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Abstract: Avicenna believed in mathematical finitism. He argued that mag­
nitudes and sets of ordered numbers and numbered things cannot be actually 
infinite. In this paper, I discuss his arguments against the actuality of mathe­
matical infinity. A careful analysis of the subtleties of his main argument, i.  e., 
The Mapping Argument, shows that, by employing the notion of correspondence 
as a tool for comparing the sizes of mathematical infinities, he arrived at a very 
deep and insightful understanding of the notion of mathematical infinity, one 
that is much more modern than we might expect. I argue, moreover, that Avicen­
na’s mathematical finitism is interwoven with his literalist ontology of mathemat­
ics, according to which mathematical objects are properties of existing physical  
objects.

1 Introduction
In the Aristotelian tradition the problem of infinity has two distinct aspects. Its 
negative aspect includes various arguments for the impossibility of the actual 
existence of infinity. Its positive aspect, on the other hand, justifies the merely 
potential existence of infinity and explains how something can have the potenti­
ality of being infinite (apeiron), although this potentiality can never be actualized. 
Avicenna had some innovative ideas with respect to both of these aspects. Com­
pared to most other Aristotelian philosophers, he had a more flexible approach to 
the impossibility of actual (bil-fiʿl) infinity (lā nihāya).1 Specifically, he preserves 
the possibility of the actual existence of a very specific type of infinity. He believes 
that an infinite non-ordered (ghayr murattab) set of immaterial objects, e.  g., 
angels or souls, can (and, indeed, does) actually exist.2 Nonetheless, this view 
does not take him very far from Aristotle’s own position on the ordinary types 

1 Nawar 2015, 2355 n15.
2 See Marmura 1960, Rashed 2005, 298  f., and McGinnis 2010.
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of physical or mathematical infinity we usually think about in scientific inquiry. 
Avicenna, like Aristotle, believes that they exist only in a potential (bil-quwwa) 
sense. The significance of Avicenna’s views on physical or mathematical infinity 
lies, therefore, in the subtle and insightful ideas he adds to both the negative and 
the positive aspects of the problem to support the core idea of Aristotelian infin­
ity, rather than in a rejection of Aristotle’s view.

This paper aims to explain Avicenna’s views on the negative aspect of the 
problem of mathematical infinity and to clarify their significance and novelty 
from the perspective of the history and philosophy of mathematics. I should, 
therefore, first specify what exactly I mean by ‘mathematical infinity’. In the 
next section, I discuss this issue and elaborate the relation between mathemat­
ical and physical infinity in Avicenna’s philosophy. Knowing about this relation 
helps us to realize better how Avicenna’s arguments for the impossibility of the 
actual existence of mathematical infinity are interwoven with his arguments 
against the actuality of the physical infinite. Moreover, it sheds a new light on 
why Avicenna discusses mathematical infinity in the Physics parts of his works. 
In  Section 3, I briefly review two of Avicenna’s arguments against the actuality 
of infinity. The first, The Collimation Argument (burhān al-musāmita), appeals to 
the notion of motion, while the other, The Ladder Argument (burhān al-sullam), 
does not engage such physical notions. Our study of Avicenna’s views on the neg­
ative aspect of the problem of mathematical infinity is completed in Section 4, by 
investigating the details of his main argument against the actuality of mathemat­
ical infinity; this is The Mapping Argument (burhān al-taṭābuq or al-taṭbīq). I will 
show that only this argument can be applied to the case of numerical (discrete) 
infinity. Elucidation of the philosophical and mathematical presuppositions of 
this argument reveals that the affinity between Avicenna’s understanding of the 
notion of infinity and our modern understanding of this notion is stronger than 
we might have expected, or so I will argue there. I close, in Section 5, with some 
concluding reflections.

2 The Notion of Mathematical Infinity
There are two important points to make concerning the notion of mathematical 
infinity, before going through the details of Avicenna’s views about this notion. 
First, I explain exactly what I mean by ‘mathematical infinity’. Second, I discuss 
the connection of this notion with the notion of physical infinity from the per­
spective of Avicenna’s philosophy.
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Aristotle defines infinity as something that “if, taking it quantity by quantity, 
we can always take something outside.”3 Avicenna accepts this definition and 
mentions it in many different places of his oeuvre. For example, in The Physics of 
the Healing he says that infinity is “that which whatever you take from it – and any 
of the things equal to that thing you took from it – you [always] find something 
outside of it.”4 Nonetheless, Avicenna’s treatment of the more specific notion of 
mathematical infinity is not in complete accordance with that of Aristotle. In the 
Aristotelian tradition, the problem of mathematical infinity has been studied by 
analysing three different yet interrelated phenomena: (a) the infinity of numbers5 
(i.  e., the subject matters of arithmetic), (b) the infinity of magnitudes (i.  e., the 
subject matters of geometry), and (c) the infinite divisibility of magnitudes.6 What 
I mean by ‘mathematical infinity’ is restricted to the two former types of infin­
ity. I do not go, therefore, into the details of Avicenna’s views on the latter type 
of mathematical infinity. This departs somewhat from the general approach of 
contemporary Aristotle scholars, most of whom have paid more attention to the 
infinite divisibility of magnitudes.7 Specifically, they have tried to clarify Aris­
totle’s view about (a) and (b) by scrutinizing his views about (c). I think, nonethe­
less, that following the opposite strategy is more plausible, at least in the context 
of Avicenna’s philosophy. Let me justify why.

Aristotle believes that a thing – whatever it is – may be “infinite either by 
addition or by division.”8 As a result, the first two kinds of mathematical infinity 

3 Physics  II.6, 207a7–8. All translations of Aristotle’s texts in this paper are from The Revised 
Oxford Translation of The Complete Works of Aristotle. See Aristotle 1984.
4 Avicenna 2009, III.7 [2]. See also Avicenna 2009, III.7 [3] and III.9 [1]. As another example, in 
the letter to the vizier Abū Saʿd, Avicenna defines infinity as “a quantity or something posses­
sing a quantity that if you take something from it, you still find something other than what you 
took and you never reach something beyond which there is nothing of it [i.  e., of that infinity]” 
(Avicenna 2000, 28).
5 Throughout the paper, by ‘numbers’ I just mean ordinary natural numbers.
6 This classification is inspired by Aristotle’s Physics III, 206a9–12. However, in that passage he 
speaks of the infinity of time rather than magnitude. He confirms there that the infinite divisi­
bility of magnitudes and the infinity of numbers and time are, in a sense, undeniable. Given the 
so-called ‘isomorphism thesis’ according to which one-dimensional magnitudes, one-dimen­
sional motions, and time have the same mathematical structure, (b) and (c) have some strong 
connections, respectively, to the infinity of time and the infinite divisibility of temporal intervals. 
Fred Miller 1982, Sec. 5, has argued that Aristotle endorses this thesis. See Newstead 2001 for a 
discussion of this thesis from the perspective of modern mathematical theories of continuum. 
McGinnis 1999 shows that Avicenna endorses this thesis and his theory of time rests on it.
7 See, among others, Hintikka 1966, Bostock 1972 and 2012, Lear 1979, Bowin 2007, and Coope 
2012.
8 Physics III, 206a14–8.
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(i.  e., the infinity of numbers and magnitudes) are cases of being infinite by addi-
tion while the latter (i.  e., the infinite divisibility of magnitudes) is a case of being 
infinite by division. There are two things which motivate Aristotle scholars to base 
their discussions of mathematical infinity on the infinite by division rather than 
the infinite by addition. First, some of Aristotle’s texts can, in principle, be inter­
preted in a way that represents him as believing that the problem of the infinite 
by addition is reducible to the problem of the infinite by division.9 Consequently, 
the latter notion has a priority over the former in discussion. Second, Aristotle’s 
discussions of the infinity of numbers and magnitudes lack any mathematically 
remarkable feature and cannot, therefore, attract the attention of modern his­
torians and philosophers of mathematics. By contrast, none of these points is 
true of Avicenna’s account of mathematical infinity. On the one hand, the redu­
cibility of the notion of infinity by addition to that of infinity by division does not 
play any influential role in Avicenna’s discussion of the infinity of numbers and 
magnitudes. To be precise, he is sympathetic to the idea of discussing infinite 
divisibility prior to the infinite largeness of numbers and magnitudes,10 but the 
plausibility of his discussions of the latter does not really depend on that of the 
former. There is no obvious inferential connection between them. On the other 
hand, and perhaps more importantly, his discussions on the infinity of numbers 
and magnitudes include the introduction and application of some mathematical 
notions and the presentation of some arguments which are worthy of investiga­
tion by historians and philosophers of mathematics, or so I believe. Therefore 
what motivates Aristotle scholars is weakened in the context of Avicenna’s phil­
osophy of mathematics. Additionally, it seems that, at the end of the day, without 
a correct conception of the infinity of numbers it is impossible to illustrate the 
infinite divisibility of magnitudes. The infinite divisibility of a line is nothing 
other than that the number of divisions we can make in that line is infinite; ergo, 
the infinity of numbers should be discussed prior to the infinite divisibility of 
magnitude. These considerations are enough to show that we can base our study 
of Avicenna’s views about mathematical infinity on (a) and (b), rather than (c). I 
think that Avicenna’s views about the infinite divisibility of magnitudes should 

9 See, for example, Lear 1979, 195, who interprets Physics III, 206b3–4, in this way. Bowin 2007, 
Sec. III, not only confirms this approach, but also construes Physics III, 207b10–13, as claiming 
the strong epistemological thesis “that our ability to think of ever larger natural numbers also 
depends upon the infinite divisibility of magnitudes” (Bowin 2007, 244).
10 In The Physics of the Healing, Avicenna says that “before we speak about finite bodies and 
their states with respect to largeness, we should speak about the finite and infinite with respect 
to smallness and divisibility” (Avicenna 2009, III.2 [1]). But, as we will see, his discussion of the 
former has no argumentative connection to that of the latter.
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be studied in connection with the notion of the mathematical continuum, and I 
postpone this to an independent further work.

Another point worth mentioning about the notion of mathematical infinity is 
its relation to physical infinity. Aristotelian philosophers in general believe that 
the mathematical realm is connected to the physical realm, although the nature 
of this connection can be (and indeed is) construed in many different ways. Avi­
cenna’s views on the ontology of mathematics and the nature of mathematical 
objects show how strong this connection is for him. Familiarity with these views 
helps us to attain a more comprehensive understanding of Avicenna’s position 
on mathematical infinity. Therefore, I briefly sketch his theory on the ontological 
status of mathematical objects. I have discussed the details and subtleties of this 
theory elsewhere.11

According to Avicenna, mathematical objects, i.  e. numbers (aʿdād) and 
geometrical shapes (or magnitudes (maqādīr) in general), are neither Platonic 
forms, nor independent material objects, nor even purely mental existents 
completely separated from matter. They are, in the first instance, accidents of 
actually existing material objects.12 They are, therefore, mixed with particular 
materials (or, in other words, with particular kinds of matter) in the extramental 
realm. They are predicated upon the physical objects. By the aid of our estima­
tion (wahm), we can separate mathematical objects, in our minds, from all those 
determinate kinds of matter to which they are attached outside the mind.13 None­
theless, mathematical objects cannot be separated from materiality itself. Even in 
the mind they are mixed with materiality. They “absolutely do not dispense with 
matter, even though they can do with some kind of matter.”14

The ontological status of mathematical objects, as the objects studied by 
mathematics, may become clearer in contrast with the ontological status of the 
objects studied and investigated by natural sciences and metaphysics. Whether 
in the external world or in the mind, the objects studied by natural sciences are 
inseparable from not only materiality itself but also from the particular matters 
with which they are mixed. We cannot separate humanness, for example, from 

11 See Zarepour 2016.
12 See Avicenna 2005, III.3–4.
13 According to Avicenna’s theory of knowledge, estimation is a bodily cognitive faculty which 
plays a protagonist role in the epistemology of mathematics. For a magnificent discussion on the 
other human or animal functions of this faculty, see Black 1993. See also Hall 2006 for a more 
recent study on the role of the estimative faculty in Avicenna’s psychology.
14 Avicenna 2005, VII.2 [21]. I have corrected an oversight in Marmura’s translation by putting 
the second ‘with’ in the above quote to replace his ‘without’. To be precise, Avicenna says: 
“al-hindisīyāt min al-ta‘līmīyāt lā tastaghnī ḥudūduhā ‘an al-mawād muṭlaqan, wa ’in istaghanat 
‘an naw‘ mā min al-mawād.”
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either materiality in general or even the particular matter it is mixed with, i.  e., 
flesh and blood. Therefore, even in our estimation, we cannot detach humanness 
from flesh and blood. On the other hand, the objects studied by metaphysics, 
though they may be mixed with some particular matters in the external world, 
are separable from not only those particular matters but also from material­
ity itself in the mind.15 With respect to separability from matter, mathematical 
objects lie between these two groups of objects. More precisely, with respect to 
separability from determinate kinds of matter, mathematical objects are similar 
to the objects studied by metaphysics and dissimilar to the objects studied by 
natural sciences. In our minds, we can separate mathematical objects from those 
particular matters with which they are mixed in the extramental world. But with 
respect to separability from materiality itself, mathematical objects are similar to 
the objects studied by natural sciences and dissimilar to the objects studied by 
metaphysics, because even in our mind we cannot separate them from materiality 
itself. Mathematical objects, inasmuch as they are the subject matters of mathe­
matical studies, are inseparable from the material form (al-ṣūra al-māddīya).16 

