DE GRUYTER Anal. Geom. Metr. Spaces 2020; 8:305-334 8

Research Article Open Access

Ruming Gong, Ji Li*, Elodie Pozzi, and Manasa N. Vempati

Commutators on Weighted Morrey Spaces on
Spaces of Homogeneous Type

https://doi.org/10.1515/agms-2020-0116
Received July 21, 2020; accepted November 9, 2020

Abstract: In this paper, we study the boundedness and compactness of the commutator of Calderén-
Zygmund operators T on spaces of homogeneous type (X, d, u) in the sense of Coifman and Weiss. More pre-
cisely, we show that the commutator [b, T] is bounded on the weighted Morrey space L2;*(X) with x € (0, 1)
and w € Ap(X), 1 < p < oo, if and only if b is in the BMO space. We also prove that the commutator [b, T] is
compact on the same weighted Morrey space if and only if b belongs to the VMO space. We note that there is
no extra assumptions on the quasimetric d and the doubling measure pu.
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1 Introduction

It is well-known that the boundedness and compactness of the commutator of Calderéon-Zygmund operators
on certain function spaces and their characterizations play an important role in various areas, such as har-
monic analysis, complex analysis, (nonlinear) PDE, etc. See for example [3, 9, 10, 13, 18-20, 22, 24, 25] and
the references therein. Recently, equivalent characterizations of the boundedness and the compactness of
commutators were further extended to Morrey spaces over the Euclidean space by Di Fazio and Ragusa [16]
and Chen et al. [5], and to weighted Morrey spaces by Komori and Shirai [30] for commutators of Calderén-
Zygmund operator and by Tao, Da. Yang and Do. Yang [34, 35] for the commutator of the Cauchy integral and
Beurling-Ahlfors transformation, respectively. For more results on the boundedness of operators on Morrey
spaces in different settings, we refer the reader to other studies as in [1, 15, 17, 26-28, 33, 37, 38] for instance.

Thus, along this literature, it is natural to study the boundedness and compactness of commutators of
Calder6n-Zygmund operators on weighted Morrey spaces in a more general setting: spaces of homogeneous
type in the sense of Coifman and Weiss [8], as Yves Meyer remarked in his preface to [11], “One is amazed by the
dramatic changes that occurred in analysis during the twentieth century. In the 1930s complex methods and
Fourier series played a seminal role. After many improvements, mostly achieved by the Calder6n-Zygmund
school, the action takes place today on spaces of homogeneous type. No group structure is available, the
Fourier transform is missing, but a version of harmonic analysis is still present. Indeed the geometry is con-
ducting the analysis.”

We say that (X, d, p) is a space of homogeneous type in the sense of Coifman and Weiss if d is a quasi-
metric on X and y is a nonzero measure satisfying the doubling condition. A quasi-metric d on a set X is a
function d : X x X — [0, oo) satisfying (i) d(x, y) = d(y, x) = O for all x, y € X; (ii) d(x, y) = 0 if and only if
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x = y; and (iii) the quasi-triangle inequality: there is a constant A, € [1, o) such that forall x, y, z € X,
dx,y) < Aold(x, 2) + d(z, y)]. (11

We say that a nonzero measure u satisfies the doubling condition if there is a constant Cy such that for all
x€Xandr>0,

u(B(x, 2r)) < Cuu(B(x, 1)) < oo, (1.2)

where B(x, r) is the quasi-metric ball by B(x, r) := {y € X : d(x, y) < r} for x € X and r > 0. We point out that
the doubling condition (1.2) implies that there exists a positive constant n (the upper dimension of u) such
thatforallx e X,A>1andr >0,

U(B(x, Ar)) = CuA"u(B(x, ). (1.3)

Throughout this paper we assume that u(X) = o and that u({xo}) = O for every xo € X. We now recall the
definition of Calderéon-Zygmund operators on spaces of homogeneous type.

Definition 1.1. We say that T is a Calderén-Zygmund operator on (X, d, ) if T is bounded on L*(X) and has
an associated kernel K(x, y) such that T(f)(x) = |, KO, y)f(y)du(y) for any x ¢ suppf, and K(x, y) satisfies
the following estimates: for all x # y,

K2 = 7055 %)
and for d(x, x') < (24¢) td(x, y),
KG9~ KO+ K00 - K0 < g (), 5)

where V(x,y) = u(B(x, d(x,y))), B : [0,1] — [0, o) is continuous, increasing, subadditive, and w(0) = O.
Throughout this paper we assume that B(t) = t°°, for some a > O.

Note that by the doubling condition there exist two constants C; and C, such that C; V(y, x) < V(x, y) <
C, V(y, x). As in [12], we assume that for any Calder6n-Zygmund operator T as in Definition 1.1 with (t) — 0
ast — 0, the following “non-degenerate" condition holds: there exist positive constants ¢y and A such that
for every x € X and r > 0, there exists y € B(x, Ar) \ B(x, r), satisfying

1
coM(Bx, 1)’
This condition gives a lower bound on the kernel and in R". This “non-degenerate" condition was first
introduced in [22]. This is a natural assumption on the kernel of the singular integrals, since it is obviously
true for Hilbert transform and Riesz transforms in the Euclidean setting, and for the Beurling-Ahlfors
transformation in the complex setting. Beyond these, we note that, for example, on stratified Lie groups, a
similar condition of the Riesz transform kernel lower bound was shown to be true in [13].

