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Abstract: A charge space (X,A, µ) is a generalisation of a measure space, consisting of a sample space X, a
�eld of subsetsA and a �nitely additive measure µ, also known as a charge. Properties a real-valued function
on Xmay possess include T1-measurability and integrability. However, these properties are less well studied
than their measure-theoretic counterparts.
This paper describes new characterisations of T1-measurability and integrability for a bounded charge space
(µ(X) < ∞). These characterisations are convenient for analytic purposes; for example, they facilitate simple
proofs that T1-measurability is equivalent to conventional measurability and integrability is equivalent to
Lebesgue integrability, if (X,A, µ) is a complete measure space.
New characterisations of equality almost everywhere of two real-valued functions on a bounded charge space
are provided. Necessary and su�cient conditions for the function space L1(X,A, µ) to be a Banach space are
determined. Lastly, the concept of completion of a measure space is generalised for charge spaces, and it is
shown that under certain conditions, completion of a charge space adds no new equivalence classes to the
quotient space Lp(X,A, µ).

Keywords: �nitely additive measure; T1-measurability; Lp space; Banach space; complete measure space;
Peano-Jordan completion
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1 Introduction
A �eld of setsA, also known as a �eld of subsets or an algebra of sets, is a subset of the power setP(X) of some
sample space X such that:

1. ∅ ∈ A,
2. Ac ∈ A for all A ∈ A, and
3. A ∪ B ∈ A for all A, B ∈ A.

A charge µ de�ned onA is a real-valued function such that:

1. µ(∅) = 0, and
2. µ(A ∪ B) = µ(A) + µ(B) for all disjoint A, B ∈ A.

A charge that takes only non-negative values is sometimes called a content or �nitely additive measure. How-
ever, in this paper the term charge is preferred, and may be assumed to refer to a non-negative valued charge
unless otherwise stated. A triple (X,A, µ) of such objects is called a charge space.

There is a little used but well developed theory of integration for real-valued functions on charge spaces.
This theory actually predates the Lebesgue integral, beginning with the �nitely additive measure theory de-
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veloped by Giuseppe Peano (1858-1932) and independently by Camille Jordan (1838-1922) (see [9] for a nice
historical account). The Lebesgue integral based on countably additive measures has proved to be more con-
venient and popular, but integration based on charges remains substantially more general. A brief review of
this theory is provided in Section 2, including de�nitions of the function spaces Lp(X,A, µ), comprised of
integrable functions on a charge space.

One reason �nitely additive measure and integration theory have not become as popular as their count-
ably additive counterparts is that de�nitions of the key properties of T1-measurability and integrability are a
little more complicated than corresponding properties in the countably additive context, and initially seem
less convenient for analysis. In particular, conventionally measurable functions are pointwise approximable
by a non-decreasing sequence of simple functions. It is not immediately clear whether this useful property
holds in general for T1-measurable functions.

A goal of this paper is to facilitate analysis of functions on charge spaces, by providing more convenient
characterisations of T1-measurability and integrability. In Section 3, twonewcharacterisations are developed
for each of these properties, for the special case of a bounded charge space, that is, one for which µ(X) < ∞.
First, T1-measurability is characterised in terms of inverse images of rays, using a criterion resembling a fre-
quently used characterisation of conventional measurability, and an additional smoothness condition on the
tails of the function. A characterisation of integrability is obtained by strengthening this smoothness condi-
tion. Second, T1-measurability can be characterised in terms of pointwise approximation by an increasing
sequence of simple functions, and integrability can be characterised by imposing an additional condition
on this sequence. Section 3 also contains two useful new characterisations of equality almost everywhere of
functions on a charge space.

To demonstrate the utility of the new characterisations, a number of simple corollaries are also proved
in Section 3. In particular, it is shown that the Lp spaces de�ned in Section 2 are equivalent to conventional
Lebesgue function spaces for charge spaces that are also complete measure spaces.

Another factor inhibiting the analysis of functions on charge spaces is that Lp spaces are not necessarily
complete in this context, unlike Lebesgue function spaces. To partially address this de�ciency, Section 4
identi�es necessary and su�cient conditions for Lp spaces to be Banach spaces.

The concept of a complete measure space is generalised for charges in Section 5. This section also in-
troduces a construction that is here called null modi�cation (see Lemma 5.6 and proof). Null modi�cation
is used to show that, under certain condtions, expanding a �eld by adding additional null sets leaves the
corresponding Lp spaces unchanged up to isomorphism.

2 Integration theory for charges
As some readersmay be unfamiliar with integrationwith respect to a charge, this section reviews the relevant
theory based on the concise summary given in [2] and the more comprehensive treatment in [3]. Theorems
and lemmas in this section that are stated without proof are proved in the references, but a few simple proofs
are provided for results that are known but not explicitly proved in the literature. For simplicity, all charges
and charge spaces mentioned in this paper are assumed to be non-negative and bounded, unless otherwise
stated.

De�nition 2.1. A charge µ on a �eld of subsets A of a set X can be extended to an outer charge on P(X) as
follows

µ*(A) := inf{µ(B) : B ∈ A, A ⊆ B}

for all A ∈ P(X).

Outer charges are sub-additive, that is, µ*(A∪B) ≤ µ*(A)+µ*(B) for all A, B ⊆ X (Proposition 4.1.4 of [3]).
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Note the outer charge depends on the �eld of setsA. It is therefore sometimes useful to write µ*A to avoid
ambiguity when working with nested �elds. Nevertheless, the more concise notation µ* will be used when
the �eld of setsA is clear from the context.

De�nition 2.2. Let (X,A, µ) be a charge space. A null set is any A ∈ P(X) for which µ*(A) = 0. A null function
is a function f : X → R such that

µ*({x ∈ X : |f (x)| > ϵ}) = 0

for all ϵ > 0.

The following notion of equivalence between functions plays an important role throughout this paper.

De�nition 2.3. Let (X,A, µ) be a charge space. Two functions f , g : X → R are said to be equal almost
everywhere (abbreviated as f = g a.e.) if f − g is a null function.

This terminology can be somewhat misleading. For example, consider the charge space (N,A, ν), where
Ndenotes the natural numbers (excluding zero),A ⊂ P(X) is the �eld of sets comprised of the �nite subsets of
N and their complements (co�nite sets), and ν is the charge obtained by setting ν(A) = 0 if A ⊂ N is �nite and
ν(A) = 1 if A is co�nite. The functions f (n) = 1/n and g(n) = 0 are equal a.e., since {x ∈ N : |f (x) − g(x)| > ϵ}
is �nite, and therefore has zero charge for any ϵ, even though f (n) ≠ g(n) for any n ∈ N.

A related de�nition is the following.

De�nition2.4. Let (X,A, µ)bea charge space. A function f : X → R is said to bedominatedalmost everywhere
by g : X → R (abbreviated as f ≤ g a.e.) if f ≤ g + h, where h is a null function.

If A is a σ-�eld and µ a measure, then f : X → R is a null function if and only if µ*({x : f (x) ≠ 0}) = 0
(Proposition 4.2.7 of [3]). In that case, the use of the term“almost everywhere” in the preceding twode�nitions
corresponds to the conventional sense of this expression in measure theory.

Whether a function f is a null function, and whether f is equal to or dominated almost everywhere by
another function g, depends on the �eldA via the outer charge µ*A. Thus where there is potential ambiguity
regarding the �eld, it is helpful to say that f is a null function with respect toA, or that f = g a.e. or f ≤ g a.e.
with respect toA. Similar terminology should be used for all de�nitions that depend on an outer charge.

The following mode of convergence generalises convergence in probability and plays an important role
in the de�nition of integrals over a charge space.

De�nition 2.5. The mode of convergence fn h−→ f is read as “fn converges to f hazily” andmeans that for every
ϵ > 0,

µ*({x : |fn(x) − f (x)| > ϵ})→ 0

as n →∞.

The limit of a sequence that converges hazily is not in general unique, but nevertheless the following
result, adapted from Proposition 4.3.2 of [3], holds.

Theorem 2.6. Let (X,A, µ) be a charge space and let f and g be real-valued functions on X. If a sequence
of real-valued functions {fk}∞k=1 on X converges hazily to f , and f = g a.e., then {fk}∞k=1 converges to g hazily.
Conversely, if {fk}∞k=1 converges to both f and g hazily, then f = g a.e.

For two�elds of subsetsA,A′ of a setXwithA′ ⊂ Aanda charge µ de�nedonA, ambiguity canarise as to
whether hazy convergence is with respect toA orA′. In what follows, the notation fn h,A−−→ f is used wherever
there is potential ambiguity regarding the �eld of sets with respect to which hazy convergence occurs.

The following lemma con�rms an expected property of dominating functions: that the limit of a domi-
nated sequence is also dominated.
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Lemma 2.7. Let (X,A, µ) be a charge space, and consider a sequence of real-valued functions {fk}∞k=1 on X
and real-valued functions f and g on X such that fk

h−→ f and fk ≤ g a.e. for all k ∈ N. Then f ≤ g a.e.

Proof. For each k ∈ N, there exists a null function hk such that fk ≤ g+hk. Without loss of generality, suppose
hk ≥ 0 (noting fk ≤ g + h+k , where h+k := max{0, hk}). Then

f ≤ fk + |fk − f | ≤ g + hk + |fk − f |,

and thus f ≤ g + h, where h := infk (hk + |fk − f |) ≥ 0. Now for any x ∈ X and ϵ > 0,

h(x) > ϵ ⇒ hk(x) + |fk − f | > ϵ, for all k ∈ N

⇒ hk(x) >
ϵ
2 or |fk − f | >

ϵ
2 , for all k ∈ N.

Hence for each k ∈ N,

µ*({x : h(x) > ϵ}) ≤ µ*({x : hk(x) >
ϵ
2}) + µ

*({x : |fk − f | >
ϵ
2}).

The �rst term on the right hand side is zero, and the second goes to zero as k → ∞, implying µ*({x : h(x) >
ϵ}) = 0 for any ϵ > 0. That is, h is a null function.

As in standard Lebesgue integration, the integral is de�ned with reference to simple functions.

De�nition 2.8. A simple function on a charge space (X,A, µ) is a function f : X → R of the form
∑K

k=1 ck IAk ,
for K ∈ N, real numbers c1, . . . , cK and a partition of X into subsets {A1, . . . , AK} ⊂ A. (For unbounded
charges, simple functions must also satisfy µ(Ak) < ∞ whenever ck ≠ 0.)

Simple functions are used to de�ne a notion of measurability of functions on a charge space.

De�nition 2.9. A function f : X → R is said to be T1-measurable on a charge space (X,A, µ) if there is a
sequence of simple functions fn h−→ f . It is said to be T2-measurable if, given any ϵ > 0, there is a partition of X
into a �nite number of sets {A0, A1, . . . , AK} ⊆ A such that µ(A0) < ϵ and |f (x) − f (y)| < ϵ for every x, y ∈ Ak
and k ∈ {1, . . . , K}.

These two de�nitions of measurability are equivalent (Theorem 4.4.7 of [3]).

De�nition 2.10. The set of functions of the form f : X → R that are T1-measurable with respect to a charge
space (X,A, µ) is denoted L0(X,A, µ).

A pseudo-metric can be de�ned for L0(X,A, µ) as follows:

d0(f , g) := inf{ϵ > 0 : µ*({x : |f (x) − g(x)| > ϵ}) < ϵ}.

for all f , g ∈ L0(X,A, µ).

It is sometimes helpful to write d0,A(f , g) to clarify the �eld of sets used to de�ne the outer charge µ*A. It
is immediate that d0,A(f , g) = 0 if and only if f = g a.e. with respect to A, and that a sequence of functions
{fn}∞n=1 ⊆ L0(X,A, µ) converges to f ∈ L0(X,A, µ) in the pseudo-metric d0,A if and only if fn h,A−−→ f .

De�ne L0(X,A, µ) to be the collection of equivalence classes of L0(X,A, µ) under the equivalence rela-
tion f ∼ g ⇐⇒ d0(f , g) = 0. Then the function d0([f ], [g]) := d0(f , g) is a a metric for L0(X,A, µ), where [f ]
and [g] are the equivalence classes of f and g respectively.

Any T1-measurable function has the following property.

De�nition 2.11. A function f : X → R is said to be smooth if, given any ϵ > 0, there exists k > 0 such that

µ*({x ∈ X : |f (x)| > k}) < ϵ.
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Although T1-measurability implies smoothness (Corollary 4.4.8 of [3]), the converse is not true in general.
Other key properties of T1-measurable functions include the following, adapted from Corollary 4.4.9 of

[3].

