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Abstract: We consider generalized weak Morrey spaces with variable growth condition on spaces of homo-
geneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another
one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue
space. However, we point out that the weak Morrey spaces do not always have this property just as the Morrey
spaces not always.
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1 Introduction

Let Q = (Q, u) be a complete o-finite measure space. We denote by L°(Q) the set of all measurable functions
from Q to R or C. Then L°(Q) is a linear space under the usual sum and scalar multiplication. Let E1, E> C
L°(Q) be subspaces. We say that a function g € L°(Q) is a pointwise multiplier from E; to E,, if the pointwise
multiplication fg is in E; for any f € E;. We denote by PWM(E, E>) the set of all pointwise multipliers from
E, to E,. We abbreviate PWM(E, E) to PWM(E). The pointwise multipliers are basic operators on function
spaces and thus the characterization of pointwise multipliers is not only interesting itself but also sometimes
very useful to other study. Recently, it turned out that the characterization of pointwise multipliers plays key
roles in the boundedness of operators and bilinear decompositions, see [1, 3, 16, 36, 37].
For p € (0, oo], L?(Q) denotes the usual Lebesgue space equipped with the quasi-norm

1/p

[rwraw) . o<pes,
Il =9 \3

esssup |f(x)], p =oo.
xXeQ

Then LP(Q) is a complete quasi-normed space (quasi-Banach space). If p € [1, o], then it is a Banach space.
It is well known as Holder’s inequality that

18Iz ) = If ller (@) l18 113 )
for 1/p, = 1/py + 1/p3 with p; € (0, o], i = 1, 2, 3. This shows that
PWM(LP1(Q), LP*(Q)) D LP*(Q),

and

Igllpwm(zr1 (@), Lr2 (@) < I8 llLrs (@)s
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where ||glpwmr: (@), 172 (@) 1S the operator norm of g € PWM(LP*(Q), LP?(Q)). Conversely, we can show the
reverse inclusion by using the uniform boundedness theorem or the closed graph theorem. That is,

PWM(LP'(Q), LP*(Q)) = L7 (Q) and g lpwm(zr: @), L72 (@) = 18]lL7s (@) (11)

Ifp1 = p2 = p, then
PWM(LP(Q2)) = L™(Q) and |Igllpwmer(o) = 18]lL=(0)- (1.2)

The proofs of (1.1) and (1.2) are in Maligranda and Persson [19, Proposition 3 and Theorem 1]. See [28] for a
survey on pointwise multipliers.

The characterization (1.1) was extended to Lorentz, Orlicz, Musielak-Orlicz spaces, etc, see [2, 14, 15, 17—
19, 27, 29] and the references in [28]. For weak Lebesgue spaces we also have

PWM(WLP'(Q), wLP?(Q)) = wL?*(Q) and HgHPWM(wLPl(.O),wLPZ(Q)) ~ g llwzes Q)

for 1/p, = 1/p1 + 1/p3 with p; € (0,00], 1 = 1, 2, 3, see [23]. For Morrey spaces the pointwise multipliers
were investigated in [24, 25]. In this paper we consider generalized weak Morrey spaces with variable growth
condition on spaces of homogeneous type in the sense of Coifman and Weiss [4, 5]. To establish the character-
ization of pointwise multipliers on them, we first prove a generalized Holder’s inequality for the generalized
weak Morrey spaces. Next, to characterize the pointwise multipliers, we use the fact that all pointwise multi-
pliers on the generalized weak Morrey spaces are bounded operators. This fact follows from Theorem 1.1 and
Corollary 1.2 below. Moreover, we point out that

PWM(WL,, 4, (R"), WLy, ,(R™) 2 WL, 4. (R")

for some cases even if 1/p, = 1/p; + 1/p3 and ¢, = ¢1¢3, as well as the Morrey spaces.
We always assume that a function space E c L°(Q) has the following property:

If a measurable subset Q; C Q satisfies that
U{x e Q:fx)#0}\ Q) =0forevery f € E,then u(Q\ Q1) =0, (13)

see [13, pages 94] in which this property is referred to as supp E = Q. We say that a quasi-normed space
E c L°(Q) has the lattice property if the following holds:

feE hel®@), |h <|flae. = heE, |hlg<|flE. (1.4)
Then we have the following theorem:

Theorem 1.1 ([28, Theorem 2.7]). Let a quasi-normed space E c L°(Q) have the lattice property (1.4). For any
sequence of functions f; € E, j = 1,2, -, if f; = 0in E, then f; — 0 in measure on every measurable set with
finite measure.

Using the closed graph theorem, we have the following corollary:

Corollary 1.2 ([28, Corollary 2.8]). If E; and E, are complete quasi-normed spaces with the lattice property
(1.4), then all g € PWM(E, E,) are bounded operators.

We will show weak Morrey spaces are complete quasi-normed spaces with the lattice property (1.4). Then
all pointwise multipliers from a weak Morrey space to another weak Morrey space are bounded operators.

We also use the Fatou property of weak Morrey spaces. Here, a quasi-normed space E has the Fatou prop-
erty if

fjeE(G=1,2---),fj20, f; ~fae and sqp\|f,~||E <oo = f e Eand]|f|f < sqp||f,-|\E. (1.5)
j j
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Morrey spaces are introduced by Morrey [20]. The generalized Morrey and weak Morrey spaces with vari-
able growth condition were introduced in [22]. For the theory of Morrey spaces, see [32, 33] for example. For
weak Morrey spaces, see [7, 8, 34, 35], etc. We consider Morrey and weak Morrey spaces on spaces of homege-
neous type in the sense of Coifman and Weiss [4, 5]. It is known that the space of homogeneous type provides
a natural setting for the study of both function spaces and the boundedness of operators. Many mathemati-
cians have developed the theory of harmonic analysis on spaces of homogeneous type, since Coifman and
Weiss defined the Hardy spaces on them by using atoms. For recent developments, see [6, 10-12, 38] for ex-
ample.