[K(x,y)| 2 (1.6)

Let T be a Calderon—Zygmund operator on X. Suppose that b ¢ Llloc(X) and f € LP(X). Let [b, T] be the
commutator defined by

[b, TIf(x) := bO)T(f)(x) - T(bf)(x).
Letp € (1, o), k € (0, 1) and w € Ap(X). The weighted Morrey space LY (X) is defined by

LX) i= {f € L, (X0 + [flugcn) < ooy

where

1
IFll 2y = sup {(U(B)K B/ If(X)pw(X)dy(X)}

Our main results are the following:
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Theorem 1.2. Letp € (1,00),x € (0,1) and w € Ap(X). Suppose b € Llloc(X) and that T is a Calderén—
Zygmund operator as in Definition 1.1 . Then the commutator [b, T has the following boundedness characteri-
zation:

(i) Ifb € BMO(X), then [b, T) is bounded on LY;*(X).
(ii) Suppose T also satisfies the non-degenerate condition (1.6). If b is real valued and [b, T] is bounded on
L2X(X), then b € BMO(X).

Theorem 1.3. Letp € (1,00),k € (0,1) and w € Ap(X). Suppose b € Llloc(X) and that T is a Calderon—

Zygmund operator as in Definition 1.1. Then the commutator [b, T) has the following compactness characteriza-

tion:

(i) If b € VMO(X), then [b, T] is compact on L2 (X).

(ii) Suppose T also satisfies the non-degenerate condition (1.6). If b is real valued and [b, T] is compact on
LPX(X), then b € VMO(X).

We mainly combine the ideas in [12] and [35] to prove our main result. We also point out that to obtain the
above theorem, we provide an equivalent characterisation of VMO(X), which is stated in Lemma 2.4 below,
and is of independent interest.

Throughout the paper, we denote by C and C positive constants which are independent of the main pa-
rameters, but they may vary from line to line. For every p € (1, o), we denote by p’ the conjugate of p, i.e.,

I%-'_I% =1.Iff < Cgorf>Cg, wethenwrite f <gorf > g;andiff < g < f, we write f =~ g.

2 Preliminaries on Spaces of Homogeneous Type

Let (X, d, 1) be a space of homogeneous type as mentioned in Section 1. We now recall the definition of
the BMO and VMO spaces.

Definition 2.1. A function b € Llloc (X) belongs to the BMO space BMO(X) if

Iblswo) = Sup M(b, B) 1= sup . / Ib(0) - by| dp(x) < oo,

u(B)
where the sup is taken over all quasi-metric balls B C X and

bp = (B)/b(y)du(y)

The following John-Nirenberg inequalities on spaces of homogeneous type come from [29].

Lemma 2.2 ([29]). Iff € BMO(X), then there exist positive constants C1 and C, such that for every ball B C X
and every a > 0, we have

H{x € B If()~f] > a}) < C1A(B)exp { - wnsﬁm“}'

We recall the median value ag(f) (see [4]): for any real valued function f € Llloc(X) and B C X, ag(f)is
the real number such that

o1 o1 .
inf o B/ 00 cldut = B/ F00 - ap(] ).
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Moreover, it is known that ag(f) satisfies that

(B)

u{{x € B: f(x) > ap(f)}) < 1)
and
u({x € B+ £ < ap(Py) < K2, 22
And it is easy to see that for any ball B C X,
Mb.B) ~ / 160 - ap(b)] du(0), 23)

where the implicit constants are independent of the function b and the ball B.
By Lip(B), 0 < B < oo, we denote the set of all functions ¢(x) defined on X such that there exists a finite
constant C satisfying

900 - p)| < Cd(x, y)F

for every x and y in X. [|¢||g will stand for the least constant C satisfying the condition above. By Lip.(8), we
denote the set of all Lip(B) functions with bounded support on X.

Definition 2.3. We define VMO(X) as the closure of the Lip.(B) functions X under the norm of the BMO space.

We will make use of the following characterization of VMO(X) whose proof is given in the Appendix. An
equivalent characterization exists for the Euclidean and the stratified Lie groups case; one can refer to [36]
and [4].

Lemma 2.4. Let f € BMO (X). Then f € VMO (X) if and only if f satisfies the following three conditions:
(i) lim supM(f,B)=0
a—0rp=q

(ii) hm sup M(f, B) =

—>oo rp=a
(iii) hm sup M(f,B)=0
=% B X\B(xo,r)

where rg is the radius of the ball B and x is a fixed point in X.
To this end, we recall the definition of A, weights.

Definition 2.5. Let w(x) be a nonnegative locally integrable function on X. For 1 < p < oo, we say w is an Ap

weight, written w € Ap, if
e\
@l =swn | fo) | £(3) < oo
B

B

Here the supremum is taken over all balls B C X. The quantity [w], is called the Ap constant of w. Forp = 1,
we say w is an A1 weight, written w € Aq, if M(w)(x) < w(x) for u-almost every x € X, and for p = oo, let
Aco 1= UrepeooAp and we have [w] s := supp ( fzw) exp ( fzlog(5)) < eo.

Note that for w € Ap the measure w(x)du(x) is a doubling measure on X. To be more precise, we have
that forall A > 1 and all balls B C X,

w(AB) < A"P[w] 4,w(B), (2.4)

where n is the upper dimension of the measure y, as in (1.3). We also point out that for w € Ao, there exist

~ > 0 such that for every ball B,
1
y({x €B: wk) = 'y][w}> > jy(B).

B
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This implies that for every ball B and for all § < (0, 1),

][wsc(][w‘s)w; (2.5)

B B

see also [25].
By the definition of A, weight and Hélder’s inequality, we can easily obtain the following standard prop-
erties.

Lemma 2.6. Let w € Ap(X),p = 1. Then there exists constants (fl, (fz >0and o € (0, 1) such that

¢ (u(E))”< wE) _ s (u(E))"
"\u®B)) " wB " \u®

for any measurable subset E of a quasi-metric ball B.

According to [2, Theorem 5.5], we have the following result for BMO functions on X.

