31.7–34.2)	26.8 – 32.9	M		
0.0086 ^a	12.8	86.23	11	(76.4–79.6) – (93.3–97.2)	78.9 – 94.7	F	fL	MCV
	31.63	97.15	23	(75.8-80) - (92.2-97.4)	78.1 – 93.9	M		
<0.0001 ^a	44.7	339.3	6	(313-321) - (353-360)	318 – 353	F	g/L	MCHC
	123.9	392.2	23	(324-333) - (360-374)	332 – 362	M		
<0.0001 ^a	69.39	272.3	9	(127–188) – (365–425)	160 – 393	F	$\times 10^9/L$	PLT
	111	275.4	21	(100–168) – (337–410)	155 – 367	M		
0.10	2.6	41.26	3	(35.6-37) - (45.4-49)	36.1 - 46.4	F	fL	RDW-SD
	2.24	40.8	23	(36-36.8) - (44.6-46.7)	36.5 - 45.5	M		
0.0382 ^a	0.58	1.73	10	(0.64-0.91) - (2.97-3.37)	0.76 - 3.06	F	n/a	NLR
	0.55	1.59	9	(0.57-0.83) - (2.54-3.34)	0.75 - 2.93	M		
0.0010 ^a	37.5	127	6	(44–73) – (204–229)	66 – 211	F	n/a	PLR
	52.6	119	4	(14–56) – (237 – 314)	50 – 273	M		
0.0978	2.055	6.889	4	(2.17-4.25) - (10.5-11.63)	4.07-10.95	F	$\times 10^9/L$	WBC
	3.008	7.87	15	(3.87-4.65) - (10.36-11.97)	4.32 - 11.4	M		
0.0094 ^a	0.014	0.02	1	(0-0.01) - (0.05-0.07)	0 - 0.06	F	$\times 10^9/L$	BASO#
	0.017	0.031	1	(0-0.07) - (0.07-0.08)	0.01 - 0.07	M		
0.0751	0.25	0.22	12	(0-0.05) - (0.04-0.05)	0.03 - 0.47	F	$\times 10^9/L$	EO#
	0.16	0.25	6	(0.04-0.06) - (0.49-0.58)	0.05 - 0.57	M		
0.0110 ^a	1.32	3.85	4	(1.45-2.021) - (5.95-7.28)	1.77 - 6.68	F	$\times 10^9/L$	NEUT#
	1.58	3.88	13	(1.46-2.15) - (5.24-6.03)	1.99 – 5.81	M		
0.1421	0.68	2.21	4	(0.96-1.3) - (3.53-4.01)	1.21 - 3.82	F	$\times 10^9/L$	LYMPH#
	1.08	2.46	9	(0.92-1.4) - (3.39-4.16)	1.25 - 3.55	M		
<0.0001 ^a	0.15	0.51	4	(0.26-0.31) - (0.81-0.95)	0.27 - 0.84	F	$\times 10^9/L$	MONO#
	0.21	0.62	11	(0.29-0.36) - (0.82-0.99)	0.33 - 0.9	M		
0.0126 ^a	0.26	0.42	5	(0-0.1) - (0.8-1)	0 - 0.9	F	Percent	BASO%
	0.26	0.47	5	(0-0.2) - (0.9-1.1)	0.1 – 1	M		
0.1421	7.79	32.92	3	(13.4–20.5) – (45–52)	18.9 – 50.1	F	Percent	LYMPH%
	10.8	35.44	5	(14.3–20.6) – (49.5–56.1)	16.8 – 53	M		
0.0751	2.16	3.28	9	(0-0.9) - (6.2-7)	0.5 - 6.8	F	Percent	EO%
	2.35	3.59	5	(0.5–1) – (7.3–9.4)	0.6 – 7.9	М		
0.0081 ^a	8.76	55.68	4	(35.7–40.7) – (69.5–73.9)	38 - 72.4	F	Percent	NEUT%
	12.8	54.86	7	(31.8–39.6) – (67.3–73.8)	37.7 – 72	М		
<0.0001 ^a	1.79	7.69	2	(3.4–5.2) – (10.9–12.6)	4.5 – 11.2	F	Percent	MONO%
	2.23	9.0	9	(5.3–6.2) – (11.5–12.5)	5.5 – 11.9	M		

