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Abstract: We consider generalized weak Morrey spaces with variable growth condition on spaces of homo-
geneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another
one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue
space. However, we point out that theweakMorrey spaces do not always have this property just as theMorrey
spaces not always.
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1 Introduction
Let Ω = (Ω, µ) be a complete σ-�nite measure space. We denote by L0(Ω) the set of all measurable functions
from Ω to R or C. Then L0(Ω) is a linear space under the usual sum and scalar multiplication. Let E1, E2 ⊂
L0(Ω) be subspaces. We say that a function g ∈ L0(Ω) is a pointwise multiplier from E1 to E2, if the pointwise
multiplication fg is in E2 for any f ∈ E1. We denote by PWM(E1, E2) the set of all pointwise multipliers from
E1 to E2. We abbreviate PWM(E, E) to PWM(E). The pointwise multipliers are basic operators on function
spaces and thus the characterization of pointwisemultipliers is not only interesting itself but also sometimes
very useful to other study. Recently, it turned out that the characterization of pointwise multipliers plays key
roles in the boundedness of operators and bilinear decompositions, see [1, 3, 16, 36, 37].

For p ∈ (0,∞], Lp(Ω) denotes the usual Lebesgue space equipped with the quasi-norm

‖f‖Lp(Ω) =



∫
Ω

|f (x)|p dµ(x)

1/p

, 0 < p < ∞,

ess sup
x∈Ω

|f (x)|, p = ∞.

Then Lp(Ω) is a complete quasi-normed space (quasi-Banach space). If p ∈ [1,∞], then it is a Banach space.
It is well known as Hölder’s inequality that

‖fg‖Lp2 (Ω) ≤ ‖f‖Lp1 (Ω)‖g‖Lp3 (Ω),

for 1/p2 = 1/p1 + 1/p3 with pi ∈ (0,∞], i = 1, 2, 3. This shows that

PWM(Lp1 (Ω), Lp2 (Ω)) ⊃ Lp3 (Ω),

and
‖g‖PWM(Lp1 (Ω), Lp2 (Ω)) ≤ ‖g‖Lp3 (Ω),
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where ‖g‖PWM(Lp1 (Ω), Lp2 (Ω)) is the operator norm of g ∈ PWM(Lp1 (Ω), Lp2 (Ω)). Conversely, we can show the
reverse inclusion by using the uniform boundedness theorem or the closed graph theorem. That is,

PWM(Lp1 (Ω), Lp2 (Ω)) = Lp3 (Ω) and ‖g‖PWM(Lp1 (Ω),Lp2 (Ω)) = ‖g‖Lp3 (Ω). (1.1)

If p1 = p2 = p, then
PWM(Lp(Ω)) = L∞(Ω) and ‖g‖PWM(Lp(Ω)) = ‖g‖L∞(Ω). (1.2)

The proofs of (1.1) and (1.2) are in Maligranda and Persson [19, Proposition 3 and Theorem 1]. See [28] for a
survey on pointwise multipliers.

The characterization (1.1) was extended to Lorentz, Orlicz, Musielak-Orlicz spaces, etc, see [2, 14, 15, 17–
19, 27, 29] and the references in [28]. For weak Lebesgue spaces we also have

PWM(wLp1 (Ω), wLp2 (Ω)) = wLp3 (Ω) and ‖g‖PWM(wLp1 (Ω), wLp2 (Ω)) ∼ ‖g‖wLp3 (Ω),

for 1/p2 = 1/p1 + 1/p3 with pi ∈ (0,∞], i = 1, 2, 3, see [23]. For Morrey spaces the pointwise multipliers
were investigated in [24, 25]. In this paper we consider generalized weak Morrey spaces with variable growth
condition on spaces of homogeneous type in the sense of Coifman andWeiss [4, 5]. To establish the character-
ization of pointwise multipliers on them, we �rst prove a generalized Hölder’s inequality for the generalized
weak Morrey spaces. Next, to characterize the pointwise multipliers, we use the fact that all pointwise multi-
pliers on the generalized weak Morrey spaces are bounded operators. This fact follows from Theorem 1.1 and
Corollary 1.2 below. Moreover, we point out that

PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) % wLp3 ,ϕ3 (R
n)

for some cases even if 1/p2 = 1/p1 + 1/p3 and ϕ2 = ϕ1ϕ3, as well as the Morrey spaces.
We always assume that a function space E ⊂ L0(Ω) has the following property:

If a measurable subset Ω1 ⊂ Ω satis�es that
µ({x ∈ Ω : f (x) ≠ 0} \ Ω1) = 0 for every f ∈ E, then µ(Ω \ Ω1) = 0, (1.3)

see [13, pages 94] in which this property is referred to as supp E = Ω. We say that a quasi-normed space
E ⊂ L0(Ω) has the lattice property if the following holds:

f ∈ E, h ∈ L0(Ω), |h| ≤ |f | a.e. ⇒ h ∈ E, ‖h‖E ≤ ‖f‖E . (1.4)

Then we have the following theorem:

Theorem 1.1 ([28, Theorem 2.7]). Let a quasi-normed space E ⊂ L0(Ω) have the lattice property (1.4). For any
sequence of functions fj ∈ E, j = 1, 2, · · · , if fj → 0 in E, then fj → 0 in measure on every measurable set with
�nite measure.

Using the closed graph theorem, we have the following corollary:

Corollary 1.2 ([28, Corollary 2.8]). If E1 and E2 are complete quasi-normed spaces with the lattice property
(1.4), then all g ∈ PWM(E1, E2) are bounded operators.

Wewill showweakMorrey spaces are complete quasi-normed spaces with the lattice property (1.4). Then
all pointwise multipliers from a weak Morrey space to another weak Morrey space are bounded operators.

We also use the Fatou property of weakMorrey spaces. Here, a quasi-normed space E has the Fatou prop-
erty if

fj ∈ E (j = 1, 2 · · · ), fj ≥ 0, fj ↗ f a.e. and sup
j
‖fj‖E < ∞ ⇒ f ∈ E and ‖f‖E ≤ sup

j
‖fj‖E . (1.5)
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Morrey spaces are introduced by Morrey [20]. The generalized Morrey and weak Morrey spaces with vari-
able growth condition were introduced in [22]. For the theory of Morrey spaces, see [32, 33] for example. For
weakMorrey spaces, see [7, 8, 34, 35], etc. We consider Morrey andweakMorrey spaces on spaces of homege-
neous type in the sense of Coifman andWeiss [4, 5]. It is known that the space of homogeneous type provides
a natural setting for the study of both function spaces and the boundedness of operators. Many mathemati-
cians have developed the theory of harmonic analysis on spaces of homogeneous type, since Coifman and
Weiss de�ned the Hardy spaces on them by using atoms. For recent developments, see [6, 10–12, 38] for ex-
ample.

The organization of this paper is as follows. We recall the de�nitions of the space of homogeneous type
X = (X, d, µ) and generalized weak Morrey spaces with variable growth condition in Section 2. Then we state
main results in Section 3 where we give a su�cient condition for the characterization

PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)) = wLp3 ,ϕ3 (X). (1.6)

Moreover, we give a necessary condition for (1.6) when X = Rn. We prove the su�cient condition in Section 4
and the necessary condition in Section 5. The proof method is almost same as [24, 25]. However we need to
investigate the properties of the quasi-norm on the weak Morrey space in the proofs.

At the end of this section, we make some conventions. Throughout this paper, we always use C to denote
a positive constant that is independent of themain parameters involved but whose valuemay di�er from line
to line. Constants with subscripts, such as Cp, are dependent on the subscripts. If f ≤ Cg, we then write f . g
or g & f ; and if f . g . f , we then write f ∼ g.

