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Abstract:We propose a model for a growth competition between two subsets of a Riemannian manifold. The
sets growat twodi�erent rates, avoiding each other. It is shown that if the competition takes place on a surface
which is rotationally symmetric about the starting point of the slower set, then if the surface is conformally
equivalent to the Euclidean plane, the slower set remains in a bounded region, while if the surface is nonpos-
itively curved and conformally equivalent to the hyperbolic plane, both sets may keep growing inde�nitely.
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1 Introduction
Consider two subsets A, B of, say, the Euclidean plane, which evolve over time, A = At , B = Bt, according
to the following simple rules: both sets begin as singletons, A0 = {q}, B0 = {p} for some points p ≠ q, and
expand at rates λ > 1 and 1 respectively, without intersecting each other. If a point belongs to one of the sets
at a certain time, then it remains in the set forever. What will the sets A∞ := ⋃t At and B∞ := ⋃t Bt look like?

This growth competition can take place on essentially anymetric space. Its precise formulation is given in
the following section, and its existence and uniquness on complete Riemannianmanifolds is established.We
then study growth competitions on Riemannian manifolds which are spherically symmetric about the point
p. The cases of the Euclidean plane and the hyperbolic plane exhibit contrasting behaviors: on the Euclidean
plane, the faster set Awill eventually trap the set B in a bounded region, while on the hyperbolic plane, if the
two sets begin su�ciently far apart, then there is coexistence, i.e., both sets keep expanding forever. In fact,
we show:

Theorem 1.1. Let M be a two-dimensional, complete, non-compact Riemannianmanifold, which is rotationally
symmetric about p ∈ M. Let q ∈ M and λ > 1, and let {At , Bt} be the corresponding growth competition. Then

1. If M is parabolic, then B∞ is bounded.
2. If M is hyperbolic and nonpositively curved, then B∞ is unbounded if d(p, q) is su�ciently large.

Here parabolic (resp. hyperbolic) stands for “conformally equivalent to the Euclidean (resp. hyperbolic)
plane".

The problem of determining the shapes of the competing sets was suggested by Itai Benjamini [1], and
is loosely inspired by probabilistic competitions on Zd and other graphs, see [5], [7]. A related problem, con-
cerning a strategy to control a forest �re on the Euclidean plane, was introduced by Bressan, see [2], [3],
[4]. In [6], Bressan’s �re con�nement problem is treated using the apparatus of viscosity solutions to the
Hamilton-Jacobi equation. This could be the appropriate framework for dealing with problems such as the
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Figure 1: The sets A∞ (blue) and B∞ (red) for growth competitions on (a) the Euclidean plane (b) the hyperbolic plane.

one introduced here. However, as we are interested mostly in the relationship between coexistence and the
underlying geometry,wehavemanaged to de�ne the competition in awaywhich enables an elementary proof
of existence and uniqueness of the solution, while still capturing the essence of the problem.

Given the connection presented here between the conformal type of a simply-connected surface, and the
outcome of growth competitions on it, it is now natural to ask:

Problem. Prove or disprove each of the following statements.

1. On a hyperbolic surface, for every λ > 1 there is some choice of p, q such that B∞ is unbounded.
2. On a parabolic surface, for every λ > 1 and every L > 0, there is some choice of p, q such that d(p, q) > L

and B∞ is bounded.

2 Growth competitions
Let X be a metric space, let p ≠ q ∈ X, and let λ > 1. Let {At , Bt}t≥0 be two families of subsets of X. Say that a
path γ : [0, T]→ X avoids A (resp. avoids B) if

• γ(0) = p (resp. γ(0) = q),
• γ is 1-Lipschitz (resp. λ-Lipschitz)
• γ(s) ∈ ̸ As for all s ∈ [0, T] (resp. γ(s) ∉ Bs for all s ∈ [0, T]).

The pair At , Bt will be called a growth competition between p and q, if

• At , Bt are increasing in t, i.e., At1 ⊆ At2 and Bt1 ⊆ Bt2 for all 0 ≤ t1 ≤ t2,
• A0 = {q}, B0 = {p}, and for all t > 0:

At =
⋃
γ

γ([0, t]) and Bt =
⋃
η
η([0, t)) (2.1)

where the union on the left is over paths avoiding B, and the union on the right is over paths avoiding A.

