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Abstract:We consider the general framework of ametricmeasure space satisfying the doubling volume prop-
erty, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian local-
ization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embed-
dings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as
well. Our result generalize the Euclidean case and are new for many settings of independent interest such as
the ball, the interval and Riemannian manifolds.
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1 Introduction
Function spaces play a leading role in analysis and its applications for almost a century. For a plenty of scopes
the researcher may need to “count" the behavior of a function regarding its continuity, di�erentiability, inte-
grability and so and so forth. The functions that enjoy a similar level of the preceding properties, build the
corresponding function spaces.

Smoothness spaces have been initially introduced because of the straightforward need tomeasure the in-
tegrability of a function and its derivatives and have been further developed under the leverage of the Fourier
transform.

Two of themost general scales, which are involved in a large number of applications, are Triebel-Lizorkin
spaces and the companion class of Besov spaces. For the historical path of the development of function
spaces, we refer to [30].

On the other hand, the problem under study may be governed by a geometry which is not the Euclidean
one. For such a purpose signi�cant progress in function spaces on several geometric settings—spheres, balls,
manifolds and more— has been obtained the last decades [3, 4, 6, 19–21, 26, 31, 32].

Today the above function spaces have been introduced and explore in a very broad set-up that covers all
the aforementioned cases [23].

Embeddings between various spaces of distributions play an important role in Function Theory with
applications in PDE’s, Approximation Theory and Statistics. Our goal in this article is to extend known results
regarding the (Sobolev-type) embeddings of Triebel-Lizorkin and Besov spaces of di�erent smoothness onRd

to the corresponding Classical and Nonclassical spaces associated to a non-negative self-adjoint operator L
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that allows as to deal with spaces with di�erent geometries, compact and non-compact spaces and spaces
with non-trivial weights.

The organization of the paper is as follows: In §2 we present the basic framework that will be needed as
well as the de�nitions and the main assumptions of the various spaces. §3 contains the main result of the
paper Theorem 3.1 which states that for s0, s1 ∈ R, p0, p1 ∈ (0,∞) and q, r ∈ (0,∞] such that s0 > s1
and p0 < p1, then the Triebel Lizorkin space Fs0p0 ,q(L) is continuously embedded in Fs1p1 ,r(L) provided s0−s1

d =
1
p0 −

1
p1 , where d is the homogeneous dimension of the metric measure space. In §4 this result is extended

to nonclassical Triebel-Lizorkin spaces in order to deal with anisotropic geometries. In section §5 we discuss
similar results concerning classical and non classical Besov spaces. We note that the nonclassical spaces are
of great interest and appear naturally in nonlinear approximation of su�ciently smooth disitributions by
various decompositions systems such as frames (see [23] and the references therein for details). Finally in §6
we present a typical example that illustrates our results.

2 Background
This section provides the geometric setting we work on, some illustrative remarks and the necessary machin-
ery for our study.

2.1 The framework

We are ready to present the main assumptions needed for our study.

Assumption I. We assume that (M, ρ, µ) is a metric measure space such that (M, ρ) is locally compact
with distance ρ(·, ·), and µ is a positive Radon measure satisfying:
(a) Doubling volume condition: There exists a constant c0 > 1 such that

0 < |B(x, 2r)| ≤ c0|B(x, r)| < ∞ for all x ∈M and r > 0, (2.1)

where |B(x, r)| is the volume of the ball B(x, r) := {y ∈M : ρ(x, y) < r}.

(b) Noncollapsing condition: There exists a constant c1 > 0 such that

inf
x∈M

|B(x, 1)| ≥ c1. (2.2)

Assumption II. The geometry of the space (M, ρ, µ) is related to a self-adjoint non-negative operator L on
L2(M, dµ), mapping real-valued to real-valued functions, such that the associated semi-group e−tL, t > 0,
consists of integral operators with (heat) kernel pt(x, y) obeying the conditions:
(c) Gaussian localization: There exist constants c2, c3 > 0 such that

|pt(x, y)| ≤
c2 exp{− c3ρ

2(x,y)
t }[

|B(x,
√
t)||B(y,

√
t)|
]1/2 for x, y ∈M, t > 0. (2.3)

(d) Hölder continuity: There exists a constant α > 0 such that

∣∣pt(x, y) − pt(x, y′)∣∣ ≤ c2(ρ(y, y′)√
t

)α exp{− c3ρ
2(x,y)
t }[

|B(x,
√
t)||B(y,

√
t)|
]1/2 (2.4)

for x, y, y′ ∈M and t > 0, whenever ρ(y, y′) ≤
√
t.