Theorem 2.12. Let (X,A, µ) be a charge space and let f and g be real-valued functions on X. Let ψ : R → R
be a continuous function. Then

1. If f and g are T1-measurable and c, d ∈ R, then cf + dg and fg are T1-measurable.
2. If f is T1-measurable, then ψ(f ) is T1-measurable.
3. If {fn}∞n=1 is a sequence of T1-measurable functions converging to f hazily, then f is T1-measurable and
{ψ(fn)}∞n=1 converges to ψ(f ) hazily.

De�nition 2.13. Any simple function is integrable with integral∫ K∑
k=1

ck IAk :=
K∑
k=1

ckµ(Ak).

A more general function f : X → R is said to be integrable if there is a sequence of simple functions {fn}∞n=1
such that:

1. fn h−→ f , and
2.
∫
|fn − fm|dµ → 0 as n,m →∞.

Such a sequence is said to be a determining sequence for f . The integral is then given by∫
fdµ := lim

n→∞

∫
fndµ.

This integral is well de�ned, that is the limit has the same value for any determining sequence (Theorem 4.4.10
in [3]).

For two �elds of setsA,A′ withA′ ⊂ A and a charge µ de�ned onA, ambiguity can arise as to whether a
function is integrable with respect to A or A′. Where necessary to distinguish the two integrals, they are de-
noted

∫
fdµA and

∫
fdµA′ respectively.Where the relevant �eld of sets is clear from the context, the subscript

can be omitted.
The following theorem, adapted fromTheorem4.4.13 of [3], enumerates some key properties of integrable

functions.

Theorem 2.14. Let (X,A, µ) be a charge space and let f and g be real-valued functions on X. Then

1. If f and g are integrable and c and d are real numbers, then cf + dg is integrable and
∫
(cf + dg)dµ =

c
∫
fdµ + d

∫
gdµ.

2. f is integrable if and only if f + := max{f , 0} and f − := max{−f , 0} are integrable.
3. If f and g are integrable and f ≤ g a.e., then

∫
fdµ ≤

∫
gdµ.

4. If f is integrable and g = f a.e. then g is integrable and
∫
gdµ =

∫
fdµ.

Another important property of integrals with respect to charges is given by Theorem 4.4.18 of [3], which
may be expressed as follows.

Theorem 2.15. Let (X,A, µ) be a charge space and let f and g be real-valued functions on X such that |g| ≤ f
a.e. and f is integrable. Then g is integrable if and only if it is T1-measurable.

De�nition 2.16. For p ∈ (0,∞), the function space Lp(X,A, µ) is the set of all T1-measurable functions f :
X → R such that |f |p is integrable.
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The following theorem paraphrases Theorem 4.6.7 of [3, Sec. 4.6]), and adds the case p ∈ (0, 1) described
in Section 1.4 of [2]. The added case can be proved with the aid of the inequality (a + b)p ≤ ap + bb for
a, b ∈ [0,∞) and p ∈ (0, 1).

Theorem 2.17. Let (X,A, µ) be a charge space and p ∈ (0,∞). Then Lp(X,A, µ) is a vector space. For p < 1,
the bivariate function

dp(f , g) :=
∫
|f − g|pdµ

is a pseudo-metric on Lp(X,A, µ). For p ≥ 1, the bivariate function

dp(f , g) :=
(∫
|f − g|pdµ

)1/p

is a pseudo-metric on Lp(X,A, µ) and

||f ||p :=
(∫
|f |pdµ

)1/p

is a pseudo-norm.

Again it will sometimes be helpful to write dp,A instead of dp when there is ambiguity regarding the �eld
A.

One can construct proper metric spaces (or proper normed vector spaces in the case p ∈ [1,∞)) from
Lp(X,A, µ) as follows.

De�nition 2.18. For p ∈ (0,∞), the function spaceLp(X,A, µ) is the set of equivalence classes in Lp(X,A, µ)
under the equivalence relation f ∼ g if and only if dp(f , g) = 0.

The following characterisation of this equivalence relation is a consequence of Theorem 4.4.13(ix) of [3]
(see also Section 1.5 of [2]).

Theorem 2.19. For p ∈ (0,∞) and f , g ∈ Lp(X,A, µ), f ∼ g if and only if f and g are equal a.e.

Note dp([f ], [g]) := dp(f , g) is a well de�ned metric on Lp(X,A, µ) for p ∈ (0,∞) and ||[f ]||p := ||f ||p is a
well de�ned norm on Lp(X,A, µ) for p ∈ [1,∞), where [f ] denotes the equivalence class of f ∈ Lp(X,A, µ).
Where there is potential ambiguity or uncertainty regarding the �eldAwith respect to which the equivalence
class is de�ned, the notation [f ]A will be used to clarify.

The following simple lemma is frequently useful.

Lemma 2.20. Let (X,A, µ) be a charge space and p ∈ (0,∞). Then the following three statements are logically
equivalent.

1. f ∈ Lp(X,A, µ).
2. (f +)p , (f −)p ∈ L1(X,A, µ).
3. f +, f − ∈ Lp(X,A, µ).

Moreover, if any of these statements holds, then |f | ∈ Lp(X,A, µ) and |f |p ∈ L1(X,A, µ).

Proof. (1⇒ 2) (f +)p and (f −)p are T1-measurable by Theorem 2.12(2), and then integrable by Theorem 2.15.
(2⇒ 3) This is immediate from the de�nition of Lp(X,A, µ).
(3⇒ 1) This follows by Theorem 2.17, since f = f + − f −.
The additional statements follow by Theorem 2.12 and the de�nition of Lp(X,A, µ).

The Lp spaces respect the partial ordering on �elds of subsets in the sense determined by the following
lemma, which follows straightforwardly from the relevant de�nitions (the proof is omitted).
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Lemma 2.21. Suppose (X,A, µ) and (X,A′, µ) are charge spaces withA′ ⊆ A. Then the following statements
hold.

1. If fn h,A′
−−−→ f for real-valued functions {fn}∞n=1 and f on X, then fn h,A−−→ f .

2. If f is a simple function with respect toA′, then it is simple with respect toA.
3. If f is a T1-measurable function with respect toA′, then it is T1-measurable with respect toA.
4. If f is an integrable function with respect toA′, then it is integrable with respect toA. Moreover,

∫
fdµA′ =∫

fdµA.
5. Lp(X,A′, µ) ⊆ Lp(X,A, µ) for p ∈ [0,∞).
6. µ*A′ (A) ≥ µ*A(A) for all A ∈ A.

The Lp spaces are nested as described in the following theorem. The case r, s ∈ [1,∞) is Corollary 4.6.5
of [3]. The case r, s ∈ (0, 1) follows because if Lr(X,A, µ) ⊇ Ls(X,A, µ), then Lrt(X,A, µ) ⊇ Lst(X,A, µ) for
all t ∈ (0,∞).

Theorem 2.22. Let (X,A, µ) be a charge space and r, s ∈ (0,∞) with r ≤ s. Then

L0(X,A, µ) ⊇ Lr(X,A, µ) ⊇ Ls(X,A, µ).

Like the Lebesgue integral, integration with respect to a charge satis�es a dominated convergence theo-
rem.

Theorem 2.23. Let (X,A, µ) be a charge space and let g ∈ Lp(X,A, µ) for some p ∈ (0,∞). Let {fk}∞k=1 be
a sequence of T1-measurable functions on X such that |fk| ≤ g a.e. for each k ∈ N, and let f be a real-valued
function on X. Then fk

h−→ f if and only if f ∈ Lp(X,A, µ) and dp(fk , f )→ 0.

Proof. The case p ∈ [1,∞) is Theorem 4.6.14 of [3]. So consider the case p ∈ (0, 1), and suppose fk
h−→ f . The-

orem 2.12(3) gives that f is T1-measurable, and then Theorem 2.12(2) gives |f |p is T1-measurable. Lemma 2.7
gives that |f | ≤ g a.e, hence |f |p ≤ gp a.e., and note gp ∈ L1(X,A, µ). By Theorem 2.15, |f |p ∈ L1(X,A, µ),
giving f ∈ Lp(X,A, µ). Note |fk − f |p is T1-measurable and |fk − f |p ≤ (2g)p for each k ∈ N, hence the theorem
can be applied for the case proved in Theorem 4.6.14 of [3], thus giving dp(fk , f ) =

∫
|fk − f |pdµ → 0.

Now suppose f ∈ Lp(X,A, µ) and dp(fk , f ) → 0, where p ∈ (0, 1). Then d1((f +k )
p , (f +)p) → 0, because

|f +k − f
+| ≤ |fk − f | and ||a|p − |b|p| ≤ |a − b|p for all a, b ∈ R. Again the theorem can be applied for the case

proved in Theorem4.6.14 of [3] to obtain (f +k )
p h−→ (f +)p, and Theorem 2.12(3) gives f +k

h−→ f +. Similarly f −k
h−→ f −,

hence fk
h−→ f .

The simple functions in Lp(X,A, µ) have the following property, adapted from Theorem 4.6.15 of [3].

Theorem 2.24. Let (X,A, µ) be a charge space. The simple functions on X with respect to A are dense in
Lp(X,A, µ) for every p ∈ [0,∞).

This is proved for the case p ∈ [1,∞) in [3]. In fact, that proof is also valid for the case p ∈ (0, 1), once the
dominated convergence theorem is proved for that case. The case p = 0 follows from the fact that a sequence
of functions {fn}∞n=1 converges hazily to f if and only if d0(fn , f )→ 0 (see Section 1.1 of [2]).

An important tool in the analysis of Lp spaces with respect to a charge is the Peano-Jordan completion
([2, 5, 8]), de�ned as follows.

De�nition 2.25. Let (X,A, µ) be a charge space. The Peano-Jordan completion of A is the charge space
(X,A, µ) where

A := {A ⊆ X : ∀ϵ > 0, ∃B, C ∈ A such that B ⊆ A ⊆ C and µ(C \ B) < ϵ}

and
µ(A) := sup{µ(B) : B ⊆ A, B ∈ A} = inf{µ(C) : A ⊆ C, C ∈ A}.
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A charge space is said to be Peano-Jordan complete if it is equal to its Peano-Jordan completion.

It is straightforward to show A is a �eld and µ is a charge. One can also show Peano-Jordan completion
is an idempotent operation, that is A = A and µ = µ. Two more useful properties are that µ*A(A) = µ(A) for
A ∈ A, and that (X,A, µ) and (X,A, µ) have the same null sets.

If (X,A, µ) and (X,A′, µ) are charge spaces with A′ ⊆ A, and (X,A, µA) and (X,A′, µA′ ) are their re-
spective Peano-Jordan completions, then it is straightforward to show A′ ⊆ A and µA′ (A) = µA(A) for all
A ∈ A′. Thus the subscripts can safely be omitted from µA and µA′ without ambiguity. However, it is useful
to retain the subscripts on the inverse set functions µ−1A and µ−1A′ , since these are not in general equal. Note
also that µ*A′ (A) = µ*A(A) = µ(A) for A ∈ A′, and the subscripts may therefore be omitted without ambiguity
in this case as well.

The following lemma establishes that Peano-Jordan completeness generalises the concept of complete-
ness for measure spaces.

Lemma 2.26. Suppose (X,A, µ) is a measure space. Then it is Peano-Jordan complete if and only if it is a
complete measure space.

Proof. (⇒) Let N ∈ A such that µ(N) = 0, and consider A ⊂ N. Then ∅ ⊆ A ⊆ N and µ(N \ ∅) = 0, implying
A ∈ A = A.

(⇐) Consider A ∈ A. Then there exist B, C ∈ A such that B ⊆ A ⊆ C and µ(C \ B) = 0. (To see this, use
the de�nition ofA to construct Bn , Cn ∈ Awith Bn ⊆ A ⊆ Cn and µ(Cn \ Bn) < 1/n, then set B := ∪∞i=1Bn and
C := ∩∞i=1Cn, noting A is closed under countable unions and intersections.) Thus A ∈ A, since the measure
space is complete.

Peano-Jordan completion of a charge space leaves its Lp spaces unchanged, as the following theorem,
adapted from Proposition 1.8 of [2], states.