The organization of this paper is as follows. We recall the definitions of the space of homogeneous type
X = (X, d, u) and generalized weak Morrey spaces with variable growth condition in Section 2. Then we state
main results in Section 3 where we give a sufficient condition for the characterization

PWMWL,, 4, (X), WL, 4, (X)) = WL, 4, (X). (16)

Moreover, we give a necessary condition for (1.6) when X = R". We prove the sufficient condition in Section 4
and the necessary condition in Section 5. The proof method is almost same as [24, 25]. However we need to
investigate the properties of the quasi-norm on the weak Morrey space in the proofs.

At the end of this section, we make some conventions. Throughout this paper, we always use C to denote
a positive constant that is independent of the main parameters involved but whose value may differ from line
to line. Constants with subscripts, such as Cp, are dependent on the subscripts. If f < Cg, we then write f < g
org 2 f;andif f < g < f, we then write f ~ g.

2 Morrey and weak Morrey spaces on spaces of homogeneous type

Let X = (X, d, u) be a space of homogeneous type, i.e., X is a topological space endowed with a quasi-distance
d and a positive measure y such that
dx,y)=0 and d(x,y)=0ifandonlyifx =y,
d(x,y) = d(y, x),
d(x,y) < K1 (d(x, 2) + d(z, y)), 1)

the balls B(x,r) = {y € X : d(x, y) < r}, r > 0, form a basis of neighborhoods of the point x, y is defined on a
o-algebra of subsets of X which contains the balls, and

0 < u(B(x, 2r)) < K, u(B(x, 1)) < oo, 2.2

where K; > 1 (i = 1, 2) are constants independent of x, y,z € Xand r > 0.

Next we recall the generalized Morrey and weak Morrey spaces with variable growth condition. For a
variable growth function ¢ : X x (0, ) — (0, o0) and a ball B = B(x, r), we shall write ¢(B) in place of
ox, ).

Definition 2.1. For an index p € (0, <], a variable growth function ¢ : X x (0, o) — (0, oo) and a ball B, let

1/p

1
= 305 N»ﬂmwwm , 0<pcss, (3

0<p<oo, (2.4)

; _ 1 stﬁ(vermwﬂ)W
|| Hp,qb,B,weak = ¢(B) ( ‘LI(B) )

flloo,g,B = [Ifllo,,B,weak = ¢(B) ess sup [F()l, p=oo. (2.5)
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Let L, 4(X) and wL, 4(X) be the sets of all functions f such that the following functionals are finite:
Ifll, , = sup Ifllp.¢.>  Wfllwe,, = sup Ifllp,¢,B,weak
respectively, where the suprema are taken over all balls B in X.

In 1938 Morrey [20] introduced the case ¢(r) = rA-m/P with A € (0, n) on R™. Namely,
1/p

1
Pl = sup | & [ oPay| 26)
B(x,
Gor) B(x,r)

The symbol LP** was used by Peetre [31] in 1966.
Using the LP and weak L? quasi-norms on the ball B, we can also write

IfllLrB) Ifllwee )

= =, 0« < oo,
Hf“p,zp,B (l)(B)}l(B)l/p ||f||p,¢,B,weak (l)(B)}l(B)l/p p=s
Here and in the sequel, we always regard that
y(B)l/p =1 ifp=oo. .7)

Then the spaces L, 4(X) and WL, 4(X) are complete quasi-normed linear spaces with the lattice property (1.4)
and the Fatou property (1.5), since LP(B) and wL? (B) have these properties for each ball B. Note that

IF + 8l < 2™ (£l , + 1181, )

< 21/ min(p,1) (

I + &llut, g Il + N8 ) -

If1 < p < oo, then |f|,, is a norm and thereby L, ¢(X) is a Banach space. If ¢(B) = y(B)’l/p, then L, (X) =
LP(X) and WL, 4(X) = WL (X).

For two variable growth functions ¢; and ¢,, we write ¢1 ~ ¢, if there exists a positive constant C such
that, for all balls B,

C '$1(B) < ¢1(B) < Ch1(B).

In this case, two function spaces defined by ¢; and by ¢, coincide with equivalent quasi-norms.
We consider the following conditions on variable growth function ¢:

1 ¢x,s) .1 s

A—ls o) <A, 1f§s;52, (2.8)
1 ¢, .

— < <A, iflx-y|<r, 2.9
L 0.0 Ix -yl (29)

where A; and A, are positive constants independent of x,y € X and r,s € (0, o). The condition (2.8) is
called the doubling condition. The condition (2.9) is introduced in [21] and studied in [30] precisely. In this
paper, we call it the nearness condition.

Note that, if ¢(x, r)u(B(x, r))l/p — 0 asr — oo for some x € X, then Lp,(p(X) = wLp,d,(X) = {0}. To avoid
it we consider the following condition:

o (x, Nu(B(x, MYP < Asp(x, s)u(B(x, NP, ifr<s, (2.10)

where As is a positive constant independent of x € X and r,s € (0, o). We also consider the following
condition: For any ball B, there exists a positive constant Cy such that

inf , 1) 2 Cp. 2.11
B(;};)CB¢(X r)=Cp (2.11)
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We say that a function 6 : X x (0, c0) — (0, oo) is almost increasing (resp. almost decreasing) if there
exists a positive constant C such that, forallx € Xandr, s € (0, o),

O(x,r) < CO(x,s) (resp.B(x,s)<CO(x,r)), ifr<s. (2.12)

Then the condition (2.10) means that ¢(x, r)u(B(x, 1)'/? is almost increasing. If ¢ is almost decreasing and
satisfies (2.8) and (2.9), then there exists a positive constant C such that, for all balls B,

. )(i,l;l)ch ¢x, 1) 2 Ch(B). (2.13)

Remark 2.1. Letp € (0, ec] and ¢ : Xx (0, o) — (0, o0). If ¢ satisfies (2.8), (2.9), (2.10) and (2.11), then, for any
ball B, its characteristic function y is in L, 4(X) and in wL,, 4(X), see Lemma 4.4. Consequently, all finitely
simple functions are in Lp,qb(X) and wLp,d,(X). Moreover, since X = ;. B(x, k) for every x € X, we see that
both L), 4(X) and wL,, 4(X) satisfy (1.3).