As determined by the Mann-Whitney test for statistical significance. ^aValues with significant differences between males and females, p<0.05. RI, reference intervals; SD, standard deviation; F, female; M, male; RBC, red blood cells, HCT, hematocrit; HGB, hemoglobin; MCV, mean cell volume; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration; PLT, platelets; RDW, RBC distribution width; NLR, neutrophil to lymphocyte ratio; n/a, does not apply; PLR, platelet to lymphocyte ratio; WBC, white blood cells; BASO, basophils; EO, eosinophils; NEUT, neutrophils; LYMPH, lymphocytes; MONO, monocytes; %, relative count; #, absolute count.

Discussion

In Latin America, evidence from studies that have established RI in the area of hematology is limited. Chile is no exception in that only two papers have been published on

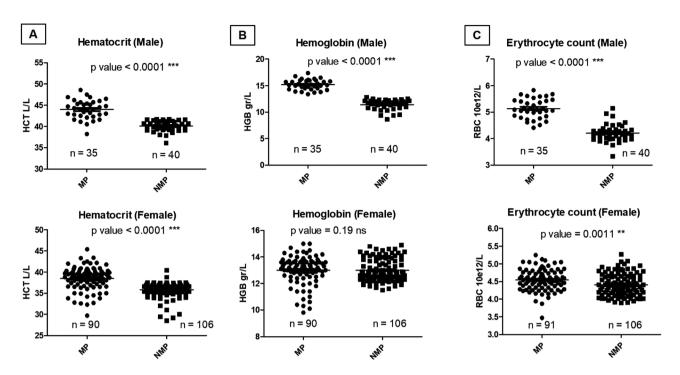

this topic. The first analyzed a random sample of male military volunteers exposed to high altitude in Putre, Chile (3,550 m) [14] whilst the other evaluated reticulocytes in the pediatric population [13]. The RIs obtained from the general population in this study (Table 1) indicated that the vast

Table 2: Reference intervals of hematological parameters by ethnicity (n=146).