Lemma2.7. Let0 < p < oo,V € Aso(X) and f € BMO(X). Then
Ifllemocx) = Sup {i / [f0) - fg v\pV(X)du(X)};,
Bcx L v(B) J ’

where g, = i [5 FOIVI)A®).

3 Characterization of Boundedness for Commutators

In this section, we give the proof of Theorem 1.2.

3.1 Proof of Theorem 1.2(i).

In order to prove Theorem 1.2(i), we need the following lemma.

Lemma 3.1 ([12]). Let b € BMO(X) and T be a Calderén-Zygmund operator on (X, d, p) a space of homoge-
neous type. If 1 < p < oo and w € Ap(X), then [b, T] is bounded on L¥,(X).

Proof of Theorem 1.2(i). Let 1 < p < oo. It is sufficient to prove that

1

( [w(B)[¥ /I (b, T](X)Pw(x)dy(x)) < 1B llewogn Il <o

holds for any ball B. Now fix a ball B = B(xo, r) and decompose f = fy24,8 + fXx\24,8 =: f1 + f2 . Without loss
of generality we assume thorough out the proof that constant A := 1 for the quasi-triangle inequality. Then

P 1 P 1 P _.
w(B)K/Hb TIf )P w(x)du(x) < (B)KB/|[b, TIf1 (0 w(x)dp(x) + w(B)KB/Hb’ TP w(x)du(x) =: I +1I.

For the first term I, by Lemma 3.1 one has
1 » )
w(B) / |[b, TIf1 ()P w(x)du(x) < (B)K / I, TIf1 0P w(x)du(x)

B X
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S 1Bl 5 / 0P (AN ()

< 15 P00 IF sy

We thus obtain
b, TIf1ll 2 < D llemoco If 1|z x)-

Now for the second term II, observe that for x € B, by (1.4), we have

p
|[b, TIf2(0)|P < ( /Ib(X)—b(y)HK(X, y)llfz(y)du(y)>
X

)
s| [ B rmidue
X\2B
p
S / Vl(f)(((l)/)ly)(lb(x)_bB,M+|bB,a)_b(Y)|)dV(Y)
X\2B ’
P P
s / V|{;f:)|)/)d“(Y) b0 = bp,ol” + / V'{X(y” )\baw b(y)ldu®y) |
X\2B ’ Xi28
where bp , = g5 [ b()w(y)du(y). Hence we get that
P
3 FO) b
a)(B)K/‘[b TIf2(0)Pw()du(x) < (B)K X\Z/B V(xo,y)dy(y) B/|b(x) b, w(x)du(x)
P
| O - b)) |
X\2B
= II1+1V.

Next, to estimate III and IV, we need to decompose X \ 2B into suitable annuli. By Noting that 2kB 5 X, as
k — oo, we see that

Jim u(2¥B) = oo. 3.1)
Then we choose a smallest j; > 1 such that,
u(2'B) = 2u(B). (3.2

We claim that such j; exist, since otherwise, for all j; > 1, we have y(zle) < 2u(B). Then it contradicts
(3.1). We further point out that, since j; is the smallest that satisfies the criteria (3.3), we get that

y(zjl"lB) < 2u(B).
Then, from the doubling property, we also have

y(Zle) < C,,y(zjl"lB) < 2Cuu(B). (3.3)

Next we choose a smallest j, = j; + 1 such that

y(ZjZB) > Zy(ZjIB).
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and that . .
u(22B) < 2Cuu(2' B).
Similarly we see that such j, exists. By induction, there exists a sequence {j; } 7, such that
2Cuu(2*B) > u(21B) > 2u(2’*B), k=1.

For III, by using Holder’s inequality, and using Lemma 2.6 and Lemma 2.7, we have

p

If(y)l »
(B)K Z / jaH) /\b(X) bp,o|’ @(x)du(x)

=02iki1 B\2ik B

(e
150 oE% (Z w(ZMB)p) / 1600 - by o Pw()dp(x)

oo Lx p
w(B) P
S I 1P Pt (Z (m) )
k=0
0o b
_koi=x
S A1y 1P Moo (ZZ 7 )

k=0

< HfHLn K(X)HbHBMO(X)

For the term IV, using Holder’s inequality and the decomposition for X\ B as above, we get

p

Z (zlkB) / fO)IIbp,w - bWduGy) | wB)'"

2ik+1B

)

< (Z o | [ rorema

Jjk+1 B
1
pl

, , p
x /|bB,w—b(y)|P W) du(y) )w(B)“

Zik+lB
145P
I’y

hnd 2jk+1B H / o _
S 1 | [ br =B ) ) | @'
k=0

u(2xB)
ij+1 B

Now observe that

1
P’

/ bg.0 — BO)P W) du(y)

2ik+1B

1
o7

IN

p’ L
/ (|b(y) - bzik+1B,a)1*P’| + |b2jk+1B,(u1*P' - bB,a)|) w()’)l P du(y)
2/k+1 B

1
7’

/ (Ib(y) = by g1 I)p/ )" du(y)

27k+1 B

IN

— 311

(3.4)
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i

p’ 7
[ (Bsaparr ~boal)” 007 du)

2ikv1 B
= V+ VI

We have w'™? ¢ Ap/(X) since w € Ap(X). So we obtain
V < [bllsmog @™ (271 B)7 .
For VI, we have

<

bzme,wlfp’ - bsz+1B + |b2fk+1B - bB‘ + ‘bB - bB,a)}

bY) = by | 0P du(y)

bziknB,wl’l" - bpw

< 1
~ wl-P'(2jv1 B) /

2ik1 B

e+ 1) Bllop * 505 / Ib() - by | w()du®).
B

Since b € BMO(X), by Lemma 2.2, there exist some constants C; > 0 and C, > 0 such that for any ball B and
a>0

___Ga
u({{x € B: |b(x) - bg| > a}) < C1u(B)e "™lewoco .
Then by Lemma 2.6, we have

Crao

w({x € B: |b(x) - bg| > a}) < Crw(B)e Trwory

for some o € (0, 1). Hence we have

oo

/ |b(y) - bs| w()du(y) - / w({y € B: |b(y) - by| > a})da

Cyao
< w(B) / ¢ o da

< w(B) ”bHBMO(X) .