(e)Markov property: ∫
M

pt(x, y)dµ(y) = 1 for x ∈M and t > 0. (2.5)
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The setting considered in this paper has been put forward in [7, 23] and has been studied extensively in
recent years [1, 2, 5, 9, 10, 15–18, 22, 24, 25].

Note further that the doubling volumeproperty is very classical in the literature starting by the celebrated
work of Coifmann and Weiss [6]. Also the non-collapsing condition holds automatically on the Euclidean
space and whenever the measure of the space is �nite; µ(M) < ∞, therefore it is restrictive only when µ(M) =
∞.

From (2.1) it follows that there exist constants c′0 ≥ 1 and d′ > 0 such that

|B(x, λr)| ≤ c′0λd
′
|B(x, r)| for x ∈M, r > 0 and λ > 1. (2.6)

De�nition 2.1 The minimum value d > 0 of the above quantity d′ will be called homogeneous or geometrical
dimension of (M, ρ, µ).

From (2.1) and (2.2), we extract

|B(x, r)| ≥ c1c′0
rd for x ∈M and 0 < r ≤ 1. (2.7)

The setting (M, ρ, µ, L) is very general. A realization of it appears in the general framework of strictly local
regular Dirichlet spaces with a complete intrinsic metric, see [7]. Some more examples of settings satisfying
our assumptions are Riemannian manifolds with non-negative Ricci curvature, associated with the Laplace-
Beltrami operator, Lie groups of polynomial volume growth with sub-laplacians, the Euclidean space Rd ,
with uniformly elliptic divergence form operators, the weighted ball or the sphere with the corresponding
Laplacians, the interval with Jacobi operators, the upper hemisphere and the simplex.

2.2 Distributions

For the de�nition of Besov and Triebel-Lizorkin spaces we follow Kerkyacharian and Petrushev [23] and in-
troduce the notion of test functions and the corresponding distributions associated with L.

In the present setup, one has to distinguish between the two cases µ(M) < ∞ and µ(M) = ∞. We have
the following.

• The case µ(M) < ∞. In this case we let S = S(L) denote all functions ϕ ∈ ∩nD(Ln), whereD(Ln) denotes
the domain of the operator Ln , n ≥ 0, with the topology induced by

Pn(ϕ) := ‖Lnϕ‖2, n ≥ 0. (2.8)

• The case µ(M) = ∞. The class of test functions S = S(L) is de�ned as the set of all functionsϕ ∈ ∩nD(Ln)
such that

Pn,`(ϕ) := sup
x∈M

(
1 + ρ(x, x0)

)`|Lnϕ(x)| < ∞, ∀n, ` ≥ 0. (2.9)

Here x0 ∈M is selected arbitrarily and �xed from now on. Note that the particular selection of x0 in the
above de�nition is not important.

Following a standard approach, the space S′ = S′(L) of distributions on M is de�ned as the set of all
continuous linear functionals on S and the pairing of f ∈ S′ and ϕ ∈ S will be denoted by 〈f , ϕ〉 := f (ϕ).

For further details on distributions in the present setting we refer the reader to [23].
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2.3 Spectral multipliers

We recall that according to the spectral theorem, since L is a non-negative self-adjoint operator, there exists
a unique spectral resolution associated with L, consisted of orthoprojections on L2(M) such that

L =
∞∫
0

λdEλ . (2.10)

Moreover, L maps real-valued to real-valued functions and for any real-valued, measurable and bounded
function g on R+ the operator (spectral multiplier) g(L), de�ned by

g(L) :=
∞∫
0

g(λ)dEλ (2.11)

is bounded on L2(M), self-adjoint, and maps real-valued functions to real-valued functions as well.

2.4 Besov and Triebel-Lizorkin spaces

In order to de�ne Besov and Triebel-Lizorkin spaces, we need to consider the following auxiliary functions
with the following properties.