15 Some objects studied by metaphysics, e.  g., God and mind, are necessarily separated from 
matter. Therefore they cannot be mixed with matter. By contrast, others, e.  g. numbers, can in 
principle be mixed with matter. However, if we consider them as mixed with matter then our 
study is no longer metaphysical. See Marmura’s diagram of the classification of the objects stud­
ied by the different sciences at the end of his 1980 paper.
16 See Avicenna 2005, III.4 [2]. By ‘material forms’, or more precisely ‘forms that belong to mat­
ter’, Avicenna seems to mean the form of corporeality which is common to all corporeal things. 
Mathematical objects cannot be conceived separated from the corporeal form. Shihadeh 2014 
discusses Avicenna’s views on the corporeal form and its reception in the twelfth century. See 
especially page 367 for an explanation of the inseparability of mathematical objects from the 
corporeal form. The corporeal form can be conceptually separated from prime matter. Therefore, 
one might suggest that mathematical objects, though inseparable from the corporeal form, can 
be completely separated from matter in the estimation. If so, when Avicenna says that mathe­
matical objects “do not dispense with matter, even though they can do with some kind of mat­
ter”, by dispensability with matter (istighnā ‘an mādda) he does mean nothing more than sepa-
rability from the corporeal form. In other words, mathematical objects in the estimative faculty 
are detached from matter, though still attached to the corporeal form. However, it seems that 
mathematical objects should have a stronger connection to materiality. It is possible (and math­
ematicians often need to) consider different but qualitatively indistinguishable instances of each 
kind of geometrical shapes, e.  g., two distinct circles of the same radius or two distinct squares 
of the same size. But the corporeal form cannot be the distinguishing feature of these distinct 
instances. This is because, as Shihadeh 2014, 385, clarifies, “Avicenna does not speak of multiple 
‘corporeities’.” All corporeal things, Avicenna believes, share the same corporeal form; corpo­
reality itself is not quantifiable. Therefore, indispensability with matter seem to be something 
more than mere attachment to the corporeal form. It is rather attachment to an unqualitative 
indeterminate kind of matter which we can call it, in Aristotelian term, intelligible matter (or 
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Even in our estimation, we should consider them as accidents of material objects 
and, therefore, attached to matter, albeit not to a specific kind of matter.17

According to the above picture, Avicenna should be described as a literal­
ist with respect to the ontology of mathematics. He believes that mathematical 
objects are accidents and properties of physical objects that literally exist in the 
external world. The existence of such properties does not depend upon the spe­
cific kinds of matter of the objects of which they are properties. To study these 
properties, we can therefore ignore those specific kinds of matter. Mathematical 
objects are then abstracted by the estimative faculty from all specific kinds of 
matter. Nonetheless, it does not mean that they are studied as if they are not mate­
rial properties. Mathematics for Avicenna is a specific way of studying a very spe­
cific group of physical properties. One might oppose this rendition of Avicenna’s 
view by putting forward that mathematical objects are mental objects that are 
constructed by the abstraction mechanism. The quantity investigated by mathe­

estimative matter, to have a more Avicennian flavor). This intelligible matter (to which mathe­
matical object are attached in the estimative faculty) plays the role of the distinguishing element 
of distinct instances of the same kind of geometrical shapes. Admittedly, this account should be 
discussed and developed in more detail. Nonetheless, doing so is beyond the scope of this paper.
17 As I have shown in detail in Zarepour 2016, these views concerning the ontological status 
of the objects studied and investigated by the different sciences are deduced from Avicenna’s 
discussions on the classification of the sciences, which appear, with slight differences, in several 
parts of his oeuvre; e.  g., Ch. 2 of Bk. I of Isagoge (1952), Chs. 1–3 of Bk. I of The Metaphysics of the 
Healing (2005), and Chs. 1  f. of The Metaphysics of ‘Alā’ī Encyclopedia (2004). The idea of classifi­
cation of the sciences according the ontological status of the objects that they study goes back to 
Aristotle (Metaphysics VI.1, 1026a13–19) and has been discussed by Al-Fārābī in his The Aims of 
Aristotle’s Metaphysics, of which Avicenna explicitly says, in his autobiography (cf. Gutas 2014, 
17  f.) that he has read it. To be more precise, for Avicenna the theoretical sciences are divided 
primarily according to whether or not the objects they study are related to motion (i.  e., whether 
or not they are movable). But an object is movable if and only if it is associated with matter in the 
external world. That is how movability/immovability can be replaced with inseparability/separa-
bility from matter as a criterion for classifying the objects of the sciences. There is another thing 
which encourages me to be focused mainly on the latter distinction in my explanation of Avicen­
na’s position about the nature of the objects studied by the different sciences. (In)separability 
from matter can be divided into two finer-grained kinds of (in)separability – i.  e., (in)separability 
from specific kinds of matter and (in)separability from materiality itself – which play important 
roles in Avicenna’s discussion of classification of the sciences but there is no parallel division 
with respect to (im)movability. The original Arabic text of The Aims of Aristotle’s Metaphysics 
can be found in Al-Fārābī 1890, 34–8. Gutas 2014, 272–5, and McGinnis/Reisman 2007, 78–81 
provide partial English translations of this work. Its complete English translation can be found 
in Bertolacci 2006, 66–72. Cleary 1994 has discussed Aristotle’s classification of the sciences. See 
also Marmura 1980 and Gutas 2003 for two modern commentaries on Avicenna’s classification 
of the sciences.
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matics, the objector might discuss, is not the extramental quantity.18 However, I 
do not find this position convincing. Mathematical abstraction for Avicenna is not 
a machinery for creating the objects that otherwise do not exist. It is a cognitive 
mechanism which provides us with a suitable conceptual framework for thinking 
about some specific physical properties in a specific way. But the objects of math­
ematics are those physical properties themselves, rather than their conceptual/
mental counterparts constructed by the abstraction mechanism. The existence of 
mathematical objects does not depends on the human mind.19

Avicenna thus believes that mathematical objects have some sort of depend­
ency on or inseparability from materiality. However, for the case of geometrical 
objects (and magnitudes in general) this dependency is in some sense stronger 
than for numbers. Numbers, unlike magnitudes, are in principle separable from 
materiality itself. But numbers separated from materiality cannot be subject to 
increase and decrease. Consequently, they cannot be the subject of mathemat­
ical studies, and should therefore be studied in metaphysics. In other words, 
numbers, inasmuch as they are numbers, are not inseparable from materiality; 
but inasmuch as they are the subject of mathematical studies (i.  e., inasmuch as 
they are the subject matters of mathematics) they should be considered as mixed 
with materiality. Numbers emancipated from any dependency on materiality are, 
therefore, the subject of metaphysical studies rather than mathematical studies. 
Otherwise put, Avicenna accepts that numerosity can in principle find a way into 
the domain of immaterial objects which are subjects of metaphysical studies; but 
he denies that this sort of numerosity can be the subject of mathematical studies.20

Contrary to numbers, however, magnitudes and geometrical shapes, inas­
much as they are themselves (and, a fortiori, inasmuch as they are the subject of 

18 There is a parallel debate on Aristotle’s ontology of mathematics. Mueller 1970 and 1990 
provides a literalist interpretation of Aristotle’s view about mathematical objects. Lear 1982, on 
the other hand, emphasizes the role of mathematical abstraction in constructing mathematical 
objects.
19 Admittedly, there are still some issues to be clarified. For instance, there are peculiar or per-
fect/exact geometrical shapes that can be (and are indeed) studied by mathematics but do not 
exist in the extramental world; i.  e., there are no physical objects of those shapes. One might 
say, for example, that there is no perfect circle or no closed-shape-with-5326-straight-sides in the 
physical world, but these objects are (or, at least, can be) studied by mathematics. Therefore, 
the objector might conclude, that literalism is false. I think, however, that there are plausible 
answers for these objections in Avicenna’s philosophy of mathematics. Nonetheless, an ade­
quate treatment of them here would take us far afield. See Zarepour 2016, Sec. 5.
20 Numbers separated from matter are not, according to Avicenna, receptive to decrease and 
increase. They are not capable of being subject to addition, subtraction, and other mathematical 
operations and, consequently, they cannot be the subject of mathematical studies. See Avicenna 
2005, I.3 [17  f.].
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mathematical studies), are inseparable from materiality. They cannot be detached 
from the material form. In other words, although there can be numerous imma­
terial objects, there cannot be any immaterial magnitude or, for example, imma­
terial triangle. This is the case, at least, if we interpret immateriality as meaning 
being separated from materiality itself, even from estimative matter, as well as 
from the material form; not, therefore, simply as being separated from the par­
ticular matters upon which they are predicated in the extramental realm. In brief, 
there is no place for magnitudes in the realm of immaterial objects. This contrast 
between the ontological status of numbers and magnitudes has some interesting 
consequences for Avicenna’s views about the problem of infinity to which I return 
at the end of this paper.

But insofar as our concern is merely with the relationship between mathe­
matical and physical infinity, the aforementioned contrast between numbers and 
magnitudes has no importance. The only important thing is that mathematical 
objects, either numbers or magnitudes, inasmuch as they are the subject matters 
of mathematics, are (or, at least, should be considered as being) inseparable from 
materiality.21 Therefore, it is necessarily true that there actually exists a mathe­
matically infinite magnitude if and only if there exists a physically infinite object 
upon which that magnitude is predicated. Similarly, it is necessarily the case that 
there actually exists an infinite set of numbers if and only if there exists an infinite 
set of numbered physical objects upon which those numbers are predicated. In 
this sense, the problem of mathematical infinity for Avicenna is a special case of 
the problem of physical infinity.

3 Two Arguments against the Actuality of Infinity
Avicenna investigated the problem of infinity extensively, in all of his main ency­
clopaedic works as well as in several other places.22 He proposed several argu­

21 For two alternative interpretations of Avicenna’s views about the nature of mathematical 
objects see Ardeshir 2008 and Tahiri 2016, who believe that mathematical objects are ‘mental’ 
(Ardeshir’s term) or ‘intentional’ (Tahiri’s term) objects completely separated from materiality. 
However, I have argued that these interpretations are not sufficiently accurate. See Zarepour 2016.
22 These are some of the places in which Avicenna directly discusses the problem of infinity:  
(1) The Physics of the Healing (2009, III.7–11), (2) The Physics of the Salvation (1985, IV.2, 244–52), 
(3) The Physics of Pointers and Reminders (1957, Namaṭ I, Ch. 11, 160–67), (4) The Metaphysics 
of ‘Alā’ī Encyclopedia (2004, Ch. 16, 58–61), (5) The Physics of Fountains of Wisdom (1980, Ch. 3, 
19  f.), and (6) The Letter to the Vizier Abū Saʿd (2000, 27–36). As we will mention shortly, there are 
other places in which Avicenna indirectly considers this problem.
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ments, some of which are more faithful to the structure of Aristotelian arguments 
against an actual infinity. Almost all of Aristotle’s arguments are based on (a) 
the application of physical notions such as motion and traversability, and (b) the 
presupposition of certain Aristotelian doctrines in physics and cosmology. As a 
result, they hold little interest for someone who is looking at the problem of infin­
ity from a purely mathematical perspective.23 Moreover, most of those Aristotel­
ian physical or cosmological presuppositions have lost plausibility for modern 
readers. This is why contemporary philosophers of mathematics usually avoid 
discussing the details of Aristotle’s argument against mathematical infinity.24 By 
contrast, in addition to some (by and large Aristotelian) physical arguments, Avi­
cenna proposed some mathematical arguments in which he does not appeal to 
physical notions and Aristotelian presuppositions. In this section I briefly review 
a physical argument in which Avicenna appeals to the notion of circular motion, 
and a mathematical argument. In Section 4 I focus on another mathematical argu­
ment, this being Avicenna’s main argument against the actuality of mathematical 
infinity, which includes the introduction and application of some mathematically 
significant notions and methods.

3.1 The Collimation Argument

There are some places in which Avicenna provides an indirect discussion of the 
problem of infinity. For example, in his discussions of the void in The Physics of 
the Healing25 and The Physics of the Salvation,26 he appeals to the impossibility of 
circular motion in an infinite void as one of his premises in arguing for the impos­
sibility of the void. To justify this premise, he proposes an auxiliary argument 

23 It is true that, according to Avicenna, ontology of mathematics somehow depends on the 
ontology of physics, but this does not entail either that methodology of mathematical studies 
is the same as that of physical studies or that every physical notion has something to do with 
mathematics. We can look at mathematical properties of physical objects by employing a meth­
odology which does not appeal to some physical notions such as mass, weight, and motion. In 
this sense, physical arguments can be separated from mathematical arguments, even if mathe­
matical ontology cannot be entirely detached from physical ontology.
24 For example, David Bostock’s reluctance to discuss these arguments was expressed in this 
way: “I shall not rehearse his [i.  e., Aristotle’s] arguments [for the claim that there is a definite 
limit even to the possible sizes of things], which – unsurprisingly – carry no conviction for one 
who has been brought up to believe in the Newtonian infinity of space. I merely note that this is 
his view” (2012, 479  f.).
25 Avicenna 2009, II.8 [8].
26 Avicenna 1985, IV.2, 233–44.
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that is known as The Collimation Argument (burhān al-musāmita) or The Parallel-
ism Argument (burhān al-muwāzāt). This argument likely originates in Aristotle’s 
De Caelo.27 Aristotle’s original argument was proposed to show that the infinite 
“cannot revolve in a circle; nor could the world, if it were infinite.” Avicenna 
extensively revised this argument to show, primarily, that circular motion in an 
infinite void is impossible. Coupling this result with the claim that the void, if it 
exists, cannot be finite, Avicenna concludes that the void does not exist.28 But in 
other places such as The Physics of Fountains of Wisdom,29 he also proposed this 
argument as an independent argument against the actual infinitude of intervals 
(ab‘ād). The argument goes as follows:

Consider the line L which is infinite in one direction; it starts from the center O 
of a finite circle C, intersects the circumference of the circle, and extends infinitely. 
Consider, moreover, another line L′ which is parallel to but distinct from L, and 
extends infinitely in both directions. Now, suppose that the circle C together with 
L start to rotate around O, while L′ remains motionless and fixed. As a result of 
this circular motion, these two lines intersect. Therefore, there is a moment of 
time in which these lines are parallel and there is a moment of time in which they 
intersect with each other. From this fact, Avicenna concludes that there should be 
a moment of time T and, accordingly, a point P on L′ in which these lines intersect 
each other for the first time (after the beginning of the circular motion). But there 
is obviously no such point. For every point P which we consider as the first inter­
section point of these lines, there are infinitely many points on L′ prior to P which 
would have been passed and intersected by L (Fig. 1). Since Avicenna believes 
that circular motion undeniably can happen, he concludes that what should be 
rejected is the existence of infinite lines and intervals.30

27 De Caelo I.5, 272a8–20.
28 For an explanation of this argument, as it appeared in The Physics of the Healing, see 
McGinnis 2007.
29 Avicenna 1980, Ch. 3, 20.
30 A variation of this argument was employed by Abū Sahl Al-Quhī (940–1000) to show that a 
principal characteristic of Aristotelian infinity, i.  e., the claim that “the infinite magnitude will 
not be traversed in a finite time” (Physics VI.7, 238a20–31), is wrong. I will shortly sketch how this 
argument can show that the infinite is traversable in a finite time. Rashed 1999 has discussed the 
details of Al-Quhī’s argument.
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Although this argument is intuitively powerful, it is not convincing. The argument 
is not only invalid from the point of view of modern mathematics, but is also incom­
patible with some of Avicenna’s own views. From the fact that there is a moment 
of time in which L and L′ are parallel and there is another moment in which they 
intersect, we cannot conclude that there is a moment in which these lines inter­
sect with each other for the first time, nor that there is a point on L in which these 
lines intersect for the first time. Here Avicenna seems to suppose that the set of 
all temporal moments in which L and L′ are intersected has a least element (with 
respect to the natural order and succession we consider for temporal moments). 
Correspondingly, there is a first point of intersection on these lines.31 However, 
this supposition is false. It is not the case that every subset of temporal moments 
or every subset of the set of points on a straight line has a least or first element.32

31 By ‘the first point of intersection’ I mean the point on which those lines intersected each other 
for the first time.
32 It is accepted in modern mathematics that the set of points on a straight line that is infinite in 
both directions and the set of temporal moments with their own natural orders and successions 
of their elements are isomorphic to the set of real numbers with its natural order. The above 
supposition can therefore be paraphrased in the language of modern mathematics as the claim 
that every subset of real numbers has a least element with respect to their own natural order. 
Equivalently, the natural order on real numbers makes this set well-ordered in its technical sense. 
However, this claim can be mathematically proven to be false.

Fig. 1
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Interestingly, while Avicenna endorses the above supposition in the context 
of The Collimation Argument, he seems to reject it in his discussion of time and 
linear motions. If the above supposition were true, we could argue similarly 
against the possibility of even linear motions on finite spatial intervals. Consider a 
finite interval AB. Suppose that an object X is first motionless on A, then it moves 
and goes without stopping from A to B, and finally stops on B. Therefore, there 
is a time in which X is at rest and there is a time in which X is in motion. Now, 
if every subset of the points on a line (a spatial or temporal interval) had a least 
member, then there would be a first intermediary point of AB on which X does not 
stop (i.  e., it merely passes that point). Correspondingly, there would be a moment 
in which X is on an intermediary point for the first time. But, given the continuity 
of time, space and motion – which Avicenna holds – there is neither such point 
nor such moment.33 Therefore, if the supposition under discussion were true, we 
should conclude, in a way parallel to what we had in The Collimation Argument, 
that it is impossible for X to move from A to B. It means that not only is circular 
motion in an infinite space impossible, but linear motion on a finite magnitude 
is impossible as well. However, Avicenna accepts, not surprisingly of course, 
that continuous linear motion is possible. It indicates that he should reject the 
supposition that every subset of temporal moments or every subset of points on 
a line has a least or first element. He does so, indeed. McGinnis has elegantly 
shown that, according to Avicenna’s theory of time, “if one takes some instant 
t as a limit, then for any other instant t´, no matter how close one wants to take 
t´ to t, then there is another instant t´´ that is not identical with t, but is closer 
to t than t´. Since this same analysis will be true of t´´, t´´´ and so on, one can get 
indefinitely close to t without actually being at t.”34 It means that the set of all 
temporal moments between t and t´ has no least number. So the aforementioned 
supposition is rejected.35 But rejecting this supposition renders The Collimation 
Argument invalid. It seems therefore that this argument is controversial even with 
respect to Avicenna’s own philosophical framework. At least, Avicenna owes us 
an explanation of why this argument is based on a supposition that he rejects in 
another context.

33 See Avicenna’s discussions of the continuity of magnitudes and motions in, for example, The 
Physics of the Healing (2009, III.2 and IV.8).
34 McGinnis 2004, 60.
35 Considering the isomorphism between the structures of time, space and motion, the rejection 
of the aforementioned supposition with respect to one of them entails its rejection with respect to 
the others. For discussions of Avicenna’s theories of time and motion, see, respectively, McGinnis 
1999 and Ahmed 2016. Ahmed has explicitly pointed out that Avicenna rejects that supposition 
with respect to motion – i.  e., he holds that there is no first part of motion (Ahmed 2016, 236 n50).
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Avicenna could however slightly revise this argument such that it validly 
entails the impossibility of the actual infinity, at least in an Aristotelian frame­
work which would be acceptable for him. Avicenna accepts, following Aristotle, 
that the infinite cannot be traversed in a finite time.36 Therefore, he could argue 
that if the circle C is finite, then it takes a finite time for it to rotate once around O. 
Accordingly, it takes a finite time for L to rotate once around O. But in each round 
of rotating around O, L traverses the whole line L′. This means that the infinite 
length of L′ can be traversed in a finite time (equal to half the time of L’s rotating 
around O). This argument shows that the conjunction of (a) the principle that the 
infinite cannot be traversed in a finite time, (b) the possibility of having infinite 
intervals or lines, and (c) the possibility of circular motion, entails a contradic­
tion. Avicenna could, therefore, argue that since (a) and (c) are obviously true 
(according to him), (b) must be rejected; there is no actually infinite interval. This 
argument seems perfectly sound, at least in an Aristotelian framework. However, 
Avicenna did not propose such a revised version of The Collimation Argument, 
and, as I mentioned, his own original version is problematic.

A more careful inspection of the original version of The Collimation Argument 
(especially an inspection of how this argument is related to the argument I pro­
posed against the impossibility of linear motion) reveals some interesting aspects 
of Avicenna’s understanding of the notion of continuity; but discussing this issue 
would take us too far from our main concerns.37 I turn, therefore, to another argu­
ment against the actuality of infinite magnitudes.

3.2 The Ladder Argument

The idea of motion plays an important role in The Collimation Argument; that 
argument should therefore be categorized as a physical argument in the afore­
mentioned sense. Now we briefly review a mathematical argument against the 
actuality of infinite intervals that does not appeal to such physical notions. This 
argument, known as The Ladder Argument (burhān al-sullam), is first proposed 
in The Physics of the Healing38 as a potential rehabilitation of one of Aristotle’s 

36 Avicenna 2009, III.4 [1] and III.8 [5  f.].
37 After Avicenna, many influential figures in Islamic philosophy discussed this argument, and 
from many different perspectives. For example, Abu l-Barakāt Al-Baghdādī (1080–1165), Naṣīr 
Al-Dīn Al-Ṭūsī (1201–1274), and Al-Ḥillī (1250–1325) criticized the argument. On the other hand, 
Fakhr Al-Dīn Al-Rāzī (1149–1209) and Mulla Ṣadrā (1572–1640) defended the argument.
38 Avicenna 2009, III.8 [5–7].
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physical arguments in De Caelo.39 The Ladder Argument is also Avicenna’s only 
argument against the actuality of infinity in Pointers and Reminders.40 The argu­
ment, as appeared in The Healing, goes as follows:

TEXT # 1: Let us posit a certain interval between two opposite points on two lines extending 
infinitely. Now, let us connect the [points] by a line that is a chord of the intersecting angle. 
So, because the extension of the two lines, which is infinite, is proportional to the increase 
of the interval [that is, the length of the chord], the increases to that interval are infinite. 
[Those increases] can also exist together equally, because the increases that are below 
will actually be joined to those that are above. For instance, the [amount that] the second 
increases the first will belong to the third, together with any other increase. So the infinite 
increases must actually exist in one of the intervals, and that is because the increases actu­
ally exist, and every actual increase will exist and so will belong to a certain one [of the 
intervals]. In that case, it necessarily follows that some interval will exist in which there is 
an actual infinity of equal increases. So that interval would increase the first finite [interval] 
by an infinite [amount], in which case there would be an infinite interval […].  This infinite 
can exist only between two lines, in which case it is finite and infinite, which is absurd.41

To have a more diagrammatic understanding of this argument, suppose that L 
and L′ are two distinct lines that start at the same point A and extend infinitely 
to make an acute angle with infinite sides. Now, consider two arbitrary points D1 
and E1 on L and L′ respectively. As a result, D1 E1 is an interval which lies between L 
and L′. Furthermore, consider all intervals D2 E2 , D3 E3 , D4 E4 , etc., parallel to D1 E1, 
such that Di and Ei (for every natural number 1≤i) lie respectively on L and L′ and 
the difference between the lengths of every two consecutive intervals is constant. 
If we suppose that this difference is d, then for every natural number 1≤i, Di+1 Ei+1 – 
Di Ei = d. So we have a hierarchy of intervals in which every interval is formed 
by adding an interval of the length d to the previous interval.42 For short, every 
interval is formed by an increase to the previous interval. Therefore, every inter­
val is formed by a number of increases to D1 E1 . Moreover, if an increase belongs 
to an interval, then all the previous increases belong to the same interval too. As 
a result, every interval somehow includes all the previous intervals. For instance 

39 De Caelo I.5, 271b26–272a7.
40 Avicenna 1957, Namaṭ I, Ch. 11, 160–167.
41 Avicenna 2009, III.8 [7].
42 To be more precise, each interval is formed by adding an interval of the length d to a copy of 
the previous interval. However, Avicenna does not consider any difference between an interval 
and its copies. For the sake of simplicity, I follow the same practice in my discussion on The Lad-
der Argument. So instead of saying that, for example, the interval I2 includes a copy of the interval 
I1 , I simply say that I2 includes I1.
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both the first and the second increases belong to D3 E3 and, in a sense, it includes 
both D1 E1 and D2 E2 , i.  e.,

D3 E3 = D2 E2 + d = D1 E1 + d + d.

The number of the increases is infinite, and all of them actually exist, since oth­
erwise there is an upper bound for the lengths of Di Ei and, as a result, L and L′ 
would be finite. From these premises, Avicenna concludes that there should be an 
interval BC (in such a way that B and C lie respectively on L and L′) which includes 
all of the infinitely many increases. BC is, therefore, larger than any Di Ei we con­
sider. It should be itself infinite. However, BC is restricted to L and L′, and termi­
nates at them, which indicates that it is finite (Fig. 2). Consequently, it is both 
finite and infinite. Contradiction. Ergo, there are no infinite lines such as L and L′.
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L'

d

A

B

C

D2

E2
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Fig. 2
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This argument again seems to be controversial. It is based on three premises:

(1)	 Every increase belongs to an interval. In other words, for every increase there 
is a Di Ei to which the increase belongs.

(2)	 If an increase belongs to an interval, then all of the previous increases also 
belong to the same interval. In other words, if the nth increase belong to Di Ei , 
then all the first, the second, […],  and the (n-1)th increases also belong to the 
same interval.

(3)	 All of the infinitely many increases actually exist.

Fig. 2
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From these premises, which seem to be uncontroversial, Avicenna then con­
cludes that:

(4)	 The infinite increases all together must actually exist in one of the intervals. 
In other words, some interval will exist in which there is an actual infinity of 
equal increases.

It is, however, far from clear how (4) can be validly entailed from premises (1)–(3). 
These premises indicate that there exists an actually infinite hierarchy of finite 
intervals with increasing lengths. Each interval is longer than the previous by the 
amount d, and each interval is formed by a finite number of increases to D1 E1 . 
Nonetheless, these facts do not seem to imply that there is an actually infinite 
interval which includes all the increases.