3 Main results

We denote by |\g||PWM(wLP1. o OO, 4 (X)) the operator norm of the pointwise multiplier g €
PWM(WLy, 4,(X), WLy, 4,(X)). The first result is a generalized Hélder’s inequality for weak Morrey spaces.

Theorem 3.1. Let p; € (0, o] and ¢; : Xx (0, 00) — (0,00),i=1,2,3.If1/p1+1/p3 < 1/p and p1¢3 < Co,
for some positive constant C, then

ql/qpi/Plpé/Pa

118w, 4, < C 7
p;

Ifllw,, o, 1181WL,, 4, » (€3))

where 1/q = 1/p, - 1/p1 - 1/p3 with convention coll> =1, Consequently,
WL, . (X) C PWM(WL, 4, (X), WL, ¢, (X)),

and, for all g € WL, ¢, (X),

ql/qp}/mp;/ps

181lpWaWL,, g, (X), WL, , (X)) < CplT”g L 5
2

Remark 3.1. 1f 1/p1 + 1/p3 < 1/p, and ¢p1¢3 < C¢h,, then

HngLPZv‘?Z < CHfHLplyqyl ||g||Lp3,¢3 ’ (3-2)

which is a generalized Holder’s inequality for Morrey spaces, see [24, Lemma 4.1].

Next we state the reverse inclusion.

Theorem 3.2. Let p; € (0, 0] and ¢; : X x (0,0) — (0, 00), i = 1,2, 3. Assume that p; and ¢;,1 = 1,2, 3,
satisfy (2.8), (2.9), (2.10) and (2.11), and that ¢3 1p / ¢11/ P53 is almost increasing with convention ¢1~1/ T =11If
1/p2 < 1/p1 + 1/p3 and ¢, < Cp1 3 for some positive constant C, then

PWM(WL,, ¢, (X), WLy, 4,(X)) C WL, 4, (X),

and, for allg € PWM(WL,, 4, (X), WLy, 4, (X)),

/
||gHwLy}4J3 <C HgHPWM(WLpl,(Pl(X),wLpz,d,Z(X))'
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Remark 3.2. Under the same assumption as Theorem 3.2, we have
PWM(LPl:‘pl X), Lp2,¢z (X)) c Lp3»¢3 X),
1811z, 4, < C'lIglpwML,, 5, (0, Ly, 4, X)>

see [24, Section 5].
By the above two theorems we have the following theorem.
Theorem 3.3. Let p; € (0, o] and ¢; : X x (0, 00) — (0, 00), i = 1, 2. Assume that p, < p; and that p; and ¢;

(i =1, 2) satisfy (2.8), (2.9), (2.10) and (2.11). Assume also that ¢, /1 satisfies (2.11) and that ¢21/p 1/ <;b11/ P2 jg
almost increasing with convention (;bl-l/“’ = 1. Define p5 and ¢3 as 1/p3 = 1/p, — 1/p1 and ¢3 = 2/ 1. Then

PWMWL,, ¢, (X), WLy, 4,(X)) = wLj, 4 (X),

and ||gllpwmei,, 4, (%), WL, 4, () 1S equivalent to |||, ,. -
Since WL, 4(X) = L=(X) if p = oo and ¢ = 1, we have the following corollary.

Corollary 3.4. Letp < (0, 00] and ¢ : X x (0, o0) — (0, o0). Assume that p and ¢ satisfy (2.8), (2.9), (2.10) and
(2.11). Then

PWM(Wprqg,(X)) = L>(X),
and ||g|lpwmwi, ,(x)) ~ 18|z~ Moreover,

PWM(L™(X), WL, 4(X)) = WL, 4(X).
and ||8llpwm=(x), wL, 5 %) ~ 18llwL,4-

Remark3.3. Let0 < p; < pj <oo,1/p3 =1/p2 —1/p; and ¢35 = ¢p2/ ;. Assume that

(i) p; and ¢, satisfy (2.8), (2.9) and (2.10),
(ii) ¢, satisfies (2.8) and (2.9),
(iii) ¢2/¢p; satisfies (2.11),
(iv) ¢)21/ Ly ¢11/ P2 js almost increasing with convention ¢1~1/ = =1.

Then p; and ¢;, i = 1, 2, 3, satisfy (2.8), (2.9), (2.10) and (2.11). Actually, (i) and (ii) imply that ¢3 satisfies (2.8)
and (2.9), (i) and (iv) imply that

¢i(x, Du(B(x, )P = (¢1(x, Nu(B(x, r))l/P1>p1/pi (¢21/p1/¢11/pz)p1 L i=2,3,

satisfy (2.10), and, (iii) and (iv) imply that

-p1p2/(p1-p2)

$i = (p2/91)"" " (2171 / 1P i-1,2,

satisfy (2.11).
For the case ¢; : (0, o0) — (0, 0), i = 1, 2, 3, we have the following corollary.
Corollary 3.5. Let p; € (0, 0] and ¢; : (0,00) — (0,00), i = 1, 2. Assume that p, < p1, that ¢; is almost
decreasing and that ¢;(r)u(B(x, n)'/Pi satisfies (2.10) fori = 1, 2. Assume also that lim i(l)’lf ¢2(N/p1(r) >0and
r—

that ¢§/p1/(;bi/pz is almost increasing with convention q.')l.l/“’ = 1. Define ps and ¢p3 as 1/p3 = 1/p> - 1/p1 and
¢3 = ¢2/¢1. Then
PWM(WLpl’(l,1 (X), WLpz,d:z(X)) = WLp3,¢,3 (X),

and |8 |lpwmew,, 4, (%), wi,, 5,x) IS €quivalent to |[g]lu,, ,. -
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Remark 3.4. Under the same assumption as Theorem 3.3, we have

PWM(LPls¢1 (X), Lp,.¢, (X)) = Lp,.¢s (X),

and [Igllpwmr,, 4, (%), L, 5, (x) IS equivalent to [|g][.,. . . see [24, Theorem 2.1].