Let the functions φ0, φ ∈ C∞(R+) be such that

suppφ0 ⊂ [0, 2], φ(2ν+1)
0 (0) = 0 for ν ≥ 0, |φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/4], (2.12)

suppφ ⊂ [1/2, 2], |φ(λ)| ≥ c > 0 for λ ∈ [2−3/4, 23/4]. (2.13)

For now onwewill denote by φk(λ) := φ(2−kλ) for k ≥ 1. Having now �xed the couple (φ0, φ) we proceed
to de�ne the Triebel-Lizorkin spaces as in [23]:

De�nition 2.2 Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞.
The Triebel-Lizorkin space Fsp,q = Fsp,q(L) is de�ned as the set of all f ∈ S′ such that

‖f‖Fsp,q :=
∥∥∥(∑

k≥0

(
2ks|φk(

√
L)f (·)|

)q)1/q∥∥∥
Lp

< ∞, (2.14)

with the `q-norm replaced by the sup-norm when q = ∞.

It can be veri�ed that the Triebel-Lizorkin spaces are independent from the admissible couple (φ0, φ),
see [23]. Furthermore the preceding de�nition generalizes the standard de�nition of Triebel-Lizorkin spaces
on Rd, the sphere Sd, the ball Bd and other settings.

2.5 A Nikol’skii’s type inequality

A fundamental tool for the establishment of embedding theorems isNikol’skii’s inequalitywhich, in its classi-
cal formonRd, relates di�erent Lp-norms of band-limited distributions. In our setting the role of band-limited
functions will be played by the spectral spaces:

Let λ ≥ 0 and Y a space of measurable function inM. We denote by

Σλ = Σλ(Y) :=
{
f ∈ Y : θ(

√
L)f = f : ∀θ ∈ C∞0 (R) such that θ ≡ 1, in [0, λ]

}
.

Note that for every k ≥ 0 and every f ∈ S′ it holds that φk(
√
L)f ∈ Σ2k+1 .

The following Nikol’skii’s type inequality was proven in [24]:
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Proposition 2.3 Let0 < p ≤ q ≤ ∞and β ∈ R. Then there exists a constant c > 0 such that for any f ∈ Σλ , λ ≥ 1,∥∥|B(·, λ−1)|β f (·)∥∥q ≤ c∥∥|B(·, λ−1)|β+ 1
q − 1

p f (·)
∥∥
p . (2.15)

We note that (2.15) holds even without assuming (2.2). In addition, if we apply (2.7) to (2.15) we easily get∥∥|B(·, λ−1)|β f (·)∥∥q ≤ cλd( 1
p − 1

q

)∥∥|B(·, λ−1)|β f (·)∥∥p . (2.16)

3 Embeddings between Triebel-Lizorkin spaces
We recall that in the case of Triebel-Lizorkin spaces de�ned on Rd, it holds that when −∞ < s1 < s0 < ∞,
0 < p0 < p1 < ∞ and 0 < q, r ≤ ∞, then Fs0p0 ,q ↪→ Fs1p1 ,r, provided that s0−s1d = 1

p0 −
1
p1 . Here we generalize this

Sobolev embedding to the broad framework of this article.
Furthermore our results are new for many geometric settings of independent interest, such as the ball,

the interval and Riemannian manifolds with nonnegative Ricci curvature and many more.
We are now ready to state and prove the main result of this paper.

Theorem 3.1 Let s0, s1 ∈ R, p0, p1 ∈ (0,∞) and q, r ∈ (0,∞] be such that s0 > s1 and p0 < p1. Then

Fs0p0 ,q ↪→ Fs1p1 ,r , (3.1)

provided that
s0 − s1
d = 1

p0
− 1
p1

. (3.2)

Proof. We need to prove that there exists c > 0 such that for every f ∈ Fs0p0 ,q,

‖f‖Fs1p1,r ≤ c‖f‖Fs0p0,q .

Using the trivial embedding between the sequence spaces `q ↪→ `∞, it su�ces to assume that q = ∞.