SD Difference Mapuche to on-Mapuche (p-va	SD	Mean	Outlier	Confidence Interval (95 %)	RI	Ethnicity	Units	Parameter
44 <0.00	2.144	5.413	20	(3.47–4.16) – (5.54–5.83)	3.94 – 5.6	MP	×10 ¹² /L	RBC
33	0.33	4.353	1	(3.75-3.94) - (4.94-5.27)	3.89 - 5.06	NMP		
29 <0.00	18.29	45.86	21	(29.7–33.8) – (46.9–48.6)	32.6 - 46.9	MP	L/L	HCT
53	2.553	36.98	4	(31-34) - (41.3-41.7)	33 - 41.6	NMP		
2.4 <0.00	62.4	155.4	21	(98–110) – (160–174)	103 – 165	MP	g/L	HGB
26	11.26	125.6	4	(103–110) – (143–148)	106 – 146	NMP		
55 0.2	12.55	33.07	24	(25-26.2) - (31.4-32.3)	25.7 - 31.3	MP	pg	MCH
78	2.378	28.92	11	(25.8-26.1) - (31.5-33.3)	25.8 - 32.3	NMP		
99 0.5	36.99	97.64	22	(76–7) – (91.3–93.9)	76.7 - 94.9	MP	fL	MCV
i.5	5.5	85.17	7	(74.2-78.9) - (92.9-97.4)	78.8 - 94.6	NMP		
45 0.5	145	389.4	21	(308–325) – (355–366)	319 – 358	MP	g/L	MCHC
1.5	11.5	339.2	6	(315–321) – (354–362)	318 - 358	NMP		
48 0.2	3.48	7.74	11	(3.51-4.34) - (10.21-11.76)	4.06 - 9.48	MP	$\times 10^9/L$	WBC
84	1.784	6.696	2	(2.17-4.19) - (9.45-11.1)	4.06 - 10.31	NMP		
46 0.9	18.46	47.57	19	(35.6-37.5) - (44.9-46.1)	35.9 - 47.2	MP	fL	RDW
76	2.776	41.29	3	(35.6–37) – (45.4–47.2)	36.4 - 45.5	NMP		
7.6 0.0	127.6	305.3	11	(160–192) – (425–466)	175 – 458	MP	$\times 10^9/L$	PLT
48	67.48	265.5	7	(162–181) – (355–397)	171 – 383	NMP		
61 0.3	0.61	1.77	7	(0.6-0.92) - (2.84-3.76)	0.88 - 3.26	MP	n/a	NLR
62	0.62	1.70	9	(0.64-0.8) - (2.78-3.47)	0.69 - 3.41	NMP		
9.2 0.1	39.2	132	9	(64-84) - (209-248)	72 – 224	MP	n/a	PLR
1.4	44.4	127	6	(44–69) – (211–248)	57 – 229	NMP		
34 0.2	0.34	0.48	9	(0-0.2) - (0.8-1)	0 – 1	MP	Percent	BASO%
25	0.25	0.4	4	(0-0.9) - (0.8-1)	0 - 0.9	NMP		
06 0.7	3.06	3.48	12	(0.1-0.9) - (5.4-7.1)	0.7 - 6.6	MP	Percent	EO%
2.3	2.3	3.21	7	(0-0.8) - (6.1-7)	0.5 - 6.9	NMP		
25 0.2	19.25	59.38	7	(32.2-41.4) - (69.3-78.8)	39.9 – 77.5	MP	Percent	NEUT%
48	9.48	55.15	3	(36–39.7) – (69.7–73.9)	37.4 - 71.8	NMP		
39 0.8	12.39	34.41	4	(11.9–18.9) – (46.6–53.6)	16 - 50.3	MP	Percent	LINF%
83	8.83	33.17	3	(13.4–20) – (49.5–54)	16.3 – 50.1	NMP		
96 0.0	11.96	8.42	10	(3.8-5.1) - (10.4-12.4)	4.2 - 11.5	MP	Percent	MONO%
93	1.93	8.07	0	(3–5.3) – (11.2–13)	5.2 - 12	NMP		
23 0.2	0.023	0.032	8	(0-0.1) - (0.06-0.07)	0 - 0.06	MP	$\times 10^9/L$	BASO#
14	0.014	0.025	0	(0-1) - (1-2)	0 – 1	NMP		
21 0.8	0.21	0.23	13	(0.01–0.06) – (0.37–0.46)	0.03 - 0.45	MP	$\times 10^9/L$	LINF#
).2	0.2	0.21	9	(0-0.05) - (0.43-0.5)	0.03 - 0.5	NMP		
	1.94	4.09	7	(1.32–1.97) – (6.18–6.78)	1.7 - 6.78	MP	×10 ⁹ /L	EO#
	1.4	3.73	7	(1.46–2.01) – (5.68–6.59)	1.8 - 6.02	NMP		
	0.95	2.27	8	(0.8–1.34) – (2.95–3.43)	1.09 – 3.41	MP	×10 ⁹ /L	NEUT#
	0.71	2.18	3	(0.29–1.21) – (0.29–4.01)	1.04 – 3.35	NMP		
	0.31	0.57	8	(0.2-0.32) - (0.76-0.87)	0.26 - 0.86	MP	×10 ⁹ /L	MONO#
	0.16	0.53	2	(0.27–0.32) – (0.81–10.95)	0.31 - 0.95	NMP	· · =	

As determined by the Mann-Whitney test for statistical significance. a Values with significant differences between males and females, p < 0.05. RI, reference intervals; SD, standard deviation; F, female; M, male; RBC, red blood cells; HCT, hematocrit; HGB, hemoglobin; MCV, mean cell volume; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration; PLT, platelets; RDW, RBC distribution width; NLR, neutrophil to lymphocyte ratio; n/a, does not apply; PLR, platelet to lymphocyte ratio; WBC, white blood cells; BASO, basophils; EO, eosinophils; NEUT, neutrophils; LYMPH, lymphocytes; MONO, monocytes; %, relative count; #, absolute count; MP, Mapuche population; NMP, non-Mapuche population.

majority of differences were associated with the sex variable. Women exhibited higher mean corpuscular volume (MCV), platelet counts, and neutrophil-to-lymphocyte ratios (NLR) compared to men. Conversely, hemoglobin concentration, red blood cell (RBC) counts, hematocrit (HCT), and platelet-to-lymphocyte ratios (PLR, upper limit) were higher in the male population. This highlights the importance of sex segregation when calculating RIs in blood counts. Furthermore, when analyzing these results in conjunction with those of other authors, we observe that the RIs obtained here