Let X be the n-dimensional Euclidean space R", d(x, y) be the usual distance |x-y| and u be the Lebesgue
measure. Let p € (0, o0). For A(-) : R" — Rand A" € R, let

A(x)
¢(x,r)={r > Ocr<d, (33)

rA, l<sr<oeo,

Assume that -n/p < A(x) < 0 and -n/p < A" < 0 and that A(") is log-H6lder continuous, that is, there exists a
positive constant C such that, for all x, y € R",

A - A(y)| < if 0<|x-y|<1.

¢
log(e/|x - yl)
Then ¢ satisfies (2.8), (2.9), (2.10) and (2.11), see [26, Proposition 3.3].

Corollary 3.6. Letp; € (0, 00),A;(-) : R" — Rand/l,T € R, and let ¢; be defined as (3.3),i = 1, 2, 3. Assume that

-n/p; < ;;(x) < 0 and -n/p; < A] < 0 and that A;(-) is log-Hélder continuous, i = 1,2,3.If 1/p; + 1/p3 = 1/pa,
AL() +A3() = A2(), A + A3 = A3, and if A (-)/p1 - A1(-)/p2 = 0 and A5 /p1 - A/ p; = O, then

PWMWL,, 4, (R, WLy, 4, (R") = WL, 4 (R"),
and ||g|[pwmewi,, 5, (R"), wL,, ,, (&) 1S equivalent to [|g|jwz,, 4. -

Next we consider the necessity of the assumption in Theorem 3.3 in the case of X = R" and ¢ : (0, o0) —
(0, o). We denote by |E| the Lebesgue measure of E C R".

Theorem 3.7. Let p; € (0, 00] and ¢; : (0,00) — (0, 00), i = 1, 2. Assume that ¢, is almost decreasing and
that ¢1(r)r"/ P1 is almost increasing. If one of the following conditions holds,
() liminf ¢, (r)/¢1(r) =0,
r—0
(ii) p1 < p2 and lim ¢4 (r) = oo,
r—0
then
PWM(wLpl,d,l(R”), WLpz,q,2 (RM) = {0}.

Theorem 3.8. Let p; € (0,00] and ¢; : (0,00) — (0,00), i = 1, 2. Assume that p, < pi, that ¢; is almost
decreasing and that ¢i(r)r”/p" is almost increasing for i = 1, 2. Define p3 and ¢3 as 1/p3 = 1/p, — 1/p; and

¢3 = P2/ P1. Then
PWMWL,, 4, (R™), WLy, 4,(R") = WL, 4,(R"),

if and only if ¢§/ Py (;b}/ P2 js almost increasing with convention qbil/ ®=1.
In this case, |\g||PWM(wLP1, o BM), WL, 5 (RY)) is equivalent to || gllwe,, 4, -

Following the definition (2.6), for p € (0, o) and A € [0, n], we define wLP>A(R") as the set of all functions
f € L°%(R") such that

£ lwzpa = sup (3.4)

B(x,r

is finite. Then wLPA(R") = wLP(R") if A = 0 and wLPA(R") = L=(R™) if A = n.

rA

<supb0 ®{y € B(x, 1) : [fy)] > t}] > 1p
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Corollary 3.9. Let p; € (0,00) and A; € [0, n], i =1, 2. Then

=wLP2R(RM), Ay =n,

= {0}, p1<pz and 0<A; <n,
= {0}, p1=p2 and 0<A; <Ay <n,
= L=(R"M), pi=pr and 0<Ai =1, <n,
2 {0}, pi1=p> and 0<A; <Aq<n,
PWM(WLPVM (R™), wLP>2(R™) { = {0}, p1>p; and 0<n+(Ay —n)pa/p1 <Ay <n,
= L=([R"), p1>py and 0<A; =n+ (A —n)pa/p1 <n,

=wLP*B(R"),  py>p, and 0<A; <Ay <n+ (A - n)pa/p1 <n,
2 wLP»B(RY), py>py and 0<Aipy/p1 <Ay <Ay <n,
2WLP(RY),  p1>p; and 0<A; =Aipa/p1 <Ay <n,

2 {0}, p1>ps and 0<A; <Aips/p1 <Ay <n,
where p3 = p1p>/(p1 — p2) and A3 = (1A — p2A1)/(p1 - p2).

For PWM(LP*M (R™), LP2%2(RM)), see [25, Corollary 2.4].

4 Proofs of Theorems 3.1-3.3

First we state Holder’s inequality for weak L”-spaces.

Lemma 4.1. Let (Q, u) be a measure space and let p; € (0,0],i=1,2,3.1f1/p, + 1/p3 = 1/p>, then

1/p1,,1/p3
3

If8llwiez (o) € 72—
b

Upn Ifllwees (@) 181 lwees () (4.1)
2

with convention o'/ = 1.

For the proof, see Grafakos [9, page 16] for example. If p; = oo or p3 = oo, then the inequality above is
clear, since ||f llwz=@) = IfllL=(q)-

Lemma 4.2. Letp,p € (0, 0] and ¢ : X x (0, 00) — (0, o). If p < P, then wLp,d,(X) ») wLi,,d,(X) and

51/p 41/q
p'q
Ifllwe,, s < T w45

with convention oo'/*° = 1, where 1/q = 1/p - 1/p.