As I mentioned earlier, The Ladder Argument is discussed in The Physics of 
the Healing as a rehabilitation of one of Aristotle’s physical arguments which Avi­
cenna finds weak. However, it seems that The Ladder Argument is still vulnerable 
to one of the very objections that he himself puts forward against Aristotle’s argu­
ment. Roughly speaking, Aristotle’s argument goes as follows:43 Consider a finite 
circle in an infinite space and suppose that it takes a finite time for it to rotate 
once around its center. Suppose, moreover, that two distinct radii of this circle are 
extended infinitely. Now, Aristotle argues that there should be an infinite interval 
– e.  g., an infinite arc parallel to the circumference of the circle – between these 
two radii. But if so, this infinite interval would be traversed in a finite time by one 
of the two infinitely extended radii during the rotation of the circle. This however 
leads to a contradiction, since the infinite is not traversable in a finite time. Given 
the assumption that circular motion is possible, Aristotle concludes that space 
cannot be actually infinite. Consequently, there is no magnitude. In criticizing 
Aristotle’s argument, Avicenna says:

TEXT # 2: It is not the case that an infinite interval [[e.  g., an infinite arc]] must occur 
[[between two infinitely extended radii of a circle]]; rather, the increase [[of the lengths of 
the intervals between those radii]] will proceed infinitely, where every increase will involve 
one finite [amount] being added to another, in which case the interval will be finite. This 
is just like what you learned concerning number – namely, that [number] is susceptible to 
infinite addition, and yet, any number that occurs is finite without some number actually 
being infinite, since any given number in an infinite sequence exceeds some earlier number 
[in that sequence] only by some finite [number].44

43 See Aristotle’s De Caelo I.5, 271b26–272a7 and Avicenna 2009, III.8 [5].
44 Avicenna 2009, III.8 [6]. Words inside the single and double-square-brackets are added by 
McGinnis and me respectively.
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I think, however, that the same point can be made concerning The Ladder 
Argument. By borrowing Avicenna’s own wording, we can say: The increase of 
the length of the intervals DiEi will proceed infinitely, where every increase will 
involve one finite interval of the length d being added to another finite interval, 
in which case the outcome will be finite. Therefore, although we have actually an 
infinite hierarchy of finite intervals with increasing lengths, it is not the case that 
there is an actually infinite interval terminated at L and L′ which includes all of 
the intervals DiEi. This is exactly what happens in the case of numbers. The sup­
position that all numbers actually exist does not imply that there actually exist 
a number which is infinite. Even if the chain of consecutive numbers extends 
infinitely and all numbers actually exist, this does not entail that infinity itself 
is a number and occupies a place in the chain of numbers. Similarly, the actual 
existence of infinitely many intervals terminated at L and L′ does not necessarily 
entail the actual existence of an infinite interval terminated at these two lines.

It is not clear how Avicenna intended to save The Ladder Argument from the 
above objection. This is why the soundness of this argument was the subject of a 
longstanding discussion in the post-Avicennan Islamic philosophy.45 But regard­
less of this historical debate, the argument does not seem to be convincing for 
modern readers. From the perspective of contemporary mathematics, the above 
objection is quite compelling and reveals a fatal flaw in The Ladder Argument. 
Avicenna seem to believe that the existence of an infinite plane entails the exist­
ence of an infinite triangle ABC whose sides are infinite. He argues, then, that this 
is impossible. On the one hand, all three sides of this triangle should be infinite; 
so, BC is infinite. On the other hand, BC is restricted to AB and AC, since it termi­
nates at B and C; so, BC is finite. Consequently, BC is both finite and infinite. Con­
tradiction. Ergo, there is no infinite plane and no infinite interval at all. However, 
this is unsound. The existence of an infinite plane does not imply the existence of 
an infinite triangle, or any other infinite shape with a closed boundary on a plane. 
Therefore, even this mathematical argument – which, unlike The Collimation 
Argument, does not appeal to physical notions such as motion – does not work, 
at least from our modern point of view. I now turn to Avicenna’s main argument 
for the non-actuality of mathematical infinity.

45 For example, Abu l-Barakāt Al-Baghdādī criticized the argument, and Naṣīr Al-Dīn Al-Ṭūsī 
and Mullā Ṣadrā defended it. See McGinnis 2018 for a detailed discussion of the different aspects 
of the historical debate concerning The Ladder Argument.
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4 �Avicenna’s Main Argument: The Mapping 
Argument

Concerns may be raised about the aforementioned arguments. One of them has to 
do with the genuine relation of these arguments to the problem of mathematical 
infinity. Considering the contexts of these arguments (which appear mostly in the 
Physics parts of Avicenna’s works), it might seem that the target of these discus­
sions is exclusively a rejection of the actual existence of infinitely large bodies (or 
a rejection of the infinity of the world). Therefore, one might conclude that these 
discussions have no decisive outcome for the problem of mathematical infinity. 
One might claim, therefore, that although Avicenna rejects the actuality of phys­
ical infinity, we have no evidence to suppose that he does not accept the actual 
mathematical infinite. We cannot say based merely on these arguments that Avi­
cenna rejects the actual existence of an infinite set of numbers or an infinitely 
long line (as an object of geometry).

Admittedly, there are some phrases that might motivate an interpretation 
of Avicenna as believing that mathematical infinity should not be discussed in 
Physics. For example, he says: “fa’inna al-naẓar fī al-’umūr ghayr al-ṭabīʿīya, wa 
annahā hal takūn ghayr mutanāhiya fī al-ʿadad aw fī al-quwwa, aw ghayr dhālik, 
falays al-kalām fīhā lā’iqa bihādhā al-mawḍiʿ.”46 Jon McGinnis has translated this 
phrase as, “For now, this [i.  e., The Physics of the Healing] is not the place to inves­
tigate things outside of natural philosophy – that is, to discuss whether there is 
an infinite with respect to number, power, or the like.” McGinnis adds, in a foot­
note, that “the proper place for such a discussion would seem to be the science 
of metaphysics, and while Avicenna has no appreciable discussion of the infinite 
in number in book 3 of his Ilāhīyāt, which is his most extended account of the 
philosophy of mathematics, he does have scattered, extended discussions of the 
infinite in book 6 (particularly chapters 2 and 4) where he discusses causes.”47 
Therefore, it seems that McGinnis interprets Avicenna as believing that Physics is 
not the proper place for discussing mathematical infinity.

Despite my undeniable debt to McGinnis’s works on Avicenna, my inter­
pretation differs from his. My discussion in the second section shows that 
mathematical infinity is not something entirely distinct from physical infinity. 
According to Avicenna, mathematical objects cannot exist independently from 
physical objects. Therefore, if the numbers and magnitudes of physical objects 
cannot be actually infinite (non-actuality of physical infinity), then numbers 

46 Avicenna 2009, III.7 [1].
47 Avicenna 2009, III.7, 320 n1.
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and magnitude, inasmuch as they are mathematical objects, cannot be actually 
infinite either (non-actuality of mathematical infinity). This is because, accord­
ing to Avicenna, there is no number or magnitude fully separated from physical 
objects which can still be considered as a mathematical object (i.  e., a subject of 
mathematical study). Therefore, the claim that the above arguments cannot be 
employed to attack the actuality of mathematical infinity seems to be not tenable.

My disagreement with McGinnis’s view arises, among other things,48 from 
the different ways we translate the Arabic phrase cited. According to his trans­
lation, Avicenna believes that the infinity of numbers, which are subject matters 
of mathematics and therefore stand outside natural philosophy, should be dis­
cussed somewhere other than Physics. I think, however, that the phrase should 
be translated as something like this: “This [i.  e., The Physics of the Healing] is 
not the place to investigate non-natural (ghayr al-ṭabīʿīya) things, and to discuss 
whether they are infinite with respect to number, power, or the like.” Therefore, 
according to my translation, Avicenna simply claims that the infinity of non-nat­
ural things (which I understand to mean things completely separated from matter, 
not things outside of natural philosophy)49 with respect to numbers (not the infin-
ity of numbers inasmuch as they are the subject matters of mathematics) should 
be discussed elsewhere. As we will see, Avicenna believes that there are some 
infinite sets of fully immaterial objects. What he wants to clarify here, therefore, 
is simply that his argument against the actuality of infinity does not apply to the 
objects that are completely separated from matter and, in this sense, non-nat­
ural (ghayr al-ṭabīʿīya). It seems to me, therefore, that ‘non-natural’ does not 
refer to numbers and magnitudes which are the subject matters of mathematics 
and, therefore, attached to matter. As a result, the phrase quoted is not evidence 

48 One of these things may be his view about the nature of mathematical objects. McGinnis 
believes that Avicenna sees “mathematical objects as mental constructs abstracted from con­
crete physical objects” (McGinnis 2006, 68), and that Avicenna “invokes an account of concep­
tual analysis and mathematical objects that has certain affinities with the thoughts of some con­
temporary modal metaphysicians and mathematical constructivists or intuitionists (or perhaps 
better, “anti-Platonist mathematicians”)” (McGinnis 2006, 64). I agree that Avicenna is anti-Pla­
tonist in his ontology, but he does not believe that mathematical objects are mental objects/
constructs, or so it seems to me. Therefore, his ontology of mathematics cannot be interpreted 
as a constructivist ontology. For Avicenna’s arguments against mathematical Platonism see Zare­
pour 2019.
49 Mathematical objects are, by definition, the subject matter of mathematics. Therefore, in this 
sense, they lie outside of natural philosophy. However, they are not completely separable from 
materiality. As a result, they are not entirely non-natural. Thus the claim that the (in)finitude of 
non-natural things should be discussed somewhere other than Physics has no immediate con­
sequence for the problem of mathematical infinity and whether it can be discussed in Physics.
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against the idea that the afore-discussed arguments can be applied against the 
actuality of mathematical infinity.

There is yet another concern about The Collimation Argument and The Ladder 
Argument. It can be convincingly argued that the actual existence of an infinite 
number of physical objects entails the actual existence of an infinite interval; 
therefore, one of the indirect conclusions of these two arguments (albeit, if they 
were sound) could be to reject the actuality of numerical infinity. But it should be 
admitted that these arguments are not intended to be directly applied to the case 
of numerical (i.  e., discrete) infinity. These arguments are primarily against the 
actuality of infinite magnitudes and intervals, rather than the infinity of numbers 
or the infinity of a set of numbered things. Now, one might wonder if Avicenna 
has proposed any argument which can be directly applied to the case of numeri­
cal infinity. Fortunately, the answer is positive.

Avicenna’s main argument against actual infinity is The Mapping Argument 
or The Correspondence Argument50 (burhān al-taṭābuq or al-taṭbīq), which is pro­
posed and discussed in many different places in his oeuvre.51 This argument is 
a substantially revised version of an argument originally proposed by Al-Kindī 
(c.  801–873).52 A significant advantage of The Mapping Argument over the two 
aforementioned arguments, and over Al-Kindī’s original argument, is that The 
Mapping Argument can be applied simultaneously to both numbers and magni­
tudes. Almost whenever Avicenna mentions this argument, he explicitly states 
that he intends to show (by this argument) that both numbers and magnitudes (in 
addition to some other things) cannot be infinite. For example, in his discussion 
of this argument in The Physics of the Healing, Avicenna says:

50 In this paper, I use ‘mapping’ and ‘correspondence’ synonymously.
51 See, for example, (1) The Physics of the Healing (2009, III.8 [1]), (2) The Physics of the Salvation 
(1985, IV.2, 244–245), (3) The Metaphysics of ‘Alā’ī Encyclopedia (2004, Ch. 16, 58–60), and (4) The 
Physics of Fountains of Wisdom (1980, Ch. 3, 19  f.).
52 Al-Kindī’s argument has appeared, with different wordings, in his On First Philosophy 
and three other essays which are exclusively dedicated to the discussion of infinity: (1) On the 
Quiddity of What Cannot Be Infinite, and What Is Said to Be Infinite, (2) On the Oneness of God 
and the Finiteness of the Body of the World, and (3) Al-Kindī’s Epistle to Aḥmad ibn Muḥammad 
Al-Khurāsānī, Explaining the Finiteness of the Body of the World. For an English translation of 
these works, see Al-Kindī 2012. Rescher/Khatchadourian 1965 have discussed Al-Kindī’s views 
about mathematical infinity by translating and analysing the third essay. Shamsi 1975 provides a 
translation of the first essay and discusses Al-Kindī’s views on the finitude of the world and the 
time. For a more detailed discussion of the various aspects of Al-Kindī’s position on infinity, see 
Adamson 2007, Ch. 4.
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TEXT # 3: The first thing we say is that it is impossible that there exist as wholly actualized 
some unlimited (ghayra dhī nihāya) magnitude, number, or [set of] numbered things having 
an order in either nature or position (waḍʿ).53

Similarly, in the beginning of his discussion of The Mapping Argument in The 
Physics of the Salvation, Avicenna says:

TEXT # 4: I say that there does not arise an infinite continuous quantity (kam muttaṣil 
[= miqdār = magnitude]) that exists essentially possessing a position (waḍʿ); there is also no 
ordered infinite number that exists all together.54

It is particularly noteworthy that, in the first text, he distinguishes number 
(ʿadad) from numbered things (maʿdūdāt) and claims that number and magni­
tude (i.  e., the subject matters of mathematics) cannot be infinite.55 He does not, 
therefore, restrict himself just to those physical objects upon which numbers and 
magnitude are predicated. This shows that, in his discussions of The Mapping 
Argument, Avicenna ‘deliberately’ considers not only physical but also mathe­
matical infinity – even if we suppose that the two aforementioned arguments are 
exclusively targeted at physical infinity. We should not be misled, therefore, by 
the fact that this argument appears mostly in the Physics parts of his works.56 
Nonetheless, there might still be some remaining concerns. In his discussions of 
TEXT # 4 McGinnis argues that:

Avicenna consistently uses ‘position’ (waḍʿ) as one of the concomitants that follows upon 
matter, and in fact in the version of the proof as it appears in al-Ishārāt wa al-Tanbīhāt, Avi­
cenna make[s] clear that the argument merely proves that “corporeal extension (al-imtidād 
al-jismānī) must be finite.” In it[s] simplest terms the mapping argument, Avicenna seems 
to think, merely shows that there can be no material instantiation of an actual infinite.57

53 Avicenna 2009, III.8 [1]. I have slightly revised McGinnis’s translation. He has translated 
‘tartīb’ into ‘ordered position’, but I prefer to translate it simply as ‘order’. The translation should 
not incautiously induce that there is a necessary connection between being ordered and having 
a position (waḍʿ); especially if, as McGinnis does (McGinnis 2010, 217), one interprets position as 
one of the concomitants that follow only upon matter.
54 Avicenna 1985, IV.2, 244; my translation. He repeats the same claim at the beginning of his 
discussions on this argument in The Metaphysics of ‘Alā’ī Encyclopedia (Avicenna 2004, Ch. 16, 
58  f.) and The Physics of Fountains of Wisdom (Avicenna 1980, Ch. 3, 19).
55 See also Avicenna’s The Notes (Avicenna 1973, 38) for the claim that numbers are not actually 
infinite, though they are potentially infinite.
56 Its appearance in The Metaphysics of ‘Alā’ī Encyclopedia is an exception.
57 McGinnis 2010, 217. For the sake of consistency with my other transliterations in this paper, I 
have revised McGinnis’s transliterations.
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By appealing to this line of reasoning, one might claim that The Mapping Argu-
ment has nothing to do with numerical infinity. I disagree however. Avicenna’s 
argument in al-Ishārāt wa al-Tanbīhāt is definitely not a version of The Mapping 
Argument. As I mentioned above, it is a version of The Ladder Argument. There­
fore, even if we accept that Avicenna’s argument in that book can be applied 
merely to corporeal extension, this does not entail that the target of The Mapping 
Argument is restricted to the same thing, and thus it is not a direct argument 
against the actual infinity of numbers. TEXT # 3 and TEXT # 4, which appear in 
the introductions to Avicenna’s discussions of The Mapping Argument, explicitly 
show that he believes that this argument can be applied not only to magnitudes 
but also to numbers.58 Therefore, one of the main functions of The Mapping Argu-
ment is to reject the actuality of mathematical infinity – in its general sense – in 
a direct way.