Theorem 2.27. Let (X,A, µ) be a charge space and let (X,A, µ) be its Peano-Jordan completion. Then

1. For A ⊆ X, µ*(A) = µ*(A).
2. A ∈ A if and only if IA ∈ L0(X,A, µ).
3. Lp(X,A, µ) = Lp(X,A, µ) for all p ∈ [0,∞).
4. For f ∈ L1(X,A, µ),

∫
fdµ =

∫
fdµ.

The above theorem has the following consequence.

Corollary 2.28. Let (X,A, µ) be a charge space and p ∈ [0,∞). Then f ∈ Lp(X,A, µ) if and only if fIA ∈
Lp(X,A, µ) for all A ∈ A.

Proof. Suppose f ∈ Lp(X,A, µ) and A ∈ A. By Theorem 2.27, IA is T1-measurable, and by Theorem 2.12, fIA
is T1-measurable. This is all that is required for the forward implication in the case p = 0. For p ∈ (0,∞),
Theorem 2.15 gives fIA ∈ Lp(X,A, µ), since |fIA|p ≤ |f |p. The converse is trivial, since X ∈ A.

One �nal theorem, useful for showing that an Lp space is complete, is the following, adapted from The-
orem 3.4 of [2].

Theorem 2.29. Let (X,A, µ) be a charge space and p ∈ (0,∞). The following statements are logically equiva-
lent.

1. Lp(X,A, µ) is complete.
2. L0(X,A, µ) is complete.
3. If A1 ⊆ A2 ⊆ . . . are sets in A such that supk≥1 µ(Ak) < ∞ and ϵ > 0, there exists D ∈ A such that
µ(Ak \ D) = 0 for all k ≥ 1 and limk→∞ µ(Ak) ≤ µ(D) ≤ limk→∞ µ(Ak) + ϵ.
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3 T1-measurability, integrability, and equality almost everywhere
This section presents new characterisations of T1-measurability, integrability, and equality almost every-
where of functions on a charge space. Among other corollaries, it follows that Lp(X,A, µ) spaces de�ned
as in Section 2 are equivalent to conventional Lebesgue function spaces when (X,A, µ) is a complete mea-
sure space (Corollaries 3.5 and 3.6). The latter result is known, or at least generally assumed, but proof seems
to be absent from the literature.

The following two lemmas are fundamental to the results in this section.

Lemma 3.1. Consider f ∈ L0(X,A, µ), where (X,A, µ) is a charge space. Then for all y ∈ R such that µ*(f −1[y−
δ, y + δ])→ 0 as δ → 0, f −1(−∞, y] ∈ A and f −1[y, ∞) ∈ A. Moreover, f −1(y) ∈ A with µ(f −1(y)) = 0.

Proof. Suppose y ∈ R satis�es the condition of the lemma, �x ϵ > 0 and select δ > 0 and D ∈ A such
that f −1[y − δ, y + δ] ⊆ D with µ(D) < ϵ/2. Since f is T2-measurable, there exists a partition of X into sets
{A0, A1, . . . , AK} ⊆ A such that µ(A0) < ϵ/2 and |f (x1)−f (x2)| < 2δ for every x1, x2 ∈ Ak and k ∈ {1, . . . , K}.
For each k ∈ {1, . . . , K}, exactly one of the following is true:

1. Ak ⊆ f −1[y − δ, y + δ],
2. Ak ∩ f −1(−∞, y − δ) ≠ ∅, or
3. Ak ∩ f −1(y + δ, ∞) ≠ ∅.

De�ne
B :=

⋃
{Ak : k ∈ {1, . . . , K}, Ak ∩ f −1(−∞, y − δ) ≠ ∅} \ D

and
Cc :=

⋃
{Ak : k ∈ {1, . . . , K}, Ak ∩ f −1(y + δ, ∞) ≠ ∅} \ D.

Then B, C ∈ A with B ⊆ f −1(−∞, y] ⊆ C and C \ B = (B ∪ Cc)c ⊆ A0 ∪ D. Hence µ(C \ B) ≤ µ(A0) + µ(D) < ϵ,
and f −1(−∞, y] ∈ A. The proof that f −1[y, ∞) ∈ A is similar.

Fix ϵ > 0 and choose δ > 0 such that µ*(f −1[y − δ, y + δ]) < ϵ. Then f −1(y) = f −1(−∞, y] ∩ f −1[y, ∞) ∈ A

with µ(f −1(y)) ≤ µ*(f −1[y − δ, y + δ]) < ϵ. Let ϵ → 0 to obtain µ(f −1(y)) = 0.

Note the proof of Lemma 3.1 does not require µ to be bounded.

Lemma 3.2. Consider f ∈ L0(X,A, µ), where (X,A, µ) is a charge space. There are at most countably many
y ∈ R such that limδ→0 µ*(f −1[y − δ, y + δ]) > 0.

Proof. For any n ∈ N, suppose there exist distinct {y1, . . . , yn} ⊂ R such that

lim
δ→0

µ*(f −1[yi − δ, yi + δ]) >
µ(X)
n

for each i ∈ {1, . . . , n}. Choose δ > 0 with δ < min{|yi − yj| : i, j ∈ {1, . . . , n}} and note µ*(f −1[yi − δ/4, yi +
δ/4]) > µ(X)/n for each i. Then choose ϵ > 0 such that µ*(f −1[yi − δ/4, yi + δ/4]) > µ(X)/n + ϵ for each i.

Since f is T2-measurable, there exists a partition {A0, A1, . . . , AK} ⊆ A of X such that µ(A0) < ϵ and
|f (x1) − f (x2)| < δ/4 for all x1, x2 ∈ Aj and all j ∈ {1, . . . , K}. For each i ∈ {1, . . . , n}, de�ne

Bi :=
⋃
{Aj : k ∈ {1, . . . , K}, Aj ∩ f −1[yi − δ/4, yi + δ/4] ≠ ∅}.

Then Bi ∈ A with f −1[yi − δ/4, yi + δ/4] ⊆ Bi ∪ A0, and hence

µ(Bi) ≥ µ*(f −1[yi − δ/4, yi + δ/4]) − µ(A0) > µ(X)/n.

Moreover, Bi ⊆ f −1[yi − δ/2, yi + δ/2] for each i, implying {Bi}ni=1 is a collection of pairwise disjoint sets inA,
and thus µ(∪ni=1Bi) =

∑n
i=1 µ(Bi) > µ(X), a contradiction. It follows there can be at most �nitely many (fewer

than n) elements y ∈ R with limδ→0 µ*(f −1[y − δ, y + δ]) > µ(X)/n, and hence at most countably many y ∈ R
with limδ→0 µ*(f −1[y − δ, y + δ]) > 0.
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Putting the above two lemmas together gives that T1-measurable functions produce chains of inverse
images inA, after excluding a countable set. As the following lemma states, that countable setmay be chosen
to correspond precisely with the sets at which µ is in a certain sense discontinuous on the chain.

Lemma 3.3. Consider f ∈ L0(X,A, µ), where (X,A, µ) is a charge space. There exists a countable set C ⊂ R
such that

1. f −1(y, ∞) ∈ A for all y ∈ R \ C, and
2. y ∈ R \ C if and only if

µ*(f −1(y, ∞)) = sup{µ(A) : A ∈ T, f −1(y, ∞) ⊃ A}
= inf{µ(A) : A ∈ T, f −1(y, ∞) ⊂ A}

where T := {f −1(y, ∞) : y ∈ R \ C}.

Proof. By Lemma 3.2, the set

C := {y ∈ R : lim
δ→0

µ*(f −1[y − δ, y + δ]) > 0}

is countable. By Lemma 3.1, f −1(y, ∞) = (f −1(−∞, y])c ∈ A, for all y ∈ R \ C.
Suppose y ∈ R \ C and �x ϵ > 0. Then there exists δ > 0 such that µ*(f −1[y − δ, y + δ]) < ϵ, and y′ ∈ R \ C

such that y < y′ < y + δ. It follows that

µ(f −1(y, ∞)) − µ(f −1(y′, ∞)) = µ(f −1(y, ∞) \ f −1(y′, ∞))
= µ*(f −1(y, y′])
≤ µ*(f −1[y − δ, y + δ])
< ϵ.

But then

sup{µ(A) : A ∈ T, f −1(y, ∞) ⊃ A} ≤ µ(f −1(y, ∞))
< µ(f −1(y′, ∞)) + ϵ
≤ sup{µ(A) : A ∈ T, f −1(y, ∞) ⊃ A} + ϵ.

Letting ϵ → 0 gives

µ*(f −1(y, ∞)) = µ(f −1(y, ∞)) = sup{µ(A) : A ∈ T, f −1(y, ∞) ⊃ A}.

The proof that µ*(f −1(y, ∞)) = inf{µ(A) : A ∈ T, f −1(y, ∞) ⊂ A} is similar.
Conversely, suppose

µ*(f −1(y, ∞)) = sup{µ(A) : A ∈ T, f −1(y, ∞) ⊃ A}
= inf{µ(A) : A ∈ T, f −1(y, ∞) ⊂ A}.

Fix ϵ > 0. Since C is countable, onemay choose δ > 0 so that y−δ ∈ R\C and y+δ ∈ R\Cwith µ(f −1(y−δ, ∞)) <
µ*(f −1(y, ∞)) + ϵ/2 and µ(f −1(y + δ, ∞)) > µ*(f −1(y, ∞)) − ϵ/2. Note µ(f −1[y − δ, ∞)) = µ(f −1(y − δ, ∞)), since
µ(f −1(y − δ)) = 0 by Lemma 3.1. Hence

µ*(f −1[y − δ, y + δ]) = µ(f −1[y − δ, y + δ])
= µ(f −1[y − δ, ∞)) − µ(f −1(y + δ, ∞))
< [µ*(f −1(y, ∞)) + ϵ/2] − [µ*(f −1(y, ∞)) − ϵ/2]
= ϵ.

Hence limδ→0 µ*(f −1[y − δ, y + δ]) = 0 and y ∈ R \ C.
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By similar reasoning, thepreceding lemmaalsoholds if one replaces f −1(y, ∞)with f −1(−∞, y), f −1[y, ∞),
or f −1(−∞, y].

The condition on chains of inverse images identi�ed in Lemma 3.3, together with smoothness, turns out
to characterise T1-measurable functions.

Theorem 3.4. Let (X,A, µ) be a charge space and let f be a real-valued function on X. Then the following three
statements are logically equivalent.

1. f ∈ L0(X,A, µ).
2. f : X → R satis�es the following:

(a) there exists a countable set C ⊂ R such that f −1(y, ∞) ∈ A for y ∈ R \ C, and
(b) f is smooth.

3. There exist sequences of simple functions (with respect toA) {f +n }∞n=1 and {f −n }∞n=1 such that for each n ∈ N,

f +n :=
Kn−1∑
j=1

yn,j I(f +)−1(yn,j ,yn,j+1] + yn I(f +)−1(yn ,∞)

and

f −n :=
Kn−1∑
j=1

yn,j I(f −)−1(yn,j ,yn,j+1] + yn I(f −)−1(yn ,∞)

where

(a) Kn := n2n,
(b) yn,j ∈ ((j − 1)2−n , j2−n] for each n ∈ N and j ∈ {1, . . . , Kn}, with yn := yn,Kn ,
(c) (f +)−1(yn,j , ∞) ∈ A and (f −)−1(yn,j , ∞) ∈ A for all n ∈ N and j ∈ {1, . . . , Kn},
(d) {yn,j}Knj=1 ⊂ {yn+1,j}

Kn+1
j=1 for each n ∈ N,

(e) f +n
h,A−−→ f + and f −n

h,A−−→ f − as n →∞.

Proof. (1⇒ 2) Property 2a is immediate from Lemma 3.3, and any T1-measurable function is smooth.
(2 ⇒ 3) Let D := {|y| : y ∈ C}. For each n ∈ N and j ∈ {1, . . . , Kn}, inductively choose yn,j to be any

element of ((j − 1)2−n , j2−n] \ D, unless there is already an element of that set in {yn−1,j}Kn−1j=1 , in which case
set yn,j equal to that element. Properties 3a to 3d are immediate consequences of this construction, and then
{f +n }∞n=1 and {f −n }∞n=1 are simple functions with respect toA.