Figure 1: Frequency distribution and statistical significance according to ethnic origin and sex for the HCT, HGB and RBC parameters. (A) Hematocrit (male and female); (B) hemoglobin (male and female); (C) erythrocyte count (male and female), MP, Mapuche population; NMP, non-Mapuche population.

for RBC, MCV, MCH and MCHC are similar to those reported by Rosenfeld et al. [18], Fernández et al. [19] and Adeli et al. [20], although in the latter study, it should be noted that different groups and age ranges were used. Also in these studies, higher RBC values (upper limit, females) are observed compared to our work. Likewise, the RI in the parameters of RBC, HGB and HCT were higher in men than in women, which coincides with studies carried out in Ireland [21], Belgium [22], Spain [23] and Turkey [24]. Lower hemoglobin levels in women is also consistent with the findings of other studies [25]. The MCV and MCH parameters did not present differences according to sex, which is also consistent with the aforementioned studies. Regarding the platelet count, in general there is similarity between studies, except with the work of Rosenfeld et al. [18] where the values in women were lower. Additionally, HCT (for both sexes) and HGB (in women) were higher, while white blood cell (WBC) counts were lower compared to our study [18]. For their part, Sáenz et al. [26], who analyzed an Ecuadorian high Andean population, reported a WBC range of $6.7-7 \times 10^9$ /L, significantly below the levels found in our study; however the altitudinal conditions of individuals in both studies were notably different. The relatively high WBC count in our study, compared to others, may be associated with factors such as race, circadian variations, pregnancy, stress, exercise, and/or medication use [27, 28]. These differences were

particularly evident when compared to studies by Islam et al. [21], Florin et al. [22] and Arbiol et al. [23]. Regarding the leukocyte data (Table 1), minimal differences are observed compared to data reported by the UC Temuco Clinical Laboratory.

Variations in RI by sex may be associated with differences in the endocrine system. Testosterone has been reported to induce erythropoiesis by increasing erythropoietin and suppressing hepcidin [29]. Hepcidin is a peptide that acts by blocking cellular iron flow. Furthermore, estrogen has been shown to directly affect the transcription factor GATA1, leading to a significant increase in the apoptosis of erythroid cells [30]. In addition, fluctuations in sexual steroid hormones during the menstrual cycle result in changes in hematological parameters such as HCT, HGB, neutrophil count and eosinophil count [31]. These modifications stimulate the bone marrow, inducing blood flow of immature erythrocytes into peripheral blood. Combined with the relatively high prevalence of iron deficiency anemia in women during menstruation, these factors explain the differences in RIs in these parameters by sex [32]. Conversely, women's muscle mass is generally 25-40 % less than that of men [33], resulting in a greater demand for oxygen and blood flow in the latter. Consequently, a higher body mass index is associated with elevated values of WBC, RBC, HGB, HCT and PLT in children and adolescents [34]. Other factors must also

be considered, such as strenuous exercise, which can increase the concentration of HGB, HCT and RBC, while potentially decreasing total blood volume (VS) [35]; however, this factor was considered in the exclusion and inclusion criteria of our study.

Regarding RDW, no significant differences were noted between sex and ethnicity. The RI obtained was very similar to that currently used by the UC Temuco Clinical Laboratory (RDW-SD 37-46 fL); however, we could not compare this parameter with those reported by other authors, as we only had RDW expressed as standard deviation (RDW-SD). The primary clinical application of RDW, along with other parameters such as MCV, has been in the study of iron deficiency anemia and \beta-thalassemia, as well as other nutritional deficiencies causing megaloblastic anemia such as folic acid or vitamin B12 [36]. Nevertheless, different studies have demonstrated that RDW can also be altered in individuals with various cardiovascular pathologies, diabetes, kidney diseases, critically ill patients [37].