Denote also
A∞ =

⋃
t≥0
At and B∞ =

⋃
t≥0
Bt . (2.2)

In the rest of this section, we prove existence and uniqueness of growth competitions on complete Rieman-
nian manifolds. Fix a manifold (M, g), two points p ≠ q ∈ M, and λ > 1.

The following lemma is quite evident from the de�nitions.
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Lemma 2.1. Let {At , Bt} be a growth competition between p and q. Then At ∩ Bt′ = ∅ for all t, t′ ∈ [0,∞].

Proof. Let 0 < t < ∞ and let x ∈ At. There exists a path γ : [0, t]→ M avoiding B such that x = γ(t0) for some
0 ≤ t0 ≤ t, and since γ|[0,t0] is also a curve avoiding B, x ∈ At0 . Let η : [0, t′) → M be a curve avoiding A. We
claim that η(s) ≠ x for all s ∈ [0, t′). Indeed,

– If s < t0 then η(s) ∈ Bt0 , so η(s) ≠ x = γ(t0) because γ avoids B.
– If s ≥ t0 then x = γ(t0) ∈ At0 ⊆ As, so η(s) ≠ x since η avoids A.

Thus η(s) ≠ x for all s ∈ [0, t′), and since η is an arbitrary curve avoiding A, x ∉ Bt′ . This proves that At , Bt′
are disjoint for all t, t′ ≥ 0, and it follows that A∞ and B∞ are disjoint.

Denote by d the distance function of (M, g). For x ∈ M and R > 0, denote byB(x, R) = {y ∈ M | d(x, y) <
R} the open ball of radius R centered at x. Another fact which follows trivially from the de�nitions is the
following.

Lemma 2.2. At ⊆ B(q, λt) and Bt ⊆ B(p, t) for all t ≥ 0.

We shall now construct a certain subset of M and prove that it must coincide with B∞. This will leave us
with a unique candidate for a growth competition.
For a subset S ⊆ M, denote by dS the intrinsic metric of M \ S, which is the metric on M \ S de�ned by

dS(x, y) = inf{Length(γ) | γ : [0, T]→ M \ S is a Lipschitz path, γ(0) = x, γ(T) = y}.

If the set S is open, then by the Arzelà–Ascoli theorem, themetric space (M \S, dS) is a geodesic metric space,
i.e., for each x, y ∈ M \ S there exists a path γ realizing their intrinsic distance. IfM \ S is not path-connected,
then dS might attain the value ∞.

De�ne a sequence Ωn ⊆ M for n ≥ 0 by recursion as follows. Set Ω0 := ∅. Having de�ned Ω0, . . . , Ωn,
set

Ωn+1 = Ωn ∪ {x ∈ M \ Ωn | dΩn (x, q) > λd(x, p)}. (2.3)

In particular,
Ω1 = {x ∈ M | d(x, q) > λd(x, p)}. (2.4)

Finally, set

Ω :=
∞⋃
n=1

Ωn .

Lemma 2.3. The sets Ωn are open.

Proof. Ω0 is trivially open. Assume that Ωn is open. Then the distance function dΩn (·, q) is lower semicontin-
uous onM \Ωn with respect to the metric d, so the setM \Ωn+1 is closed inM \Ωn, and therefore inM. Thus
Ωn+1 is open.

Lemma 2.4. Let n ≥ 0. Then

dΩn (x, q) ≥ λd(x, p) for all x ∈ ∂Ωn, and (2.5)
dΩn (x, q) = λd(x, p) for all x ∈ ∂Ωn+1. (2.6)

Proof. For n = 0, (2.5) is vacuous and (2.6) is obvious from (2.4). Now let n ≥ 1 and assume that the claim
holds for n − 1. Let x ∈ ∂Ωn. Then since Ωn−1 ⊆ Ωn, we have

dΩn (x, q) ≥ dΩn−1 (x, q) = λd(x, p).

Now let x ∈ ∂Ωn+1. Then in particular x ∈ M \ Ωn+1, which by de�nition means dΩn (x, q) ≤ λd(x, p). Now,
either x ∈ ∂Ωn, in which case reverse inequality holds by (2.5), or x ∈ ̸ Ωn, and then the reverse inequality
holds since dΩn is continuous on M \ Ωn and x ∈ ∂Ωn+1.
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A subset S ⊆ M is said to be star-shaped about a point x0 ∈ S if for every x ∈ S, any minimizing geodesic
joining x0 and x lies inside S.