The two aforementioned texts reveal some other important points about the 
function of The Mapping Argument to which we shall shortly return. Before touch­
ing on these points we should first clarify the structure of the argument.

4.1 The Structure of the Mapping Argument

Consider the straight line AB which starts from the point A and extends infinitely 
in the direction of B. AB represents a one-dimensional magnitude infinitely 
extended in one direction, or an infinite set of numbered objects possessing an 
order, the first element of which is placed on A while the other elements are suc­
cessively lined up on some discrete points on the rest of AB.59 Suppose that we 
take the finite part AC from AB. Avicenna argues that:

58 As Euclid has shown in books 7–9 of his Elements, numbers can, in a sense, be constructed 
from magnitudes. They can be treated as the sets of units of magnitudes. Therefore, not only 
The Mapping Argument, but every argument against the actual infinity of magnitudes can, in 
principle, be considered as an indirect argument against the actual infinity of numbers. How­
ever, Avicenna seems to believe that, contrary to the other arguments he discusses, The Mapping 
Argument is applicable to the case of numbers in a more direct manner. This is why although he is 
silent about the applicability of the other arguments to the case of numerical infinities, he expli­
citly mentions that The Mapping Argument is applicable to the case of numbers and numbered 
things. I am thankful to an anonymous reviewer for pushing me to clarify this point.
59 Before proposing the details of The Mapping Argument in the Physics part of The Healing (Avi­
cenna 2009, III.8 [1]) and Fountains of Wisdom (Avicenna 1980, Ch. 3, 19), he briefly argues that 
if something is infinite in more than one dimension or direction, then we can restrict ourselves 
to the first dimension and consider a single direction in which that thing is infinite. It seems 
that he wants to justify why The Mapping Argument is applied only to either one-dimensional 
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TEXT # 5: [I]f some amount equal to CB were mapped on or parallel to AB (or you were 
to consider some other analogous relation between them), then either [CB] will proceed 
infinitely in the way AB does, or it will fall short of AB by an amount equal to AC. If, on the 
one hand, AB corresponds with CB [in proceeding] infinitely, and CB is a part or portion of 
AB, then the part and the whole correspond [with one another], which is a contradiction. 
If, on the other hand, CB falls short of AB in the direction of B and is less than it, then CB 
is finite and AB exceeds it by the finite [amount] AC, in which case AB is finite; but it was 
infinite. So it becomes evidently clear from this that the existence of an actual infinite in 
magnitudes and ordered numbers is impossible.60

Here, Avicenna argues that after taking the finite part AC from AB, we can 
compare the sizes of CB and AB by mapping (aṭbaqa) something equal (musāw) 
to the former on the latter, i.  e., by mapping a copy of CB on AB in a way that the 
first point of the copy of CB corresponds with A. Avicenna uses the term ‘CB’ (jīm 
bā’) equivocally in referring to both CB and its copy (i.  e., the thing equal to CB). 
For clarity, we use the term C*B* to refer to the copy of CB. Therefore, Avicenna 
believes that we can compare the sizes of CB and AB, by mapping C*B* onto AB 
in a way that C* corresponds with A. After this mapping, either C*B* extends 
infinitely in the direction AB does (Fig. 3a) or C*B* falls short of AB (Fig. 3b). In 
the former case, C*B* corresponds with AB. But C*B* is equal to CB. Therefore, CB 
corresponds with AB. This entails that a whole (i.  e., AB) totally corresponds with 
its part (i.  e., CB). Avicenna believes that this is a contradiction. Now we should 
check the other horn. Suppose that C*B* falls short of AB. This means that C*B* 
corresponds with a part of AB which starts at A and terminates at a determinate 
point on AB. Call this latter point D (Fig. 3b). AD is an interval which terminates at 
two determinate points A and D; therefore, it has determinate limits and is finite. 
Now, since B*C* corresponds with AD, B*C* is finite too. On the other hand, the 
amount by which C*B* falls short of AB is equal to AC, for the fact that C*B*=CB 
implies that AB–C*B* = AB–CB = AC. This means that the sum of C*B* and AC is 
equal to AB. But C*B* and AC are both finite. Therefore, their sum, which is equal 
to AB, is finite. As a result, we should accept that AB is finite. This contradicts 
our first supposition. Avicenna concludes that an infinity like AB cannot actually 
exist.

magnitudes or numbers (or numbered things) ordered on a line and infinitely extended in one 
direction. If we show that nothing can be actually infinite in the chosen direction, then by gener­
alization of this result we can claim that there is no direction in which something can be actually 
infinite. Unless otherwise mentioned, by ‘magnitude’, I mean only one-dimensional magnitude.
60 Avicenna 2009, III.8 [1]. I have slightly revised McGinnis’s translation.
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This clarification of The Mapping Argument, which brings some geometrical 
diagrams (such as Fig. 3) to mind, shows how this argument is intended to be 
applied to magnitudes. But the last sentence of TEXT # 5, in addition to the 
aforementioned evidence, confirms that Avicenna believes that this argument 
can also work perfectly against numerical infinity and show “that the existence 
of an actual infinite in […] ordered numbers is impossible.” Therefore, one might 
ask how this argument works in the case of numbers or numbered things. To the 
best of my knowledge, Avicenna has not explicitly replied to this question, at 
least not in his major works. He has astutely realized that the mapping technique 
can be employed against the actual infinity of numbers and numbered things, 
but it seems that his own explanations of the application of this technique are 
more perfectly matched to the case of magnitudes, rather than that of numbers. 
Fortunately, it is not very difficult to guess what he had in mind for the case of 
numbers.

If we consider AB as an infinite set of numbers or numbered objects possess­
ing an order the first element of which is placed on A and the other elements are 
successively lined up on some discrete points of the rest of AB, then AC can be 
considered as the finite subset of the initial elements of AB placed from A to C. 
Accordingly, mapping C*B* (i.  e., a copy of CB) onto AB pairs the first element of 
C*B* with the first element of AB, the second element of C*B* with the second 
element of AB, and so on (i.  e., for every natural number n, pairing the nth element 
of C*B* with the nth element of AB). If this pairing procedure ends at some finite 
stage by pairing the last element of C*B* with an element of AB, this means that 
C*B* and consequently CB are finite. Therefore AB, which is the union of AC 
and CB, would be finite too (Fig. 4b). On the other hand, if the elements of C*B* 
extend infinitely, then it is possible to set a one-to-one correspondence between 
C*B* and AB by pairing every nth element of the former with the nth element of the 
latter. Therefore, AB corresponds with B*C* and, consequently, with BC (Fig. 4a). 
This means that a whole (i.  e., AB) corresponds with one of its proper parts (i.  e., 
BC). Since Avicenna sees the correspondence between a whole and its proper 
part as a contradiction, this line of argument can establish for him that there 
cannot be any actually infinite set of numbers or numbered things possessing 
an order.
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However, as far as I know, Avicenna himself has nowhere clarified the details of 
the application of The Mapping Argument to the case of numerical infinity. His 
explanations, as I discussed, highlight only the application of this argument to 
the case of geometrical infinity. He clearly claims that this argument rejects the 
actuality of numerical infinity, but he does not say how it really works in that 
case. Nonetheless, it does not seem implausible to accept that Avicenna had in 
mind something very similar to what is set out in the above paragraph. At least 
four different considerations support this claim. The first consideration is that 
the only natural way to develop the notion of mapping from the context of con­
tinuous geometrical magnitudes to the context of sets containing discrete ele­
ments seems to be interpreting mapping between these sets as one-to-one cor­
respondence between their elements. Since Avicenna believes that the mapping 
technique can successfully work in the case of numbers and numbered things, 
it is highly probable that he has such a natural understanding of the notion of 
mapping in the context of numbers. The second consideration comes from an 
abstruse passage in The Discussions presenting a brief version of The Mapping 
Argument in response to a question probably raised by Ibn Zayla (c. 983–1048). 
It is argued there that it is possible to have two potential infinities of different 
sizes (i.  e., one of them is bigger than the other). But it is impossible to have such 
infinities in actuality, because:

TEXT # 6: When it [i.  e., an infinity] became concurrent with and parallel to it [i.  e., another 
infinity] in terms of connectedness or in terms of orderedness, or when it [i.  e., one of those 
infinities] became a part of the other, then one of them would come to an end in one side 
and a remnant of one of them would remain at the other side. Therefore, the finitude of [… 
the shorter infinity] is necessary [and this is absurd].61

61 Avicenna 1992, VI, § 588. Avicenna accepts that potential infinities can be of different sizes. 
For example, time is potentially infinite and the time passed until last year is a potential infinity 
smaller than the time passed this year. See section 4.3 for why The Mapping Argument is not 
applicable to time.
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The passage seems to be saying that after mapping one of those infinities on the 
other, they become parallel to each other in terms of connectedness or in terms of 
orderedness (muḥādhāt fī ittiṣāl aw fī tartīb). This disjunctive phrase suggests that 
being parallel in terms of connectedness/continuity differs from being parallel in 
terms of order/orderedness. If the mapping technique was applicable only to con­
tinuous magnitudes, then we would have only one kind of parallelism. All contin­
uous magnitudes are isomorphic to each other. Consequently, their being parallel 
to each other cannot be of more than one kind. Even if Avicenna thought that all 
parallelisms of magnitudes are of both mentioned kinds, he would have to use a 
conjunctive phrase rather than a disjunctive one. This he does not do. It indicates 
that the mapping technique is applicable to not only continuous magnitudes but 
also numerical infinities. The distinction between these two kinds of parallelism 
brings to mind the two different ways of the application of the mapping technique 
I explained above. By applying this technique to infinite magnitudes they become 
parallel to each other in terms of connectedness and continuity. By contrast, the 
application of this technique to the case of numerical infinities makes them par­
allel to each other in terms of order and orderedness. Therefore, ‘parallelism in 
terms of orderedness’ could be interpreted as Avicenna’s term for the notion of 
one-to-one correspondence.

The third consideration supporting that Avicenna was aware of the applica­
tion of the mapping technique to the case of numerical infinities is this: even 
early commentators on Avicenna (who are obviously closer than we are to the 
historical context of Avicenna’s discussions) have had the same interpretation of 
the intended function of Avicenna’s mapping argument in the case of numbers. 
For example, Fakhr Al-Din Al-Rāzī, in his commentary on Avicenna’s Fountains of 
Wisdom, explains this function of The Mapping Argument along exactly the same 
lines as the interpretation mentioned above. Consider two sets of numbers: (1) A 
proper subset of natural numbers, for example, the set of natural numbers bigger 
than 10, and (2) the set of all natural numbers from one to infinity. Al-Rāzī writes 
that one can argue, based on the mapping technique, that:

TEXT # 7: We put the first position of this [latter] set in front of the first position of that 
[former] set, and the second of this in front of the second of that, and so on successively. So, 
if the remainder does not appear [i.  e., if by following this procedure nothing of the latter 
set remains unpaired], then the more is identical to the less. And, if the remainder appears 
at the end of the positions [of the former set, and some positions of the latter set remains 
unpaired], then it entails the finitude of number in the direction of its increase; and it is 
self-evident for the intellect that this is impossible.62

62 Al-Rāzī 1994, 53.
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The text evidently shows that Al-Rāzī understands Avicenna’s mapping notion 
to be one-to-one correspondence in the case of numbers and numbered things.63 
The plausibility of the attribution of this position to Avicenna is reinforced by 
a fourth consideration: the explanatory power of this interpretation as to why 
Avicenna emphasizes that possessing an order, in either nature or position, is a 
necessary condition for the applicability of The Mapping Argument in the case 
of numbers and numbered things. If we understand Avicenna as believing that 
correspondence between sets of discrete elements is one-to-one correspond­
ence between their elements, then we have a very convincing explanation of 
why non-ordered sets of discrete objects cannot be the subject of The Mapping 
Argument. I will come back to this issue in section 4.3 below.64 Now it is time 
to discuss the significance of the insights behind the surface structure of The 
Mapping Argument.