For any x ∈ (f +)−1[0, yn], |f +n (x) − f +(x)| < 21−n. Also, f + is smooth since f + ≤ f . Thus for any ϵ > 0 and
n > 1 − log2 ϵ,

µ*({x ∈ X : |f +n (x) − f +(x)| > ϵ}) ≤ µ*((f +)−1(yn , ∞))→ 0

as n →∞. Hence f +n
h,A−−→ f + as n →∞, and similarly f −n

h,A−−→ f − as n →∞.
(3 ⇒ 1) Property 3c implies {f +n }∞n=1 is a sequence of simple functions with respect to A, and by 3e and

Theorem 2.27, f +n
h,A−−→ f +. Hence f + ∈ L0(X,A, µ) = L0(X,A, µ), and similarly f − ∈ L0(X,A, µ). By Theo-

rem 2.12, f = f + − f − ∈ L0(X,A, µ).

Note that f +n and f −n can be alternatively de�ned as

f +n :=
Kn−1∑
j=1

yn,j I(f +)−1(yn,j ,yn,j+1]

and

f −n :=
Kn−1∑
j=1

yn,j I(f −)−1(yn,j ,yn,j+1]

and the proof goes through unchanged. In fact, it doesn’t matter what constant values are assigned to
(f +)−1(yn , ∞) and (f −)−1(yn , ∞). The alternative de�nitions just provided are used only in the proof of part
of Theorem 3.9, whereas the de�nitions given in Statement 3 above are used in other proofs.
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The above theorem determines the following conditions under which T1-measurability is equivalent to
conventional measurability, and integrability with respect to a charge is equivalent to conventional Lebesgue
integrability.

Corollary 3.5. Suppose (X,A, µ) is a complete measure space. Then a function f : X → R is T1-measurable if
and only if it is measurable in the conventional sense.

Proof. (⇒) By Lemma 2.26, A = A. By Theorem 3.4, f −1(y, ∞) ∈ A for any y ∈ R \ C. But then f −1[y, ∞) ∈ A

for any y ∈ R, using the closure ofA under countable intersections. Hence f is measurable.
(⇐) Any measurable function immediately satis�es Statement 2a of Theorem 3.4 with C = ∅. Moreover,

any measurable function is smooth by Proposition 4.2.17 of [3].

Corollary 3.6. Suppose (X,A, µ) is a complete measure space. Then a function f : X → R is integrable (in the
sense of De�nition 2.13) if and only if it is Lebesgue integrable. Moreover, the two types of integral are equal.

Proof. It is su�cient to prove the corollary for non-negative functions, since then it will apply to f + and f −,
and by Theorem 2.14, to f . Hence assume f ≥ 0.

Recall that for a complete measure space, A = A by Lemma 2.26, so simple functions with respect to A

are also simple with respect to A. Moreover, all simple functions are trivially integrable in both senses, with
the two types of integral equal. Also note f is both T1-measurable and measurable in the conventional sense
if it is integrable in either sense, by Corollary 3.5.

(⇒) By Theorem 2.14, any simple function s with 0 ≤ s ≤ f satis�es 0 ≤
∫
sdµ ≤

∫
fdµ, where the integral

is as in De�nition 2.13. Hence

sup
{∫

sdµ : s simple , 0 ≤ s ≤ f
}
≤
∫
fdµ

is �nite, that is, f is Lebesgue integrable.
(⇐) Let fn be the sequence of simple functions convergingmonotonically pointwise to f asserted in State-

ment 3 of Theorem 3.4. By the monotone convergence theorem for the Lebesgue integral,∫
fndµ → sup

{∫
sdµ : s simple , 0 ≤ s ≤ f

}
.

Hence {
∫
fndµ}∞n=1 is a Cauchy sequence, and by De�nition 2.13, f ∈ L1(X,A, µ) with∫

fdµ = sup
{∫

sdµ : s simple , 0 ≤ s ≤ f
}
.

These two corollaries together imply that the Lp spaces of De�nition 2.16 are equivalent to the conven-
tional Lebesgue function spaces for a complete measure space, in the sense that they contain the same func-
tions and have the same pseudometric. This in turn gives the following.

Corollary 3.7. Suppose (X,A, µ) is a complete measure space. Then Lp(X,A, µ) is complete for all p ∈ [0,∞).

Proof. Conventional Lebesgue function spaces are complete, a result sometimes called the Riesz-Fischer the-
orem. Hence Lp(X,A, µ) is complete by Corollaries 3.6 and 3.5.

Versions of Corollaries 3.5, 3.6, and 3.7 canpresumably also be proved for unbounded completemeasures.
However, the above statements are adequate for the present purposes.

The next and �nal corollary to Theorem 3.4 is used in the proof of Theorem 5.10 to establish that a certain
vector space isomorphism is also an isometry.

Corollary 3.8. Suppose (X,A, µ) and (X,A′, µ) are charge spaces withA′ ⊆ A. Then d0,A′ (f , g) = d0,A(f , g)
for all f , g ∈ L0(X,A′, µ).
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Proof. De�ne h := |f−g| ∈ L0(X,A′, µ). By Theorem3.4, h−1(y, ∞) ∈ A′ for all y ∈ (0,∞)\C, where C ⊂ (0,∞)
is countable. It follows that

µ*A′ (h−1(y, ∞)) = µ*A(h−1(y, ∞)) = µ(h−1(y, ∞))

for all y ∈ (0,∞)\C. But then d0,A′ (f , g) = d0,A(f , g), since (0,∞)\C is dense in (0,∞), noting Lemma 3.3(2).

The following theorem asserts that chains of inverse images can also be used to characterise integrable
functions, in combination with a regularity condition that is stronger than smoothness (Condition 2b below).

Theorem 3.9. Let (X,A, µ) be a charge space and let f be a real-valued function on X. Then the following three
statements are logically equivalent.

1. f ∈ L1(X,A, µ).
2. f : X → R satis�es the following:

(a) there exists a countable set C ⊂ R such that f −1(y, ∞) ∈ A for y ∈ R \ C, and
(b) for all ϵ > 0, there exists y ∈ (0,∞) such that |f |I|f |−1(y,∞) ∈ L1(X,A, µ) with∫

|f |I|f |−1(y,∞)dµ < ϵ.

3. f ∈ L0(X,A, µ) and the sequences {f +n }∞n=1 and {f −n }∞n=1 obtained by applying Statement 3 of Theorem 3.4
to f satisfy the additional conditions

∫
|f +m − f +n |dµ → 0 and

∫
|f −m − f −n |dµ → 0 as m, n →∞.

Proof. (1⇒ 2) Any f ∈ L1(X,A, µ) is T1-measurable, hence 2a holds by Theorem 3.4.
For each n ∈ N, de�ne

f +n :=
Kn−1∑
j=1

yn,j I(f +)−1(yn,j ,yn,j+1]

as in the note following Theorem 3.4. By Theorem 2.14, f + ∈ L1(X,A, µ). Thus by dominated convergence
(Theorem 2.23),

∫
|f +n − f +|dµ → 0 as n → ∞. Fix ϵ > 0, then there is k ∈ N such that

∫
|f +k − f

+|dµ < ϵ/2.
Set y := yk as de�ned in Theorem 3.4. Then (f +)−1(y, ∞) ∈ A and hence by Corollary 2.28, f +I(f +)−1(y,∞) ∈
L1(X,A, µ). Now ∫

f +I(f +)−1(y,∞)dµ =
∫
(f + − f +k )I(f +)−1(y,∞)dµ

=
∫
|f +k − f

+|I(f +)−1(y,∞)dµ

≤
∫
|f +k − f

+|dµ

< ϵ/2

where the �rst equality follows since f +k I(f +)−1(yk ,∞) = 0, and the second follows since f +k ≤ f
+. Similarly,

f −I(f −)−1(y,∞) ∈ L1(X,A, µ) with ∫
f −I(f −)−1(y,∞)dµ < ϵ/2.

Hence |f |I|f |−1(y,∞) ∈ L1(X,A, µ) with∫
|f |I|f |−1(y,∞)dµ =

∫
f +I(f +)−1(y,∞)dµ +

∫
f −I(f −)−1(y,∞)dµ

< ϵ.

(2⇒ 3) LetD := {|y| : y ∈ C} and�x ϵ > 0. Then there is y ∈ [1,∞)\D such that |f |I|f |−1(y,∞) ∈ L1(X,A, µ)
and ∫

|f |I|f |−1(y,∞)dµ < ϵ.



76 | Jonathan M. Keith

Observe that ∫
|f |I|f |−1(y,∞)dµ ≥ y

∫
I|f |−1(y,∞)dµ

= y
∫
I|f |−1(y,∞)dµ

= yµ(|f |−1(y, ∞))
= yµ*(|f |−1(y, ∞))
≥ µ*(|f |−1(y, ∞))

since y ≥ 1, using Theorem 2.27 to interchange integration with respect to µ and µ. Hence µ*(|f |−1(y, ∞)) < ϵ,
that is f is smooth, and f ∈ L0(X,A, µ) by Theorem 3.4.

Let {f +n }∞n=1 be the sequence of functions asserted by Statement 3 of Theorem 3.4 and note that by The-
orem 2.12, f + ∈ L0(X,A, µ). Fix ϵ > 0 and choose a new y ∈ [0,∞) \ D such that |f |I|f |−1(y,∞) ∈ L1(X,A, µ)
and ∫

|f |I|f |−1(y,∞)dµ < ϵ2 .

By Corollary 2.28, f +I(f +)−1(y,∞) ∈ L1(X,A, µ), and by Theorem 2.14,∫
f +I(f +)−1(y,∞)dµ ≤

∫
|f |I|f |−1(y,∞)dµ < ϵ2 .

Choose k ∈ N such that yk > y and 21−k < ϵ/(2µ(X)). Then for m > k and n > k,∫
|f +m − f +n |dµ =

∫
|f +m − f +n |I(f +)−1[0,y])dµ +

∫
|f +m − f +n |I(f +)−1(y,∞)dµ

≤ 21−kµ((f +)−1[0, y]) +
∫
f +I(f +)−1(y,∞)dµ

< ϵ.

Thus
∫
|f +m − f +n |dµ → 0 as m, n →∞. Similarly,

∫
|f −m − f −n |dµ → 0 as m, n →∞.

(3 ⇒ 1) The functions {f +n }∞n=1 are simple functions with respect to A and hence form a determining
sequence for f + with respect to A. Thus f + ∈ L1(X,A, µ) = L1(X,A, µ), by Theorem 2.27. Similarly f − ∈
L1(X,A, µ). By Theorem 2.14, f = f + − f − ∈ L1(X,A, µ).

Again note that f +n and f −n can be alternatively de�ned as

f +n :=
Kn−1∑
j=1

yn,j I(f +)−1(yn,j ,yn,j+1]

and

f −n :=
Kn−1∑
j=1

yn,j I(f −)−1(yn,j ,yn,j+1]

and the proof goes through unchanged.
Condition 2 of the above theorem remains su�cient for f ∈ L1(X,A, µ) if 2b is weakened to hold only

for some ϵ > 0. For then there exists y ∈ (0,∞) such that |f |I|f |−1(y,∞) ∈ L1(X,A, µ) and one may apply the
theorem as currently stated to the latter function to obtain that 2b holds for all ϵ > 0.

The following technical corollary is useful for bounding integrals. It generalises the easy fact that when
one charge dominates another, the integrals of the former dominate the integrals of the latter. (This result has
been useful to the author in concurrent work, and may be of more general interest.)

Corollary 3.10. Let µ1 and µ2 be charges de�ned on a common �eld of subsets A of a set X. Consider f :
X → [0,∞) such that f ∈ L1(X,A, µ1) and f ∈ L1(X,A, µ2). Suppose E is a dense subset of (0,∞) such that
f −1(y, ∞) ∈ A for all y ∈ E, and de�ne T := {f −1(y, ∞) : y ∈ E}. If µ1(A) ≤ µ2(A) for each A ∈ T, then
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1.
∫
fdµ1 ≤

∫
fdµ2, and

2. for each A ∈ T, fIA ∈ L1(X,A, µ1) and fIA ∈ L1(X,A, µ2) with∫
fIAdµ1 ≤

∫
fIAdµ2.

Proof. Fix ϵ > 0. By Property 2b of Theorem 3.9 and the density of E in (0,∞), there is y ∈ E such that
fIf −1(y,∞) ∈ L1(X,A, µ1) with

∫
fIf −1(y,∞)dµ1 < ϵ

2 . Moreover, by the density of E in (0,∞), there is an increasing
sequence {yj}Kj=1 ⊆ E with K ∈ N, yK := y and yj ∈ ((j − 1)δ, jδ] for each j ∈ {1, . . . , K}, where δ := ϵ

4µ1(X) .
Form the function:

fϵ :=
K−1∑
j=1

yj IAj\Aj+1 + yIAK

where Aj := f −1(yj , ∞) ∈ A for each j ∈ {1, . . . , K}. Note 0 ≤ f (x) − fϵ(x) < ϵ
2µ1(X) for all x ∈ [0, yK].