2 Morrey and weak Morrey spaces on spaces of homogeneous type
Let X = (X, d, µ) be a space of homogeneous type, i.e., X is a topological space endowedwith a quasi-distance
d and a positive measure µ such that

d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x),

d(x, y) ≤ K1 (d(x, z) + d(z, y)), (2.1)

the balls B(x, r) = {y ∈ X : d(x, y) < r}, r > 0, form a basis of neighborhoods of the point x, µ is de�ned on a
σ-algebra of subsets of X which contains the balls, and

0 < µ(B(x, 2r)) ≤ K2 µ(B(x, r)) < ∞, (2.2)

where Ki ≥ 1 (i = 1, 2) are constants independent of x, y, z ∈ X and r > 0.
Next we recall the generalized Morrey and weak Morrey spaces with variable growth condition. For a

variable growth function ϕ : X × (0,∞) → (0,∞) and a ball B = B(x, r), we shall write ϕ(B) in place of
ϕ(x, r).

De�nition 2.1. For an index p ∈ (0,∞], a variable growth function ϕ : X × (0,∞)→ (0,∞) and a ball B, let

‖f‖p,ϕ,B =
1

ϕ(B)

 1
µ(B)

∫
B

|f (x)|p dµ(x)

1/p

, 0 < p < ∞, (2.3)

‖f‖p,ϕ,B,weak =
1

ϕ(B)

(
supt>0 tpµ({x ∈ B : |f (x)| > t})

µ(B)

)1/p
, 0 < p < ∞, (2.4)

‖f‖∞,ϕ,B = ‖f‖∞,ϕ,B,weak =
1

ϕ(B) ess supx∈B
|f (x)|, p = ∞. (2.5)
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Let Lp,ϕ(X) and wLp,ϕ(X) be the sets of all functions f such that the following functionals are �nite:

‖f‖Lp,ϕ = sup
B
‖f‖p,ϕ,B , ‖f‖wLp,ϕ = sup

B
‖f‖p,ϕ,B,weak,

respectively, where the suprema are taken over all balls B in X.

In 1938 Morrey [20] introduced the case ϕ(r) = r(λ−n)/p with λ ∈ (0, n) on Rn. Namely,

‖f‖Lp,λ = sup
B(x,r)

 1
rλ

∫
B(x,r)

|f (y)|p dy


1/p

. (2.6)

The symbol Lp,λ was used by Peetre [31] in 1966.
Using the Lp and weak Lp quasi-norms on the ball B, we can also write

‖f‖p,ϕ,B =
‖f‖Lp(B)

ϕ(B)µ(B)1/p
, ‖f‖p,ϕ,B,weak =

‖f‖wLp(B)
ϕ(B)µ(B)1/p

, 0 < p ≤ ∞.

Here and in the sequel, we always regard that

µ(B)1/p = 1 if p = ∞. (2.7)

Then the spaces Lp,ϕ(X) andwLp,ϕ(X) are complete quasi-normed linear spaces with the lattice property (1.4)
and the Fatou property (1.5), since Lp(B) and wLp(B) have these properties for each ball B. Note that

‖f + g‖Lp,ϕ ≤ 2
1/ min(p,1)−1

(
‖f‖Lp,ϕ + ‖g‖Lp,ϕ

)
,

‖f + g‖wLp,ϕ ≤ 2
1/ min(p,1)

(
‖f‖wLp,ϕ + ‖g‖wLp,ϕ

)
.

If 1 ≤ p ≤ ∞, then ‖f‖Lp,ϕ is a norm and thereby Lp,ϕ(X) is a Banach space. If ϕ(B) = µ(B)−1/p, then Lp,ϕ(X) =
Lp(X) and wLp,ϕ(X) = wLp(X).

For two variable growth functions ϕ1 and ϕ2, we write ϕ1 ∼ ϕ2 if there exists a positive constant C such
that, for all balls B,

C−1ϕ1(B) ≤ ϕ2(B) ≤ Cϕ1(B).

In this case, two function spaces de�ned by ϕ1 and by ϕ2 coincide with equivalent quasi-norms.
We consider the following conditions on variable growth function ϕ:

1
A1
≤ ϕ(x, s)ϕ(x, r) ≤ A1, if 12 ≤

s
r ≤ 2, (2.8)

1
A2
≤ ϕ(x, r)ϕ(y, r) ≤ A2, if |x − y| ≤ r, (2.9)

where A1 and A2 are positive constants independent of x, y ∈ X and r, s ∈ (0,∞). The condition (2.8) is
called the doubling condition. The condition (2.9) is introduced in [21] and studied in [30] precisely. In this
paper, we call it the nearness condition.

Note that, if ϕ(x, r)µ(B(x, r))1/p → 0 as r → ∞ for some x ∈ X, then Lp,ϕ(X) = wLp,ϕ(X) = {0}. To avoid
it we consider the following condition:

ϕ(x, r)µ(B(x, r))1/p ≤ A3ϕ(x, s)µ(B(x, s))1/p , if r < s, (2.10)

where A3 is a positive constant independent of x ∈ X and r, s ∈ (0,∞). We also consider the following
condition: For any ball B, there exists a positive constant CB such that

inf
B(x,r)⊂B

ϕ(x, r) ≥ CB . (2.11)
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We say that a function θ : X × (0,∞) → (0,∞) is almost increasing (resp. almost decreasing) if there
exists a positive constant C such that, for all x ∈ X and r, s ∈ (0,∞),

θ(x, r) ≤ Cθ(x, s) (resp. θ(x, s) ≤ Cθ(x, r)), if r < s. (2.12)

Then the condition (2.10) means that ϕ(x, r)µ(B(x, r))1/p is almost increasing. If ϕ is almost decreasing and
satis�es (2.8) and (2.9), then there exists a positive constant C such that, for all balls B,

inf
B(x,r)⊂B

ϕ(x, r) ≥ Cϕ(B). (2.13)

Remark 2.1. Let p ∈ (0,∞] and ϕ : X ×(0,∞)→ (0,∞). If ϕ satis�es (2.8), (2.9), (2.10) and (2.11), then, for any
ball B, its characteristic function χB is in Lp,ϕ(X) and in wLp,ϕ(X), see Lemma 4.4. Consequently, all �nitely
simple functions are in Lp,ϕ(X) and wLp,ϕ(X). Moreover, since X =

⋃∞
k=1 B(x, k) for every x ∈ X, we see that

both Lp,ϕ(X) and wLp,ϕ(X) satisfy (1.3).

3 Main results
We denote by ‖g‖PWM(wLp1 .ϕ1 (X),wLp2,ϕ2 (X))

the operator norm of the pointwise multiplier g ∈
PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)). The �rst result is a generalized Hölder’s inequality for weak Morrey spaces.

Theorem 3.1. Let pi ∈ (0,∞] and ϕi : X × (0,∞)→ (0,∞), i = 1, 2, 3. If 1/p1 +1/p3 ≤ 1/p2 and ϕ1ϕ3 ≤ Cϕ2
for some positive constant C, then

‖fg‖wLp2,ϕ2 ≤ C
q1/qp1/p11 p1/p33

p1/p22
‖f‖wLp1,ϕ1 ‖g‖wLp3,ϕ3 , (3.1)

where 1/q = 1/p2 − 1/p1 − 1/p3 with convention∞1/∞ = 1. Consequently,

wLp3 ,ϕ3 (X) ⊂ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)),

and, for all g ∈ wLp3 ,ϕ3 (X),

‖g‖PWM(wLp1,ϕ1 (X), wLp2,ϕ2 (X))
≤ C

q1/qp1/p11 p1/p33

p1/p22
‖g‖wLp3,ϕ3 .

Remark 3.1. If 1/p1 + 1/p3 ≤ 1/p2 and ϕ1ϕ3 ≤ Cϕ2, then

‖fg‖Lp2,ϕ2 ≤ C‖f‖Lp1,ϕ1 ‖g‖Lp3,ϕ3 , (3.2)

which is a generalized Hölder’s inequality for Morrey spaces, see [24, Lemma 4.1].