4.2 Insightful Ideas behind the Surface Structure

An exhaustive analysis of Avicenna’s explanation of The Mapping Argument 
reveals some remarkably interesting aspects of his treatment of the concept of 
infinity. The general structure of this argument is as follows: Avicenna argues that 
the actual existence of an infinity entails the equality of a whole to some of its 

63 It should be mentioned, however, that Al-Rāzī does not believe that The Mapping Argument 
can successfully prove that the infinite set of natural numbers cannot actually exist. He thinks 
that although this argument works against the actual infinity of numbered things, it does not 
succeed in showing the non-actuality of the infinite set of natural numbers. He does so because 
he believes that (1) numbers are merely mental and completely separated from matter, and (2) 
The Mapping Argument has nothing to do with immaterial entities. It seems that Al-Rāzī attrib­
utes (wrongly, as I believe) this position to Avicenna too. Therefore, he does not interpret Avi­
cenna as believing that The Mapping Argument can successfully reject the non-actuality of the 
infinity of numbers. In fact, Al-Rāzī considers what is expressed by TEXT # 7 as an objection to 
the soundness of The Mapping Argument. According to this objection, if the form of The Map-
ping Argument is valid then one might reject the actual infinity of numbers by appealing to the 
lines of argument expressed by TEXT # 7. Al-Rāzī discusses this objection as the 11th question he 
proposes about The Mapping Argument. In his reply to this question, he says that this argument, 
though successful against numbered material things such as causes, does not work against the 
numbers themselves which are, according to him, completely mental and immaterial (Al-Rāzī 
1994, 57). My concern, however, is not Al-Rāzī’s view about the nature of mathematical objects 
and the soundness of The Mapping Argument in the case of numbers. I merely want to highlight 
his understanding of how Avicenna’s notion of correspondence should be interpreted in the case 
of numbers or numbered things.
64 See note 93.
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parts. He denies the equality of whole and part, at least for physical objects and 
mathematical objects which are, as he believes, properties of physical objects. He 
concludes therefore that the infinite cannot exist in actuality. Before Avicenna, 
some other philosophers had correctly noticed that the existence of an actual 
infinity entails the equality of a whole to some of its parts;65 and indeed, some 
of them had appealed to this fact to reject the actuality of infinity. For example, 
Al-Kindī followed such a line of reasoning in parts of his previously mentioned 
argument against infinity, from which The Mapping Argument was inspired.66 
Both Al-Kindī and Avicenna employed the mapping technique to compare the 
sizes of infinities. They however had two different understandings of the notion 
of equality (tasāwī). According to Al-Kindī, things with an equal distance between 
their limits (ḥudūd), or things whose dimensions between their limits are the 
same are equal. This understanding is however controversial for three reasons. 

65 John E. Murdoch 1982, 569 n13, refers to some ancient sources (by philosophers such as 
Plutarch, Philoponus, Alexander of Aphrodisias, Proclus and Lucretius) in which this issue is 
discussed. However, I have suspicions that at least some of the cited arguments – for exam­
ple, Philoponus’s argument in his De aeternitate mundi contra proclum (2004, I.3, 24  f.) – are 
not explicitly grounded on the absurdity of the whole-part equality. Philoponus believed that 
the Aristotelian doctrine that the universe has no beginning entails that the size of some infin­
ities can (and indeed do) increase. The number of years until this year is an infinity smaller 
than the infinite number of years until next year. As a result, there is an infinity such that there 
exists something larger than it. Since Philoponus believed that the existence of something larger 
than infinity is absurd, he concludes that Aristotle is wrong about the infinity of the past. It 
may seem, at first glimpse, that there are some commonalities between the general structure 
of Philoponus’s argument and that of The Mapping Argument. If the claim that there is nothing 
larger than an infinity can be construed as the claim that all infinities are of the same size, then 
we can understand Philoponus as arguing as follows: (1) if the past is infinite, then the set of 
the years until this present year and the set of the years until the next year are both infinite. (2) 
Since all infinities are of the same size, both of these sets must be of the same size. Nonetheless, 
(3) the former set is a proper subset of the latter; i.  e., the latter set is a whole and the former is 
one of its parts. Therefore, (4) infinity of the past entails the equality of a whole to some of its 
parts. Finally, (5) since the equality of a whole to one of its parts is absurd, the infinity of the past 
is unjustified. This construal might lead one to think that the general structure of Philoponus’s 
argument is, by and large, similar to those of Al-Kindī and Avicenna. But this view is not, in my 
idea, compelling. There is nothing in Philoponus’s argument to show that he is attacking the 
equality of a whole and its part. He just wants to rule out the possibility of infinities of different 
lengths or of something outside an infinity. The sophisticated connection between this goal and 
the rejection of the equality of whole and part is not something made by Philoponus himself. He 
does not see the issue under this latter guise. For a detailed discussion of Philoponus’s views 
against the Aristotelian doctrine of infinity and eternity, see Sorabji 2010. See particularly 213  f. 
for the argument I have discussed here.
66 See Al-Kindī 2012, 20  f.
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First, Al-Kindī defines equality in terms of itself. It seems therefore that the defini­
tion is question-begging and somehow uninformative. One can take the question 
of equality one step further and legitimately ask how the equality of the dimen­
sions between the limits of things can be investigated. Al-Kindī seems not to have 
a non-circular convincing answer for this question. Second, it is not clear how this 
notion of equality can be applied to infinite magnitudes. If a magnitude is infinite, 
then it has no limit, at least in one direction. Therefore, the sizes of infinite magni­
tudes cannot be compared based on the equality of the dimensions between their 
limits. Third, even if we accept that the sizes of infinite magnitudes can be com­
pared based on this understanding of the notion of equality, it is far from clear 
how this understanding can be applied to numerical infinities. Talking about the 
dimensions between the limits of infinite sets of numbers or discrete objects does 
not seem to be meaningful.67 The latter point is one of the reasons why Al-Kindī’s 
argument, despite having the same general structure as that of Avicenna, should 
not be interpreted as directly applicable to the case of numerical infinities.

Avicenna, on the other hand, employs the notion of mapping or correspond-
ence (taṭābuq) to compare the sizes of infinities. The idea of understanding the 
notion of equality in terms of a mapping or correspondence relation goes back to 
Euclid. According to his fourth common notion in the first book of The Elements, 
“things which fit onto/coincide/correspond with (ta epharmozonta) one another 
are equal to one another.”68 This common notion is translated into Arabic in the 
so-called Isḥaq–Thābit version as “allatī lā yufaḍḍal ’aḥaduha ‘alā al-ākhar idha 
inṭabaq ba‘ḍuhā ‘alā ba‘ḍ fahīya mutasāwīya.”69 “Things which none of them 
exceeds another, when some of them are mapped on some others, are equal.” 
Avicenna appeals to this simple principle to compare the sizes of different infinite 
magnitudes or different infinite sets of numbers or numbered things.70 He ele­
gantly develops the application of this principle to the context of infinities. The 
significance of this strategy becomes more evident when we consider that most 

67 See McGinnis 2010 for a discussion on the shortcomings of Al-Kindī’s definition of equality.
68 In his translation of The Elements, Heath prefers to use the notion of coincidence. See Euclid 
1908, Vol. 1, 155.
69 See a copy of the Isḥaq–Thābit version in the codex now numbered 6581/1 of the Majlis Shawrā 
Library in Tehran. The PDF version of this manuscript can be found here (accessed 19 October 
2017): http://dlib.ical.ir/faces/search/bibliographic/biblioFullView.jspx?_afPfm=uzzsmt9nt
The essential features of this manuscript has been described by De Young 2015.
70 It does not mean, however, that Al-Kindī’s definition of equality does not originate from the 
same principle. It could be an imprecise construal of this principle, perhaps based on an inaccu­
rate Arabic translation of the Greek.

http://dlib.ical.ir/faces/search/bibliographic/biblioFullView.jspx?_afPfm=uzzsmt9nt
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of the tools we usually use to compare the sizes of finite things are ineffective in 
the case of infinities.71

The equality of the sizes of two different sets of objects is usually understood 
as the equality of the numbers of their elements. Since these sets are finite, we 
can count and determine the number of their elements. If these numbers, which 
are obtained by two distinct counting procedures, are equal to each other, then 
we can say that those sets are of the same size; otherwise, they are of different 
sizes and the larger set is the one whose number of elements is larger. Similarly, 
we can measure the lengths of two different finite magnitudes separately and one 
by one, then we can compare the numbers obtained to decide whether they are 
equal or not. But it is obviously impossible to follow this approach in the case of 
infinities. Enumerating the elements of an infinite set or measuring the length of 
an infinite magnitude is impossible.72 By definition, the sizes of infinities cannot 
be described by a finite number. Therefore, comparison between the sizes of dif­
ferent infinities must be grounded on something else: Avicenna’s creative sugges­
tion is returning to Euclid and borrowing his notion of correspondence. Avicenna 
shows that appropriate interpretations of this notion can be successfully applied 
to the case of infinities. I will return to this issue in section 4.3.

The Mapping Argument indicates, therefore, that the existence of an actual 
infinity entails the correspondence between that infinity and some of its infinite 
parts – which is, according to Avicenna, simply contradictory.73 A careful investi­
gation of the notion of correspondence, especially when it applies to the infinite 
sets of numbers or numbered things, makes it clear that Avicenna’s compre­
hension of the notion of infinity is much more modern than we might expect. 
In the previous section I argued that what Avicenna means by correspondence 
between two sets of numbers or numbered things is one-to-one correspondence 
between their elements, in such a way that every element of each of those sets 
corresponds with one and only one element of the other set. So, if I am right, 
Avicenna believes that on the one hand, (1) correspondence between sets is corre­

71 I am extremely thankful to an anonymous reviewer for this journal for drawing my attention 
to the possible link between Euclid’s ta epharmozonta and Avicenna’s taṭābuq.
72 There are some studies – originating from Piaget 1952 – showing that the ability to put differ­
ent sets of objects in one-to-one correspondence with each other is more fundamental than the 
ability to count. This means that we cannot count the number of the elements of even a finite set 
of objects without understanding the notion of one-to-one correspondence and without having 
the ability to put the elements of that set into a one-to-one correspondence with numerals. I am 
thankful to Amir Asghari for drawing my attention to Piaget’s work.
73 See TEXT # 5 above. See also The Physics of the Salvation (Avicenna 1985, IV.2, 245) where he, 
discussing The Mapping Argument, says that if the whole and the part “correspond [with each 
other] in extension, then the greater and the lesser are equal; while it is absurd.”
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spondence between their elements, and on the other hand, (2) the existence of an 
infinite set entails its correspondence with some of its proper subsets. The moral 
is that Avicenna sees infinite sets of numbers or numbered things as sets which 
are in one-to-one correspondence with some of their proper subsets. But this is 
exactly what Dedekind proposed in 1888 as a definition for infinite sets. Erich 
Reck’s reading of Dedekind’s definition is as follows:

A set of objects is infinite – “Dedekind-infinite”, as we now say – if it can be mapped one-
to-one onto a proper subset of itself. (A set can then be defined to be finite if it is not infinite 
in this sense.)74

It is definitely surprising that more than eight centuries earlier, Avicenna had had 
a similar conception of the notion of infinity. This does not mean, however, that 
the above definition is Avicenna’s own definition of infinity. He was aware, if I am 
right, that every infinite set of numbers or numbered things has the property of 
being in one-to-one correspondence with some of its proper subsets (borrowing 
the first letters of the names of Avicenna and Dedekind, I would like to call this 
property ‘AD-property’), but he never explicitly proposed having this property as a 
definition for being infinite.75 Another important dissimilarity between Avicenna 
and Dedekind’s views concerning infinity is that Dedekind, contrary to Avicenna, 
does accept the actual existence of infinite sets.76 In other words, for Avicenna no 
actual thing can instantiate or exemplify the AD-property.77 So, I do not want to 
exaggerate the commonalities between Avicenna’s view and our post-Dedekin­
dian, post-Cantorian understanding of infinity. My claim is merely that Avicenna 
had correctly noticed that every infinite set of objects has the AD-property, and 
this is enough to show that there is a strong connection between his views about 

74 Reck 2016, Sec. 2.2. Dedekind’s original definition is this 1963, 63: “A system S is said to be 
infinite when it is similar to a proper part of itself […];  in the contrary case S is said to be a finite 
system” (emphasis in the original). Before proposing this definition he clarifies, by some consec­
utive definitions and theorems, that what he means by “similarity” between systems is exactly 
the existence of a one-to-one mapping between the elements of those two systems.
75 As I mentioned at the beginning of the second section, Avicenna’s definition of infinity is an 
Aristotelian definition according to which infinity is something that whatever we take from it, we 
always find something outside of it.
76 Dedekind claims and tries to prove that his “own realm of thoughts, i.  e., the totality S of all 
things, which can be objects of [his] thought, is infinite” (Dedekind 1963, 64).
77 One might therefore suggest that AD-property is not a real property for Avicenna; it is like the 
property being a partner of God that can never actually be exemplified.
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infinity and ours. I do not know of any philosopher before Avicenna who was 
aware of this property of infinite sets.78

Jon McGinnis believes that, before Avicenna, the Ṣābian mathematician 
Thābit Ibn Qurra al-Ḥarrānī (d. 901) recognized the “modern definition of infinity 
as a set capable of being put into one-to-one correspondence with a proper subset 
of itself.”79 I disagree. To justify his position, McGinnis refers to two sections of a 
series of questions addressed by Abū Mūsā ʿĪsā Ibn Usayyid to Thābit Ibn Qurra 
in which Thābit argues that there is an infinite number of different sizes that an 
infinite set may have.80 I believe, however, that a careful analysis of the relevant 
passages to which McGinnis has referred reveals nothing confirming that Thābit 
recognized the idea of one-to-one correspondence and the AD-property of infinite 
sets. This quotation expresses the core of Thābit’s claim and clarifies the struc­
ture of his argument:

TEXT # 8: We [i.  e., Ibn Usayyid and his friends] questioned him [i.  e., Thābit] regarding a 
proposition put into service by many revered commentators, namely that an infinite cannot 
be greater than an infinite. – He pointed out to us the falsity of this (proposition) also by 
reference to numbers. For (the totality of) numbers itself is infinite, and the even numbers 
alone are infinite, and so are the odd numbers, and these two classes are equal, and each is 
half the totality of numbers. That they are equal is manifest from the fact that in every two 
consecutive numbers one will be even and the other odd; that the (totality of) numbers is 
twice each of the two [other classes] is due to their equality and the fact that they (together) 
exhaust (that totality), leaving out no other division in it, and therefore each of them is half 
(the totality) of numbers. – It is also clear that an infinite is one third, or a quarter, or a fifth, 
or any assumed part of one and the same (totality of) numbers. For the numbers divisible 
by three are infinite, and they are one third of the totality of numbers; […] and so on for 
other parts of (the totality of numbers). For we find in every three consecutive numbers one 
that is divisible by three, […] and in every multitude of consecutive numbers, whatever the 
multitude’s number, one number that has a part named after this multitude’s number.81

78 It has been argued by Netz et al 2001 that Archimedes was aware of the one-to-one mapping 
technique and implicitly employed it, in his Method, to show that two infinite sets of objects 
are equal in multitude. I have some doubts about the plausibility of this claim which cannot be 
discussed here. But even if this claim is true, it does not entail that Archimedes was aware – even 
implicitly – that infinite sets can be put in one-to-one correspondence with some of their subsets. 
Moreover, no evidence has been presented to show that his method is grounded on an explicitly 
intentional application of the notion of correspondence, as proposed by Euclid and consciously 
and deliberately employed by Avicenna.
79 McGinnis 2010, 211 n32.
80 McGinnis refers to Sections 13 and 14 from Sabra’s translation of those questions (McGinnis 
1997, 24  f.). For an earlier discussion of Thābit’s views on numbers and mathematical infinity, 
see Pines 1968.
81 Sabra 1997, 24  f.
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Here, Thābit is providing an elegant argument that there are infinities of different 
sizes. He argues that from every two consecutive numbers one is even and the 
other odd. Therefore, the totality of even numbers is equal to the totality of odd 
numbers; since the union of these totalities is equal to the totality of numbers, 
each of the totalities of even or odd numbers is equal to a half of the totality of 
numbers. By similar lines of argument, Thābit shows that the totality of numbers 
divisible by three is equal to one third the totality of numbers, and the totality 
of numbers divisible by four is equal to a quarter the totality of numbers, and 
so on. But he does not say anything confirming that any of those proper subsets 
of numbers are equal to the totality of numbers; nor does he mention the idea 
of one-to-one correspondence. Even his argument for the equality of the set of 
even numbers to the set of odd numbers is not grounded on the one-to-one corre­
spondence of the elements of these two sets. Paolo Mancosu is right to say:

When ibn Qurra states that odd numbers and even numbers have the same size one should 
be careful not to immediately read his argument as being the standard one based on one-
to-one correspondence, for the motivation adduced does not generalize to other arbitrary 
infinite sets. Rather, it would seem that some informal notion of frequency (how often do 
even numbers (respectively odd numbers) show up?) is in the background of ibn Qurra’s 
conception of infinite sizes (“we find in every three consecutive numbers one that is divis­
ible by 3”).
What would he have replied to the possible objection that there are as many even numbers 
as natural numbers based on a one-to-one correspondence between the two collections? 
The text is silent on this issue.82

Without doubt, Thābit’s discussion has genuinely innovative aspects.83 But he 
aims only at proving the existence of different sizes of infinite sets, not at showing 
the equality of infinite sets to some of their proper subsets by appealing to the 
notion of one-to-one correspondence. We do not have enough evidence, there­
fore, to claim that Thābit had recognized that infinite sets of numbers have the 
AD-property.84 At least, the passages cited by McGinnis do not provide such evi­
dence.

82 Mancosu 2009, 615. My emphasis.
83 Mancosu says that “[t]he first occurrence I know of a defense of the existence of different 
sizes of infinity given in terms of collections of natural numbers comes from the Islamic philos­
opher and mathematician Thābit ibn Qurra”, and then he quotes TEXT # 8 (Mancosu 2009, 614).
84 Despite this deficiency, Thābit’s account of infinity has an important advantage over Avi­
cenna’s. By contrast to Avicenna who does not provide any explicit numerical example, Thābit 
grounds his discussions on some concrete examples of numerical sets.
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It is worth mentioning that neither Thābit nor Avicenna nor any other scholar 
before Georg Cantor recognized the (either actual or potential) existence of 
infinite sets of different cardinalities. From the standpoint of modern mathemat­
ics, two sets are of the same cardinality if there is a one-to-one correspondence 
between their elements. Therefore, the existence of infinite sets of different car­
dinalities means the existence of infinite sets which cannot be put in one-to-one 
correspondence with each other. Avicenna, as I argued, was aware that infinite 
sets of numbers can be put in one-to-one correspondence with some of their 
proper subsets, but he did not know that there are some infinite sets that cannot 
be put in one-to-one correspondence with the set of natural numbers.85 So he did 
not know about infinite sets of different cardinalities. A fortiori, Thābit (who, as I 
showed, was not familiar with the notion of one-to-one correspondence) did not 
know about the different cardinalities of infinite sets. This means that Thābit’s 
claim that the totality of even numbers is equal to the half of the totality of all 
numbers should not be understood as the claim that the cardinality of the former 
set is less than the latter’s.86

In sum, Avicenna employs the notion of mapping or correspondence as a tool 
for the comparison of the different sizes of infinite magnitudes or infinite sets 
of numbers or numbered things possessing an order. By The Mapping Argument 
he shows that an infinite magnitude is necessarily in correspondence with some 
of its proper parts. He believes and indeed explicitly states that the argument is 
appropriate to the case of numerical infinities, but he himself does not discuss 
the details of this application. By (1) appealing to the most natural development 
of the notion of correspondence to the case of numbers and numbered objects, 
and (2) relying on some of Avicenna’s own texts and some early commentaries on 
his works which confirm that Avicenna had such a development in mind, we can 
say that, according to Avicenna, correspondence between two sets of numbers or 
numbered things means nothing other than one-to-one correspondence between 

85 The fact that some infinite sets cannot be put in one-to-one correspondence with the set 
of natural numbers was proved by Georg Cantor in 1891. His proof is based on the so-called 
diagonalisation technique. The complexity of this technique was far beyond the boundaries of 
mathematical knowledge in the time of Avicenna.
86 Jon McGinnis 2010, 221, in explaining Philoponus’s criticism of the Aristotelian doctrine of 
the eternity of the world, says: “Such a thesis, argued Philoponus, violated a number of Aristote­
lian dicta concerning infinity, as, for example, the impossibility of an actual infinity being real­
ized, an infinite’s being traversed, the ability to increase an infinite as well resulting in infinities 
of varying cardinality […]” (My emphasis. See also page 205 of the same paper). I think, however, 
that this interpretation suffers from imprecision. As I mentioned in note 65, Philoponus did argue 
about the different sizes of infinity, but what he means by ‘different sizes of infinities’ is by no 
means the same as ‘infinities with different cardinalities’ in its modern sense.
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the elements of these sets. Coupling this fact with Avicenna’s insistence on the 
applicability of The Mapping Argument to the case of numbers and ordered 
objects, we can conclude that he was aware, like Dedekind, that every infinite 
set of objects possessing an order has the AD-property. However, by contrast 
to Dedekind, he did not propose the having of this property as a definition for 
being infinite. Moreover, he did not know anything about infinities with different 
cardinalities, in the modern sense of the term ‘cardinality’. Finally, contrary to 
Dedekind and most other modern set-theorists, Avicenna rejects the actual exist­
ence of infinite sets of numbers or numbered objects. He believes that, on the 
one hand, (I) every mathematical infinity corresponds with some of its proper 
subsets, and on the other hand, (II) it is impossible for a set of actually existent 
mathematical objects to correspond with some of its proper subsets. Therefore, 
he concludes that it is impossible for a magnitude or a set of discrete mathemat­
ical objects to be infinite. His justification for (I) comes from The Mapping Argu-
ment, but he himself does not provide any justification for (II); he simply accepts 
it. I will argue, in the next two sections, that Avicenna’s position regarding the 
ontology of mathematics justifies (II).

There is still another problem that we have not yet touched on. According to 
TEXT # 3 and TEXT # 4, The Mapping Argument works against the actual existence 
of infinite magnitudes and infinite sets of numbers or numbered things having an 
order. But we have not yet clarified why having an order is a necessary condition 
for the elements of an infinite set of objects to be the subject of The Mapping Argu-
ment. In the following section, I discuss this issue and show how it is related to 
the possibility of having an actual infinity of immaterial objects.

4.3 Non-Ordered Can Be Actually Infinite

In the following passage, from The Physics of the Salvation, Avicenna explicitly 
says that The Mapping Argument does not work against infinities such that either 
their parts do not exist totally together at the same time (e.  g., the infinite time 
line and infinite motions) or they cannot be ordered (e.  g., immaterial objects 
such as angels and devils):

TEXT # 9: [There are two situations in which we may have infinites:] either when [(1) the 
totality of] the parts are infinite and do not exist all together – therefore, it is not impossible 
for them to exist one before or after another, but not all together – or when [(2)] the number 
[i.  e., the set of numbered things] itself is not ordered in either nature or position – therefore, 
there is nothing preventing it [i.  e., the non-ordered set of numbered things] from existing 
[with] all [its members] together. There is no demonstration for its impossibility, rather there 
is a demonstration for its [actual] existence. As for the first kind [of these infinites], time 
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and motion are proven to be such. As for the second kind, [the existence of] a multiplicity of 
angels and devils – that are infinite with respect to number – is proven to us, as will become 
clear to you [too]. All of this [i.  e., the set of angels and devils] is susceptible to increase, but 
this susceptibility does not make the [the application of] the mapping [technique] permis­
sible; for what has no order in either nature or position is not susceptible to [the use] of the 
mapping [technique]; and [the use of this technique] in the case of what does not exist all 
together is even more impermissible.87

In this passage Avicenna discusses two conditions for the applicability of The 
Mapping Argument. Following McGinnis, I call these conditions respectively 
(1) the ‘wholeness condition’ and (2) the ‘ordering condition’. According to the 
wholeness condition, The Mapping Argument is applicable to a set or totality only 
if its elements exist all together at the same time. According to the ordering con­
dition, the argument is applicable to a set or totality only if its elements have an 
order in either nature or position. Avicenna seems to believe that both magni­
tudes and sets of numbers (or numbered things) must satisfy the wholeness con­
dition to be the subject of The Mapping Argument. For him it is nonsense to speak 
about the (non-)equality of things – whether magnitudes or numbers or num­
bered things – that do not actually exist. This is why time cannot be the subject 
of the mapping argument. Time does not satisfy the wholeness condition because 
temporal moments do not exist simultaneously and all together. In each moment 
there actually exists only one point of the temporal line. Therefore, the infinity of 
the temporal line and the eternity of the world do not entail the actual existence 
of an infinity. Since temporal moments do not exist all together at the same time, 
it is nonsense for Avicenna to say that the whole of the temporal line corresponds 
with – and is therefore equal to – some of its parts. As a result, The Mapping Argu-
ment is not applicable to time and cannot reject its potential infinity.88

The case of the ordering condition is more complicated. Is having an order 
a necessary condition for both numbers and magnitudes to be the subject of 
The Mapping Argument? In his discussions of The Mapping Argument Avicenna 

87 Avicenna 1985, IV.2, 245  f. My translation. At least at first glance, there seems to be a ten­
sion between Avicenna’s claim in this text that “[a]ll of this [i.  e., the set of angels and devils] is 
susceptible to increase” and his view in The Metaphysics of the Healing that “[n]umber whose 
existence is in things separate [from matter] cannot become subject to any relation of increase 
or decrease that may occur but will only remain as it is” (Avicenna 2005, I.3 [17]). However, dis­
cussing this issue would take us too far afield from our main concerns. See also note 94 for a 
related issue.
88 Since Al-Kindī does not consider the wholeness condition as a necessary condition for the 
applicability of the mapping technique, he rejects the eternity of the world based on the very 
argument from which Avicenna’s mapping argument is inspired.
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repeatedly says that this argument rejects the actual infinity of magnitudes and 
numbers or numbered things having an order in either nature or position (tartīb fi 
al-ṭabʿ aw al-waḍʿ). Accordingly, in the above passage, he says that no argument, 
including The Mapping Argument, can reject the actual existence of an infinite 
set of non-ordered numbered things. It is therefore undisputable that, for Avi­
cenna, the ordering condition is a necessary condition for numbers and num­
bered things to be the subject of the mapping argument. Is it also a necessary 
condition for the case of magnitudes? McGinnis argues for a positive answer to 
this question. He believes that (1) there is a sense in which magnitudes are (or at 
least can be) ordered and (2) having an order is a necessary condition for magni­
tudes to be the subject of The Mapping Argument.89 The former claim seems to be 
defensible. However, I think that there are reasons to be suspicious of the latter. 
To justify these claims, we should first have a clear understanding of what exactly 
Avicenna means by having an order. In the introduction to his discussion of The 
Mapping Argument in the Metaphysics part of Alā’ī Encyclopedia Avicenna writes:

TEXT # 10: Beforeness and afterness (pīshī wa sipasī) is either by nature – as in number 
(shumār) – or by supposition (farḍ) – as in measures (andāza-hā) [i.  e., one-dimensional 
magnitudes] – that you can start from any direction you may want. And, everything that 
either there is beforeness and afterness in it by nature or it is a magnitude (miqdār) which 
has parts that exist all together is finite.90

A comparison of this passage with TEXT # 3 and TEXT # 4 shows that Avicenna 
uses the Arabic phrase ‘tartīb’ as an equivalent for the Persian phrase ‘pīshī wa 
sipasī’. It indicates that, for Avicenna, a set or totality of things have an order only 
if for every two members of this totality one of them is, in a sense, before (or after) 
the other. As Avicenna explicitly confirms in the above passage, numbers have a 
natural and essential order. This is because for every two numbers one of them 
is before or less than the other. One-dimensional magnitudes (i.  e., lines), on the 
other hand, do not have a natural order. This is because they lack essential direc­
tionality. They can be traversed in two opposite directions. But as soon as we fix 
one of these directions, we have a beforeness/afterness (or priority/posteriority) 
relation between the parts of this one-dimensional magnitude. Therefore, every 
one-dimensional magnitude can in principle have two different suppositional 
orderings, depending on the direction we consider for it. This demonstrate (1); at 
least in the case of one-dimensional magnitudes. Nonetheless, it does not show 
that satisfaction of this condition is necessary for magnitudes to be the subject 

89 McGinnis 2010, 218.
90 Avicenna 2004, Ch. 16, 58  f. My Translation.
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of The Mapping Argument. Indeed, although they are ordered, it is not in virtue 
of this orderedness that The Mapping Argument is applicable to them. Let me 
explain why.