Proof. By Lemma 4.1 we have that, for any ball B,

51/p 41/

q =1/p
Ifllwee ) < WHwaLﬁ(B)HleLQ(B) =

P ,1/q
%Hf”wLﬁ(B)H(B)lm-

Then i i
e 5YPqY9 If lwr@k B _ p12g49 |flwisep)
¢BuB)P —  pllr (B)u(B)/r plr  p(Bu(B)V/p’
which shows the conclusion. O

Proof of Theorem 3.1. Let1/p, =1/p,+1/p3.Then1/p, = 1/p> +1/q and p, < p,. By Lemma 4.2 we have

f,;/pqu/q

118 llwi,, s < 178 llwLs, - (4.2)

plip:
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By Lemma 4.1 and ¢1 ¢p3 < C¢h,, we have that, for any ball B,

felhwirem 217257 Iflin @Il
¢)2(B)}1(B)1/I~72 ﬁ%/i’z ¢1(B)¢3(B)]1(B)1/p1}1(3)1/p3 ’
which shows
pl/P1p1/p3
luty g, < Oy, 81 (4.3)
2
Combining (4.2) and (4.3), we have the conclusion. O

Next we give two lemmas and one proposition to prove Theorem 3.2.

Lemma 4.3. Letp € (0, 0] and ¢ : X x (0, o0) — (0, o). Suppose that p and ¢ satisfy (2.8), (2.9) and (2.10).
If suppf is in some ball By and if

sup Hf”p,qb,B,weak <M
BC3K:2Bo

for some positive constant M, then f € WL, 4(X) and

Ifllw, , < CM,

where the positive constant C depends only on K1, K, A1, A, and As.
Proof. Let By = B(a, r). For any ball B(b, s), we show that

”f”p,d),B(b,s),weak < CM.

We may assume that B(a, r) N B(b, s) # 0.
Case 1: Assume that s < rand B(a, r) N B(b, s) # 0. Then d(a, b) < 2K;rand B(b, s) C B(a, 3K;?r). Hence

Hf”p,qb,B(b,s),weak <M.

Case 2: Assume that s > r and B(a, r) N B(b, s) # 0. Then d(a, b) < 2K;s and B(a, s) C B(b, 3K;%s). In
this case we have
u(B(a, 3K1%s)) < K'u(B(b, s)),

since u(B(a, 3K1°s)) < u(B(a, s)) and u(B(b, 3K1%s)) < u(B(b, s)) by (2.2). By (2.8) and (2.9) we have
¢(a, 3K, %s) < A'¢p(b, s).
Then, using the above inequalities, supp f C B(a, r) and (2.10), we have
T If lwer B(b,s))
¢(b, s)u(B(b, s)'/P

. AP yepa,n)

- ¢(a, 3K1*s)u(B(a, 3K ?s)1/P
- A AKP|If |l pa,n)

~ ¢(a, Nu(Bla, )t/

< AsA'KVP M.

The proof is complete. O
Lemma 4.4. Letp € (0,00l and ¢ : X x (0, o0) — (0, o0). If ¢ satisfies (2.8), (2.9), (2.10) and (2.11), then, for

any ball B, its characteristic function yp is in L, 4(X) and WL, 4(X). Moreover, if ¢ is almost decreasing, then
there exists a positive constant C such that, for all balls B,

C
IXBllw,4 < lIXBllL,,, < B
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Proof. For any ball B ¢ 3K3B, we have ¢(B) = Cg, where Cj is a positive constant depending on B.

IxBllwerey _ IXBllrey 1 1
dBIuBNYP ~ p(B)u(B)Yr  ¢(B') " Cp’

IN

By Lemma 4.3 we obtain that

1
IXBllwe, 00 < IXBIL, ,00 < G

Moreover, if ¢ is almost decreasing, then we can take C¢(B) as Cp, where C is independent of B, see (2.13). O

Proposition 4.5. Let p; € (0, 00] and ¢; : X x (0, 00) — (0,00),1 =1, 2, 3. Assume that 1/p, < 1/p1 + 1/p3,
that p; and ¢; satisfy (2.8), (2.9), (2.10) and (2.11) fori = 1, 3, and that ¢, < C¢h¢3 for some positive constant C.
Assume also that(],’>31/pl/¢>11/p3 is almost increasing with convention ¢,-1/°° = 1. Then, forany g € WL, 4. (X)N

PWM(WL), 4, (X), WLy, 4, (X)), there exists f € WL, 4, (X) such that f # 0 and

Fllwty, o, 181ty o, < C'lfElNy, 5, (4.4)

where C' is a positive constant independent of f and g.

Proof. We may assume that g % 0. We may also assume that 1/p; + 1/p3 = 1/p,, since ||fg|\‘,\,Lﬁz,¢2 <
|\fg||‘,\,Lpzy¢2 if 1/p, < 1/p> = 1/p1 + 1/p3. Then it is enough to prove the following three cases.

(1) P1,P2,P3 € (0,°°)-
(ii) py =ccandp, =p3 =p € (0, 00).
(iii) p3 =ecand p; = p, =p € (0, oo].

Case 1. p1, py, p3 € (0,00): Letg € WL, 4 (X) \ {0}. Choose a ball By such that

2|18 lwres (By)

I8l 4, < $5(Bo)u(Bo) />’ (4.5)
and let
ﬂmz{mnwmafuesm
o, if x ¢ Bg.
Then
IfIP* = Ifgl”* = g|”> on Bo,
and
12 50y = 17812202 50y = 118112205 51 (4.6)
which shows
IFllwers (Bo) 18 llwzes (Bo) = 11f8lwev2 (Bo)- (4.7)
Moreover, for all balls B,
W12 ) = IF81E2 0 5y < 18112005 - (4.8)
If B € 3K1”Bo, then
$3(BP/P1 _ $33Ki’Bo)P/P1  3(Bo) P 49)

¢1(B) ~ ¢1(3I(12B0) ¢1(B0) ’



DE GRUYTER Pointwise Multipliers on Weak Morrey Spaces =——— 373

since ¢3? 3lp1y ¢1 is almost increasing and satisfies (2.8) and (2.9). Hence, by (4.8), (4.9), (4.5) and (4.6) we
have

sup ———"¥ _ < sup
BC3K, 2B, P1(BU(B)V/Pr ~ p3pop $1(B)

P3/p1
s SoBol = (g,
< ¢3(B0)p3/p1 ( 18 llwzrs (85) )ps/pl
$1(Bo) ¢3(BO)],1(B0)1/P3
_ M llwensy
¢1(Bo)u(Bo)t/pr”