Next we state the reverse inclusion.

Theorem 3.2. Let pi ∈ (0,∞] and ϕi : X × (0,∞) → (0,∞), i = 1, 2, 3. Assume that pi and ϕi, i = 1, 2, 3,
satisfy (2.8), (2.9), (2.10) and (2.11), and that ϕ3

1/p1 /ϕ1
1/p3 is almost increasing with convention ϕi1/∞ = 1. If

1/p2 ≤ 1/p1 + 1/p3 and ϕ2 ≤ Cϕ1ϕ3 for some positive constant C, then

PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)) ⊂ wLp3 ,ϕ3 (X),

and, for all g ∈ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)),

‖g‖wLp3,ϕ3 ≤ C
′‖g‖PWM(wLp1,ϕ1 (X),wLp2,ϕ2 (X))

.
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Remark 3.2. Under the same assumption as Theorem 3.2, we have

PWM(Lp1 ,ϕ1 (X), Lp2 ,ϕ2 (X)) ⊂ Lp3 ,ϕ3 (X),

‖g‖Lp3,ϕ3 ≤ C
′‖g‖PWM(Lp1,ϕ1 (X), Lp2,ϕ2 (X))

,

see [24, Section 5].

By the above two theorems we have the following theorem.

Theorem 3.3. Let pi ∈ (0,∞] and ϕi : X × (0,∞)→ (0,∞), i = 1, 2. Assume that p2 ≤ p1 and that pi and ϕi
(i = 1, 2) satisfy (2.8), (2.9), (2.10) and (2.11). Assume also that ϕ2/ϕ1 satis�es (2.11) and that ϕ2

1/p1 /ϕ1
1/p2 is

almost increasing with convention ϕi1/∞ = 1. De�ne p3 and ϕ3 as 1/p3 = 1/p2 − 1/p1 and ϕ3 = ϕ2/ϕ1. Then

PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)) = wLp3 ,ϕ3 (X),

and ‖g‖PWM(wLp1,ϕ1 (X), wLp2,ϕ2 (X))
is equivalent to ‖g‖wLp3,ϕ3 .

Since wLp,ϕ(X) = L∞(X) if p = ∞ and ϕ ≡ 1, we have the following corollary.

Corollary 3.4. Let p ∈ (0,∞] and ϕ : X × (0,∞)→ (0,∞). Assume that p and ϕ satisfy (2.8), (2.9), (2.10) and
(2.11). Then

PWM(wLp,ϕ(X)) = L∞(X),

and ‖g‖PWM(wLp,ϕ(X)) ∼ ‖g‖L∞ . Moreover,

PWM(L∞(X), wLp,ϕ(X)) = wLp,ϕ(X).

and ‖g‖PWM(L∞(X), wLp,ϕ(X)) ∼ ‖g‖wLp,ϕ .

Remark 3.3. Let 0 < p2 < p1 ≤ ∞, 1/p3 = 1/p2 − 1/p1 and ϕ3 = ϕ2/ϕ1. Assume that

(i) p1 and ϕ1 satisfy (2.8), (2.9) and (2.10),
(ii) ϕ2 satis�es (2.8) and (2.9),
(iii) ϕ2/ϕ1 satis�es (2.11),
(iv) ϕ2

1/p1 /ϕ1
1/p2 is almost increasing with convention ϕi1/∞ = 1.

Then pi and ϕi, i = 1, 2, 3, satisfy (2.8), (2.9), (2.10) and (2.11). Actually, (i) and (ii) imply that ϕ3 satis�es (2.8)
and (2.9), (i) and (iv) imply that

ϕi(x, r)µ(B(x, r))1/pi =
(
ϕ1(x, r)µ(B(x, r))1/p1

)p1/pi (
ϕ2

1/p1 /ϕ1
1/p2

)p1
, i = 2, 3,

satisfy (2.10), and, (iii) and (iv) imply that

ϕi =
(
ϕ2/ϕ1

)pi/(p1−p2) (ϕ2
1/p1 /ϕ1

1/p2
)−p1p2/(p1−p2)

i = 1, 2,

satisfy (2.11).

For the case ϕi : (0,∞)→ (0,∞), i = 1, 2, 3, we have the following corollary.

Corollary 3.5. Let pi ∈ (0,∞] and ϕi : (0,∞) → (0,∞), i = 1, 2. Assume that p2 ≤ p1, that ϕi is almost
decreasing and that ϕi(r)µ(B(x, r))1/pi satis�es (2.10) for i = 1, 2. Assume also that lim inf

r→0
ϕ2(r)/ϕ1(r) > 0 and

that ϕ1/p1
2 /ϕ1/p2

1 is almost increasing with convention ϕ1/∞
i = 1. De�ne p3 and ϕ3 as 1/p3 = 1/p2 − 1/p1 and

ϕ3 = ϕ2/ϕ1. Then
PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)) = wLp3 ,ϕ3 (X),

and ‖g‖PWM(wLp1,ϕ1 (X), wLp2,ϕ2 (X))
is equivalent to ‖g‖wLp3,ϕ3 .
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Remark 3.4. Under the same assumption as Theorem 3.3, we have

PWM(Lp1 ,ϕ1 (X), Lp2 ,ϕ2 (X)) = Lp3 ,ϕ3 (X),

and ‖g‖PWM(Lp1,ϕ1 (X), Lp2,ϕ2 (X))
is equivalent to ‖g‖Lp3,ϕ3 , see [24, Theorem 2.1].

Let X be the n-dimensional Euclidean spaceRn, d(x, y) be the usual distance |x−y| and µ be the Lebesgue
measure. Let p ∈ (0,∞). For λ(·) : Rn → R and λ* ∈ R, let

ϕ(x, r) =
{
rλ(x), 0 < r < 1,
rλ
*
, 1 ≤ r < ∞.

(3.3)

Assume that −n/p ≤ λ(x) ≤ 0 and −n/p ≤ λ* ≤ 0 and that λ(·) is log-Hölder continuous, that is, there exists a
positive constant C such that, for all x, y ∈ Rn,

|λ(x) − λ(y)| ≤ C
log(e/|x − y|) if 0 < |x − y| < 1.

Then ϕ satis�es (2.8), (2.9), (2.10) and (2.11), see [26, Proposition 3.3].

Corollary 3.6. Let pi ∈ (0,∞), λi(·) : Rn → Rand λ*i ∈ R, and let ϕi bede�nedas (3.3), i = 1, 2, 3. Assume that
−n/pi ≤ λi(x) ≤ 0 and −n/pi ≤ λ*i ≤ 0 and that λi(·) is log-Hölder continuous, i = 1, 2, 3. If 1/p1 + 1/p3 = 1/p2,
λ1(·) + λ3(·) = λ2(·), λ*1 + λ*3 = λ*2, and if λ2(·)/p1 − λ1(·)/p2 ≥ 0 and λ*2/p1 − λ*1/p2 ≥ 0, then

PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) = wLp3 ,ϕ3 (R
n),

and ‖g‖PWM(wLp1,ϕ1 (Rn), wLp2,ϕ2 (Rn))
is equivalent to ‖g‖wLp3,ϕ3 .

Next we consider the necessity of the assumption in Theorem 3.3 in the case of X = Rn and ϕ : (0,∞)→
(0,∞). We denote by |E| the Lebesgue measure of E ⊂ Rn.

Theorem 3.7. Let pi ∈ (0,∞] and ϕi : (0,∞) → (0,∞), i = 1, 2. Assume that ϕ1 is almost decreasing and
that ϕ1(r)rn/p1 is almost increasing. If one of the following conditions holds,

(i) lim inf
r→0

ϕ2(r)/ϕ1(r) = 0,
(ii) p1 < p2 and lim

r→0
ϕ1(r) = ∞,

then
PWM(wLp1 ,ϕ1 (R

n), wLp2 ,ϕ2 (R
n)) = {0}.