Additionally, we calculated the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), analyses that reveal the inflammatory state of the subject [6] as they are associated with various processes such as postthrombolytic side effects in patients with acute ischemic stroke [38]. Currently, very few studies that have determined the RI of these ratios. For example, in the Chinese population, the RI of NLR was found to be 0.43-2.75 for men and 0.37-2.87 for women, while PLR was 36.63-149.13 for men and 43.36-172.68 for women; age-related data was also collected [39]. In South Korea, the RI of NLR was similar to that found in this study, with a mean of 1.7 for men (age range 20–49 years) and a mean of 1.6 for women. Greater similarity in PLR was observed only in the age range over 70 years [40]. In the Iranian population, means of NLR and PLR of 1.70 \pm 0.70 and 117.05 ± 47.73 , respectively [41]. In the Nigerian population, values of 2.8 (1.2-4.4) for NLR, and 137 (75-199) for PLR [42] were observed, the latter being higher than those found in this study.

Although the concept and usefulness of RI is simple, their establishment is complex as there are factors that depend on the characteristics of the individuals, the inclusion and exclusion criteria, and the equipment and methodologies used in their calculation [24]. This is why their determination requires that pre-analytical and analytical processes be rigorously standardized, with appropriate statistical methods and representative samples of individuals. Some of the studies have limited sample sizes, such as those of Arbiol et al. [23] with 213 data points, Islam et al. with 132 [21], Molina et al. with 135 [28], and Fernández et al. with 250 [19]. However, it should be noted that all the aforementioned studies still examined a greater number of samples than that recommended by the IFCC for non-parametric analysis (120 data points). Conversely, some studies utilized significantly larger sample sizes, such as Rosenfeld et al. with 8,952 [18] and Hollowell et al. with 26,372 [43]. Regarding analytical differences, several types of equipment are used, with most authors preferring the Sysmex XE-2100 hematology counter [22, 23, 26, 28] and the ADVIA 2120i [21]. Likewise, for statistical analysis, some researchers have also used the Tukev fences as a method of excluding outliers [22, 23], whilst others calculate RI from the $X\pm 2SD$ (mean \pm 2 standard deviation), which decreases the precision of the intervals. In our case, the interpercentile interval method was used, as recommended by the IFCC [2].

Normally, RIs have been determined in predominantly Caucasian individuals [44], so it is relevant to highlight that Latin America is a multiethnic and multicultural region [45]. Using mitochondrial genome markers, population genetics studies show that the Chilean population has a mainly Amerindian genetic background [46]. Moreover, migratory factors are increase in Chile and also the visibility of Indigenous Peoples in Chilean cities has continued to increase in recent decades [47], mainly triggered by "pull factors", such as better access to goods and services, development and extraction of natural resources and territorial imbalances. This is why we studied the Mapuche ethnicity variable, and found that the parameters of RBC, HGB and HCT had significant differences (p<0.0001) compared to the non-Mapuche group. Although other parameters were not statistically different, it was observed that the mean values tend to be higher in the Mapuche population in the vast majority of the parameters studied.

Other studies in different ethnicities (Caucasian, Negroid and Asian) have found important differences, such as the RI in Asians having significantly lower estimates of HCT, HGB, HCM, MCHC and mean platelet volume [48]. Black individuals have significantly lower RI for HCT, HGB, HCM, MCHC, total cholesterol, triglycerides and leukocytes, compared to white individuals. Lim et al. [48] observed that Hispanics have lower RI in HCM and MCHC [48]. In the study by Cheng et al. [49] found that the percentages of mononuclear cells and lymphocytes in the Negroid population were higher, and there were decreases in the percentage of granulocytes for all ages and sexes. HCT, MCHC, MCH, and HGB were also lower in all age and sex categories [49].

Regarding the limitations of the study, the restricted size of the sample used in the case of the population of the Mapuche ethnic group did not allow for the establishment of an analysis segregated by sex. Moreover, the inclusion criteria for this ethnic group considered the presence of at least one Mapuche surname, so this analysis probably included individuals of mestizo ancestry. In addition, according to the migration patterns within Chile, which often lead to changes in lifestyles, future studies should focus on studying RI directly in ethnic communities in this, and other regions.