Lemma 2.5. The set Ωn is star-shaped about p for all n ≥ 0. Thus Ω is star-shaped about p.

Proof. For n = 0 there is nothing to prove. Let n ≥ 1 and let x ∈ Ωn. We must show that a minimizing
geodesic joining p and x lies in Ωn. By induction wemay assume that x ∉ Ωn−1, so that dΩn−1 (x, q) > λd(x, p).
Let γ be a unit-speed minimizing geodesic from p to x. By induction, there exists some t0 > 0 such that
γ(t) ∈ Ωn−1 exactly when t < t0, and x = γ(t1) for some t1 ≥ t0. Since γ|[t0 ,t1] lies outside Ωn−1, we have that
dΩn−1 (γ(t), x) = t1 − t for all t0 ≤ t ≤ t1, and so

dΩn−1 (γ(t), q) ≥ dΩn−1 (x, q) − dΩn−1 (x, γ(t)) > λd(x, p) − (t1 − t) = (λ − 1)t1 + t ≥ λt

for all t0 ≤ t ≤ t1, which implies that γ(t) ∈ Ωn as desired.

The following lemma states the key property of Ω.

Lemma 2.6. For all x ∈ M \ Ω,
dΩ(x, q) ≤ λd(x, p), (2.7)

with equality if and only if x ∈ ∂Ω.

Proof. Let x ∈ ∂Ω. For each n ≥ 1, let xn ∈ Ωn be a point of minimal distance to x. Clearly xn → x as n →∞.
The point xn must lie in ∂Ωn, for otherwise we would have x ∈ Ωn ⊆ Ω.
Now, on one hand, by (2.6),

λd(xn , p) = dΩn−1 (xn , q) ≤ dΩn−1 (xn , x) + dΩn−1 (x, q) ≤ dΩn (xn , x) + dΩ(x, q), (2.8)

and taking n →∞we get λd(x, p) ≤ dΩ(x, q). On the other hand, again by (2.6), there are curves γn joining q
and xn of length λd(xn , p) and lying outside Ωn−1, and by the Arzelá-Ascoli theorem, a subsequence of them
converges to a curve γ lying outside Ωn−1 for all n, and thus outside Ω, and of length λd(x, p). This implies
that dΩ(x, q) ≤ λd(x, p), and together with (2.8) we have equality.
Now let x ∈ M \Ω, and let γ by a unit-speedminimizing geodesic from p to x. Since Ω is star-shaped, we there
exist 0 < t0 < t1 such that γ(t1) = x and γ(t) ∈ Ω exactly when t < t0. Let x′ = γ(t0). Then x′ ∈ ∂Ω, and since
γ|[t0 ,t1] lies outside Ω, we get

d(x, p) = d(x, x′) + d(x′, p) = dΩ(x, x′) + λ−1dΩ(x′, q) > λ−1(dΩ(x, x′) + dΩ(x′, q))
≥ λ−1dΩ(x, q).

We now have what we need in order to argue that Ω coincides with B∞, and write down the solution to
the competition.

Proposition 2.7. Let λ > 1. Let {At , Bt} be a growth competition between p, q. Then B∞ = Ω and A∞ = M \Ω.

Proof. For the inclusion Ω ⊆ B∞, we must show that Ωn ⊆ B∞ for all n ∈ N.
For n = 0 there is nothing to prove. Let n ≥ 1. Let γ be a unit speed geodesic emanating from p, and suppose
that γ does not avoid A. Let t0 = inf{t | γ(t) ∈ At}. There is a sequence of curves ηk avoiding B such that
ηk(sk) = γ(sk) for some sk ↘ t0. By induction, ηk|[0,sk ] lie outside Ωn−1, so dΩn−1 (γ(sk), q) ≤ Length(ηk|[0,sk ]) ≤
λsk since ηk are λ-Lipschitz. Taking k →∞we see that γ(t0) ∈ ̸ Ωn−1 and dΩn−1 (γ(t0), q) ≤ λd(γ(t0), p), whence
γ(t0) ∈ ̸ Ωn. Thus any unit speed geodesic emanating from p and staying insideΩn is a curve avoiding A. Since
Ωn is star-shaped about p, this proves that Ωn ⊆ B∞ for all n ∈ N whence Ω ⊆ B∞.