Theorem 3.8. Let pi ∈ (0,∞] and ϕi : (0,∞) → (0,∞), i = 1, 2. Assume that p2 ≤ p1, that ϕi is almost
decreasing and that ϕi(r)rn/pi is almost increasing for i = 1, 2. De�ne p3 and ϕ3 as 1/p3 = 1/p2 − 1/p1 and
ϕ3 = ϕ2/ϕ1. Then

PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) = wLp3 ,ϕ3 (R
n),

if and only if ϕ1/p1
2 /ϕ1/p2

1 is almost increasing with convention ϕ1/∞
i = 1.

In this case, ‖g‖PWM(wLp1,ϕ1 (Rn), wLp2,ϕ2 (Rn))
is equivalent to ‖g‖wLp3,ϕ3 .

Following the de�nition (2.6), for p ∈ (0,∞) and λ ∈ [0, n], we de�newLp,λ(Rn) as the set of all functions
f ∈ L0(Rn) such that

‖f‖wLp,λ = sup
B(x,r)

(
supt>0 tp|{y ∈ B(x, r) : |f (y)| > t}|

rλ

)1/p
(3.4)

is �nite. Then wLp,λ(Rn) = wLp(Rn) if λ = 0 and wLp,λ(Rn) = L∞(Rn) if λ = n.
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Corollary 3.9. Let pi ∈ (0,∞) and λi ∈ [0, n], i = 1, 2. Then

PWM(wLp1 ,λ1 (Rn), wLp2 ,λ2 (Rn))



= wLp2 ,λ2 (Rn), λ1 = n,
= {0}, p1 < p2 and 0 ≤ λ1 < n,
= {0}, p1 = p2 and 0 ≤ λ1 < λ2 ≤ n,
= L∞(Rn), p1 = p2 and 0 ≤ λ1 = λ2 ≤ n,
% {0}, p1 = p2 and 0 ≤ λ2 < λ1 < n,
= {0}, p1 > p2 and 0 < n + (λ1 − n)p2/p1 < λ2 ≤ n,
= L∞(Rn), p1 > p2 and 0 ≤ λ2 = n + (λ1 − n)p2/p1 ≤ n,
= wLp3 ,λ3 (Rn), p1 > p2 and 0 ≤ λ1 ≤ λ2 < n + (λ1 − n)p2/p1 < n,
% wLp3 ,λ3 (Rn), p1 > p2 and 0 ≤ λ1p2/p1 < λ2 < λ1 < n,
% wLp3 (Rn), p1 > p2 and 0 ≤ λ2 = λ1p2/p1 < λ1 < n,
% {0}, p1 > p2 and 0 ≤ λ2 < λ1p2/p1 < λ1 < n,

where p3 = p1p2/(p1 − p2) and λ3 = (p1λ2 − p2λ1)/(p1 − p2).

For PWM(Lp1 ,λ1 (Rn), Lp2 ,λ2 (Rn)), see [25, Corollary 2.4].

4 Proofs of Theorems 3.1–3.3
First we state Hölder’s inequality for weak Lp-spaces.

Lemma 4.1. Let (Ω, µ) be a measure space and let pi ∈ (0,∞], i = 1, 2, 3. If 1/p1 + 1/p3 = 1/p2, then

‖fg‖wLp2 (Ω) ≤
p1/p11 p1/p33

p1/p22
‖f‖wLp1 (Ω)‖g‖wLp3 (Ω), (4.1)

with convention∞1/∞ = 1.

For the proof, see Grafakos [9, page 16] for example. If p1 = ∞ or p3 = ∞, then the inequality above is
clear, since ‖f‖wL∞(Ω) = ‖f‖L∞(Ω).

Lemma 4.2. Let p, p̃ ∈ (0,∞] and ϕ : X × (0,∞)→ (0,∞). If p ≤ p̃, then wLp,ϕ(X) ⊃ wLp̃,ϕ(X) and

‖f‖wLp,ϕ ≤
p̃1/p̃q1/q

p1/p
‖f‖wLp̃,ϕ ,

with convention∞1/∞ = 1, where 1/q = 1/p − 1/p̃.

Proof. By Lemma 4.1 we have that, for any ball B,

‖f‖wLp(B) ≤
p̃1/p̃q1/q

p1/p
‖f‖wLp̃(B)‖1‖wLq(B) =

p̃1/p̃q1/q

p1/p
‖f‖wLp̃(B)µ(B)

1/q .

Then
‖f‖wLp(B)

ϕ(B)µ(B)1/p
≤ p̃

1/p̃q1/q

p1/p
‖f‖wLp̃(B)µ(B)1/q

ϕ(B)µ(B)1/p
= p̃

1/p̃q1/q

p1/p
‖f‖wLp̃(B)

ϕ(B)µ(B)1/p̃
,

which shows the conclusion.

Proof of Theorem 3.1. Let 1/p̃2 = 1/p1 +1/p3. Then 1/p2 = 1/p̃2 +1/q and p2 ≤ p̃2. By Lemma 4.2 we have

‖fg‖wLp2,ϕ ≤
p̃1/p̃22 q1/q

p1/p2
‖fg‖wLp̃2,ϕ . (4.2)
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By Lemma 4.1 and ϕ1ϕ3 ≤ Cϕ2, we have that, for any ball B,

‖fg‖wLp̃2 (B)
ϕ2(B)µ(B)1/p̃2

≤ C
p1/p11 p1/p33

p̃1/p̃22

‖f‖wLp1 (B)‖g‖wLp3 (B)
ϕ1(B)ϕ3(B)µ(B)1/p1µ(B)1/p3

,

which shows

‖fg‖wLp̃2,ϕ2 ≤ C
p1/p11 p1/p33

p̃1/p̃22
‖f‖wLp1,ϕ1 ‖g‖wLp3,ϕ3 . (4.3)

Combining (4.2) and (4.3), we have the conclusion.

Next we give two lemmas and one proposition to prove Theorem 3.2.

Lemma 4.3. Let p ∈ (0,∞] and ϕ : X × (0,∞) → (0,∞). Suppose that p and ϕ satisfy (2.8), (2.9) and (2.10).
If supp f is in some ball B0 and if

sup
B⊂3K12B0

‖f‖p,ϕ,B,weak ≤ M

for some positive constant M, then f ∈ wLp,ϕ(X) and

‖f‖wLp,ϕ ≤ CM,

where the positive constant C depends only on K1, K2, A1, A2 and A3.

Proof. Let B0 = B(a, r). For any ball B(b, s), we show that

‖f‖p,ϕ,B(b,s),weak ≤ CM.

We may assume that B(a, r) ∩ B(b, s) ≠ ∅.
Case 1: Assume that s ≤ r and B(a, r)∩B(b, s) ≠ ∅. Then d(a, b) ≤ 2K1r and B(b, s) ⊂ B(a, 3K12r). Hence

‖f‖p,ϕ,B(b,s),weak ≤ M.

Case 2: Assume that s > r and B(a, r) ∩ B(b, s) ≠ ∅. Then d(a, b) ≤ 2K1s and B(a, s) ⊂ B(b, 3K12s). In
this case we have

µ(B(a, 3K12s)) ≤ K′µ(B(b, s)),

since µ(B(a, 3K12s)) . µ(B(a, s)) and µ(B(b, 3K12s)) . µ(B(b, s)) by (2.2). By (2.8) and (2.9) we have

ϕ(a, 3K12s) ≤ A′ϕ(b, s).

Then, using the above inequalities, supp f ⊂ B(a, r) and (2.10), we have

‖f‖p,ϕ,B(b,s),weak =
‖f‖wLp(B(b,s))

ϕ(b, s)µ(B(b, s))1/p

≤
A′K′1/p‖f‖wLp(B(a,r))

ϕ(a, 3K12s)µ(B(a, 3K12s))1/p

≤
A3A′K′1/p‖f‖wLp(B(a,r))
ϕ(a, r)µ(B(a, r))1/p

≤ A3A′K′1/pM.