In conclusion, the reference intervals have typically been established predominantly in Caucasian populations, making it important to emphasize that Latin America is a multiethnic and multicultural region. The present study is the first to establish RI for hematological parameters in the adult population and the Mapuche ethnic group in Chile. Some of the parameters present greater precision and variability depending on the population analyzed, its geographical location and sex, whilst others vary according to ethnicity. There are important differences in certain parameters, such as RBC, HCT, and HGB, between the Mapuche population and those used in the UC Temuco clinical laboratory. Therefore, it is important to highlight that adjusting reference intervals (RI) has direct implications for the quality of medical care, supporting more accurate diagnoses and reducing the risk of misinterpretations, such as underdiagnosing anemia or overestimating hematological issues. Additionally, it allows for better treatment adaptation, as reference thresholds reflect the physiological characteristics of each group. In the context of indigenous populations or different ethnic groups, using RIs based on Caucasian data may lead to suboptimal treatments. This also impacts public health policy, enabling more accurate population health assessments and better planning of interventions. This is particularly relevant in regions like Latin America, where ethnic differences must be considered to avoid healthcare inequities. Additionally, it highlights the importance of planning validation studies for proper transferability and potential multicenter studies that account for these variables in particular populations. Finally, these data provide relevant guidance for other studies and clinical practice in our geographic area.

Acknowledgments: The authors wish to express their appreciation to the work team at the Laboratorio Clínico UC Temuco.

Research ethics: This study was approved by the accredited Research Ethics Committee of the Universidad Católica de Temuco (document number 011601/23) and performed in compliance with the World Medical Association Declaration of Helsinki (ethical principles for medical research involving human subjects).

Informed consent: Not applicable.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Use of Large Language Models, AI and Machine Learning Tools: None declared.

Conflict of interest: The authors state no conflict of interest. Research funding: This work was supported by VIPUC-T-2022REG-PL-02 grant from the Vicerrectoría de Investigación y Postgrado, Universidad Católica de Temuco.

Data availability: The raw data can be obtained on request from the corresponding author.

References

- 1. Xu P, Zhou Q, Xu J. Reference interval transference of common clinical biomarkers. Scand J Clin Lab Invest 2021;81:264-71.
- 2. Henny J, Vassault A, Boursier G, Vukasovic I, Mesko Brguljan P, Lohmander M, et al. Recommendation for the review of biological reference intervals in medical laboratories. Clin Chem Lab Med 2016: 54:1893-900.
- 3. Shaheen NA, Rehan H, Moghairi A, Gmati G, Damlaj M, Salama H, et al. Hematological indices in the adult saudi population: reference intervals by gender, age, and region. Front Med (Lausanne) 2022;9: 901937.
- 4. Torrens M. Cell blood count clinical interpretation. Reviste Médica Clínica Las Condes 2015;26:713-25.
- 5. Dorji K, Chhoden RS, Wangchuk K, Zangpo S, Tenzin S, Dawa C, et al. Routine clinical chemistry and haematological test reference intervals for healthy adults in the Bhutanese population. PLoS One 2022;17: e0273778.
- 6. Ortiz-López DA-MM, Casimiro-Pérez JA, Silvestre-Rodríguez J, Marchena-Gómez J. Valor del Ratio Neutrófilo-Linfocito, Ratio Plaqueta-Linfocito y Proteína C Reactiva del primer día como predictores de complicaciones postoperatorias tras cirugía oncológica gástrica. Revista de Gastroenterología de Mexico 2022;87:142-8.
- 7. Lim EM, Cembrowski G, Cembrowski M, Clarke G. Race-specific WBC and neutrophil count reference intervals. Int | Lab Hematol 2010;32: 590-7.
- 8. Yassin MA, Soliman AT, Nashwan AJ, Alamami AA, Abdulla MAJ, Hmissi SM, et al. Hematological indices reference intervals for a healthy Arab population in Qatar: effect of age, gender, and geographic location. Medicine 2022;101:e29271.
- 9. Hamid JS, Atenafu EG, Borkhoff CM, Birken CS, Maguire JL, Bohn MK, et al. Reference intervals for hemoglobin and mean corpuscular volume in an ethnically diverse community sample of Canadian children 2 to 36 months. BMC Pediatr 2021;21:241.
- 10. Chile MS. Diagnóstico de salud de los puebos Indígenas en Chile. https://www.sscoquimbo.cl/gob-cl/documentos/files/aps/19-11-2021/ ANEXO-07-2022 [accessed 08 Oct 2024].
- 11. Mejía-Saldarriaga S, Agudelo-Rendón D, Bossio-Zapata F, Sánchez-Cifuentes É, Jaramillo-Pérez L, Acevedo-Toro P. Determinación de intervalos biológicos de referencia para adultos en el equipo hematológico BC-5000 de la escuela de Microbiología de la Universidad de Antioquia. Medellín Iatreia 2019;32:92-101.
- 12. Tarazona-Santos E, Lavine M, Pastor S, Fiori G, Pettener D. Hematological and pulmonary responses to high altitude in Quechuas: a multivariate approach. Am J Phys Anthropol 2000;111:165-76.
- 13. Bracho F. Reference intervals of automated reticulocyte count and immature reticulocyte fraction in a pediatric population. Int J Lab Hematol 2021;44:461-7.