Similarly, we have

( / 160) = b, 5| 0)' 7' dp(y)”

2k+1 B

1
7/

< (k+ 1) ||Bllgyogo @' 2 (@1 B)MP".

Together with Lemma 2.6, we have

v IfI3

[ oo ; K p
w(21k+1B)f; - . ’ _
Doxo 1 log |22 gy K+ Dw'™ @B)'” } w(B)'™

Lo ¥ (2/+B)

(k+1) w(B) o
< I, 1B o Z N

LS

p
_(k+1)(1 Ko
< Iy 15 g S w12 }
L k=0

S Iy 1B By
Therefore we have
b, T]szpr(X) S If1lzzxco 1Pl emocx) -
This completes the proof. O
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3.2 Proof of Theorem 1.2(ji).

We first recall another version of the homogeneous condition (formulated in [12]): there exist positive con-
stants 3 < A; < A, such that for any ball B := B(xg,r) C X, there exist balls B := B(yg, r) such that
Aqr < d(xo, yo) < Apr, and for all (x, y) € (B x B), K(x, y) does not change sign and

K(x,y)| 2 (3.5)

1
u(B)’
If the kernel K(x, y) := K1(x, y) + iK,2(x, y) is complex-valued, where i*> = —1, then at least one of K; satisfies
(3.5).

Then we first point out that the homogeneous condition (1.6) implies (3.5).

Lemma 3.2 ([12]). Let T be the Calderén-Zygmund operator as in Definition 1.1 and satisfy the homogeneous
condition as in (1.6). Then T satisfies (3.5).

Proof of Theorem 1.2(ii). To prove b € BMO(X), it suffices to show for any ball B ¢ X, we have M(b, B) < 1.
Let B = B(xo, r) be a quasi metric ball in X. Let B := B(yg, 1) C X be the measurable set in (3.5). Following
[12], we take

={xeB:b(x)2ayb)} E,:={xeB:bkx <ayb)};

Fic{yeB:b()sazb)} F,C{yeB:bQy)=ab)},

with a(b) the median value of b over B, such that u(F;) = u(F,) = 1u(B) and F; N F, = 0. For any (x, y) €
EjxFj,j € {1, 2}, wehave

|b(x) = b(y)| = [b(x) - ag(b)| +|az(b) - b(y)| = |b(x) - ag(b)|.
Since b is real valued, using Lemma 2.6, Hélder’s inequality, boundedness of [b, T] on LY;*(X) and (3.5),
we get

/ 1600 - ag(B)|duto)

1
MO.B) S i B/ 509 - ay®)| du0 = 3 o

=1 \b(x)—ag(b)|
5];:11(3)/_ | u(B) du(y)du(x)

) 1500 az(D)
Zu(B)/ | iy )

E F

<Z (B)/ / [60) - b)) V( 5y M)

Ej Fj

N
MN

0 / / [b0) - b)| K(x, y)du(y) | du(9)

1 EI F]

-
Il

L
1”B

N
MN

/ IIb, Tlr, (0] dux)

I

-
Il

MN

1 k-1
<3 5t | 105 01 2

'MN

110, TU[ ey 10y X vy (B

-,
Il
[
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S T sy v [0 BN 7 [ (BY]

/S ||[b’ T]||LZ’K(X)—>L€,’K(X) .

This finishes the proof of Theorem 1.2(ii). O

4 Compactness Characterization of the Commutator

Now we will prove Theorem 1.3.

4.1 Proof of Theorem 1.3(i).

We will first give a sufficient condition for subsets of weighted Morrey spaces to be relatively compact. Re-
call that a subset F of L;*(X) is said to be totally bounded (relatively compact) if the LZ;*(X) closure of F is
compact.

Lemma 4.1. Foranyp € (1,00),x € (0, 1) and w € Ap(X), a subset T of LY;*(X) is totally bounded if the set F
satisfies the following three conditions:

(i) Fis bounded, namely,
;161319 IFllzxx) < o0
(ii) F uniformly vanishes at infinity, namely, for any € € (0, o), there exists some positive constant M such that,
forany f € 7,
X {xex:do0smy l2xx) < €5

where X is a fixed point in X;
(iii) T is uniformly equicontinuous, namely,

lim IFO) = faoenlizxan = 0
uniformly for f € F.

The proof of this lemma follows from [32] using a minor modification from Euclidean setting to space
of homogeneous type, since it only requires following properties of underlying space: metric and doubling
measure.

We will now establish the boundedness of maximal operator T« of a family of smooth truncated operators
{Tn}ne(0,00) as follows. For n € (0, o), let

Tof () = / Ko, YO du(y),

X

where the kernel Ky := K(x, y)(p(@) with ¢ € C*(R) satisfying that

() =0, ift € (-0, 1)
pt) =1 e elo,1], ifte [l 1]
o =1, ift € (1, 00).

Let
(b, Tyl £x) o= / [0 - BO)IKy (6, YIF G ARE).
X
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The maximal operator T is defined as

T.f() = sup / Ky, YF)dRE)

€(0,00
ne( )X

Recall the Hardy-Littlewood maximal Operator M is defined by

1
MO0 1= sup - B/ ) du®)

B>x

forany f € Lj._ (X) and x € X, where the supremum is taken over all balls B of X that contain x.
Then we have the following lemmas.