(X) and that

fllwer ey ¢3(B)P3/P1< [Fg/—— >p3/p1
$3(B)u(B)V/P>

)Pz/m

Therefore, using Lemma 4.3, we have that f € WLy, 4,

IfllwLrs (Bo)

Hf”wL,,M)1 N W, (4.10)

which also shows that fg € wL,, ¢,(X), since g € PWM(WL,, 4, (X), WL, ¢,(X)). Finally, using (4.10), (4.5),
(4.7) and the inequality ¢, < C¢p1¢p3, we have

If1lwees Bo) 181l wirs Bo)
~ ¢1(Bo)u(Bo)/P1 ¢p3(Bo)u(Bo)1/ps
”ngwLPZ(Bo)
~ ¢2(Bo)u(Bo)t/p:

Case2.p; =occandp, =p3=p € (0,00): Letg € WL, 6, (X) \ {0}. Choose a ball By such that

Fllwty, o, I1€lhy, 5.

< fglhuc,, 5, -

2|18 llwLr(By)

" ¢3(Bo)u(Bo)P’ (4.11)

e

and let

1, ifx € By,
f0) = , °
0, ifx ¢ By.

If B c 3K;?Bo, then
1 1 1
¢1(B) ~ ¢1(31<12B0) ¢1(B0)’

since 1/¢1 = (¢3 1/ee / ¢i/ P3)Ps is almost increasing and satisfies (2.8) and (2.9), which shows

1 1
sup ——esssup|f(x)] < ———.
Bc31<13230 $1B) “rcp s $1(Bo)

Then, by Lemma 4.3, we have that f € WL, 4, (X) and that

1
HwaLm,d,1 < m, (4.12)

which also shows that fg € WL, 4,(X), since g € PWM(WL, 4, (X), WL, 4,(X)). Using (4.11), (4.12) and the
inequality ¢, < C¢1¢3, we have

< 1 (18 1lwir (Bo) < 178 lwer (Bo)
~ ¢1(Bo) ¢3(Bo)u(Bo) /P ~ ¢2(Bo)u(Bo)/p

Case3.p3 =ocoand p; = py = p € (0, oo]: Let g € WL, ¢, (X) \ {0}. Choose a ball By such that

1 i, 18 L, < fglut, g, -

2
I18lIWL.c g, < $5(Bo) eSSEZUP {69]B (4.13)
X&bo
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and let

1, ifx € Bpand |g(x)| > m/2,
flx) = ] m = esssup |g(x)|.
0, ifx ¢ Bgor|g(x)|sm/2, XEBy

Then f € WL, (X) by Lemma 4.4, which also shows that fg € WwLjg,(X), since g ¢
PWM(WL), ¢, (X), WL, ,(X)). For all balls B, we have

Fllwer@  m _ 100/ 2D llwrw) 18 llwerm)

u@Br 2 u@BYr T uBir
where we regard that,u(B)l/p =1if p = oo. If B C 3K;?By, then
1 _~$3(B) _ ¢3BKIBo)  ¢3(Bo)
6B 6B~ 6.8 $:B)’ (4:14)

since ¢, < C1¢3 and 3 satisfies (2.8), (2.9) and (2.10) with p3 = oo. By Lemma 4.3, we have

Ifllwee (s 2m
1f iy g, 181w, s( sup WP B)

X
Bc3K2B, P1(B)U(B)YP ¢3(Bo)
1/8llwLrB)
< = < |If: .
™ Bc3kzn, $2(B)u(B)VP Felht,
The proof is complete. O

Proof of Theorem 3.2. Letg € PWM(WL,, 4, (X), WL,, ¢,(X)). Then g is a bounded operator by Corollary 1.2.
Take a sequence of finitely simple functions g; 2 0, j = 1,2, -+ -, such that g;  |g| a.e. Then by Lemma 4.4
and the lattice property of WL, 4,(X) we see that
gj € WLy, 4, (X) N PWM(WL,, 4, (X), WL, 4,(X))
and that
I8jllewmewL,, 4, ()WL, 4, (0 S 181PWMEL,, 4, (X)WL, 5, (%)
By Proposition 4.5 we have

1 iy, 187 5, S WFSi 5, S Iy, 51 WA . 0Ly, 5, D

for some f € wL,, 4 (X). That s,

ngHwLW,,3 = ||§||PWM(wLp1,¢1(X),wLpz,d,z(X))-

Then by the Fatou property of wL (X) we obtain that g € wL (X) and that

3,93 p3,03
181w, .4 S HgHPWM(wLpl‘qgl(X),WLPZ‘¢2(X))’
which is the conclusion. O
Proof of Theorem 3.3. By Theorem 3.1 we have
WLpr3 (X) c PWM(WLP1’¢1(X), WLpz,¢z(X))’
and
18 llewMewL,, 4, (0, WLy, 5,000 S 181w, 4, 000-
Next, by Remark 3.3 we see that ¢5 also satisfies (2.8), (2.9), (2.10) and (2.11). Moreover, by the relation

¢35 (ol )V _ BYP

1 1 1/p>°
¢1/p3 ¢1/p3 ¢1/P2

we see that ¢/? v/ 1ps is almost increasing from the assumption. Then by Theorem 3.2 we have
3 1

WLy, ¢, (X) D PWMWL,, 4, (X), WL, 4,(X)),

and

18 llpwMewL,, 4, (0, WLy, 4,00 2 118w, 4 0)-
Combining these results we have the conclusion. O
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5 Proofs of Theorems 3.7 and 3.8

In this section we always treat wL,, 4(R") with ¢ : (0, o) — (0, o°). To prove Theorems 3.7 and 3.8 we first
give some lemmas. For the first lemma, see [9, page 14] for example.

Lemma5.1. Let 0 < g < p and |E| < oo. Then

[ o dy < B

E
Lemmab5.2. Letp € (0,c0],and let f ¢ WL{’OC(R”). Assume that, for all x € R", there exists a sequence {r;} of
positive real numbers such that r; — 0 and

It _
j—eo |B(x, r;})|1/P

Thenf = 0 a.e. R".