Then ∫
fdµ2 ≥

∫
fϵdµ2

=
K−1∑
j=1

yj(µ2(Aj) − µ2(Aj+1)) + yKµ2(AK)

= y1µ2(A1) +
K∑
j=2

(yj − yj−1)µ2(Aj)

≥ y1µ1(A1) +
K∑
j=2

(yj − yj−1)µ1(Aj)

=
K−1∑
j=1

yj(µ1(Aj) − µ1(Aj+1)) + yKµ1(AK)

=
∫
fϵdµ1

≥
∫
fϵ IAcKdµ1

>
∫ (

f − ϵ
2µ1(X)

)
IAcKdµ1

=
∫
fdµ1 −

∫
fIAKdµ1 −

ϵ
2µ1(X)

µ1(AcK)

>
∫
fdµ1 − ϵ

where the interchange of integration with respect to µ and µ is justi�ed by Theorem 2.27. Let ϵ → 0 to obtain∫
fdµ1 ≤

∫
fdµ2.

Note that for any A ∈ T, the function fIA satis�es:

1. fIA ∈ L1(X,A, µ1) and fIA ∈ L1(X,A, µ2),
2. (fIA)−1(y, ∞) ∈ A for all y ∈ E, and
3. µ1((fIA)−1(y, ∞)) ≤ µ2((fIA)−1(y, ∞)) for all y ∈ E.

Claim 1 follows by Corollary 2.28. Claims 2 and 3 follow since (fIA)−1(y, ∞) = f −1(y, ∞) ∈ T if A ⊇ f −1(y, ∞)
and (fIA)−1(y, ∞) = A ∈ T if A ⊆ f −1(y, ∞). Hence by the above reasoning

∫
fIAdµ1 ≤

∫
fIAdµ2.

Lemma 3.2 also implies the following characterisation of equality a.e.

Theorem 3.11. Consider a charge space (X,A, µ) and functions f : X → R and g : X → R. Then the following
statements hold.



78 | Jonathan M. Keith

1. If f = g a.e, then fIA = gIA a.e. for any A ∈ P(X),
2. if A, B ∈ P(X) with µ*(A4B) = 0, then fIA = fIB a.e.,
3. If f ∈ L0(X,A, µ), there exists a countable C ⊂ R such that the following statements are logically equiva-

lent:

(a) f = g a.e,
(b) µ*(f −1(y, ∞)4g−1(y, ∞)) = 0 for all y ∈ R \ C, and
(c) fIf −1(y,∞) = gIg−1(y,∞) a.e. for all y ∈ R \ C.

Proof. For 1, note |fIA − gIA| = |f − g|IA ≤ |f − g|. Hence for any ϵ > 0,

µ*({x : |(fIA)(x) − (gIA)(x)| > ϵ}) ≤ µ*({x : |f (x) − g(x)| > ϵ}) = 0.

For 2, note
|fIA − fIB| = |f ||IA − IB| = |f |IA4B .

Hence for any ϵ > 0,
µ*({x : |(fIA)(x) − (fIB)(x)| > ϵ}) ≤ µ*(A4B) = 0.

For 3, let C be the countable subset of Rmentioned in Lemma 3.2.
(3a ⇒ 3b) Choose y ∈ R \ C and ϵ > 0, then there exists δ > 0 such that µ*(f −1[y − δ, y + δ]) < ϵ. Now

x ∈ f −1(y, ∞)4g−1(y, ∞) ⇐⇒ (f (x) > y and g(x) ≤ y) or
(f (x) ≤ y and g(x) > y)

⇒ x ∈ f −1[y − δ, y + δ] or
|f (x) − g(x)| > δ,

hence
µ*(f −1(y, ∞)4g−1(y, ∞)) ≤ µ*(f −1[y − δ, y + δ]) < ϵ.

Let ϵ → 0 to obtain the result.
(3b ⇒ 3a) For each x ∈ X with g(x) ≠ f (x), one of the following cases applies. Consider the case g(x) >

f (x). Then for any y ∈ (f (x), g(x)) \ C, x ∈ g−1(y, ∞) \ f −1(y, ∞). Next consider the case g(x) < f (x). Then for
any y ∈ (g(x), f (x)) \C, x ∈ f −1(y, ∞)\g−1(y, ∞). In either case, x ∈ f −1(y, ∞)4g−1(y, ∞). Fix ϵ > 0 and δ > 0.
By the smoothness of f , there is y0 ∈ (0,∞) such that µ*({x : |f (x)| > y0}) < δ. Moreover, by the density of
C in R, there is a �nite set {yj}Kj=1 ⊂ R \ C such that max{|y − yk| : k ∈ {1, . . . , K}} < ϵ for all y ∈ [−y0, y0].
Then

µ*({x : |f (x) − g(x)| > ϵ}) ≤ µ*({x ∈ f −1[−y0, y0] : |f (x) − g(x)| > ϵ}) + µ*({x : |f (x)| > y0})

<
K∑
j=1

µ*(f −1(yj , ∞)4g−1(yj , ∞)) + δ

= δ,

Letting δ → 0 gives f = g almost everywhere.
(3a ⇒ 3c) Observe that fIf −1(y,∞) = gIf −1(y,∞) a.e. by 1, and gIf −1(y,∞) = gIg−1(y,∞) a.e. by 2 and 3b (which is

implied by 3a), for any y ∈ R \ C.
(3c ⇒ 3b) Consider y ∈ R \ C. Then there is z ∈ (−∞, y) \ C. De�ne fz := fIf −1(z,∞) and gz := gIg−1(z,∞).

Then fz = gz a.e. and moreover

lim
δ→0

µ*(f −1z [y − δ, y + δ]) = lim
δ→0

µ*(f −1[y − δ, y + δ]) = 0.

Reasoning as in (3a ⇒ 3b) above gives

µ*(f −1(y, ∞)4g−1(y, ∞)) = µ*(f −1z (y, ∞)4g−1z (y, ∞)) = 0.
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4 Complete Lp spaces
It is not in general true that the metric space Lp(X,A, µ) is complete, where (X,A, µ) is a charge space and
p ∈ [0,∞). Completeness of these spaces is well studied: see [5], [6] and especially [2] for helpful discussions.
The latter paper reviews numerous characterisations of completeness of Lp(X,A, µ) in terms of: 1) internal
properties of the charge space, such as Theorem 2.29(3) above, 2) Stone space, 3) completeness of the quo-
tient A/M with respect to a certain metric, 4) Hahn decompositions, 5) Radon-Nikodym derivatives, and 6)
decompositions of µ as a sum of charges. Parts of the literature on completeness of Lp spaces should be ap-
proached with caution, as a number of errors have been propagated. For example, Proposition 5.2 in a paper
by Armstrong [1] claims the following are logically equivalent for a bounded charge space: (i) L1(X,A, µ) is
complete, (ii) µ induces a countably additive set function on the Boolean quotient A/M, whereM := µ−1(0)
is the kernel of µ, and (iii)A is a σ-�eld. However, as Basile and Bhaskara Rao [2] show, the only true implica-
tion in this proposition is (i)⇒ (ii); counter-examples are available for each of the others. This error has been
propagated across multiple papers. Another characterisation of completeness, due to Green [10], was shown
to be false in [12].

This section contains a new characterisation of completeness for Lp spaces constructed on a bounded,
non-negative charge space (Theorem 4.2), in terms of a representation ofA/M on a �eld of sets. In addition,
a su�cient condition for completeness is proved, correcting the false condition (ii)⇒ (i) of Armstrong just
mentioned. The correction involves the auxiliary condition that A/M be a countably complete Boolean al-
gebra. It thus also resembles the false characterisation due to Green just mentioned, but the combination of
these two conditions turns out to be su�cient for completeness. It is not necessary, however, as evidenced
by Example 4.1 of [2].

Since this section makes frequent reference to Boolean algebras and their representations, the following
brief discussion of relevant terminology and notation, with particular reference to charge spaces, may be
helpful.

Any �eld of sets A ⊆ P(X) on an arbitrary set X forms a Boolean algebra with pairwise intersection ∩ as
the meet operator ∧, pairwise union ∪ as the join operator ∨, set complement c as the Boolean complement
operator ′, the empty set ∅ as the zero and X as the unit. Note also that the symmetric set di�erence p4q is
an exclusive disjunction p + q := (p ∧ q′) ∨ (p′ ∧ q) and the subset relation p ⊆ q is a Boolean partial order
p ≤ q.

Stone’s representation theorem (originally proved in [14], but [7] and [13] contain helpful expositions) is
a fundamental result asserting that every abstract Boolean algebra A is isomorphic to a �eld of sets. More
speci�cally,A can be embedded in P(SA), where SA is a set called the Stone space ofA. Stone spaces can be
constructed in various equivalent ways, but the details are not needed here. It will be su�cient throughout
what follows to work with an unspeci�ed representation ofA, that is, a Boolean isomorphism ϕ : A→ P(Y)
embeddingA into the power set of some set Y.

For any charge space (X,A, µ), the set M := µ−1(0) := {A ∈ A : µ(A) = 0}, called the kernel of µ, is a
Boolean ideal ofA, and the collection of null setsN := {A ∈ P(X) : µ*(A) = 0} is a Boolean ideal of P(X).

Suppose A is a Boolean algebra and M is a Boolean ideal of A. Let [A] ∈ A/M denote the equivalence
class of A ∈ Aunder the equivalence relation A ∼ B ⇐⇒ A+B ∈M. If the quotient spaceA/M is potentially
ambiguous, the notation [A]A/M will be used to clarify.

Suppose ϕ : A/M → P(Y) is an embedding of the Boolean algebra A/M in the power set of some set Y
(which may or may not be the Stone space SA/M). De�ne 〈A〉 := ϕ([A]) for all A ∈ A. If the embedding ϕ is
potentially ambiguous, it will be indicated by a subscript as 〈A〉ϕ.

For any A′ ⊆ A (not necessarily a sub-algebra), de�ne [A′] := {[A] : A ∈ A′}. Similarly, de�ne 〈A′〉 :=
{〈A〉 : A ∈ A′}.

If (X,A, µ) is a charge space and M is the kernel of µ, the induced function µ : A/M → R given by
µ[A] := µ(A) for all A ∈ A is �nitely additive. Similarly, if ϕ : A/M → P(Y) is a representation of A/M, one
may de�ne a charge µ on 〈A〉ϕ by µ〈A〉ϕ := µ(A) for all A ∈ A, so that (Y , 〈A〉ϕ , µ) is a charge space. Note
that wherever possible inwhat follows, parentheses enclosing a function argumentwill be omittedwhen that
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argument is already enclosed in square or angled brackets; for example, µ[A] and µ〈A〉 will be preferred to
µ([A]) and µ(〈A〉)

A Boolean algebra A is said to be countably complete if every countable subset {pk}∞k=1 in A has a least
upper bound inA.

A countably additive function µ on a countably complete Boolean algebraA is a generalisation of a non-
negative measure: it is a function µ : A → R+ such that µ(0) = 0 and µ(∨∞k=1pk) =

∑∞
k=1 µ(pk) for any

pairwise disjoint sequence {pk}∞k=1 ⊆ A. In this paper, it will be assumed that a countably additive function
is bounded, that is, µ(1) < ∞, unless otherwise stated.

First it will be useful to show that a representation of a countably complete Boolean algebra can be trans-
formed into a measure space as follows.

Lemma 4.1. Let A be a countably complete Boolean algebra and let µ : A → R+ be a countably additive
function. Suppose ϕ : A → P(Y) is a representation of A. Then (Y , ϕ(A), µ) is a complete measure space,
where µ : ϕ(A)→ R+ is the charge de�ned by µ(ϕ(A)) := µ(A) for all A ∈ A.