Lemma 4.2. There exists a positive constant C such that, for any b €Lip(B),0 < B < oo, f € Llloc X)andx € X
|[b, Tl £(x) - [b, TV ()| < CrPMFC0).
Proof. Letf € L. (X). For any x € X, we have
|[b, Tylf() - [b, TIf ()|

- / [b(x) - by, YFG) () - / (GO - BOYIK G, Y G)AuE)

n/2<d(x,y)<n dCey)sn

< / 150O - )| [KC YOI ).

d(x,y)<n
From b €Lip(B) and (1.4), we have

/ 1b0A) - )| IKCe VIO duE)

d(x,y)<n
- dx, )
<c / d
S 2; Vo yy fOIdHO)
J= n2-0+D<d(x,y)<n2-
S CnPMf (o),
which completes the proof of the Lemma 4.2. O

Lemma 4.3. Letp € (1,00),k € (0, 1) and w € Ap (X) . Then there exists a positive constant C such that, for
any f € Li;" (X),
(Tl oy + IMSllzxxy < ClFNl 2

Proof. For the boundedness of M on L2 (X) one can refer to [2]. We only consider the boundedness of Ts.
For any fixed ball B ¢ X and f € LY* (X), we write

fi=f1+f2 =B+ fXx\28-
Again, following the argument in (3.4), there exist j; € N such that
2Cuu(2*B) = u(2*1B) > 2u(2’*B),  vk=1.

Observe f; € L? (X). Then, from the boundedness of Tx on L%, (X) (see, for example, [23, Theorem 1.1]), the
Hélder inequality, size and smoothness of Kernel, we deduce that

1 1 p
[ [ sl w(X)du(X)] s{ / T*fl(x)|”w(x)du(x)] S 2| woduto
B B k=0 B k1 B\ijB ’




316 —— R.Gongetal. DE GRUYTER

1 Py

. [ Jr ("””w(x)du(x)] ) i [ OO o )
2B =

o

2/k+1B

Sfllprpolw®B)]? + 3 {w(B) [ (2B)] o |\f||IL’Z,K(X)}"
k=0

o 1
flgra@®F + 3 {lw@F2 g, A7
k=0

5”f||Llu’;"(X)[w(B)]‘K’,

where, in the fourth inequality, we used Lemma 2.6 with some ¢ € (0, 1). This finishes the proof of Lemma

4.3. O
Proof of Theorem 1.3(i) . When b € VMO (X), for any € ¢ (0, o), there exists b ¢ Lip.(B), 0 < B < oo such
that Hb - p® aocn < & Then, from the boundedness of the commutator [b, T] on L%* (X), we obtain
b, TIf - (59, TIf = |-, 1if
L5 (X) LE"(X)

< _p@ .

~ Hb b BMO(X) WFllzgrco

S 3||fHL{;'”(X)-
Moreover, by using Lemmas 4.2 and 4.3, we get

0.

Yim 16, Tn) = [b, W[ vy 120 =

Now it suffices to show that, for any b €Lip.(B), 0 < 8 < eo and 1 € (0, o) small enough, [b, Ty] is a compact
operator on LL™ (X), which is equivalent to show that, for any bounded subset ¥ c LE" (X), [b, T;] F is
relatively compact. That is, we need to verify [b, Ty] satisfies the conditions (i) through (iii) of Lemma 4.1.

Observe by [30, Theorem 3.4] and the fact that b € BMO (X), we know that [b, Ty] is bounded on L%,* (X)
for the given p € (1,00),x € (0,1) and w € Ap (X), which implies that [b, Ty] F satisfies condition (i) of
Lemma 4.1.

Next, let xo be a fixed point in X. Since b €Lip.(8), we may further assume || b||;~ = 1. Observe that there
exists a positive constant Ry such that supp (b) C B (xg, Rg). Let M € (10Rg, o0) . Thus, forany y € B (xo, Ro)
and x € X with d(xg, x) > M, d(x, y) ~ d(xg, x). Then, for x € X with d(xq, x) > M, by Holder inequality and
using that V(x, y) ~ u(B(xo, d(x, xo))) we conclude that

(B, Tal F)] < / 16 - bO)| [Knx, y)| 10| du)
X

< [ 1)l [Kex, )| F )l duy)
X

)]
N / VoY) du(y)
B(x0,Ro)

If )|
S / M(B(Xo,d(x,xO))dy(y)
B(x0,Ro)

/ FOPw)du() / (W)™ du()

B(x0,Ro0) B(xo,Ro)

1

PO S
~ u(B(xo, d(x, x0))

H(B (X07 RO)) ’(;)—1
S 1(B(xo, d(x, xo)) [w (B (X0, Ro)] 7 [If ] 1< xy-
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From klim U(B(xq, kM)) = oo, we have that there exist j, € N such that
—>o0

U(B(xo, 2'M)) > 2u(B(xo, M)) and u(B(xo, 27 M)) = 2u(B(xo, 2/ M)).
Therefore, for any fixed ball B := B(x, ) C X, by Lemma 2.6 , we have

cor I Teremduto
BN{xeX:d(xo,x)>M}
[w (B (x0, R ))](K—l) ~ w(Bn {X €X:2kM< d(xg, x) < 2]k+1M})
SHB (o, Ro) =g gy Wl 2 K(Bxo, M)

< IF Il ox i ¢ (B(XO zan)) H(B (xo0, Ro))?
~ W0 227 ) (B (xo, Ro)) ™~ H(Blxo, 2M))P

> U(B (xo, Ro))P¥
S Wfllpreo Z - 1u(Blxo, 2 M)V

_k M(B (xo, Ro))P"
<||f||Lw<x>kZ kminf)))w
(0]

< MB (o, RO o
~ u(B(xo, M))px " LX)
Therefore the condition (ii) of Lemma 4.1 holds for [b, T;]F with large M.
Now we will prove [b, Ty]F also satisfies (iii) of Lemma 4.1. Let 1y be a fixed positive constant small enough

andr < 87 Then, for any x € X, we have

(b, Tlf () — (1b. Talf) ., = m / [b, Talf () - [b, Tylf()du(y).
B(x,r)
Note that

[b, Tyl f() - [b, Ty] f(y)
= [b(x) - b(y)] / Kn(x, 2)f(2)dp(z) + / [Kn(x, 2) - Ky(y, 2)] [b(y) - b(2)]f (2)dp(2)
X

X
=: L1(x,y) + L2(x, y).