Proof. Let g € (0, p). Then, by Lemma 5.1,

q
! / fo))9dy < L <||f|WLp(B(X’ri))> —0 as j— oo,

|B(x, 17)| " p-q\ [B(x,r[t/p
B(x,r;)

By Lebesgue’s differentiation theorem we have the conclusion. O

The next two lemmas follow from the definition.
Lemma5.3. Let p € (0, o0) and B be a ball. If supp f N supp g = 0, then
Hf"'ngva(B) S ||f”€va(B) + ||gH€va(B)-

Lemma 5.4. Letp € (0, 00] and ¢ : R" x (0, 00) — (0, o). Then

N N
Zfl < Z(zl/mln(p,l))1||fj||wLp'¢.
j=1 j=1

WLP@

Lemma 5.5. Let p € (0,00] and ¢ : (0,00) — (0, o0). Assume that ¢ is almost decreasing and ¢(r)r”/p
is almost increasing. Let By = B(aq, o), and let {B,-}}’jl be a sequence of balls which are pairwise disjoint.
Assume that a sequence {f;}Z; of functions satisfies

B]' C Bo,
supp fj C (1/3)B;,
Ifjllwir < c1p(ro)|B;| /P,

||fj|\wL,,,(p < C2,

ji=1,2,...,

for some positive constants ¢, and c,. Then f = Z;:lff isin wL,, 4(R") and IfllwL,, < C(cy + ¢2), where the
constant C depends only on n and ¢.

Proof. Let Bj = B(aj,1;),j=1,2,....Foranyball B = B(a, r) C 3By, let

Ji= {JGNBﬂ(l/B)B]#(D, )’27']'/3},
Jo={jeN:BnN(1/3)B; #0, r <rj/3},
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and
I = I Zje],fi(")HwLn(B)
T emBr

If j € J1, then (1/3)B; C 3B. It follows that

=1,2.

U B(aj, 1j/3) C B(a,3r) and Z(r]-/B)" <(3n".

JISH jeh
Since supp f; N supp f = 0 for j # k, by Lemma 5.3,
1/p

1 p
I < W Z ”f}'HWLP((l/B)B;)
j€l
1/p
< C1¢(r0) ﬁ Z |B}.| < Ccq, ifp € (0, o),
jen

o(r)

and

_ Hzieflff HWL""(B) _ supje, Willw=/3)8) _ c1¢p(ro)
' () $0) )

Ifj € J», then B C Bj, i.e., J, has only one element. Hence

<Ccqy, ifp=oo.

. Wfillwer s

~ ¢(|B|YP

By Lemma 4.3 we have ||f{lwz, , < C(c1 + €2). O

I < fillwe,, < €2

We denote by Q(a, r) the cube
{x=(1,...,xn) eR": |x;—a;| sr/2,i=1,...,n}

centered at a = (a4, ..., an) € R" and of sidelength r > 0.

Proof of Theorem 3.7. Case (i): Let lim ié’lf ¢2(r)/ ¢1(r) = 0. Then there exists a sequence {rj};-’jl of positive
r—
numbers such that

¢2(ry)
¢1(rj)

Letg € PWM(WL, 4, (R"), WL, 4,(R")) and Cg = 18 lpwMewL,, 4, &), WL, ,, (&)~ FOT any x € R",

rj—0 and —0 as j—oo.

8llwerBee,ry)  18XBory) lwirz (Box,r)
i) _ j j
|B(X, rj)|1/P2 |B(X, r]-)‘l/Pz

4 ¢2(rj)|‘gXB(x,r,-) HWLPz:‘l’Z

¢a(r))
S Cg(i)2(rj)||XB(x,r,~)HWLI[,N#1 S Cg (]51(7'])
]

—0 as j— oo,

By Lemma 5.2 we get g = O a.e.
Case (ii): Let p; < p> and lir% ¢1(r) = oo. Take a sequence {sy };>, of positive real numbers such that sy > sy, 1,
r—

k=1,2,...,and sy — 0as k — oo. Let
-1
= | (91660 s) "+ 1 me= [ats0r ] 1,

where [a] is the integer part of the positive real number a. Then, by the almost increasingness of ¢1(r)r"/ P
and the almost decreasingness of ¢, we have

-1
i ~ (¢1(5k)p1/n5k) , M~ (s
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Hence
W ~ d1(si)(sicl )Pt ~ 1, 6D
% ~ P15 (SKL)MP? ~ P1(5) PP 00 as k — oo, (5.2)

For any fixed aop € R", we divide the cube Q(ao, 1) into (I})" sub-cubes Q(by j, 1/1});j =1, 2, ..., IY", i.e.,

)"
Q(a()) 1) = U Q(bk,j’ 1/’]())

j=1
Qbyj, 1/1)° N Qb jr, 1/1)° =0 for j+#§,

where Q° is the interior of the cube Q. Let O € R" be the origin. We divide the cube Q(0, 1/1;) into (m;)"
sub-cubes Q(ey ;, 1/(my));i=1,2,...,(m)", ie.,

(m)"
Q(0,1/1) = | J Qlex,i, 1/(lmy))

i=1

Qlexi» 1/(imi))° N Qleg,ir, 1/Wemy))° =0 for i#i'.

Then
(m)"
Q(byj, 1/1) = U Q(byj + ey, i» 1/(Lrmy))
i-1
Qb+ exi 1/(emp)° N Qb j + g, 1/(kmy))° =0 for i #1d,
j=1,2,..., 1%
Let

FeiiC0) = {¢1(1/(lkmk)), X e Q(bk,j +eris 1/(Lemy),
k.j,i 0, X ¢ Q(bk’j +exis 1/(Lymy)),
(%

fri = fejie
=1

First we show that there exists a positive constant C such that, forallk € Nandi=1,2,..., (m)",

Ifk,illwe,, 4 < C. (5.3)

We note that

B(byj + exi» 1/(21)) € Q(by j + ey,i, 1/1) € Q(ao, 2) C Blaog, V),
B(byj +exi, 1/(21)) N Bby jr + e, 1/(2QL) =0 for j#j'.