Let now f ∈ Fs0p0 ,∞ be such that ‖f‖Fs0p0,∞ = 1. Using that for every p > 0 and g ∈ Lp

‖g‖pp = p
∞∫
0

tp−1
∣∣{x ∈M : |g(x)| > t}

∣∣dt, (3.3)

we can write

‖f‖p1
Fs1p1,r

= p1
∞∫
0

tp1−1
∣∣∣{x ∈M :

( ∞∑
k=0

(
2ks1 |φk(

√
L)f (x)|

)r)1/r > t}∣∣∣dt. (3.4)

In order to estimate the summation in (3.4) from inequality (2.16) (p0 < p1) we get that for every k ∈ N0,∥∥φk(√L)f∥∥∞ ≤ c2kd/p0∥∥φk(√L)f∥∥p0 ≤ c2k( d
p0
−s0
)
‖f‖Fs0p0,∞ = c2k

(
d
p0
−s0
)
. (3.5)

Let now K ∈ N0, employing (3.5) we �nd a constant C* := C*(p1, p0, r) > 0, such that
K∑
k=0

∣∣2ks1φk(√L)f (x)∣∣r ≤ c K∑
k=0

2k
(

d
p0
−s0+s1

)
r = c

K∑
k=0

2k
d
p1
r ≤ C*2K

d
p1
r , (3.6)

where we also used assumption (3.2). On the other hand to estimate the upper sum of the series since s1−s0 <
0, we have that for any integer K ≥ −1

∞∑
k=K+1

∣∣2ks1φk(√L)f (x)∣∣r ≤ c2K(s1−s0)r sup
k≥0

∣∣2ks0φk(√L)f (x)∣∣r . (3.7)
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Using (3.4) we write

‖f‖p1
Fs1p1,r

= p1
( (2C*)

1
r∫

0

+
∞∫

(2C*)
1
r

)
tp1−1

∣∣∣{x ∈M :
( ∞∑
k=0

(
2ks1 |φk(

√
L)f (x)|

)r)1/r > t}∣∣∣dt
=: p1(I1 + I2).

(3.8)

We �rst bound I1. Applying (3.7) with K = −1 we derive

I1 ≤ c
(2C*)

1
r∫

0

tp1−1
∣∣∣{x ∈M : sup

k≥0

∣∣2ks0φk(√L)f (x)∣∣ > t/c}∣∣∣dt
≤ c

c′∫
0

tp0−1
∣∣∣{x ∈M : sup

k≥0

∣∣2ks0φk(√L)f (x)∣∣ > t}∣∣∣dt
≤ c‖f‖p0

Fs0p0,∞
= c,

(3.9)

where we used the facts that p0 < p1, t ≤ c′ and we changed the variable in the integral.

We next bound I2. Let t > (2C*)1/r. We denote by K the unique integer such that

C*2K
d
p1
r ≤ t

r

2 < C*2(K+1)
d
p1
r . (3.10)

(K ≥ 0 necessarily). Applying now (3.6), (3.7) we extract
∞∑
k=0

(
2ks1 |φk(

√
L)f (x)|

)r ≤ C*2K d
p1
r + c2K(s1−s0)r sup

k≥0

∣∣2ks0φk(√L)f (x)∣∣r

≤ t
r

2 + c2K(s1−s0)r sup
k≥0

∣∣2ks0φk(√L)f (x)∣∣r .
It follows that∣∣∣{x ∈M :

( ∞∑
k=0

(
2ks1 |φk(

√
L)f (x)|

)r)1/r > t}∣∣∣ ≤ ∣∣∣{x ∈M : sup
k≥0

∣∣2ks0φk(√L)f (x)∣∣ > ct2K(s0−s1)}∣∣∣
≤
∣∣∣{x ∈M : sup

k≥0

∣∣2ks0φk(√L)f (x)∣∣ > ctp1/p0}∣∣∣,
where we used the right hand inequality in (3.10) and (3.2).