As b €Lip.(B), it follows that, for any y € B(x, r)

< PPT(H).

1106, )| = [b0) - b)) / Ky, 2 (2)du(2)

X

To estimate L,(x, y), we first observe that Ky (x, z) = 0, Ky(y, z) = O forany y € B(x, ), d(x, 2) < 4 A and

r < L. Moreover, by the definition of K, we know that, for any y € B(x, r), d(x, z) > ’1 andr <

8A2 SAZ’

1 dx,y)*
|Kn(x, 2) = Ky(y, 2)| < V(x,z) d(x, z)% "

This in turn implies that, for any y € B(x, r)

/ Ifz)| dix,y)™
V(x, z) d(x, z)%

L206y)| < du(z)

d(x,z)>&

= 1
[f(2)|du(z)
kz:; 2"'2 u(B(x, ﬁA'Z))) /
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Using the estimates of L1 (x, y) and L;(x, y), we have

[b, Tylf(x) - ([b’ T’T]f)B(x,r)

i r’
S rPT«(f)(x) + WJ\/Ef(x).
Then, by Lemma 4.3 and the boundedness of M on L?)* (X), we obtain

0o
105, Tlf 00 = (1B, Talf) ey Nz S 07+ L) g

Consequently, [b, Ty] & satisfies condition (iii) of Lemma 4.1. Thus, [b, T,] is a compact operator for any
b €Lip.(B). This finishes the proof of Theorem 1.3(i). O

4.2 Proof of Theorem 1.3(ii).

Next, we establish a lemma for the upper and the lower bounds of integrals of [b, T] f;j on certain balls B; in
X foranyj e N.

Lemma 4.4. Letp € (1,0),x € (0,1) and w € Ap (X). Suppose that b € BMO (X) is a real-valued function
with ||b||gmocxy = 1 and there exists v € (0, o) and a sequence {B;} = {B(xj,1}) }jeN of balls in X, with
{Xf}jeN C X and {r; C (0, o) such that, forany j € N

jen *
}iEN

M (b, Bj) > . (4.)

Then there exist real-valued functions {f;}._ C LE" (X), positive constants K, large enough, Co, C1 and C

jEN
such that, for any j € N and integer k = K, |f]||Lp xx) € Co,

/| [b, TIf;(0)|” w(x)du(x) = C; W(AJ’EB];P [w (B)] " w (A’{Bj> , (4.2)

where Bll-‘ = A’z“lB,- is the ball associates with A’z“lBj in (3.5) and

~ 3 p K_
| [b, T]f,-(x)]”J w(x)du(x) < Czyl(i?gj)p [w (Bj)] w (AIZ‘B]-) . (4.3)
ASTB\ALB;

Proof. Foreachj ¢ N, we define function f; as follows:

W, 2,
i = Xy~ XBya = X{ xeBysbtas, )} ~X{ xeBjsbcas, 1)}’ f7 1= ap,

and o
fri= o 8] (10 -17).

where B; is as in the assumption of Lemma 4.4 and a; € R is a constant such that
/ £00duCo) = 0. (4.4)
b'¢

Then, by the definition of a;, (2.1) and (2.2) we have |a]-| <1/2,supp (fj) C B;j and, for any x € B;,
£ (b(O) - ag, (b)) > 0. (4.5)

Moreover, since }a]-| < 1/2, we can obtain that, forany x € (B 1 UB; ),

00| ~ [w (B)] ™ 4.6)



DE GRUYTER Boundedness and compactness of commutators = 319

and hence

w (BN B; % x-1
Bl = 30§ S | (o801

k-1

Ssup [0 (BNB)] 7 [w(B)] 7 S1.

~

BCX
Observe that, for any k € N, we have
AS'B; c (A, +1)BF c A5TB; (4.7)
hence we have
w (B]’-‘) ~w (A’Z‘Bj> (4.8)
Observe that
[b, TI(F) = [b - ag(b)] T(F) - T([b - a, (D). 49)

Using Kernel estimates, (4.4), (4.6) and the fact that d (x, x;) ~ d(x, &) for any x € B}’F with integer k = 2 and
¢ € Bj, we have, for any x € BY,

[0 - as®)] T (F) I = |66 - ®) | / [KCx, )= K (x, )] £()du(®) (4.10)
Bj

IN

600 - ap, (b)) / IK(x, &) - K (%, %)) | [F;(®)] du(&)
B

A

. d (&, x; "
[w (Bj>] P |b(X)_aB;(b)}/ V(X];Xj) (dgi”)z;> d”(g)
B;

[(B)]" B
A’z‘o0 u(AXB;)

|b(x) - ag,(b)|.
As ||b|gmo(xy = 1 by John-Nirenberg inequality(c.f.[6]), for each k € N and ball B C X, we have

/ b0 - ag(b)| duo) < / (b(x) - aAgﬂB(b)]” du(x) + u(A5*1B) \aA,?lB(b) - aB(b)‘p
Ak Ak1B (4.11)