Since ¢(sy) — oo as k — oo, we may assume my, = 3y/n. Hence

supp fij,i = Qlbyj + ex,i» 1/(lmy))
C B(byj + exi, vVn/Qlimy)) C B(by; + ey, 1/(61y)).
By (5.1) we have
Ifijillwzrs < @11/ Wm) @/ Lam) P ~ (1/1,)"P.

By Lemma 4.4 we have
Ificjillwe,, 4, <
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Hence, by Lemma 5.5 we have (5.3).

Now, let g € PWM(WL),, ¢, (R"), WLy, o,(R")) and Cg = [Igllpwmewt,, 4, &), wL,, 4, &)+ Then
H1(L/ bmlgllwirzsupp sy = 18fkillwrraBao, vy < $2(vn)Blao, \/ﬁ)|1/p2||gfk,i||wLpz,¢2 S Ce.
Since
(my)"

Q(ao, 1) = | J suppfi.i»
i=1
(supp fi.,;)° N (supp fi,)° =0 for i#i,
we have by Lemma 5.3 and (5.2)

(my)" 1/p2

D2
Iglhwirzotan ) = | D (18lhiers cuposi)
i=1

< m)"P2py(1/1imy) 1Ce — 0 as k — oo, ifpy € (0,00),

and

Hg||wL°°(Q(a0,1)) = max {”gHWL"“(suppfk,i) 1i=1,2,... (mk)n}
<P1(1/Lm)Ce »0 as koo,  ifp,=oco.

Therefore g = 0 a.e. O

Proof of Theorem 3.8. Let q,');/ Py ¢}/ P2 he almost increasing. If lim iglf ¢>(r)/¢.(r) > 0, then Theorem 3.3
r—

shows that
PWM(wLpl,(l,l(R”), WLy, &, (RM) = WLy 6. (R™.

If lim i(l)‘lf ¢$2(n)/p1(r) = 0, thenwL, 4 (R") = {0}, since ¢p3 = ¢,/ 1. In this case Theorem 3.7 shows that
r—
PWM(WLpl’d,I(]R"), WLpz,sz(Rn)) ={0} = WLP3,¢3 (R™M.

Next, we assume that (,b%/ Py qb}/ P2 js not almost increasing. In this case p, < oo, since p, = oo implies
p1 = o0 and ¢§/p1/¢}/p2 ~ 1. Then, for all k € N, there exist positive real numbers r; and s, k = 1, 2,...,
such that
si<re and Ga(s0MP pr(si) P 2 (4Cp) P 2 ()P 1 (r) P,

where Cp, = 2'/™in(2.1) We will construct a function

g € PWM(WL,, 4, (R™), WLy, 4, (R)\ WLy, 4 (R").
Let
T (r)P/m ‘1
Sk (si)p2/n ’

where [a] denotes the integer part of the positive real number a. By almost increasingness of qbz(r)r”/ P2 and
by almost decreasing of ¢, we have

Dp2/n
M Tie s 6cosy forsome cg > 0. (5.4)

T sepa(srn my
Let O € R" be the origin. We divide the cube Q(O, ry) into (m;)" sub-cubes Q(by.j, ri/my);j = 1, 2, ..., (my)",
i.e.,

(my)"
Q(O, rk) = U Q(bk,j, rk/mk)’

=1
Q(by,i> 1/ mi)° N Qbyj, rie/my)° =0 fori #j,



DE GRUYTER Pointwise Multipliers on Weak Morrey Spaces

where Q° is the interior of Q. Let
(cosy), x € B(by;, coSy)
8100 = {¢3 0Sk k,j» COSk
0, x & B(byj, cosi)

(m)"

= 1
8= 8k 8= o8k
- 2 (2Cp,)
Here we note that

supp 8x,j C B(byj, ri/(6my)),  B(byj, ri/(2my)) C Q(by j, i/ my).

First we show that
ge€ PWM(WLP1’¢1(]R"), wLpz,d,z(]R")).

Forall f € wLp, 4, (R"), by Lemma 4.1 we have

/8K, jllwer
1/p1,,1/p3
piPp
< g I lharn (Biby o5 |18k, hwios (BB cos10)
p;

1 1
) pl/p1p3/ps

p%/pz

< 02(cos)| BBy s cosi)| M7 If

1.1 "

b1(cos)IBbr j, cosI P If lwr,. ,. $3(Cosi)|B(By sy Cosi)|MP?

P11

Using the doubling condition of ¢ and (5.4), we have

If8ijlwire S Balsi)s)™ P2 |fllwt,, o, ~ B2/ M) P | fllwt, . -

By Theorem 3.1 and Lemma 4.4 we have

gk ilinty, o, < Ifllwcy, 5, I8k Ly, o, < I lluty, g,
Hence, by Lemma 5.5 we conclude that
(my)"
Ifgklint,, o, = || > fex; < Clflh, . -
=t Wiy, 4,
Then by Lemma 5.4 we have

S

1
<> W8l g, = Clflhaty
k=1

1f8lw,, 5, <

= 1
P,
( 2C )k
k=1 b2 WLy, 6y
which shows that g is a pointwise multiplier from WLy, ¢, (R™) to wL ®RM).

On the other hand, since supp g, € Q(0, r;) C B(0, v/nr/2),

D2,$2

181lwie2 (0, v/ 2) , 1 I8k lhwzr (0, v/ 2)
@3(vnry/2)|B(O, vnr/2)[1Ps — (2Cp,)k ¢3(v/nr/2)|B(O, V/nry [ 2)[1/P>
L1 (s

2Cp)k p3(r)(rn/p:

_ (mksk¢2(sk)P2/n>"/P3 ( ¢2(Sk)1/p1/¢1(5k)1/p2 )Pz

re@a(rp2/n (2Cp,)KIP2hy (1 )/P1 [ py (1)) 2/P2
>2K fork=1,2,...,

which shows that g ¢ wL (R™.

D3,$3
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