Proof. Let {Ak}∞k=1 ⊆ ϕ(A) be pairwise disjoint, and set A := ∪∞k=1Ak. For each k ∈ N and ϵ > 0, there exist
Bk , Ck ∈ A such that ϕ(Bk) ⊆ Ak ⊆ ϕ(Ck) and µ(Ck) − µ(Bk) < (ϵ/2)2−k. Then {Bk}∞k=1 are pairwise disjoint,
and µ(∨∞k=1Bk) =

∑∞
k=1 µ(Bk). Choose K ∈ N such that

∑K
k=1 µ(Bk) >

∑∞
k=1 µ(Bk) − ϵ/2, and set B := ∨Kk=1Bk

and C := ∨∞k=1Ck. Then ϕ(B) ⊆ A ⊆ ϕ(C), where the latter containment follows because ϕ(C) is an upper
bound for {Ak}∞k=1, but A is the least upper bound for {Ak}∞k=1 in P(Y). Moreover,

µ(C) − µ(B) ≤
∞∑
k=1

(µ(Ck) − µ(Bk)) +
( ∞∑
k=1

µ(Bk) − µ(B)
)
< ϵ.

Hence A ∈ ϕ(A), and ϕ(A) is a monotone class and therefore also a σ-�eld (see [11, Thm. A, p. 27]). Also note

µ(A) ≤ µ(C) =
∞∑
k=1

µ(Ck) <
∞∑
k=1

µ(Ak) + ϵ/2

and
∞∑
k=1

µ(Ak) = lim
k→∞

µ(∪kj=1Ak) ≤ µ(A),

implying µ is countably additive on ϕ(A). Thus (Y , ϕ(A), µ) is a measure space. It is a complete measure
space by Lemma 2.26.

The preceding lemma provides a su�cient condition for an Lp space to be complete, described in the
following theorem, which also identi�es a condition that is both necessary and su�cient.

Theorem 4.2. Consider a charge space (X,A, µ), and let M := µ−1(0). Suppose ϕ : A/M → P(Y) is a repre-
sentation ofA/M. Then the following statements hold.

1. L1(X,A, µ) is complete if and only if (Y , 〈A〉ϕ , µ) is a measure space, where µ : 〈A〉ϕ → R+ is the charge
de�ned by µ〈A〉ϕ := µ(A) for all A ∈ A.

2. If A/M is a countably complete Boolean algebra and the function µ : A/M → R+, de�ned by µ[A]A/M :=
µ(A) for all A ∈ A, is a countably additive function, then L1(X,A, µ) is complete.

Proof. First consider the claimed necessary and su�cient condition.
(⇒) Since 〈A〉 is a �eld, it is a σ-�eld if it is closed under countable disjoint unions [11, Thm. A, p. 27].

Consider pairwise disjoint {Ak}∞k=1 ⊆ 〈A〉, and �x ϵ > 0. For each k, there exist Bk , Ck ∈ A such that 〈Bk〉 ⊆
Ak ⊆ 〈Ck〉 and µ(Ck) − µ(Bk) < 2−kϵ/3. Since µ(X) < ∞, the increasing sequence µ(∪kj=1Bj) is bounded above,
and onemay choose K so that µ(∪Kj=1Bj) > limk→∞ µ(∪kj=1Bj) − ϵ/3, and set B := ∪Kj=1Bj ∈ A. By Theorem 2.29,
there exists C ∈ A such that µ(∪kj=1Cj\C) = 0 for each k and limk→∞ µ(∪kj=1Cj) ≤ µ(C) ≤ limk→∞ µ(∪kj=1Cj)+ϵ/3.
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It follows that Ck \ C ∈M and thus Ck = (Ck ∩ C) ∪ (Ck \ C) ∈ [Ck ∩ C], giving 〈Ck〉 = 〈Ck ∩ C〉 ⊆ 〈C〉 for all k.
Putting all this together gives 〈B〉 ⊆ ∪∞k=1Ak ⊆ 〈C〉 and

µ(C) − µ(B) = µ(C) − lim
k→∞

µ(∪kj=1Cj) + lim
k→∞

(
µ(∪kj=1Cj) − µ(∪kj=1Bj)

)
+ lim
k→∞

µ(∪kj=1Bj) − µ(B)
< ϵ.

Hence ∪∞k=1Ak ∈ 〈A〉. Moreover,

µ(∪∞k=1Ak) ≤ µ〈C〉

≤ lim
k→∞

µ(∪kj=1Cj) + ϵ/3

≤
∞∑
k=1

µ〈Ck〉 + ϵ/3

≤
∞∑
k=1

(
µ(Ak) + 2−kϵ/3

)
+ ϵ/3

=
∞∑
k=1

µ(Ak) + 2ϵ/3.

Letting ϵ → 0 gives that µ is countably additive on 〈A〉.
(⇐) Consider an increasing sequence A1 ⊆ A2 ⊆ . . . inA. Since 〈A〉 is a σ-�eld,∪∞k=1〈Ak〉 ∈ 〈A〉, implying

that for any ϵ > 0 there exist B, C ∈ Awith 〈B〉 ⊆ ∪∞k=1〈Ak〉 ⊆ 〈C〉 and µ(C) − µ(B) < ϵ. For each k, µ(Ak \ C) =
µ(〈Ak〉 \ 〈C〉) = 0 since 〈Ak〉 ⊆ 〈C〉. Since µ is countably additive on 〈A〉, µ(∪∞k=1〈Ak〉) = limk→∞ µ(Ak).
Combining this with

µ(∪∞k=1〈Ak〉) ≤ µ〈C〉 < µ(∪
∞
k=1〈Ak〉) + ϵ

gives the conditions of Theorem 2.29, hence Lp(X,A, µ) is complete.
For the second condition, note that if A/M is countably complete and µ is countably additive on A/M,

then (Y , 〈A〉, µ) is a measure space by Lemma 4.1, implying L1(X,A, µ) is complete.

The space (Y , 〈A〉ϕ , µ) described in Statement 1 of Theorem 4.2 has some similarity to the measure space
constructed in the proof of Theorem 1 of [4]. Fe�erman also uses the Stone representation theorem, applying it
to a Boolean algebra formed from characteristic functions of the sets inA. However, Fe�erman’s construction
is always a measure space, regardless of whether L1(X,A, µ) is complete, and thus cannot provide a similar
su�cient condition for completeness.

5 Lp spaces over complete charge spaces
Complete measure spaces play an important role in measure theory. This section generalises the concept for
charge spaces, and characterises those charge spaces (X,A, µ) for which augmenting null sets to A leaves
the corresponding Lp(X,A, µ) spaces unchanged.

De�nition 5.1. A charge space (X,A, µ) is complete if it contains its null sets, that is, if N := {A ∈ P(X) :
µ*(A) = 0} ⊂ A.

If (X,A, µ) is a measure space, then the above de�nition is equivalent to the standard de�nition of a
completemeasure space, since in that case if A ∈ P(X) with µ*(A) = 0, then A ⊆ B for some B ∈ Awith µ(B) =
0. Moreover, for measure spaces, completeness is equivalent to Peano-Jordan completeness by Lemma 2.26.
However, in general, completeness in the above sense is aweaker condition thanPeano-Jordan completeness:
it is straightforward to show (X,A, µ) is complete if it is Peano-Jordan complete, but the converse does not
hold in general. A counter-example to the converse is discussed below, after the proof of Lemma 5.4.

The following notation and lemma will be useful in this section.
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De�nition 5.2. For any algebraA and any C ⊆ A, let α(C) denote the subalgebra ofA generated by C, that is,
the smallest subalgebra ofA containing C.

Lemma 5.3. SupposeA andB are Boolean algebras withB ⊆ A, andM is a Boolean ideal ofA. Then

α(B ∪M) = {(B ∧M′) ∨ N : B ∈ B,M, N ∈M}

= {A ∈ A : A + B ∈M for some B ∈ B}.

Proof. The collection C := {(B ∧M′) ∨ N : B ∈ B,M, N ∈M} is a subalgebra ofA. To see this, note:

1. X = (X ∧ 0′) ∨ 0 ∈ C,
2. ((B1 ∧M′) ∨ N)′ = (B′1 ∧ N′) ∨ (M ∧ N′) ∈ C, and
3. ((B1 ∧M′

1)∨ N1)∨ ((B2 ∧M′
2)∨ N2) = (B3 ∧M′

3)∨ N3 ∈ Cwhere B3 := B1 ∨ B2,M3 := (M1 ∧M2)∨ (M1 ∧
B′2) ∨ (M2 ∧ B′1) and N3 := N1 ∨ N2,

for any B1, B2 ∈ B andM1, N1,M2, N2 ∈M. ThusC is a Boolean algebra containingB∪M, hence α(B∪M) ⊆
C. But also C ⊆ α(B ∪M), hence C = α(B ∪M).

Consider A ∈ α(B ∪M). Then there is B ∈ B and M, N ∈ M such that A := (B ∧ M′) ∨ N. But then
A + B ≤ M ∨ N ∈M, implying A + B ∈M. On the other hand, if A ∈ A such that A + B ∈M for some B ∈ B,
then A = (B ∧M′) ∨ N where M := B ∧ A′ ∈M and N := A ∧ B′ ∈M.

Any charge space can be completed by adding null sets, in the following manner.

Lemma 5.4. Let (X,A, µ) be a charge space with null setsN ⊂ P(X). Then µ has a unique extension to a charge
on α(A ∪N). Moreover, (X, α(A ∪N), µ) is a complete charge space with null setsN.

Proof. SinceN is a Boolean ideal of P(X), Lemma 5.3 gives

α(A ∪N) = {A ∈ P(X) : A4B ∈ N for some B ∈ A}.

Thus for any A ∈ α(A∪N), there is B ∈ A such that A4B ∈ N. Onemay de�ne µ(A) := µ(B). This extension of
µ iswell de�ned, since if there is another element C ∈ A such thatA4C ∈ N, then B4C ∈ N, and µ(B) = µ(C).
It is then straightforward to show (X, α(A ∪N), µ) is a charge space.

Suppose there is another charge µ′ on α(A ∪N) that agrees with µ onA. Then for A ∈ α(A ∪N), there is
B ∈ A with A4B ∈ N. Hence µ′(A) = µ(B) = µ(A), implying the extension is unique.

To see that (X, α(A ∪N), µ) is complete, consider any null set N of this charge space and �x ϵ > 0. Then
there exists A ∈ α(A ∪N) with N ⊆ A and µ(A) < ϵ/2. Moreover, there exists B ∈ Awith A4B ∈ N. But then
there exists C ∈ Awith A4B ⊆ C and µ(C) < ϵ/2. It follows thatN ⊆ B∪C ∈ Awith µ(B∪C) ≤ µ(B)+µ(C) < ϵ.
Letting ϵ → 0 gives N ∈ N ⊂ α(A ∪N), implying α(A ∪N) is complete, with null setsN.

The following example demonstrates that a charge space can be complete and yet not Peano-Jordan com-
plete. Consider the charge space (N,A, ν), whereN is the natural numbers excluding 0 andA is the collection
of periodic sets in N. Here a set A ∈ P(N) is said to be periodic if the binary sequence (IA(1), IA(2), . . .) is pe-
riodic, where IA is the indicator function for set A. The charge ν is de�ned by

ν(A) := lim
N→∞

1
N

N∑
n=1

IA(n)

for all A ∈ A. One can show (proof omitted) that ν(A) is the set of rational numbers in [0, 1], whereas
ν(A) = [0, 1], soA is not Peano-Jordan complete. Nor isA complete, since the setN of null sets includes the
�nite sequences, which are not periodic. However, the charge space (N, α(A∪N), ν) described in Lemma 5.4
contains its null sets and is therefore complete, whereas Lemma 5.3 implies ν(α(A ∪ N)) is still the set of
rational numbers in [0, 1], implying (N, α(A ∪N), ν) is not Peano-Jordan complete.

The rest of this section characterises those charge spaces (X,A, µ) forwhich completion does not add any
new equivalence classes to Lp(X,A, µ) spaces, though it may add functions to those equivalence classes. To
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begin, Lemma 5.6 describes a construction that is here called a null modi�cation, mapping chains (totally
ordered sets) from a charge space into a subspace, by adding and removing null sets. The proof of Lemma 5.6
relies on the following real analysis lemma.

Lemma 5.5. Totally ordered sets have the following properties.

1. Any T ⊆ R contains a countable subset C such that for a ∈ T and ϵ > 0, there exist b, c ∈ C with b ≤ a ≤ c
and c − b < ϵ.

2. Consider a totally ordered set T and a strictly increasing function µ : T → R. Then T contains a countable
subset C such that for A ∈ T and ϵ > 0, there exist B, C ∈ C with B ≤ A ≤ C and µ(C) − µ(B) < ϵ.