< kPu(A5B),
where the last inequality is due to the fact that

g p(b) - aB(b)’ < ‘aAgﬂB(b) ~bygp

+|bagep = bi| + [bs - ap(®)| S k.
Since w € Ap (X), there exists € € (0, o0) such that the reverse Holder inequality

!}1(1B) / w(x)“edy(x)} < }ﬁ/w(x)dy(x)
B

B

holds for any ball B c X. Then by the Holder inequality, (4.11), (4.7) and (4.10) we can deduce that there exists
a positive constant C3 such that, for any k € N

[ 11660 - )] T (£) 0]” 0 (412)
Bk
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o o) uBy
~ o akeor u(AkB)p

/ 1603 - ag,(b) W)

C @) kB
Akoor u(AkB;P-1 M(A"”B)

a+e)”
/ |b(x) - aB](b)Ip(1+e) d,u(x)]

1 1+e
X | ———— w(x) " du(x)
{H(AIZ‘”B,-)/ g ]
AS1B;

~ kP H(B])p 1 )
< C3Alz<aop H(AIZ(B]-)P [w (Bj)] w (Asz) .

By Lemma 3.1, (4.5), (4.6), (2.3), (4.1) and (1.6) for any x € B]’-‘ , we have

T ([b - ag,(b)] ;) ®)] = L / K(x, &) [b(&) - ap, (b)) f;(§)dé

i, 1UB; 2

du($)

y / |[6(®) - a5, ()] £(D)|
~ (B, d0x, O)

B/‘JUB;,Z
1

> (w(B)]7 [ |b&)- ap,®)| du(@
sy © )] J! s, (b)] dy

(Bj) k1
2 atny @ B

Then together with (4.8) we obtain that there exists a positive constant 6‘4 such that

WY
[ IT([b - a5, b)] £;) O w()du(x) > Z (ng],.)p [ (8))" w (BY) (4.13)

= P uB)” x-1 K
> C4M(A,2<B;)p [ (B)]" w (45B)) .

Now we take Ky € (0, oo) large enough such that, for any integer k > Ko

N
C42p -G Akaop Cl‘zp

From this and (4.9), (4.12) and (4.13), we have
/ b, TIF 0] w0 dut)
Bk
1 p ' p
> s [ 1T ([b=ag,®)]5) 0 wGoduto - [ |[660-ag ®)] T (5) 0 w(0duco
B;.‘ B;.‘
NN AW —_
> <C4 5p-1 - C3 AIZ“TOP> H(AIEJB])P [a) (B])] w (AzB])

= P uB) x-
> cl%py (Agjs,-)p [ (B)] " w (45B;).
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This implies (4.2).
On the other hand, since supp ( ]-) C By, by (4.6) and (2.3) and ||b||gmox) = 1, we obtain that, for any
x € AK1B;\ AKB;

Kl b ) a](b) el (B)
1T ([b-a5,(®)] ;) 00| S / b¢ e iﬁ) | au(§) < [w (B))] 7 F?Aggj)-

Therefore, by (4.12) with B}’-‘ replaced by A’z‘”Bj \A’Z(Bj, we can deduce that, for any integer k = Ky
/ | [b, TIf;(0)|” @()du(x)
A5 1B\ASB,

S / T ([b- ag,(®)] f;) )| wx)du(x)
A3 Bj\ALB;

+ / (660 - g, ()] T (f;) 0P w(x)dp(o)
ASTIBj\ALB;

H(Bj)p k-1 k kP ,U(Bj)p k-1 k
< 707 . . A L . .
~ u(AkB;Y [w(B)]" " w (AzBJ) * AKoP u(AKB)P [ (B)]" " w <A231>
M(Bj)p k-1 k
< ——— B; A5B; ).
This completes the proof of Lemma 4.4. O

We also need the following technical result to handle the weighted estimate for the necessity of the com-
pactness of the commutators.

Lemma 4.5. Let1 <p <o0,0<k <1,w € Ap(X),b € BMO(X),7,Ko > 0, {f;},_, and {B;},_ be as in
Lemma 4.4. Assume that {B; } . jen ! = {B (x;, 1}) }}. ¢ also satisfies the following two conditions:

(i) V¢, meNand(+m

A,C1By ﬂA2C1Bm =0, (4.14)

where C; := A§1 > Cy = Aé(" for some K, € N large enough.
(i) {r]-}]. N is either non-increasing or non-decreasing in j, or there exist positive constants C i, and Cmax such
that, forany j e N

Cmin < r}' < Cmax.

Then there exists a positive constant C such that, for any j, m € N

[1b, TIf; = [b, Tfjm | ey = C-

Proof. Without loss of generality, we may assume that ||b|gmox)y = 1 and {rj}]. N is non-increasing. Let

{f; }}. e C1, C, be as in Lemma 4.4 associated with {B; }i .
By (4.2), (4.8), Lemma 2.6 with w € Ap (X), we find that, forany j € N,

1/p
/|[b, TIf;(0) P w()dpu(x) [w (Agosj)}'“/p (4.15)
4%0B;
1/p
> [w (a5B)] ™" [ 116 150 wtoduco

Ao p;
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o (498) [ (2B 1y gt (4
[‘U (Az BJ)} C1vy LG [w(Bj)]" " w (A2 B])

1/p
2 [a} (Aé(ij)} o {’Yp I[::w(:;i)_]l;( }
2

> CB’YAEH(KKMKO_H [w (Bj)} -x/p [w (B]')]K/p
_ C37AEH(KK°+K°_1)
for some positive constant C3 independent of v and A,. We next prove that, for any j, m € N,
1/p
p Ko P 1 —n(xKo+Ko-1)
b, Tlfjem0)f 0GIdu() | [0 (45°B;) ] < 5374, : (4.16)
A

Since supp (fjsm) C Bjim, from (2.3), (4.6), (4.14) and ||b||pmox) = 1, it follows that, for any x € A§°B,~

1T ([ - p,,(5)] fjem) O] < [@ (Byom)] ™ [, 1KCe, ] [b(X) - g, (b)] dp(®)

el (B'+m)
5 [w (Bi+m)] ? V’(ijjxjﬂn).