- 14. Siques P, Brito J, Leon-Velarde F, Barrios L, De La Cruz JJ, Lopez V, et al. Hematological and lipid profile changes in sea-level natives after exposure to 3550-m altitude for 8 months. High Alt Med Biol 2007;8: 286-95.
- 15. Fuentes P, Albala C. An update on aging and dementia in Chile. Dement Neuropsychol 2014;8:317-22.
- 16. Letelier P, Acuna R, Garrido I, Lopez J, Sanhueza G, Seguel C, et al. Reference intervals of biochemical parameters in Chilean adults. J Med Biochem 2024;43:133-43.
- 17. Bengoa J. Historia del Pueblo Mapuche (Siglos XIX y XX) Santiago de Chile, 3^a edición. Ediciones SUR 1996:448.
- 18. Rosenfeld LG, Malta DC, Szwarcwald CL, Bacal NS, Cuder MAM, Pereira CA, et al. Reference values for blood count laboratory tests in the Brazilian adult population, National Health Survey. Rev Bras Epidemiol 2019:22:E190003.
- 19. Fernández L, Bustamante Y, García G. Valores de Referencia Obtenidos con el Autoanalizador Coulter Gen-S. Revista de la Facultad de Medicina 2006:29:1-6.
- 20. Adeli K, Raizman JE, Chen Y, Higgins V, Nieuwesteeg M, Abdelhaleem M, et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem 2015;61:1075-86.
- 21. Islam MN, Griffin TP, Whiriskey R, Hamon S, Cleary B, Blake L, et al. Reference intervals for commonly requested biochemical and haematological parameters in a healthy Irish adult Caucasian population. Ir J Med Sci 2022;191:301-11.
- 22. Florin L, Oyaert M, Vandevenne M, Van den Bossche J, Vanden Driessche M, Claeys R, et al. Establishment of common reference intervals for hematology parameters in adults, measured in a multicenter study on the Sysmex XN-series analyzer. Int J Lab Hematol 2020;42:e110-5.
- 23. Arbiol-Roca A, Imperiali CE, Montserrat MM, Cerro AS, Bosch de Basea AC, Navarro LS, et al. Reference intervals for a complete blood count on an automated haematology analyser Sysmex XN in healthy adults from the southern metropolitan area of Barcelona. EJIFCC 2018;29:48-54.
- 24. Ozarda Y, Ichihara K, Bakan E, Polat H, Ozturk N, Baygutalp NK, et al. A nationwide multicentre study in Turkey for establishing reference intervals of haematological parameters with novel use of a panel of whole blood. Biochem Med (Zagreb) 2017;27:350-77.
- 25. Singh P, Kumar S, Reddy VK, Sharma S, Chandra S, Vijay P. A study on association of age, gender, and body mass index with hematological parameters. J Indian Assoc Public Health Dentistry 2021;19:109-14.
- 26. Sáenz FKNG, Cruz M. Valores de referencia hematológicos en población altoandina ecuatoriana establecidos con el uso del analizador Sysmex XE-2100. Rev Mex Patol Clin 2008;55:207-15.
- 27. Wolach B, Ashkenazi M, Grossmann R, Gavrieli R, Friedman Z, Bashan N, et al. Diurnal fluctuation of leukocyte G6PD activity. A possible explanation for the normal neutrophil bactericidal activity and the low incidence of pyogenic infections in patients with severe G6PD deficiency in Israel. Pediatr Res 2004;55:807-13.
- 28. Molina K, Vargas E, Tavera S, Pérez R, Mantilla C, Cardona J. Intervalos biológicos de referencia del hemograma en personas sanas, Medellín. Medicina y Laboratorio 2013;19:5-6.
- 29. Bachman E, Travison TG, Basaria S, Davda MN, Guo W, Li M, et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci 2014;69:725-35.