According to Avicenna, correspondence between two geometrical magnitudes 
L and L′ is nothing more than projection and coverage: L corresponds with L′ if 
and only if it is possible to map L onto L′ in such a way that no part of either L or L′ 
remains uncovered. It seems, therefore, that the notion of correspondence could 
be understood by appealing merely to our geometrical intuitions without the aid 
of the notion of ordering (or, equivalently, beforeness/afterness). It is in virtue of 
the continuity and connectedness of geometrical magnitudes – as suggested by 
TEXT # 6 – that the mapping technique and the notion of correspondence in the 
sense of coverage and projection are applicable to them. Considering the case 
of two-dimensional magnitudes shows us that the application of the mapping 
technique to the case of magnitudes is not in virtue of their orderedness. The 
sizes of two-dimensional figures can be compared by defining equality in terms 
of coverage. Consider two triangles drawn on a paper. By mapping one of them on 
the other and checking whether or not they completely cover each other, we can 
compare their areas. But there is no obvious/natural order among the points of 
two-dimensional magnitudes/shapes. More precisely: the natural positions of the 
points on a two-dimensional magnitude do not impose a beforeness/afterness 
relation on them. Those points are not ordered by their natural positions. It shows 
that the applicability of the mapping technique in the sense of coverage and pro­
jection is something completely independent from orderedness in the sense of 
having beforeness/afterness. That is why Avicenna mentions the ordering condi­
tion only for the case of numbers. Orderedness does not play any crucial role in 
the applicability of The Mapping Argument to the case of magnitudes.

Quite differently, correspondence between two sets of discrete objects A and 
B is one-to-one correspondence between their elements.91 But the notion of one-
to-one correspondence cannot be reduced to geometrical projection and cover­
age; for the elements of A and B may be of different sizes, different shapes and 
have different places (if they have these properties at all). If A and B are ordered 
then we can compare their sizes by pairing the first element of A with the first 
element of B, the second element of A with the second element of B, and so on 
(i.  e., for every natural number n, pairing the nth element of A with the nth element 
of B). In fact, Avicenna seems to believe that the possibility of being ordered is a 
necessary condition for the possibility of being put in a one-to-one correspond­

91 As TEXT # 6 suggests, correspondence in the case of numerical infinities is being parallel in 
terms of orderedness.
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ence. He thinks that if a set of objects cannot be ordered, it cannot be put in a one-
to-one correspondence with other sets.92 In other words, the possibility of picking 
elements of a set one-by-one to put them in a one-to-one correspondence with 
the elements of another set is equivalent to the possibility of putting an order 
on the elements of that set. Therefore, if it is impossible for a set to be ordered, 
then it is equivalently impossible for it to be put in a one-to-one correspondence. 
Accordingly, the size of such a set – that cannot be ordered – cannot be compared 
to the sizes of other sets, including its own proper subsets. As a result, it cannot 
be shown that that set corresponds with some of its subsets. So, no contradiction 
arises and The Mapping Argument does not work in such a case.93

Apparently, it is by following this line of argument that Avicenna claims that 
The Mapping Argument is not applicable to the case of immaterial objects such as 
angels and devils; for he believes that the set of those objects cannot be ordered. 
More precisely, they do not have a natural and essential order, nor it is possible 
to posit a conventional order for them (at least it seems inconceivable how they 
might have such an order). The actual infinity of such sets cannot be rejected 
by appealing to The Mapping Argument. Avicenna seems to believe that (1) other 
arguments against the actual infinity are of no use in the case of sets of discrete 
elements, and (2) there are some arguments for the actual infinity of the set of 
angels and demons. Consequently, he believes that such infinite sets are uncon­
troversially actual.94

But what will happen if – by contrast to the case of angels and devils – it 
is possible to put a conventional order on a set of immaterial objects? Can we 

92 By generalizing this idea we may arrive at the modern idea of the priority of the notion of 
ordinality to the notion of cardinality.
93 On the one hand, the above explanation can precisely clarify why non-ordered sets cannot 
be the subject of The Mapping Argument. On the other hand, the plausibility of this explanation 
is itself dependent on the interpretation of the correspondence between sets of discrete elements 
as one-to-one correspondence between their elements. Since there seems to be no defensible 
rival for the above explanation, the explanatory power of this scenario about the role of ordering 
in The Mapping Arguments can itself be considered as evidence for the claim that, according 
to Avicenna’s philosophy, the correspondence between two sets of discrete elements should be 
understood as a one-to-one correspondence between their elements.
94 It should be noted that here we can find a serious problem for Avicenna’s philosophy. The 
infinity of a set of immaterial objects depends on the numerical individuality of its elements. If its 
elements are not individuated, then it seems nonsense to believe in their numerosity and, a forti-
ori, their infinity. Therefore, if Avicenna accepts the actual existence of an infinity of immaterial 
individuals of the same kind, then he has no way out but to reject the Aristotelian principle that 
objects of the same kind are numerically individuated by their matters. This is one of Averroes’s 
(1126–1198) criticisms of Avicenna. See Marmura 1960, Sec. II, 173  f.
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still argue, based on the mapping technique, that such a set cannot be actually 
infinite?

For example, Al-Ghazālī (1058–1111) argued that the eternity of the world 
implies the eternity of the species human being. This means that every moment 
of time is preceded by an infinite number of people who have died. Therefore 
every moment of time is preceded by an infinity of human souls who have been 
separated from matter but still actually exist. Moreover, Al-Ghazālī believes that 
we can put a conventional order on (at least a subset of) the set of the souls who 
have been separated from matter until now.95 Suppose that the first element of 
the set A is the last soul who was separated from her body before the present time, 
the second element of A is the last soul who was separated from her body before 
the end of yesterday, the third one is the soul who was separated from its body 
before the end of the day before yesterday, and so on.96 The eternity of the world 
and human beings implies the actual existence of and the infinity of the set A. 
But, since A is ordered, its actual infinity can be rejected by The Mapping Argu-
ment. This is simply a contradiction. Based on this line of argument, Al-Ghazālī 
concludes that Avicenna’s doctrine of the eternity of the world and human being 
contradicts his rejection of the actual infinity.97

I think that we have a strong strategy to rebut this objection on behalf of Avi­
cenna. Having an order guarantees that we can employ the mapping technique to 
argue that an infinite set of discrete objects corresponds with some of its proper 
subsets. But it cannot itself guarantee that such a correspondence is a contradic­
tory conclusion. Avicenna can say that although the correspondence of a whole 
to its proper parts is a contradiction in the case of material objects and their prop­
erties (e.  g., mathematical objects), such a correspondence is not controversial in 
the case of immaterial objects. In other words, the equality of the whole and its 
part is unacceptable for physical and mathematical objects, but it is acceptable 
for immaterial objects, because the mereology of the realm of materiality is not 
similar to that of the realm of immateriality. The principle of the impossibility of 
the equality of the whole and its proper part is not necessarily valid in the latter 

95 The core of Al-Ghazālī’s idea is to produce an order based on temporal successions and regres­
sions. Nonetheless, the order I will propose, though faithful to Al-Ghazālī’s general approach, is 
not identical to his proposal.
96 For the sake of simplicity, I have assumed that (1) for every day there has been at least one 
soul who has been separated from her body, and (2) in every temporal moment at most only one 
soul has been separated from her body. Even if we reject these assumptions, we can propose 
some more sophisticated conventional orders for some infinite subsets of the set of immaterial 
souls who have been separated from their matter until now.
97 For more discussion on the problem of the infinity of souls, see Marmura 1960.
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realm. Therefore, it is in principle possible for some ordered infinite set of objects 
to exist actually; but they cannot be material or dependent on materiality.98

According to this solution, there are two crucial steps in the application 
of The Mapping Argument: (1) employing the mapping technique to show that 
a whole corresponds with some of its proper subsets, and (2) extracting a con­
tradiction from such a correspondence. Having an order, either natural or con­
ventional, guarantees that the first goal can be accomplished. The second one 
depends on the ontology of the objects under discussion. If they are material, 
such a correspondence is absolutely unacceptable. But if they are immaterial, it 
may be justified. It is worth emphasizing, however, that I do not claim that there 
is no such immaterial whole-part correspondence that is contradictory.

In sum, Avicenna believes that The Mapping Argument (his only argument 
against the actuality of discrete infinity) does not work in the case of those sets of 
immaterial objects which cannot be ordered. It is therefore possible, in principle, 
that some such sets are actually infinite. However, such an infinite immaterial 
numerosity cannot be the subject of mathematical studies, because Avicenna 
believes that numerosity completely separated from matter should be studied 
by metaphysics, not mathematics. Moreover, it is not conceivable, at least from 
Avicenna’s standpoint, that one could undertake mathematical studies on a set 
that is not ordered and cannot be put in a simple one-to-one correspondence. It 
is also worth mentioning that there is no immaterial infinite continuity; there is 
no immaterial infinite magnitude. This is because magnitudes, according to Avi­
cenna’s ontology of mathematics, by contrast with numbers, cannot be separated 
from matter. They have an ontological dependency on matter. Therefore, there is 
neither finite nor infinite immaterial continuity.99

5 Conclusion
Avicenna endorses some sort of mathematical finitism by rejecting the actual 
existence of infinite magnitudes and infinite sets of ordered numbers and num­
bered things. His main argument against the actuality of mathematical infinity, 
The Mapping Argument, is grounded on the whole-part inequality axiom. He 

98 To show that The Mapping Argument cannot reject the actual infinity of numbers, Al-Rāzī 
follows this approach. See note 63 above.
99 Remember that number can be separated from matter; but if it is, it cannot be the subject of 
mathematical studies, but rather of metaphysical studies. By contrast, magnitudes cannot be 
detached from materiality. See Zarepour 2016 and section 2 above.
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shows that the existence of an actual infinity implies the equality of that infinity 
with some of its proper parts. Since Avicenna believes that such an equality is 
absurd, at least in the case of mathematical objects, he concludes that no mathe­
matical infinity can actually exist. Therefore, his main argument for mathemati­
cal finitism has two principal elements: (1) the whole-part equality in the case of 
mathematical infinities, and (2) the absurdity of the whole-part equality in the 
case of mathematical objects.

To argue for (1) Avicenna employs the notion of correspondence as a tool 
for comparing the size of different mathematical infinities and determining 
whether they are equal. The concept of correspondence, in turn, is reduced to the 
concept of geometrical projection and coverage in the case of magnitudes and 
to the concept of one-to-one correspondence in the case of numbers and num­
bered things. The sizes of all one-dimensional magnitudes can be compared to 
each other using the notions of projection and coverage. It is in virtue of their 
continuity and connectedness that they can be compared in this way. But sets of 
discrete objects, e.  g., numbers and numbered things, can be put in one-to-one 
correspondences only if they can be ordered.

I have argued that (2) can be justified by Avicenna’s preferred ontology for 
mathematical objects. He believes that mathematical objects are properties of 
physical objects and, consequently, have some sort of dependency on material­
ity. It seems that this dependency on materiality – which ties the mereology of 
mathematical objects to that of material objects – is what renders the whole-part 
equality absurd in the case of mathematical infinities. This shows that Avicenna’s 
mathematical finitism is heavily founded on his views about the nature of math­
ematical objects. The map shown in Fig. 5 is the Avicennan strategy which leads 
to mathematical finitism.100

100 I am greatly indebted to Tony Street who read the first draft of this paper and gave me 
immensely insightful comments and suggestions. Two earlier versions of this paper have been 
presented at the conference on Themes in Post-Classical Islamic Thought (2017, University of Cam­
bridge, Cambridge, UK) and the Workshop on Islamic Philosophy and Logic: Historical and Con-
temporary Perspectives (2017, IPM, Tehran, Iran). I am thankful to the organizers and audiences 
of these events. Special thanks are due to Peter Adamson, Wahid Amin, Mohammad Ardeshir, 
Hannah Erlwein, Hossein Masoumi Hamedani, Toby Mayer, Seyed N. Mousavian, Mahmoud 
Morvarid, Michael Noble, Amir Saemi, Ayman Shihadeh, Paul Thom, Hamid Vahid, and Tianyi 
Zhang for their feedbacks and suggestions. I owes Alessia Astesiano thanks for her comments 
on an earlier version of this paper. I would also like to thank two anonymous reviewers for this 
journal for their extremely helpful comments and constructive suggestions without which this 
paper would not have been in its present form.
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