The proof is complete.

Lemma 4.4. Let p ∈ (0,∞] and ϕ : X × (0,∞) → (0,∞). If ϕ satis�es (2.8), (2.9), (2.10) and (2.11), then, for
any ball B, its characteristic function χB is in Lp,ϕ(X) and wLp,ϕ(X). Moreover, if ϕ is almost decreasing, then
there exists a positive constant C such that, for all balls B,

‖χB‖wLp,ϕ ≤ ‖χB‖Lp,ϕ ≤
C

ϕ(B) .
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Proof. For any ball B′ ⊂ 3K21B, we have ϕ(B′) ≥ CB, where CB is a positive constant depending on B.

‖χB‖wLp(B′)
ϕ(B′)µ(B′)1/p

≤
‖χB‖Lp(B′)

ϕ(B′)µ(B′)1/p
= 1
ϕ(B′) ≤

1
CB

.

By Lemma 4.3 we obtain that
‖χB‖wLp,ϕ(X) ≤ ‖χB‖Lp,ϕ(X) .

1
CB

.

Moreover, ifϕ is almost decreasing, thenwe can take Cϕ(B) as CB, where C is independent of B, see (2.13).

Proposition 4.5. Let pi ∈ (0,∞] and ϕi : X × (0,∞) → (0,∞), i = 1, 2, 3. Assume that 1/p2 ≤ 1/p1 + 1/p3,
that pi and ϕi satisfy (2.8), (2.9), (2.10) and (2.11) for i = 1, 3, and that ϕ2 ≤ Cϕ1ϕ3 for some positive constant C.
Assume also that ϕ3

1/p1 /ϕ1
1/p3 is almost increasing with convention ϕi1/∞ = 1. Then, for any g ∈ wLp3 ,ϕ3 (X)∩

PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)), there exists f ∈ wLp1 .ϕ1 (X) such that f ≡ ̸ 0 and

‖f‖wLp1,ϕ1 ‖g‖wLp3,ϕ3 ≤ C
′‖fg‖wLp2,ϕ2 , (4.4)

where C′ is a positive constant independent of f and g.

Proof. We may assume that g ≢ 0. We may also assume that 1/p1 + 1/p3 = 1/p2, since ‖fg‖wLp̃2,ϕ2 .
‖fg‖wLp2,ϕ2 if 1/p2 < 1/p̃2 = 1/p1 + 1/p3. Then it is enough to prove the following three cases.

(i) p1, p2, p3 ∈ (0,∞).
(ii) p1 = ∞ and p2 = p3 = p ∈ (0,∞).
(iii) p3 = ∞ and p1 = p2 = p ∈ (0,∞].

Case 1. p1, p2, p3 ∈ (0,∞): Let g ∈ wLp3 ,ϕ3 (X) \ {0}. Choose a ball B0 such that

‖g‖wLp3,ϕ3 ≤
2‖g‖wLp3 (B0)

ϕ3(B0)µ(B0)1/p3
, (4.5)

and let

f (x) =
{
|g(x)|p3/p1 , if x ∈ B0,
0, if x ∈ ̸ B0.

Then
|f |p1 = |fg|p2 = |g|p3 on B0,

and
‖f‖p1wLp1 (B0) = ‖fg‖

p2
wLp2 (B0)

= ‖g‖p3wLp3 (B0), (4.6)

which shows
‖f‖wLp1 (B0)‖g‖wLp3 (B0) = ‖fg‖wLp2 (B0). (4.7)

Moreover, for all balls B,
‖f‖p1wLp1 (B) = ‖fg‖

p2
wLp2 (B) ≤ ‖g‖

p3
wLp3 (B). (4.8)

If B ⊂ 3K12B0, then
ϕ3(B)p3/p1
ϕ1(B)

.
ϕ3(3K12B0)p3/p1

ϕ1(3K12B0)
∼ ϕ3(B0)p3/p1

ϕ1(B0)
, (4.9)
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since ϕ3
p3/p1 /ϕ1 is almost increasing and satis�es (2.8) and (2.9). Hence, by (4.8), (4.9), (4.5) and (4.6) we

have

sup
B⊂3K12B0

‖f‖wLp1 (B)
ϕ1(B)µ(B)1/p1

≤ sup
B⊂3K12B0

ϕ3(B)p3/p1
ϕ1(B)

(
‖g‖wLp1 (B)

ϕ3(B)µ(B)1/p3

)p3/p1
.
ϕ3(B0)p3/p1
ϕ1(B0)

(
‖g‖wLp3,ϕ3

)p3/p1
.
ϕ3(B0)p3/p1
ϕ1(B0)

(
‖g‖wLp3 (B0)

ϕ3(B0)µ(B0)1/p3

)p3/p1
=

‖f‖wLp1 (B0)
ϕ1(B0)µ(B0)1/p1

.

Therefore, using Lemma 4.3, we have that f ∈ wLp1 ,ϕ1 (X) and that

‖f‖wLp1,ϕ1 .
‖f‖wLp1 (B0)

ϕ1(B0)µ(B0)1/p1
, (4.10)

which also shows that fg ∈ wLp2 ,ϕ2 (X), since g ∈ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)). Finally, using (4.10), (4.5),
(4.7) and the inequality ϕ2 ≤ Cϕ1ϕ3, we have

‖f‖wLp1,ϕ1 ‖g‖wLp3,ϕ3 .
‖f‖wLp1 (B0)

ϕ1(B0)µ(B0)1/p1
‖g‖wLp3 (B0)

ϕ3(B0)µ(B0)1/p3

.
‖fg‖wLp2 (B0)

ϕ2(B0)µ(B0)1/p2
≤ ‖fg‖wLp2,ϕ2 .

Case 2. p1 = ∞ and p2 = p3 = p ∈ (0,∞): Let g ∈ wLp3 ,ϕ3 (X) \ {0}. Choose a ball B0 such that

‖g‖wLp,ϕ3 ≤
2‖g‖wLp(B0)

ϕ3(B0)µ(B0)1/p
, (4.11)

and let

f (x) =
{
1, if x ∈ B0,
0, if x ∈ ̸ B0.

If B ⊂ 3K12B0, then
1

ϕ1(B)
.

1
ϕ1(3K12B0)

∼ 1
ϕ1(B0)

,

since 1/ϕ1 = (ϕ3
1/∞/ϕ1/p3

1 )p3 is almost increasing and satis�es (2.8) and (2.9), which shows

sup
B⊂3K12B0

1
ϕ1(B)

ess sup
x∈B

|f (x)| . 1
ϕ1(B0)

.

Then, by Lemma 4.3, we have that f ∈ wL∞,ϕ1 (X) and that

‖f‖wL∞,ϕ1
.

1
ϕ1(B0)

, (4.12)

which also shows that fg ∈ wLp,ϕ2 (X), since g ∈ PWM(wL∞,ϕ1 (X), wLp,ϕ2 (X)). Using (4.11), (4.12) and the
inequality ϕ2 ≤ Cϕ1ϕ3, we have

‖f‖wL∞,ϕ1
‖g‖wLp,ϕ3 .

1
ϕ1(B0)

‖g‖wLp(B0)
ϕ3(B0)µ(B0)1/p

.
‖fg‖wLp(B0)

ϕ2(B0)µ(B0)1/p
≤ ‖fg‖wLp,ϕ2 .

Case 3. p3 = ∞ and p1 = p2 = p ∈ (0,∞]: Let g ∈ wL∞,ϕ3 (X) \ {0}. Choose a ball B0 such that

‖g‖wL∞,ϕ3
≤ 2
ϕ3(B0)

ess sup
x∈B0

|g(x)|, (4.13)
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and let

f (x) =
{
1, if x ∈ B0 and |g(x)| > m/2,
0, if x ∈ ̸ B0 or |g(x)| ≤ m/2,

m = ess sup
x∈B0

|g(x)|.