- 30. Azad P, Villafuerte FC, Bermudez D, Patel G, Haddad GG. Protective role of estrogen against excessive erythrocytosis in Monge's disease. Exp Mol Med 2021;53:125-35.
- 31. Hanchinal V, Sambrani A, Baljoshi V. A study on influence of different phases of menstrual cycle on hematological parameters. J Exp Clin Med 2021;38:308-11.
- 32. Siraj N, Issac J, Anwar M, Mehari Y, Russom S, Kahsay S, et al. Establishment of hematological reference intervals for healthy adults in Asmara. BMC Res Notes 2018;11:55.
- 33. Roberts BM, Nuckols G, Krieger JW. Sex differences in resistance training: a systematic review and meta-analysis. J Strength Condit Res 2020;34:1448-60.
- 34. Jeong HR, Lee HS, Shim YS, Hwang JS. Positive associations between body mass index and hematological parameters, including RBCs, WBCs, and platelet counts, in Korean children and adolescents. Children (Basel) 2022;9:109.
- 35. Briceño JFB. Respuesta hematológica al ejercicio. Rev Cienc Salud. 2005:3:206-16.
- 36. van Zeben D, Bieger R, van Wermeskerken RK, Castel A, Hermans J. Evaluation of microcytosis using serum ferritin and red blood cell distribution width. Eur J Haematol 1990;44:106-9.
- 37. Salvagno G, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 2015;52:86-105.
- 38. Gong P, Liu Y, Gong Y, Chen G, Zhang X, Wang S, et al. The association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke. J Neuroinflammation 2021:18:51.
- 39. Wu L, Zou S, Wang C, Tan X, Yu M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in Chinese Han population from Chaoshan region in South China. BMC Cardiovasc Disord 2019;19:125.
- 40. Lee JS, Kim NY, Na SH, Youn YH, Shin CS. Reference values of neutrophillymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine (Baltimore) 2018:97:e11138.
- 41. Moosazadeh M, Maleki I, Alizadeh-Navaei R, Kheradmand M, Hedayatizadeh-Omran A, Shamshirian A, et al. Normal values of neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio among Iranian population: results of Tabari cohort. Caspian J Intern Med 2019;10:320-5.
- 42. Ni A. Reference values of neutrophil-lymphocyte ratio, plateletlymphocyte ratio and mean platelet volume in healthy adults in north Central Nigeria. J Blood Lymph 2016;6. https://doi.org/10.4172/2165-7831.1000143.
- 43. Hollowell JG, van Assendelft OW, Gunter EW, Lewis BG, Najjar M, Pfeiffer C, et al. Hematological and iron-related analytes-reference data for persons aged 1 year and over: United States, 1988-94. Vital Health Stat 2005;11:1-156.
- 44. Tahmasebi H, Trajcevski K, Higgins V, Adeli K. Influence of ethnicity on population reference values for biochemical markers. Crit Rev Clin Lab Sci 2018;55:359-75.
- 45. Pons-Estel GJ, Saurit V, Alarcon GS, Hachuel L, Boggio G, Wojdyla D, et al. The impact of rural residency on the expression and outcome of systemic lupus erythematosus: data from a multiethnic Latin American cohort. Lupus 2012;21:1397-404.
- 46. Subiabre V, Palomo I, Guzman N, Retamales E, Henriquez H, Gonzalez L. The influence of ethnicity on warfarin dosage requirements in the chilean population. Curr Ther Res Clin Exp 2015;77:31-4.

- 47. Caulkins M, Choque D, Alarcón M. Explorando la relación entre planificación urbana y Pueblos Indígenas en áreas urbanas chilenas. Eure 2023;49:1-24.
- 48. Lim E, Miyamura J, Chen JJ. Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, blacks, Hispanics, and white. Hawaii J Med Public Health 2015;74: 302-10.
- 49. Cheng CK, Chan J, Cembrowski GS, van Assendelft OW. Complete blood count reference interval diagrams derived from NHANES III: stratification by age, sex, and race. Lab Hematol 2004;10:42–53.

Article Note: A translation of this article can be found here: https://doi.org/ 10.1515/almed-2025-0014.