We replace this expression in I2 and by changing to the variable τ = tp1/p0 we obtain

I2 ≤ c
∞∫
0

tp1−1
∣∣∣{x ∈M : sup

k≥0

∣∣2ks0φk(√L)f (x)∣∣ > ctp1/p0}∣∣∣dt
≤ c

∞∫
0

τp0−1
∣∣∣{x ∈M : sup

k≥0

∣∣2ks0φk(√L)f (x)∣∣ > cτ}∣∣∣dτ
= c‖f‖p0

Fs0p0,∞
= c. (3.11)

From (3.8), (3.9) and (3.11) we establish that there exists a constant c > 0 such that for every f ∈ Fs0p0 ,∞
with ‖f‖Fs0p0,∞ = 1,

‖f‖Fs1p1,r ≤ c. (3.12)
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Finally the embedding (3.1) follows by replacing in (3.12) f by f /‖f‖Fs0p0,∞ in the general case where
‖f‖Fs0p0,∞ ≠ 0. This completes the proof of the theorem. �

A class of independent interest that fall under the scale of Triebel-Lizorkin spaces, is the one of (frac-
tional) Sobolev spaces. Let s ∈ R and p ∈ (1,∞). A distribution f ∈ S′ belongs to the (generalized) sobolev
space Hsp(L) when

‖f‖Hsp :=
∥∥(I + L)s/2f∥∥p < ∞.

It has been proved in [23] that Hsp = Fsp,2, for every s ∈ R and p ∈ (0,∞). Theorem 3.1 takes the following
form:

Corollary 3.2 Let s0, s1 ∈ R and p0, p1 ∈ (0,∞) be such that s0 > s1 and p0 < p1. Then

Hs0p0 ↪→ Hs1p1 , provided s0 − s1
d = 1

p0
− 1
p1

. (3.13)

4 Embeddings between non-classical Triebel-Lizorkin spaces
Nonclassical spaces, allow us to deal with anisotropic geometries, where the size of a unit ball B(x, r) around
a point x depends not only on the radious r but also on x. In the aforementioned framework, they were intro-
duced by Kerkyacharian and Petrushev in [23] while studying problems related to nonlinear approximation.

De�nition 4.1 Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. The (non-classical) Triebel-Lizorkin space F̃spq = F̃spq(L) is
de�ned as the set of all f ∈ S′ such that

‖f‖F̃spq :=
∥∥∥(∑

k≥0

(
|B(·, 2−k)|−s/d|φk(

√
L)f (·)|

)q)1/q∥∥∥
Lp

< ∞. (4.1)

Above the `q-norm is replaced by the sup-norm if q = ∞.

For being able to prove embedding theorems between non-classical Triebel-Lizorkin spaces, we shall
further assume the following geometric behavior of the space.

(f) Reverse doubling volume condition: There exists a constant c4 > 1 such that

|B(x, 2r)| ≥ c4|B(x, r)| for all x ∈M and r > 0. (4.2)

(g) Nonexhausting condition: There exists a constants 0 < c5 < ∞ such that

sup
x∈M

|B(x, 1)| ≤ c5. (4.3)

The non-exhausting condition holds trivially on Rd and on every compact space; i.e. µ(M) < ∞.
On the other hand, the reverse doubling condition (4.2) holds always true when the spaceM is connected

and enjoy the doubling property (2.1) [7]. For example, every double volume Riemannian manifold, satis�es
(4.2).

From (4.2) it follows that there exist constants c′′4 ≥ 1 and d′′ > 0 such that

|B(x, λr)| ≥ c′′4 λd
′′
|B(x, r)| for x ∈M, r > 0 and λ > 1. (4.4)

The maximal value d* > 0 of the above quantity d′′ will be referred as the lower homogeneous dimension of
M.
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Of course the dimensions satisfy d ≥ d* > 0 and it is apparent that may di�er to each other. We illustrate
the two dimensions in the case of the ball in the last section of this paper.

Combining (4.3) and (4.4) we �nd a constant c > 0 such that

|B(x, r)| ≤ crd
*

for x ∈M and 0 < r ≤ 1. (4.5)

Note that the non-exhausting condition guarantees the expectable inclusion between non-classical
Triebel-Lizorkin spaces (and actually it is necessary for such an inclusion):

F̃s0p,q ⊂ F̃s1p,q , for every −∞ < s0 ≤ s1 < ∞, 0 < p < ∞, 0 < q ≤ ∞.

Let us now present the main result of the section, which illustrates the e�ect of the reverse-doubling
property on the embedding between Nonclassical Triebel-Lizorkin spaces.