Then f ∈ wLp,ϕ1 (X) by Lemma 4.4, which also shows that fg ∈ wLp,ϕ2 (X), since g ∈
PWM(wLp,ϕ1 (X), wLp,ϕ2 (X)). For all balls B, we have

‖f‖wLp(B)
µ(B)1/p

× m2 =
‖(m/2)f‖wLp(B)

µ(B)1/p
≤
‖fg‖wLp(B)
µ(B)1/p

,

where we regard that µ(B)1/p = 1 if p = ∞. If B ⊂ 3K12B0, then

1
ϕ1(B)

≤ Cϕ3(B)
ϕ2(B)

.
ϕ3(3K21B0)
ϕ2(B)

∼ ϕ3(B0)
ϕ2(B)

, (4.14)

since ϕ2 ≤ Cϕ1ϕ3 and ϕ3 satis�es (2.8), (2.9) and (2.10) with p3 = ∞. By Lemma 4.3, we have

‖f‖wLp,ϕ1 ‖g‖wL∞,ϕ3
.

(
sup

B⊂3K2
1B0

‖f‖wLp(B)
ϕ1(B)µ(B)1/p

)
× 2m
ϕ3(B0)

. sup
B⊂3K2

1B0

‖fg‖wLp(B)
ϕ2(B)µ(B)1/p

≤ ‖fg‖wLp,ϕ2 .

The proof is complete.

Proof of Theorem 3.2. Let g ∈ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)). Then g is a bounded operator by Corollary 1.2.
Take a sequence of �nitely simple functions gj ≥ 0, j = 1, 2, · · · , such that gj ↗ |g| a.e. Then by Lemma 4.4
and the lattice property of wLp2 ,ϕ2 (X) we see that

gj ∈ wLp3 ,ϕ3 (X) ∩ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X))

and that
‖gj‖PWM(wLp1,ϕ1 (X),wLp2,ϕ2 (X))

≤ ‖g‖PWM(wLp1,ϕ1 (X),wLp2,ϕ2 (X))
.

By Proposition 4.5 we have

‖f‖wLp1,ϕ1 ‖gj‖wLp3,ϕ3 . ‖fgj‖wLp2,ϕ2 . ‖f‖wLp1,ϕ1 ‖gj‖PWM(wLp1,ϕ1 (X),wLp2,ϕ2 (X))
,

for some f ∈ wLp1 ,ϕ1 (X). That is,

‖gj‖wLp3,ϕ3 . ‖g‖PWM(wLp1,ϕ1 (X),wLp2,ϕ2 (X))
.

Then by the Fatou property of wLp3 ,ϕ3 (X) we obtain that g ∈ wLp3 ,ϕ3 (X) and that

‖g‖wLp3,ϕ3 . ‖g‖PWM(wLp1,ϕ1 (X),wLp2,ϕ2 (X))
,

which is the conclusion.

Proof of Theorem 3.3. By Theorem 3.1 we have

wLp3 ,ϕ3 (X) ⊂ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)),

and
‖g‖PWM(wLp1,ϕ1 (X), wLp2,ϕ2 (X))

. ‖g‖wLp3,ϕ3 (X).
Next, by Remark 3.3 we see that ϕ3 also satis�es (2.8), (2.9), (2.10) and (2.11). Moreover, by the relation

ϕ1/p1
3

ϕ1/p3
1

= (ϕ2/ϕ1)1/p1

ϕ1/p3
1

=
ϕ1/p1
2

ϕ1/p2
1

,

we see that ϕ1/p1
3 /ϕ1/p3

1 is almost increasing from the assumption. Then by Theorem 3.2 we have

wLp3 ,ϕ3 (X) ⊃ PWM(wLp1 ,ϕ1 (X), wLp2 ,ϕ2 (X)),

and
‖g‖PWM(wLp1,ϕ1 (X), wLp2,ϕ2 (X))

& ‖g‖wLp3,ϕ3 (X).
Combining these results we have the conclusion.
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5 Proofs of Theorems 3.7 and 3.8
In this section we always treat wLp,ϕ(Rn) with ϕ : (0,∞) → (0,∞). To prove Theorems 3.7 and 3.8 we �rst
give some lemmas. For the �rst lemma, see [9, page 14] for example.

Lemma 5.1. Let 0 < q < p and |E| < ∞. Then∫
E

|f (y)|q dy ≤ p
p − q |E|

1−q/p‖f‖qwLp(E).

Lemma 5.2. Let p ∈ (0,∞], and let f ∈ wLploc(R
n). Assume that, for all x ∈ Rn, there exists a sequence {rj} of

positive real numbers such that rj → 0 and

lim
j→∞

‖f‖wLp(B(x,rj))
|B(x, rj)|1/p

= 0.

Then f = 0 a.e. Rn.

Proof. Let q ∈ (0, p). Then, by Lemma 5.1,

1
|B(x, rj)|

∫
B(x,rj)

|f (y)|q dy ≤ p
p − q

(
‖f‖wLp(B(x,rj))
|B(x, rj)|1/p

)q
→ 0 as j →∞.

By Lebesgue’s di�erentiation theorem we have the conclusion.

The next two lemmas follow from the de�nition.

Lemma 5.3. Let p ∈ (0,∞) and B be a ball. If supp f ∩ supp g = ∅, then

‖f + g‖pwLp(B) ≤ ‖f‖
p
wLp(B) + ‖g‖

p
wLp(B).

Lemma 5.4. Let p ∈ (0,∞] and ϕ : Rn × (0,∞)→ (0,∞). Then∥∥∥∥∥∥
N∑
j=1

fj

∥∥∥∥∥∥
wLp,ϕ

≤
N∑
j=1

(21/ min(p,1))j‖fj‖wLp,ϕ .

Lemma 5.5. Let p ∈ (0,∞] and ϕ : (0,∞) → (0,∞). Assume that ϕ is almost decreasing and ϕ(r)rn/p

is almost increasing. Let B0 = B(a0, r0), and let {Bj}∞j=1 be a sequence of balls which are pairwise disjoint.
Assume that a sequence {fj}∞j=1 of functions satis�es

Bj ⊂ B0,
supp fj ⊂ (1/3)Bj ,
‖fj‖wLp ≤ c1ϕ(r0)|Bj|1/p ,
‖fj‖wLp,ϕ ≤ c2,

j = 1, 2, . . . ,

for some positive constants c1 and c2. Then f =
∑∞

j=1 fj is in wLp,ϕ(Rn) and ‖f‖wLp,ϕ ≤ C(c1 + c2), where the
constant C depends only on n and ϕ.

Proof. Let Bj = B(aj , rj), j = 1, 2, . . . . For any ball B = B(a, r) ⊂ 3B0, let

J1 = {j ∈ N : B ∩ (1/3)Bj ≠ ∅, r ≥ rj/3},
J2 = {j ∈ N : B ∩ (1/3)Bj ≠ ∅, r < rj/3},
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and

Ii =
‖
∑

j∈Ji fj(x)‖wLp(B)
ϕ(r)|B|1/p

, i = 1, 2.

If j ∈ J1, then (1/3)Bj ⊂ 3B. It follows that⋃
j∈J1

B(aj , rj/3) ⊂ B(a, 3r) and
∑
j∈J1

(rj/3)n ≤ (3r)n .

Since supp fj ∩ supp fk = ∅ for j ≠ k, by Lemma 5.3,

I1 ≤
1

ϕ(r)|B|1/p

∑
j∈J1

‖fj‖pwLp((1/3)Bj)

1/p

≤ c1ϕ(r0)ϕ(r)

 1
|B|
∑
j∈J1

|Bj|

1/p

≤ Cc1, if p ∈ (0,∞),

and

I1 =

∥∥∥∑j∈J1 fj
∥∥∥
wL∞(B)

ϕ(r) =
supj∈J1 ‖fj‖wL∞((1/3)Bj)

ϕ(r) ≤ c1ϕ(r0)ϕ(r) ≤ Cc1, if p = ∞.