In the other direction, let γ be a 1-Lipschitz path with γ(0) = p, and suppose that γ(t1) ∈ ̸ Ω for some
t1. Then by Lemma 2.6, there is a path η of length at most λd(γ(t1), p) ≤ λt1 joining q and γ(t1) and lying
entirely outside Ω, and if we take η to beminimizing and parametrized by speed λ then η(t2) = γ(t1) for some
t2 ≤ t1, and d(η(t), p) ≥ λ−1dΩ(η(t), q) = t for all t ∈ [0, t1] by Lemma 2.6, whence η is a curve avoiding B and
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therefore γ(t1) = η(t2) ∈ At2 ⊆ At1 . It follows that γ does not avoid A. Thus curves avoiding A cannot leave Ω
and therefore B∞ ⊆ Ω.

We have shown that B∞ = Ω. Lemma 2.6 implies that M \ Ω is path-connected, so for every x ∈ M \ Ω,
there is a curve η lying outsideΩ and joining q to x. Since B∞ ⊆ Ω, the curve η avoids B and therefore x ∈ A∞.
On the other hand, by Lemma 2.1, A∞ ⊆ M \ Ω.

Corollary 2.8. For each p, q ∈ M and λ > 1, there is a unique growth competition, given by

At = BΩ(q, λt)
Bt = Ω ∩B(p, t),

(2.9)

whereBΩ(x, R) denotes the closed ball of radius R in the metric space (M \ Ω, dΩ).

Proof. Proposition 2.7, Lemma 2.7 and the fact that Ω is star-shaped about p, imply that any growth competi-
tion must take the form (2.9). So it remains to show that this is indeed a growth competition. Clearly any path
starting at p and staying inside Ω avoids A, and any path starting at q and not intersecting Ω avoids B. So we
have the inclusions⊆ in (2.1).

For the inclusions ⊇, �rst let γ be a curve avoiding A. The same argument as in the proof of Proposition
2.7 implies that γ remains inside Ω, and since it is 1-Lipschitz, it is contained inB(p, t). Now let γ : [0, t]→ M
be a curve avoiding B; we argue by induction that it does not enter Ωn. Again n = 0 is trivial. Let n ≥ 0
and assume that γ(t0) ∈ Ωn+1. By the de�nition of Ωn+1, and since γ does not intersect Ωn by induction,
Length(γ|[0,t0]) > λd(x, p). Since γ is λ-Lipschitz, it follows that t0 > d(x, p), whence γ(t0) ∈ Bt0 , which is
a contradiction to the assumption that γ avoids B. Thus γ(s) ∈ ̸ Ωn for all s ∈ [0, t] and all n ∈ N, whence
γ(s) ∈ ̸ Ω for all s ∈ [0, t] . Since γ is λ-Lispchitz, γ(s) ∈ BΩ(q, λt) for all s ∈ [0, t]. This �nishes the proof of
the inclusions⊇ in (2.1).

3 Coexistence on spherically symmetric manifolds
We now restrict our attention to growth competitions taking place on complete, non-compact manifolds
which are spherically symmetric about the point p. By spherically symmetric we mean that the metric takes
the form

g = dr2 + G(r)2dθ2 (3.1)
where (r, θ) ∈ (0, R) × Sn−1 are polar normal coordinates centered at p, dθ2 is the standard metric on SpM ∼=
Sn−1, where SxM denotes the unit sphere of the tangent space to M at x, and G is a smooth positive function
satisfying G → 0 and G/r → 1 as r → 0. SinceM is noncompact, the coordinates (r, θ) are global, i.e. R = ∞,
and M is di�eomorphic to Rn. Set

` := d(p, q).
Let u0 ∈ SpM denote the initial velocity vector of the unit-speed geodesic from p to q, so that in polar coordi-
nates, q = (`, u0).

Coexistence in this setting is related to the convergence of the integral

I :=
∞∫
1

1
G(r)dr. (3.2)

Proposition 3.1. Suppose that M is spherically symmetric about p, and that I = ∞. Then B∞ is bounded.