Proof. For 1, let C0 be a countable, dense subset of T. (Such a subset exists since any subset of the reals is
separable. Standard proofs of this invoke the axiom of countable choice.) De�ne

C1 := {c ∈ T : ∃ϵ > 0 with (c − ϵ/2, c) ∩ C0 = ∅}, and
C2 := {c ∈ T : ∃ϵ > 0 with (c, c + ϵ/2) ∩ C0 = ∅}.

Then C1 and C2 are both countable, since there cannot be an uncountable number of pairwise disjoint inter-
vals of non-zero width contained in R (each must contain a distinct rational). Thus C := C0 ∪ C1 ∪ C2 is a
countable set with the claimed property.

Claim 2 then follows by applying Claim 1 to µ(T), and noting µ is one-to-one and order preserving, as a
consequence of being strictly increasing.

It will be convenient to introduce the following notation. De�ne

C(A, B) := {C ∈ C : A ⊂ C ⊂ B}

to represent sub-intervals of a chain C ⊂ A. Here A, B ∈ A but are not necessarily elements of C.

Lemma 5.6. Suppose (X,A, µ) is a Peano-Jordan complete charge space with null setsN, andA′ is a sub-�eld
ofA such that α(A′ ∪N) = α(A′ ∪N). Given a chain T ⊆ α(A′ ∪N), there exists a map ϕ : T → A′ such that:

1. for all A ∈ T, ϕ(A)4A ∈ N,
2. for all A, B ∈ T,

[A]A/N = [B]A/N ⇐⇒ ϕ(A) = ϕ(B) and
[A]A/N < [B]A/N ⇐⇒ ϕ(A) ⊂ ϕ(B).

Proof. Without loss of generality, suppose ∅, X ∈ ̸ T. (If either set is in T, set ϕ(∅) = ∅ and/or ϕ(X) = X and
apply the following construction to T \ {∅, X}.)

Note that since (X,A, µ) is Peano-Jordan complete, it contains its null sets and henceT ⊆ α(A′ ∪N) ⊆ A.
Let [C] be the countable subchain of [T] := {[A] : A ∈ T} obtained by applying Lemma 5.5(2) to the totally

ordered set [T] and the strictly increasing function µ : [T] → R given by µ[A] := µ(A). Then let C ⊆ T be
obtained by selecting exactly one element of T from each of the equivalence classes in [C]. (This implicitly
invokes the axiom of countable choice.)

Arbitrarily order the elements of C as a sequence {Ck}∞k=1. (If C is �nite, the proof below still holds with
minimal modi�cations.) For each k ∈ N, de�ne Bk to be the largest set in the sequence C1, . . . , Ck−1 that is
a proper subset of Ck, if such a set exists (that is, Bk :=

⋃
{Cj : j < k, Cj ⊂ Ck}). Otherwise, set Bk := ∅.

Similarly, de�ne Dk to be the smallest set in the sequence C1, . . . , Ck−1 that properly contains Ck, if such a
set exists (that is, Dk :=

⋂
{Cj : j < k, Cj ⊃ Ck}). Otherwise, set Dk := X.

Set ϕ0(C) = C for all C ∈ C. It will also be convenient to de�ne ϕ0(∅) = ∅ and ϕ0(X) = X. Suppose
inductively that ϕk−1(C) ⊆ α(A′ ∪N). This is trivially true for k = 1, since T ⊆ α(A′ ∪N). Sequentially de�ne
ϕk for each k ∈ N as follows:

1. Select Ek ∈ A′ such that Ek4ϕk−1(Ck) ∈ N.
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2. Form the set Fk :=
(
Ek ∪ ϕk−1(Bk)

)
∩ ϕk−1(Dk).

3. For each C ∈ C, de�ne

ϕk(C) :=


Fk if C = Ck
ϕk−1(C) ∩ Fk if C ∈ C(Bk , Ck)
ϕk−1(C) ∪ Fk if C ∈ C(Ck , Dk)
ϕk−1(C) otherwise.

The set Ek ∈ A′ selected in Step 1 exists because, by assumption, α(A′ ∪N) = α(A′ ∪ N), hence Lemma 5.3
applies. It will also be convenient to de�ne ϕk(∅) = ∅ and ϕk(X) = X. Notice that for each C ∈ C, ϕk(C) is
formed from sets of α(A′ ∪N) using �nitely many basic set operations, hence ϕk(C) ⊆ α(A′ ∪N).

It is straightforward to show (by induction) that ϕk is an order preserving map for each k ∈ N, in the
sense B ⊆ C ⇒ ϕk(B) ⊆ ϕk(C) for all B, C ∈ C, and that ϕj(Ck) = ϕk(Ck) for all k ∈ N and j ≥ k.

De�ne ϕ′(Ck) := ϕk(Ck) for all k ∈ N. Then ϕ′ is order preserving, since if Cj ⊆ Ck,

ϕ′(Cj) = ϕmax{j,k}(Cj) ⊆ ϕmax{j,k}(Ck) = ϕ′(Ck).

Thus ϕ′(C) is a chain.
Assume ϕk−1(Cj) ∈ A′ for j ∈ {1, . . . , k − 1}, noting this is trivially satis�ed when k = 1 (because

{1, . . . , k − 1} = ∅). Then ϕk−1(Bk), ϕk−1(Dk) ∈ A′, since for k = 1, ϕ0(B1) = ∅ ∈ A′ and ϕ0(D1) = X ∈ A′,
and for k > 1, Bk , Dk ∈ {C1, . . . , Ck−1} ∪ {∅, X}. It follows that ϕk(Ck) = Fk ∈ A′, since Ek ∈ A′. Moreover,
ϕk(Cj) = ϕk−1(Cj) ∈ A′ for j ∈ {1, . . . , k−1}. Thus, by induction,ϕk(Cj) ∈ A′ for all k ∈ N and j ∈ {1, . . . , k}.
Thus ϕ′(C) ⊆ A′.

For all k ∈ N and C ∈ C, ϕk(C)4ϕk−1(C) ∈ N. To see this, note �rstly that it is trivially true for C ∈ ̸
C(Bk , Dk). For C = Ck,

ϕk−1(Ck) \ ϕk(Ck) = ϕk−1(Ck) \ Fk
⊆ ϕk−1(Ck) \

(
Ek ∩ ϕk−1(Dk)

)
= ϕk−1(Ck) \ Ek ,

and

ϕk(Ck) \ ϕk−1(Ck) = Fk \ ϕk−1(Ck)
⊆
(
Ek ∪ ϕk−1(Bk)

)
\ ϕk−1(Ck)

= Ek \ ϕk−1(Ck).

For C ∈ C(Bk , Ck),

ϕk(C)4ϕk−1(C) = ϕk−1(C) \ Fk
⊆ ϕk−1(Ck) \ Fk
⊆ ϕk−1(Ck) \ Ek ,

and for C ∈ C(Ck , Dk),

ϕk(C)4ϕk−1(C) = Fk \ ϕk−1(C)
⊆ Fk \ ϕk−1(Ck)
⊆ Ek \ ϕk−1(Ck).

Hence in all cases ϕk(C)4ϕk−1(C) ⊆ Ek4ϕk−1(Ck) ∈ N. It follows that ϕ′(C) di�ers from C by the addition
of at most k null sets and/or the removal of at most k null sets, hence ϕ′(C)4C ∈ N for all C ∈ C. That is,
Property 1 holds on C. This also implies µ(ϕ′(C)) = µ(C) for all C ∈ C.

De�ne ϕ(A) :=
⋃
{ϕ′(C) : C ∈ C, [C] ≤ [A]} for all A ∈ T. Then ϕ(C) = ϕ′(C) for all C ∈ C. Moreover,

ϕ(A) ∈ A′ for all A ∈ T. To see this, note either [A] = [C] for some C ∈ C, which implies ϕ(A) = ϕ′(C) ∈ A′,
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or for any ϵ > 0 there exist B, C ∈ C with B ⊂ A ⊂ C and µ(C) − µ(B) < ϵ, which implies ϕ(B) ⊆ ϕ(A) ⊆ ϕ(C)
and µ(ϕ(C)) − µ(ϕ(B)) < ϵ, and thus again ϕ(A) ∈ A′.

Note also that for any A, B ∈ T,

[A] = [B]⇒ ϕ(A) = ϕ(B) and
[A] < [B]⇒ ϕ(A) ⊆ ϕ(B).

Hence ϕ is order preserving.
Property 1 can be extended from C to T as follows. Consider A ∈ T and ϵ > 0. There exist B, C ∈ C with

[B] ≤ [A] ≤ [C] and µ(C) − µ(B) < ϵ/2. If [A] = [B] then A4B ∈ N and ϕ(A) = ϕ′(B). Moreover, ϕ′(B)4B ∈ N.
Hence ϕ(A)4A ∈ N. Similarly, if [A] = [C] then ϕ(A)4A ∈ N. Suppose [B] < [A] < [C], implying B ⊂ A ⊂ C.
Then ϕ′(B) ⊆ ϕ(A) ⊆ ϕ′(C), since ϕ is order preserving, and µ(ϕ′(C)) − µ(ϕ′(B)) < ϵ/2. It follows that

ϕ(A)4A ⊆ (ϕ′(B)4B) ∪ (ϕ′(C) \ ϕ′(B)) ∪ (C \ B),

and
µ*(ϕ(A)4A) ≤ µ(ϕ(B)4B) + µ(ϕ′(C)) − µ(ϕ′(B)) + µ(C) − µ(B) < ϵ.

Letting ϵ → 0 gives ϕ(A)4A ∈ N.
Property 2 follows from Property 1 and the fact ϕ is order preserving. Note

ϕ(A) = ϕ(B)⇒ [ϕ(A)] = [ϕ(B)] ⇐⇒ [A] = [B],

since A ∈ [ϕ(A)] and B ∈ [ϕ(B)]. This in turn gives

[A] < [B]⇒ ϕ(A) ≠ ϕ(B)⇒ ϕ(A) ⊂ ϕ(B)

since it is already established that [A] < [B]⇒ ϕ(A) ⊆ ϕ(B). Moreover,

ϕ(A) ⊂ ϕ(B) ⇐⇒ ϕ(A) ≠ ϕ(B) and ϕ(B) ⊄ ϕ(A)
⇒ [A] ≠ [B] and [B] ≮ [A]
⇐⇒ [A] < [B].

The condition α(A′ ∪N) = α(A′ ∪N) in the preceding lemma is implied by some stronger conditions, as
follows.

Lemma 5.7. Suppose (X,A, µ) is a charge space with null setsN, andA′ is a sub-�eld ofA. Then

1. α(A′ ∪N) = α(A′ ∪N),
2. α(A′ ∪N) = α(A′ ∪N) if and only if α(A′ ∪N) is Peano-Jordan complete.
3. N ⊂ A′ ⇐⇒ α(A′ ∪N) = A′ ⇒ α(A′ ∪N) = α(A′ ∪N).

Proof. For 1, note α(A′ ∪N) ⊆ α(A′ ∪N) because A′ ⊆ A′. But also A′ ⊆ α(A′ ∪N) and N ⊆ α(A′ ∪N), so
α(A′ ∪N) ⊆ α(A′ ∪N).

For 2, note 1 implies α(A′ ∪N) = α(A′ ∪N) if and only if α(A′ ∪N) = α(A′ ∪N).
For 3, note N ⊂ A′ combined with 1 gives α(A′ ∪N) = α(A′ ∪N) = A′. The converse follows because

N ⊂ α(A′ ∪N). The last implication follows because if α(A′ ∪N) = A′, then α(A′ ∪N) = α(α(A′ ∪N) ∪N) =
α(A′ ∪N).

Themain reason for performing null modi�cation operations on chains is that real-valued functions on a
space X generate chains of inverse images, and thusnullmodi�cation of those chains canbeused to construct
functions with desired properties. However, the missing ingredient is a way to generate a function from a
chain. The following lemma identi�es a class of chains that can be placed in one-to-one correspondence
with positive real-valued functions.
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Lemma 5.8. Consider a set X and a chain T ⊆ P(X) of the form T := {Ay : y ∈ (0,∞)}. Then the following
statements are logically equivalent.