Theorem 4.2 Let s0, s1 ∈ R, p0, p1 ∈ (0,∞) and q, r ∈ (0,∞] be such that s0 > s1 and p0 < p1. Then

F̃s0p0 ,q ↪→ F̃s1p1 ,r , (4.6)

provided
s0 − s1
d = d

d*
( 1
p0
− 1
p1

)
(4.7)

and the space (M, ρ, µ) satis�es the non-exhausting (4.3) and reverse doubling (4.2) conditions.

Proof.We shall follow the proof of Theorem 3.1, providing only the di�erences in the approach.
Let f ∈ F̃s0p0 ,∞ be such that ‖f‖F̃s0p0,∞ = 1. If k ∈ N0 by Nikol’slii’s inequality (2.15) we obtain∥∥|B(·, 2−k)|− s1d φk(√L)f∥∥∞ ≤ c∥∥|B(·, 2−k)| s0−s1d − 1

p0 |B(·, 2−k)|−
s0
d φk(

√
L)f
∥∥
p0
. (4.8)

Since s0 > s1, the growth behavior in (4.5) implies

|B(x, 2−k)|
s0−s1
d ≤ c2−k(s0−s1) d

*
d (4.9)

≤ c2−kd
(

1
p0
− 1
p1

)
, (4.10)

in light of the assumption (4.7).
On the other hand by (2.7) we derive

|B(x, 2−k)|−
1
p0 ≤ c2kd/p0 ,

which replaced in (4.8) together with (4.10) lead us to

∥∥|B(·, 2−k)|− s1d φk(√L)f (·)∥∥∞ ≤ c2kd/p1∥∥|B(·, 2−k)|− s0d φk(√L)f (·)∥∥p0
≤ c2kd/p1‖f‖F̃s0p0,∞ = c2kd/p1 .

Using this last inequality and similarly to (3.6) there exists a constant C̃* > 0 such that for every integer
K ∈ N0

K∑
k=0

∣∣|B(x, 2−k)|− s1d φk(√L)f (x)∣∣r ≤ c K∑
k=0

2k
d
p1 ‖f‖F̃s0p0,∞ ≤ C̃

*2K
d
p1
r . (4.11)

Furthermore,
∞∑

k=K+1

∣∣|B(x, 2−k)|− s1d φk(√L)f (x)∣∣r ≤ c sup
k≥0

∣∣|B(x, 2−k)|− s0d φk(√L)f (x)∣∣r ∞∑
k=K+1

|B(x, 2−k)|
s0−s1
d r

≤ c sup
k≥0

∣∣|B(x, 2−k)|− s0d φk(√L)f (x)∣∣r ∞∑
k=K+1

2−k(s0−s1) d
*
d r

≤ c2−K(s0−s1) d
*
d r sup

k≥0

∣∣|B(x, 2−k)|− s0d φk(√L)f (x)∣∣r ,
(4.12)
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thanks to (4.9) and the fact that s0 > s1.
Having established inequalities (4.11) and (4.12) the remainder of the proof is identical to the one of The-

orem 3.1; we omit the details. �

5 Embeddings between Besov spaces
Let us now provide some embeddings on Besov spaces. We �rst recall their de�nition [7, 23].

De�nition 5.1 Let s ∈ R and 0 < p, q ≤ ∞.
(i) The Besov space Bspq = Bspq(L) is de�ned as the set of all f ∈ S′ such that

‖f‖Bspq :=
(∑
k≥0

(
2sk‖φk(

√
L)f (·)‖Lp

)q)1/q
< ∞. (5.1)

(ii) The (non-classical) Besov space B̃spq = B̃spq(L) is de�ned as the set of all f ∈ S′ such that

‖f‖B̃spq :=
(∑
k≥0

(
‖|B(·, 2−k)|−s/dφk(

√
L)f (·)‖Lp

)q)1/q
< ∞. (5.2)

Above we use the standard modi�cation when q = ∞.