Remark. In particular, if M = Rn then B∞ is bounded.

Proof. We prove that on every geodesic ray emanating from p, there is a point which can be reached by a
path avoiding B within some time T independent of θ. Since B∞ is star-shaped, the proposition will follow
because then B∞ ⊆ B(p, T).
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Let θ ∈ SpM and let η be a unit-speed great circle in SpM with η(0) = u0 and η(τ) = θ for some τ ≤ π.
De�ne a path γ : [0, T]→ M in polar coordinates by

γ(t) = (` + t, η(α(t)))

where

α(t) :=
√
λ2 − 1

t∫
0

G(` + s)−1ds.

Since α tends to∞with t, we can choose T such that α(T) = τ, and therefore γ(T) = (`+T, η(τ)) = (`+ t, θ) lies
on the ray from p with direction θ. The path γ avoids B; indeed, γ(0) = (`, u0) = q, γ is λ-Lipschitz because

|γ̇(t)|2 = |(1, α′(t)η̇(α(t)))|2 = 1 + G(` + t)2(λ2 − 1)G(` + t)−2|η̇(α(t))|2 = λ2,

and d(γ(t), p) = ` + t > t for all t ∈ [0, T], so γ(t) ∈ M \B(p, t) ⊆ M \ Bt.

The condition I = ∞ is not necessary. First, observe that if ` is small, then the competition resembles a
Euclidean competition and we cannot expect coexistence, no matter what G is. Second, having I < ∞ does
not prevent M from containing spheres centered around p with arbitrarily large radius yet arbitrarily small
surface area, and if q lies on such a sphere then the set A will conquer the entire sphere quickly, trapping B
within the ball it bounds. Thus, at least as long as p remains at the origin, some extra assumption is needed
in order to enable coexistence. Motivated by Itai Benjamini’s observation [1] that coexistence is possible on
Gromov-hyperbolic spaces, we add the assumption that M is nonpositively curved, i.e. that all its sectional
curvatures are nonpositive.

Proposition 3.2. Suppose that M is spherically symmetric about p and nonpositively curved, and that I < ∞.
Then there exists L > 0 such that if ` > L then B∞ is unbounded.

Remark. Note that if the sectional curvature of M is bounded from above by a negative constant then auto-
matically I < ∞. In this case one can use the argument from [1] to prove that coexistence is possible.

Recall that B∞ = Ω by Proposition 2.7. Since M is nonpositively curved, any two points are joined by a
unique minimizing geodesic. Say that a point x ∈ M is visible if the unique minimizing geodesic joining q
and x does not intersect Ω, and that x is visiblen if this geodesic does not intersect Ωn.

SinceΩ is open and star-shaped, there is a function f : SpM → (0,∞] such thatΩ is given in polar normal
coordinates by the relation

Ω = {(r, θ) | r < f (θ)}
(note that f may attain the value ∞). Similarly, let f1 denote the function corresponding to the star-shaped
set Ω1.

Lemma 3.3. Suppose that M is spherically symmetric about p and nonpositively curved. A geodesic from q
meets ∂Ω1 at most twice. If it meets ∂Ω1 at x1 = (r1, θ1) and x2 = (r2, θ2), and ](θ1, u0) < ](θ2, u0), then x1
is visible1, while x2 is not.

Here ](v, w) = arccos 〈v, w〉 for v, w ∈ SxM, x ∈ M.

Proof. Let γ be a unit-speed geodesic emanating from q. The function

h(t) := λd(γ(t), p) − d(γ(t), q) = λd(γ(t), p) − 1

is strictly convex sinceM is nonpositively curved, unless γ passes through p, inwhich case h(t) = λ|`−t|−1. In
both cases, h vanishes at most twice, and is negative between its zeros; hence γ−1(Ω1) is an interval (possibly
empty) and γ−1(∂Ω1) consists of at most two points; if it consists of exactly two points t1 < t2, then only γ(t1)
is visible1, since γ|[0,t2] intersects Ω1 and γ|[0,t1] does not. Let

γ(t) = (ρ(t), η(t))
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Figure 2: Proof of Lemma 3.4.

be the expression of γ in polar coordinates. SinceM is spherically symmetric, the curve η lies on a great circle
in SpM, and](η(t), η(0)) = ](η(t), u0) is strictly increasing. Therefore, if x1, x2 are as in the statement of the
lemma, and ti satisfy γ(ti) = xi, then t1 < t2, hence x1 is visible1 while x2 is not.