1. There is a function f : X → [0,∞) such that Ay = f −1(y, ∞) for each y ∈ (0,∞).
2. T satis�es the following conditions:

(a) Ay =
⋃
{Az ∈ T : z > y} for each y ∈ (0,∞), and

(b)
⋂
T = ∅,

Proof. (⇒) Statement 2a follows from the fact that for any y ∈ (0,∞),

x ∈ Ay ⇐⇒ f (x) > y
⇐⇒ f (x) > z for some z > y
⇐⇒ x ∈ Az for some z > y
⇐⇒ x ∈

⋃
{Az ∈ T : z > y}

Statement 2b holds because for any x ∈ X, there exists y > f (x), hence x ∈ ̸ Ay.
(⇐) De�ne

f (x) := inf{z ∈ (0,∞) : x ∉ Az},

noting the set on the right of this expression is not empty, since
⋂
T = ∅ (that is, there is no x ∈ X with x ∈ Ay

for all y ∈ (0,∞)). Then

x ∈ f −1(y, ∞) ⇐⇒ f (x) > y
⇐⇒ y < inf{z ∈ (0,∞) : x ∈ ̸ Az}
⇐⇒ ∃z ∈ (y, ∞) with x ∈ Az
⇐⇒ x ∈

⋃
{Az ∈ T : z > y}

⇐⇒ x ∈ Ay

for each y ∈ (0,∞), giving Ay = f −1(y, ∞).

Consequently, one can use null modi�cation to transform T1-measurable or integrable functions on the
charge space (X, α(A′∪N), µ) to functions on the charge space (X,A′, µ), as described in the following lemma.
Thus under the conditions of the lemma, completing the charge space in this sense has not added any new
equivalence classes of functions.

Lemma 5.9. Suppose (X,A, µ) is a Peano-Jordan complete charge space with null setsN andA′ is a sub-�eld
of A such that α(A′ ∪N) = α(A′ ∪ N). Then for every f ∈ L0(X, α(A′ ∪ N), µ), there exists h ∈ L0(X,A′, µ)
such that f = h a.e. (with respect to α(A′ ∪N)). Moreover, if f ∈ Lp(X, α(A′ ∪N), µ) for some p ∈ (0,∞), then
h ∈ Lp(X,A′, µ).

Proof. It will be su�cient to prove the theorem assuming f : X → R+, since if the result holds for f + and f −,
it holds for f by Lemma 2.12.

By Theorem3.4, there exists a countable set C ⊂ (0,∞) such that for y ∈ (0,∞)\C, f −1(y, ∞) ∈ α(A′ ∪N).
De�ne

Ay := f −1(y, ∞) for each y ∈ (0,∞) \ C, and
T := {Ay : y ∈ (0,∞) \ C}.

Let ϕ : T → A′ be the order preserving map asserted in Lemma 5.6, as it applies to T. De�ne

By := ϕ(Ay) for each y ∈ (0,∞) \ C,
S := {By : y ∈ (0,∞) \ C}, and
Sy := {B ∈ S : B ⊂ By} for each y ∈ (0,∞).
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Then, for each y ∈ (0,∞) \ C, By4Ay ∈ N. Moreover, S ⊆ A′.
Before constructing h, the elements of Smust be further modi�ed to satisfy the conditions of Statement 2

of Lemma 5.8, as follows. De�ne:

Cy :=
⋃

Sy \
⋂

S for each y ∈ (0,∞),

R := {Cy : y ∈ (0,∞)}, and
Ry := {C ∈ R : C ⊂ Cy} for each y ∈ (0,∞).

Then the following properties hold

1. Cy ∈ A′ for each y ∈ (0,∞) \ C,
2. Cy =

⋃
Ry for each y ∈ (0,∞),

3.
⋂
R = ∅, and

4. Cy4Ay ∈ N for each y ∈ (0,∞) \ C.

To see 1, note that since f is smooth, for any ϵ > 0 there is y ∈ (0,∞) \ C such that µ(By) = µ(Ay) < ϵ. But⋂
S ⊆ By ∈ A′ for all y ∈ (0,∞) \ C, hence

⋂
S ∈ A′ with µ(

⋂
S) = 0. By Lemma 3.3(2), for any y ∈ (0,∞) \ C

there exist y1, y2 ∈ (0,∞) \ C such that Ay1 ⊂ Ay ⊂ Ay2 and µ(Ay2 \ Ay1 ) < ϵ. But then By1 , By2 ∈ A′ with
By1 ⊆

⋃
Sy ⊆ By2 and µ(By2 \ By1 ) < ϵ. Hence

⋃
Sy ∈ A′, and Cy ∈ A′.

Properties 2 and 3 follow immediately from the de�nition of Cy.
To see 4, note for each y ∈ (0,∞) \ C that Cy4(

⋃
Sy) ∈ N since µ(

⋂
S) = 0. Also note (

⋃
Sy)4By =

By \
⋃
Sy ∈ N, since

µ(By \
⋃

Sy) ≤ µ(By2 \ By1 ) < ϵ

for any ϵ > 0, where y1, y2 are as de�ned in the proof of 1. Finally, recall By4Ay ∈ N to obtain the result.
By Lemma 5.8, there is a function h : X → R such that h−1(y, ∞) = Cy for all y ∈ R. Thus h−1(y, ∞) ∈ A′

for each y ∈ R \ C. By Lemma 3.11(2), h = f a.e. By Theorem 3.4, h ∈ L0(X,A′, µ), remembering that f is
smooth, and hence so is h.

Finally, suppose f ∈ Lp(X, α(A′ ∪ N), µ) for some p ∈ (0,∞). Then for any ϵ > 0, there is y ∈ (0,∞)
such that

∫
|f |p I|f |−1(y,∞)dµα(A′∪N) < ϵ (by Theorem 3.9) and |h|p I|h|−1(y,∞) = |f |p I|f |−1(y,∞) a.e. with respect to

α(A′ ∪N) (by Theorem 3.11(3c)). It follows that∫
|h|p I|h|−1(y,∞)dµA′ =

∫
|h|p I|h|−1(y,∞)dµα(A′∪N)

=
∫
|f |p I|f |−1(y,∞)dµα(A′∪N)

< ϵ,

where the �rst equality follows by Lemma 2.21(4) and the second by Theorem 2.14(4). Hence h ∈ Lp(X,A′, µ),
by Theorem 3.9.

It is not in general true that L0(X, α(A′ ∪ N), µ) = L0(X,A′, µ), as may be understood by the following
example. Take any A ∈ A with 0 < µ(A) < 1, and form the σ-�eld A′ := {∅, A, Ac ,N}. Let B′ ∈ N be any null
set contained in Ac, and let B = A ∪ B′. Then IB ∈ L0(X, α(A′ ∪ N), µ) but IB ∈ ̸ L0(X,A′, µ). However, the
following theorem identi�es necessary and su�cient conditions to have Lp(X, α(A′ ∪ N), µ) = Lp(X,A′, µ)
and necessary and su�cient conditions to have Lp(X, α(A′ ∪ N), µ) ∼= Lp(X,A′, µ). Here the symbol ‘∼=’ is
used to represent an isometric isomorphism.

Theorem 5.10. Suppose (X,A, µ) is a Peano-Jordan complete charge space with null sets N and A′ is a sub-
�eld ofA. Let p ∈ [0,∞). Then Lp(X,A′, µ) is a dense subspace of Lp(X, α(A′ ∪N), µ). Moreover, the following
statements hold.

1. Lp(X,A′, µ) = Lp(X, α(A′ ∪N), µ) if and only ifN ⊂ A′.
2. The following statements are logically equivalent:

(a) Lp(X,A′, µ) ∼= Lp(X, α(A′ ∪N), µ) with the isomorphism given by [f ]A′ 7→ [f ]α(A′∪N).
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(b) α(A′ ∪N) = α(A′ ∪N).

Proof. Lemma 5.3 gives that for every A ∈ α(A′ ∪ N) there is B ∈ A′ such that A4B ∈ N. It follows that
IA = IB a.e. with respect to α(A′ ∪ N), and hence that for every simple function s with respect to α(A′ ∪ N),
there is a simple function s′ with respect toA′, such that dp,α(A′∪N)(s, s′) = 0. Simple functions with respect
to α(A′ ∪N) are dense in Lp(X, α(A′ ∪N), µ) by Theorem 2.24, hence so are simple functions with respect to
A′, and Lp(X,A′, µ) is dense in Lp(X, α(A′ ∪N), µ).

To show 1, it will be su�cient to show Lp(X, α(A′ ∪N), µ) = Lp(X,A′, µ) if and only if α(A′ ∪N) = A′, by
Lemma 5.7. First suppose α(A′ ∪N) = A′. Then Theorem 2.27 gives

Lp(X, α(A′ ∪N), µ) = Lp(X, α(A′ ∪N), µ) = Lp(X,A′, µ) = Lp(X,A′, µ).

Conversely, suppose Lp(X, α(A′ ∪N), µ) = Lp(X,A′, µ), and consider A ∈ α(A′ ∪N). Then IA ∈ Lp(X, α(A′ ∪
N), µ) by Theorem 2.27, hence IA ∈ Lp(X,A′, µ). By Theorem 3.4, there is y ∈ (0, 1) such that A = I−1A (y, ∞) ∈
A′.

For 2, �rst suppose α(A′ ∪N) = α(A′∪N). Then Lemma 5.9 implies the injective homomorphism [f ]A′ 7→
[f ]α(A′∪N) is surjective. Thismapping is an isometry by Lemma 2.21 for p ∈ (0,∞), and by Corollary 3.8 for p =
0. Conversely, supposeLp(X, α(A′∪N), µ) ∼= Lp(X,A′, µ) with the isomorphism given by [f ]A′ 7→ [f ]α(A′∪N),
and consider A ∈ α(A′ ∪N). Then there exists f ∈ Lp(X,A′, µ) such that f = IA a.e. with respect to α(A′ ∪N).
By Theorems 3.4 and 3.11, there is y ∈ (0, 1) such that I−1A (y, ∞)4f −1(y, ∞) ∈ N and f −1(y, ∞) ∈ A′. But
I−1A (y, ∞) = A, hence A ∈ α(A′ ∪ N) by Lemma 5.3. Thus α(A′ ∪N) ⊆ α(A′ ∪ N). Moreover, α(A′ ∪ N) ⊆
α(A′ ∪N), sinceA′ ⊆ α(A′ ∪N) andN ⊆ α(A′ ∪N), giving α(A′ ∪N) = α(A′ ∪N).

The requirement in several of the results in this section that (X,A, µ) is a Peano-Jordan complete charge
space, is not as restrictive asmay at �rst appear. By Lemma 5.4, onemay take any charge space (X,A′, µ) with
null sets N and form its completion (X, α(A′ ∪ N), µ), where now the domain of µ is extended to α(A′ ∪ N).
One can then form the charge space (X, α(A′ ∪N), µ) for use as the Peano-Jordan complete charge space in
the above results. However, the above results are more general, in that they allowN to be larger than the null
sets of (X,A′, µ).

6 Conclusion
Approximation of measurable or integrable functions by a non-decreasing sequence of simple functions is a
frequently used device in measure theory, and one contribution of this paper is to make this device available
in the �nitely additive context, at least in the bounded case, using Theorems 3.4 and 3.9.

Another contribution is the convenient characterisation of completeness ofLp(X,A, µ) spaces described
in Theorem4.2. The characterisation is in terms of Peano-Jordan completion of a quotient representation, and
it opens the door to embedding Lp(X,A, µ) spaces in function spaces de�ned on either the quotientA/M or
a representation of it, where the completeness property may facilitate further analysis. The author is using
this technique in other research.

Chains of sets in a �eld A have played a prominent role in this paper. The three theorems in Section 3
characterise T1-measurability, integrability and equality almost everywhere in terms of chains of inverse
images induced by functions in Lp spaces over a general bounded charge space. In fact there is a natural
correspondence between a certain class of chains in P(X) and real-valued functions over X, as noted in
Lemma 5.8. This correspondence can be exploited to modify a function to attain a key property of interest,
thus generating a new function in the same equivalence class. Lemmas 5.6 and 5.9 illustrate this technique,
here called null modi�cation, but also pave the way for additional null modi�cations, used to confer addi-
tional properties. Theorem 5.10 is key in this process, since it identi�es necessary and su�cient conditions
under which augmenting null sets leaves Lp(X,A, µ) unchanged up to isomorphism. The null sets are thus
available for constructing further null modi�cations, a technique the author is currently applying in other
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research. Further study of chain properties and null modi�cations seems a promising direction for future
research.
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