If j ∈ J2, then B ⊂ Bj, i.e., J2 has only one element. Hence

I2 ≤
‖fj‖wLp(B)
ϕ(r)|B|1/p

≤ ‖fj‖wLp,ϕ ≤ c2.

By Lemma 4.3 we have ‖f‖wLp,ϕ ≤ C(c1 + c2).

We denote by Q(a, r) the cube

{x = (x1, . . . , xn) ∈ Rn : |xi − ai| ≤ r/2, i = 1, . . . , n}

centered at a = (a1, . . . , an) ∈ Rn and of sidelength r > 0.

Proof of Theorem 3.7. Case (i): Let lim inf
r→0

ϕ2(r)/ϕ1(r) = 0. Then there exists a sequence {rj}∞j=1 of positive
numbers such that

rj → 0 and
ϕ2(rj)
ϕ1(rj)

→ 0 as j →∞.

Let g ∈ PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) and Cg = ‖g‖PWM(wLp1,ϕ1 (Rn), wLp2,ϕ2 (Rn))
. For any x ∈ Rn,

‖g‖wLp2 (B(x,rj))
|B(x, rj)|1/p2

=
‖gχB(x,rj)‖wLp2 (B(x,rj))
|B(x, rj)|1/p2

≤ ϕ2(rj)‖gχB(x,rj)‖wLp2,ϕ2

≤ Cgϕ2(rj)‖χB(x,rj)‖wLp1,ϕ1 . Cg
ϕ2(rj)
ϕ1(rj)

→ 0 as j →∞.

By Lemma 5.2 we get g = 0 a.e.
Case (ii): Let p1 < p2 and lim

r→0
ϕ1(r) = ∞. Take a sequence {sk}∞k=1 of positive real numbers such that sk > sk+1,

k = 1, 2, . . . , and sk → 0 as k →∞. Let

lk =
[(
ϕ1(sk)p1/nsk

)−1]
+ 1, mk =

[
ϕ1(sk)p1/n

]
+ 1,

where [α] is the integer part of the positive real number α. Then, by the almost increasingness of ϕ1(r)rn/p1
and the almost decreasingness of ϕ1, we have

lk ∼
(
ϕ1(sk)p1/nsk

)−1
, mk ∼ ϕ1(sk)p1/n .
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Hence

ϕ1(1/(lkmk))
(mk)n/p1

∼ ϕ1(sk)(sk lk)n/p1 ∼ 1, (5.1)

ϕ1(1/(lkmk))
(mk)n/p2

∼ ϕ1(sk)(sk lk)n/p2 ∼ ϕ1(sk)1−p1/p2 →∞ as k →∞. (5.2)

For any �xed a0 ∈ Rn, we divide the cube Q(a0, 1) into (lk)n sub-cubes Q(bk,j , 1/lk); j = 1, 2, . . . , (lk)n, i.e.,

Q(a0, 1) =
(lk)n⋃
j=1

Q(bk,j , 1/lk),

Q(bk,j , 1/lk)◦ ∩ Q(bk,j′ , 1/lk)◦ = ∅ for j ≠ j′,

where Q◦ is the interior of the cube Q. Let O ∈ Rn be the origin. We divide the cube Q(O, 1/lk) into (mk)n

sub-cubes Q(ek,i , 1/(lkmk)); i = 1, 2, . . . , (mk)n, i.e.,

Q(O, 1/lk) =
(mk)n⋃
i=1

Q(ek,i , 1/(lkmk))

Q(ek,i , 1/(lkmk))◦ ∩ Q(ek,i′ , 1/(lkmk))◦ = ∅ for i ≠ i′.

Then

Q(bk,j , 1/lk) =
(mk)n⋃
i=1

Q(bk,j + ek,i , 1/(lkmk))

Q(bk,j + ek,i , 1/(lkmk))◦ ∩ Q(bk,j + ek,i′ , 1/(lkmk))◦ = ∅ for i ≠ i′,
j = 1, 2, . . . , lnk .

Let

fk,j,i(x) =
{
ϕ1(1/(lkmk)), x ∈ Q(bk,j + ek,i , 1/(lkmk)),
0, x ∈ ̸ Q(bk,j + ek,i , 1/(lkmk)),

fk,i =
(lk)n∑
j=1

fk,j,i .

First we show that there exists a positive constant C such that, for all k ∈ N and i = 1, 2, . . . , (mk)n,

‖fk,i‖wLp1,ϕ1 ≤ C. (5.3)

We note that

B(bk,j + ek,i , 1/(2lk)) ⊂ Q(bk,j + ek,i , 1/lk) ⊂ Q(a0, 2) ⊂ B(a0,
√
n),

B(bk,j + ek,i , 1/(2lk)) ∩ B(bk,j′ + ek,i , 1/(2lk)) = ∅ for j ≠ j′.

Since ϕ(sk)→∞ as k →∞, we may assume mk ≥ 3
√
n. Hence

supp fk,j,i = Q(bk,j + ek,i , 1/(lkmk))
⊂ B(bk,j + ek,i ,

√
n/(2lkmk)) ⊂ B(bk,j + ek,i , 1/(6lk)).

By (5.1) we have
‖fk,j,i‖wLp1 ≤ ϕ1(1/(lkmk))(1/lkmk)n/p1 ∼ (1/lk)n/p1 .

By Lemma 4.4 we have
‖fk,j,i‖wLp1,ϕ1 ≤ C.
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Hence, by Lemma 5.5 we have (5.3).
Now, let g ∈ PWM(wLp1 ,ϕ1 (R

n), wLp2 ,ϕ2 (R
n)) and Cg = ‖g‖PWM(wLp1,ϕ1 (Rn), wLp2,ϕ2 (Rn))

. Then

ϕ1(1/lkmk)‖g‖wLp2 (supp fk,i) = ‖gfk,i‖wLp2 (B(a0 ,√n)) ≤ ϕ2(
√
n)|B(a0,

√
n)|1/p2‖gfk,i‖wLp2,ϕ2 . Cg .

Since 
Q(a0, 1) =

(mk)n⋃
i=1

supp fk,i ,

(supp fk,i)◦ ∩ (supp fk,i′ )◦ = ∅ for i ≠ i′,

k = 1, 2, . . . ,

we have by Lemma 5.3 and (5.2)

‖g‖wLp2 (Q(a0 ,1)) ≤

(mk)n∑
i=1

(
‖g‖wLp2 (supp fk,i)

)p21/p2

. (mk)n/p2ϕ1(1/lkmk)−1Cg → 0 as k →∞, if p2 ∈ (0,∞),

and

‖g‖wL∞(Q(a0 ,1)) = max
{
‖g‖wL∞(supp fk,i) : i = 1, 2, . . . (mk)n

}
. ϕ1(1/lkmk)−1Cg → 0 as k →∞, if p2 = ∞.

Therefore g = 0 a.e.

Proof of Theorem 3.8. Let ϕ1/p1
2 /ϕ1/p2

1 be almost increasing. If lim inf
r→0

ϕ2(r)/ϕ1(r) > 0, then Theorem 3.3
shows that

PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) = wLp3 ,ϕ3 (R
n).

If lim inf
r→0

ϕ2(r)/ϕ1(r) = 0, then wLp3 ,ϕ3 (R
n) = {0}, since ϕ3 = ϕ2/ϕ1. In this case Theorem 3.7 shows that

PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) = {0} = wLp3 ,ϕ3 (R
n).