Lemma 3.4. Suppose that M is spherically symmetric about p and nonpositively curved. Then there exists
0 < a < π such that (f1(θ), θ) ∈ ∂Ω1 is visible1 exactly when ](θ, u0) ≤ a. Moreover, a is bounded away from π
in terms of λ alone.

Proof. Identifying M with the tangent space to M at p, the set Ω1 is invariant under orthogonal transfor-
mations �xing the line through p and q. By this symmetry, it su�ces to consider a unit-speed great circle
η : [0, T] → SpM joining −u0 to u0 and to show that there exists some t0 ∈ [0, T] such that (f1(η(t)), η(t)) is
visible1 exactly when t ≥ t0, and that ](η(t0), u0) ≤ c(λ) < π.

For every t ∈ [0, T], let v(t) ∈ SqM be the initial velocity of the unit-speed geodesic joining q to
(f1(η(t)), η(t)). As t varies, v traces an arc in SqM, which, by symmetry, is contained in a great circle in SqM.
If v0 is the initial velocity of the unit-speed geodesic from q to p, then v(0) = v(T) = v0 (see Figure 2).

By Lemma 3.3, the path v may visit each point at most twice, so since v lies on a great circle and its end-
points coincide, the function ](v(t), v0) attains a unique maximum, say at t = t0, and every value except
v(t0) must therefore be attained by v exactly twice, once in [0, t0) and again in (t0, T]. Since ](η(t), u0) is
decreasing in t, it follows from Lemma 3.3 that (f (η(t), η(t)) is visible1 exactly when t ≥ t0.
Set θ0 := η(t0) and α0 := ](η(t0), u0). Let γ : [0, S] → M be a unit speed geodesic joining q to x0 :=
(f1(θ0), θ0). Since γ intersects Ω1 only at x0, it is tangent to ∂Ω1 at x0, so by the de�nition of Ω1,

0 = d
dt

∣∣∣
t=S

(
λd(γ(t), p) − d(γ(t), q)

)
= λ
〈
γ̇(S), ∂/∂r

〉
− 1,

whence α1 := ](γ̇(S), ∂/∂r) = arccos(λ−1). Now, both α0 and α1 are angles in the triangle4pqx0, so since M
is nonpositively curved, α0 ≤ π − arccos(λ−1). This �nishes the proof.

Corollary 3.5. Under the assumptions and notations of the previous lemma, a point x = (f (θ), θ) ∈ ∂Ω is visible
if and only if ](θ, u0) ≤ a, if and only if x ∈ ∂Ω1.

Proof. Suppose that x is visible. Then dΩ(x, q) = d(x, q), so by Lemma2.6, d(x, q) = λd(x, p)whence x ∈ ∂Ω1.
Since x is visible and Ω1 ⊆ Ω, x is visible1, and therefore by Lemma 3.4, ](θ, u0) ≤ a.

Suppose that ](θ, u0) ≤ a, and let x1 := (f1(θ), θ) ∈ ∂Ω1. Then by Lemma 3.4, x1 is visible1. We argue by
induction that x1 ∈ ∂Ωn and x1 is visiblen for all n ∈ N.
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Indeed, suppose that x1 ∈ ∂Ωn and x1 is visiblen. Then dΩn (x1, q) = d(x1, q) = λd(x1, p) so x ∈ ∂Ωn+1.
If γ is the unit-speed geodesic from q to x1, then since γ does not intersect Ωn nor Ω1,

dΩn (γ(t), q) = d(γ(t), q) ≤ λd(γ(t), p)

so γ(t) ∉ Ωn+1 for all t. Hence x1 is visiblen+1. This completes the induction step. Thus x1 ∈ ∂Ωn and x1 is
visiblen for all n ∈ N, whence x1 ∈ ∂Ω. It follows that x = x1, because x and x1 share the same θ-coordinate
and both lie on ∂Ω. In particular, x ∈ ∂Ω1.

Finally, if x ∈ ∂Ω1 then d(x, q) = λd(x, p) = dΩ(x, q) by Lemma 2.6, so x is visible.