The following embedding has been proved in [23]: Let s0, s1 ∈ R, p0, p1 ∈ (0,∞] and q0, q1 ∈ (0,∞] be
such that s0 ≥ s1, p0 ≤ p1 and q0 ≤ q1. Then

Bs0p0 ,q0 ↪→ Bs1p1 ,q1 , and B̃s0p0 ,q0 ↪→ B̃s1p1 ,q1 if s0 − s1
d = 1

p0
− 1
p1

. (5.3)

Note that for the right side embedding, the noncollapsing condition is not required.

Assuming now that s0−s1d > 1
p0 −

1
p1 we can extend the range of these results including the case q0 > q1.

In particular we prove the following:

Theorem 5.2 Let s0, s1 ∈ R, p0, p1 ∈ (0,∞] and q0, q1 ∈ (0,∞] be such that s0 > s1, p0 < p1, q0 > q1 and

s0 − s1
d > 1

p0
− 1
p1

. (5.4)

Then
(i) Bs0p0 ,q0 ↪→ Bs1p1 ,q1 and
(ii) B̃s0p0 ,q0 ↪→ B̃s1p1 ,q1 , when the space (M, ρ, µ) satis�es the non-exhausting (4.3) and reverse doubling (4.2)

conditions.

Proof. We shall prove only claim (ii), the proof of claim (i) is similar.

Let f ∈ B̃s0p0 ,q0 . We set θ := s0 − s1 − d
( 1
p0 −

1
p1
)
> 0.

By Nikol’skii’s inequality (2.3) and (4.5) we obtain

∥∥|B(·, 2−k)|− s1d φk(√L)f∥∥p1 ≤ c∥∥|B(·, 2−k)| θd − s0d φk(√L)f∥∥p0
≤ c2−k d

*
d θ
∥∥|B(·, 2−k)|− s0d φk(√L)f∥∥p0 .
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We putting this last inequality in the quasi-norm (5.2) and apply Hölder’s inequality for the index q0/q1 > 1
to conclude that

‖f‖B̃s1p1,q1 ≤ c
(∑
k≥0

(
2−k d

*
d θ
∥∥|B(·, 2−k)|− s0d φk(√L)f∥∥p0)q1)1/q1

≤ c‖f‖B̃s0p0,q0
(∑
k≥0

2−k d
*
d θq0q1/(q0−q1)

)(q0−q1)/q0q1
≤ c‖f‖B̃s0p0,q0 ,

which completes the proof of claim (ii). �

Let us �nally point out that claim (i) demands thenon-collapsing condition (2.2),while claim (ii) demands
the reverse doubling property together with the non-exhausting condition, but not the non-collapsing con-
dition.

5.1 Some relevant problems

Let us �nally point out that more general classes of function spaces, the so-called Besov-type and Triebel-
Lizorkin-type spaces [33] have been recently introduced in the generality we work [25]. The embeddings be-
tween these spaces consist of an interesting open problem.

The homogeneous counterparts of Besov and Triebel-Lizorkin spaces associated with operators have
been developed in [15, 16]. The embeddings between homogeneous spaces, could be another research di-
rection.

6 The unit ball
We close this paper with an example where the assumptions of our study as well as the homogeneous dimen-
sions can be illustrated.

LetM be the unit ball of Rm; Bm :=
{
x ∈ Rm : ‖x‖ < 1

}
, equipped with the measure

dµ(x) := (1 − ‖x‖2)γ−1/2dx, γ > −1,

and the distance
ρ(x, y) := arccos

(
〈x, y〉 +

√
1 − ‖x‖2

√
1 − ‖y‖2

)
,

where 〈x, y〉 is the inner product of x, y ∈ Rm and ‖x‖ :=
√
〈x, x〉.

By [8] we have that
|B(x, r)| ∼ rm

(
1 − ‖x‖2 + r2

)γ , (6.1)

which implies that (M, µ, ρ) satis�es Assumption I, the reverse doubling property (4.2) and the non-
exhausting condition (4.3).

The homogeneous dimensions are

d = m + 2γ+ and d* = m + 2γ−,

where γ+ := max(γ, 0) and γ− := min(γ, 0).
Consider the di�erential operator

L := Lγ := −
m∑
i=1

(1 − x2i )∂2i + 2
∑

1≤i<j≤m
xixj∂i∂j + (m + 2γ)

m∑
i=1

xi∂i .
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Then L satis�es Assumption II, as it has been proved in [8, 24].
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