Next, we assume that ϕ1/p1
2 /ϕ1/p2

1 is not almost increasing. In this case p2 < ∞, since p2 = ∞ implies
p1 = ∞ and ϕ1/p1

2 /ϕ1/p2
1 ∼ 1. Then, for all k ∈ N, there exist positive real numbers rk and sk, k = 1, 2, . . . ,

such that
sk < rk and ϕ2(sk)1/p1 /ϕ1(sk)1/p2 ≥ (4Cp2 )k/p2ϕ2(rk)1/p1 /ϕ1(rk)1/p2 ,

where Cp2 = 21/ min(p2 ,1). We will construct a function

g ∈ PWM(wLp1 ,ϕ1 (R
n), wLp2 ,ϕ2 (R

n)) \ wLp3 ,ϕ3 (R
n).

Let

mk =
[
rkϕ2(rk)p2/n

skϕ2(sk)p2/n

]
+ 1,

where [α] denotes the integer part of the positive real number α. By almost increasingness of ϕ2(r)rn/p2 and
by almost decreasing of ϕ2, we have

mk ∼
rkϕ2(rk)p2/n

skϕ2(sk)p2/n
, rk

mk
> 6c0sk for some c0 > 0. (5.4)

LetO ∈ Rn be the origin.Wedivide the cubeQ(O, rk) into (mk)n sub-cubesQ(bk,j , rk/mk); j = 1, 2, . . . , (mk)n,
i.e.,

Q(O, rk) =
(mk)n⋃
j=1

Q(bk,j , rk/mk),

Q(bk,i , rk/mk)◦ ∩ Q(bk,j , rk/mk)◦ = ∅ for i ≠ j,
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where Q◦ is the interior of Q. Let

gk,j(x) =
{
ϕ3(c0sk), x ∈ B(bk,j , c0sk)
0, x ∈ ̸ B(bk,j , c0sk)

gk =
(mk)n∑
j=1

gk,j , g =
∞∑
k=1

1
(2Cp2 )k

gk .

Here we note that

supp gk,j ⊂ B(bk,j , rk/(6mk)), B(bk,j , rk/(2mk)) ⊂ Q(bk,j , rk/mk).

First we show that
g ∈ PWM(wLp1 ,ϕ1 (R

n), wLp2 ,ϕ2 (R
n)).

For all f ∈ wLp1 ,ϕ1 (R
n), by Lemma 4.1 we have

‖fgk,j‖wLp2

≤
p1/p11 p1/p33

p1/p22
‖f‖wLp1 (B(bk,j ,c0sk))‖gk,j‖wLp3 (B(bk,j ,c0sk))

≤
p1/p11 p1/p33

p1/p22
ϕ1(c0sk)|B(bk,j , c0sk)|1/p1‖f‖wLp1,ϕ1ϕ3(c0sk)|B(bk,j , c0sk)|1/p3

. ϕ2(c0sk)|B(bk,j , c0sk)|1/p2‖f‖wLp1,ϕ1 .

Using the doubling condition of ϕ and (5.4), we have

‖fgk,j‖wLp2 . ϕ2(sk)(sk)n/p2‖f‖wLp1,ϕ1 ∼ ϕ2(rk)(rk/mk)n/p2‖f‖wLp1,ϕ1 .

By Theorem 3.1 and Lemma 4.4 we have

‖fgk,j‖wLp2,ϕ2 . ‖f‖wLp1,ϕ1 ‖gk,j‖wLp3,ϕ3 . ‖f‖wLp1,ϕ1 .

Hence, by Lemma 5.5 we conclude that

‖fgk‖wLp2,ϕ2 =

∥∥∥∥∥∥
(mk)n∑
j=1

fgk,j

∥∥∥∥∥∥
wLp2,ϕ2

≤ C‖f‖wLp1,ϕ1 .

Then by Lemma 5.4 we have

‖fg‖wLp2,ϕ2 ≤

∥∥∥∥∥
∞∑
k=1

1
(2Cp2 )k

fgk

∥∥∥∥∥
wLp2,ϕ2

≤
∞∑
k=1

1
2k
‖fgk‖wLp2,ϕ2 ≤ C‖f‖wLp1,ϕ1 ,

which shows that g is a pointwise multiplier from wLp1 ,ϕ1 (R
n) to wLp2 ,ϕ2 (R

n).
On the other hand, since supp gk ⊂ Q(O, rk) ⊂ B(O,

√
nrk/2),

‖g‖wLp3 (B(O,√nrk/2))
ϕ3(
√
nrk/2)|B(O,

√
nrk/2)|1/p3

≥ 1
(2Cp2 )k

‖gk‖wLp3 (B(O,√nrk/2))
ϕ3(
√
nrk/2)|B(O,

√
nrk/2)|1/p3

∼ 1
(2Cp2 )k

ϕ3(sk)(mksk)n/p3
ϕ3(rk)(rk)n/p3

=
(
mkskϕ2(sk)p2/n

rkϕ2(rk)p2/n

)n/p3 (
ϕ2(sk)1/p1 /ϕ1(sk)1/p2

(2Cp2 )k/p2ϕ2(rk)1/p1 /ϕ1(rk)1/p2

)p2
& 2k for k = 1, 2, . . . ,

which shows that g ∉ wLp3 ,ϕ3 (R
n).

Acknowledgement: The authors would like to thank the referees for their careful reading and many useful
comments. The second author was supported by Grant-in-Aid for Scienti�c Research (B), No. 15H03621, Japan
Society for the Promotion of Science.



380 | Ryota Kawasumi and Eiichi Nakai

References
[1] A. Bonami, J. Cao, L. D. Ky, L. Liu, D. Yang and W. Yuan, Multiplication between Hardy spaces and their dual spaces, J. Math.

Pures Appl. (9) 131 (2019), 130–170.
[2] J. M. Calabuig, O. Delgado and E. A. Sánchez Pérez, Generalized perfect spaces, Indag. Math. (N.S.) 19 (2008), No. 3, 359–

378.
[3] J. Cao, L. D. Ky and D. Yang, Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through

wavelets, Commun. Contemp. Math. 20 (2018), No. 3, 1750025, 30 pp.
[4] R. R. Coifman andG.Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes inMath-

ematics, Vol. 242. Springer-Verlag, Berlin and New York, 1971.
[5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), No. 4,

569–645.
[6] X. Fu, T. Ma and D. Yang, Real-variable characterizations of Musielak-Orlicz Hardy spaces on spaces of homogeneous type,

Ann. Acad. Sci. Fenn. Math. 45 (2020), 343–410.
[7] H. Gunawan, D. I. Hakim, K. M. Limanta and A. A. Masta, Inclusion properties of generalized Morrey spaces, Math. Nachr.

290 (2017), No. 2-3, 332–340.
[8] H. Gunawan, D. I. Hakim, E. Nakai and Y. Sawano. On inclusion relation between weak Morrey spaces and Morrey spaces,

Nonlinear Anal. 168 (2018), 27–31.
[9] L. Grafakos, Classical Fourier analysis, Third edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014.
[10] Z. He, Y. Han, J. Li, L. Liu, D. Yang and W. Yuan, A complete real-variable theory of Hardy spaces on spaces of homogeneous

type, J. Fourier Anal. Appl. 25 (2019), No. 5, 2197–2267.
[11] Z. He, L. Liu, D. Yang and W. Yuan, New Calderón reproducing formulae with exponential decay on spaces of homogeneous

type, Sci. China Math. 62 (2019), No. 2, 283–350.
[12] Z. He, D. Yang and W. Yuan, Real-variable characterizations of local Hardy spaces on spaces of homogeneous type, Math.

Nachr. to appear. DOI:10.1002/mana.201900320.
[13] L. V. Kantorovich and G. P. Akilov, Functional analysis, Translated from the Russian by Howard L. Silcock, Second edition,

Pergamon Press, Oxford-Elmsford, N.Y., 1982.
[14] P. Kolwicz, K. Leśnik and L. Maligranda, Pointwise multipliers of Calderón-Lozanovskĭı spaces, Math. Nachr. 286 (2013),
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