Proof of Proposition 3.2. Let θ ∈ SpM satisfy f (θ) < ∞, i.e.

x := (f (θ), θ) ∈ ∂Ω.

We will show that
](θ, u0) < π, (3.3)

provided that ` is larger that some L > 0 independent of θ. This proves that f (−u0) = ∞, whence Ω(= B∞)
contains the ray {θ = −u0} and is therefore unbounded.

Let γ : [0, T]→ M \ Ω be a minimal path joining q and x in M \ Ω, parametrized by speed λ, so that

dΩ(γ(t), q) = λt for all t ∈ [0, T].

We now prove that there is some t0 > 0 such that γ|[0,t0] is a geodesic, while γ(t) ∈ ∂Ω for all t ≥ t0. On each
interval of γ−1(M \ Ω), γ must be a geodesic. But there cannot be such an interval both of whose endpoints
lie in γ−1(∂Ω), because the function

λd(γ(t), p) − dΩ(γ(t), q) = λd(γ(t), p) − λt

is convex on such an interval (since γ is a geodesic and M is nonpositively curved), and by Lemma 2.6 it
vanishes on both endpoints of the interval and is positive in its interior, a contradiction. Therefore, there is
some t0 > 0 such that γ|[0,t0] is a geodesic, while γ(t) ∈ ∂Ω for all t ≥ t0. By Corollary 3.5, if we write in polar
coordinates

γ(t0) = (r0, θ0) = (f (θ0), θ0),

then there exists some 0 < c0 < π, depending only on λ, such that

](θ0, u0) ≤ a < π − c0. (3.4)

Lemma 2.6 implies that for t ≥ t0, the curve γ satis�es

d(γ(t), p) = λ−1dΩ(γ(t), q) = t,

and since γ is speed-λ, it follows that in polar coordinates, it takes the form

γ(t) = (r0 + (t − t0), η(t)) t0 ≤ t ≤ T

where η : [t0, T]→ SpM is a Lipschitz path satisfying

|η̇(t)| =
√
λ2 − 1/G(r0 + (t − t0))

(this derivative being de�ned almost everywhere). Therefore

](η(T), η(t0)) ≤
T∫

t0

|η̇(s)|ds =
√
λ2 − 1

T∫
t0

1
G(r0 + (s − t0))

ds. (3.5)

Now, it follows from the triangle inequality and the de�nition (2.4) of Ω1 that

B(p, `/(λ + 1)) ⊆ Ω1,
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and therefore r0 is bounded from below by `/(λ + 1). By the assumption I < ∞, if ` is large enough, the right
hand side of (3.5) is strictly smaller than c0, so by (3.4) and (3.5),

](θ, u0) ≤ ](θ, θ0) + ](θ0, u0) = ](η(T), η(t0)) + ](θ0, u0) < π

as desired.

In the case dimM = 2, the surface M is either hyperbolic or parabolic (since it is rotationally-symmetric
and non-compact). In the former case I < ∞, and in the latter I = ∞, see Milnor [8]. Theorem 1.1 now follows.

Remark. The proof of Proposition 3.2 enables us to identify the shape of Ω in the spherically symmetric,
nonpositively curved case (both when I = ∞ and when I < ∞). Suppose for simplicity that dimM = 2,
in which case, by passing to normal coordinates, we may assume that M = (R2, g) for some rotationally
symmetric metric g, and p = (0, 0). There exists 0 ≤ a < π such that (f (θ) cos θ, f (θ) sin θ) ∈ ∂Ω is visible
exactly when −a ≤ θ ≤ a, and ∂Ω ∩ {|θ| ≤ a} coincides with ∂Ω1. The remainder ∂Ω ∩ {a ≤ |θ| ≤ π} is the
union of two speed-λ curves whose distance from the origin p increases at rate 1. In particular, if M is the
Euclidean plane, then a = π/2, ∂Ω ∩ {x ≥ 0} = ∂Ω1 ∩ {x ≥ 0} is a circular arc, and ∂Ω ∩ {x ≤ 0} is the union
of two logarithmic spirals (see Figure 1). If M is the unit disc with the Poincaré metric, then the shape Ω1 is
not a circle, but the two curves are still logarithmic spirals.
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