And hence we have

p

K

/ T ([b - 5, 0] from) O w0 [ (4508;)] (4.17)

KOB
< 0Bon)] 7 R [ (4508)] 7

Moreover, from (4.6) we deduce that, for any x € A§° B;

T (fim) 00| < / [K(x, &) = K (X, Xjsm) | |fj+m(£)] du(&)
Bjom (4.18)

< o0 (Bu)] P ) T

V(Xj, Xj+m) d (Xj, Xj+m)00 '

By using (4.18), the fact {r;};c is non-increasing in j and Holder’s and reverse Holder’s inequalities we have

1/p

—x/
/ [[60) - 3, B)] T (fum) WO 000 ¢ [w (408,)] ™
A%,

L H(Bjer) )’]qu Kop. x/p
S [(U (B]+m)] V(Xjaxj+m) d (Xj,Xj+m)UO |:(U (Az Bl)i|
1/p
«| [ 1600-ag,, ®) 0due

KOB}
k-1 H(B]+m) rjo-'fm K %
< . °B.
S0 @) yo e a i e @ (4°5)]
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§ <log 45 X5m) | 100 4 (Xi’xi+m)>

Tj+m Tj

=t U(Bjim) K ' om d (X}, Xjm)
< ; —_— °B;
~ [CU (B]+m>} 4 V(X]', Xj+m) [w (Az B])} d (Xj, X]'er)go log Tiom .

Notice that, for C; large enough, by (4.14) we know that d (xj, x,~+m) is also large enough and hence

=0
<d(xi’xi+m>) 1og 0 %pem) _

Tiim

(4.19)

Tivm

Using (4.17), (4.18) and (4.19), we deduce that

1/p

[ 11871 Grom) P w0 b [ (a08;)] "
4%0B;
1/p

(16~ a5,,, )] frum) 0O @) b [ (408))]

=]

1/p

p K “xlp
+ / |[600 - 5, (0)] T (fjom) W 000 [ (45°B))]
4;°B;

@ (Bon)] 7 T [ (af0))] 7

N

V(st Xj+m)

A

M(Bj+m) w (B(Xj’ d(xj’ Xj+m))) B
V(ij Xj+m) w (Bj+m)

<C {H(Bl*m)]x

V(ij Xj+m)

Note that klim ,u(A’z‘Bjm) = oo, Then for C; large enough, we have
—>00

2¢’ k
H(ClBj+m) 2 <C3’7An(KKO+K01)> H(Bj+m)-
2

K K
This implies that C’ [V"(XLX'"))] < [H‘(‘C(?g_'"))} < 1C37A;"Ko+Ko=1) This finishes the proof of (4.16). By
jsXj+m j+m

(4.15) and (4.16) we know that, for any j, m € N and C; large enough

1/p
[ .11 65) 0= 18,71 (fom) WP w000 | [ (45°8;)] -
o 1p
> / |, T1 (f;) ()" w(x)dp(x) [w (A§°Bi)]_x/p
Afop;
1/p

_ / ’[b, T] (fi+m) (X)’p w(x)du(g) {w (A§°B]-)}_K/p .

Aop;

% C37A£n(KK0+K0—1) .
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This finishes the proof of Lemma 4.7. O

Proof of Theorem 1.3(ii). Without loss of generality, we may assume that ||b||gmo(x) = 1. Toshow b € VMO (X),
noticing that b € BMO (X) is a real-valued function, we can use a contradiction argument via Lemmas 2.4, 4.4
and 4.5. Now observe that, if b ¢ VMO (X), then b does not satisfy at least one of (i) through (iii) of Lemma
2.4. We show that [b, T] is not compact on LY;* (X) in any of the following three cases.

Case (i) b does not satisfy condition (i) Lemma 2.4. Then there exist v € (0, oo) and a sequence

{BJ('l)}jeN - {B(Xl('l)’ rl('l))}jeN

of balls in X satisfying (4.1) and that r](.l) — 0asj — oo. Let xg be a fixed point in X. We will now consider the
following two subcases.
Subcase (i) There exists a positive constant M such that 0 < d(xo, x](.l)) < M for all x](.l), j € N. That is,

x}(.l) € B := B(xo, M), Vj € N. Let {f; }jeN be associated with {Bj}].eN ,Cy Cy, Ky and C, be as in Lemmas 4.4
and 4.5. Let po € (1, p) be such that w € Ap, (X) and C := Afz >Cy = AIZ(O for K, € Nlarge enough such that

~ A ~ K -p)
€5 = G180y niitop) 26 A7 (4.20)
> Cy Cl 1 _A§2@0—p)’ :

where C; and C, are as in Lemma 2.6. As we know ‘r](.l)‘ —0asj— ooand {x](.”}.

C By, we may choose
jeN

a subsequence {B}?}ZEN of {B](.l)}iEN such that, foranyj € N,
(1)
’;((2%)1)) < CLZ and w (31(5131) <w (B](el)) . (4.21)
For fixed ¢, m € N, define

3= CBN\CBY, 41:=0\C4BY  and 7 := X\C4BP .

Je ¢ Jes

Notice that
1 C [(C4B,(~?) ﬂé]z} and J; =dnd,.
We then have
1/p
/ 11, T (£,) (0 - b, T1 (£;...) 0] w()du() (4.22)
C4B§1)
1/p
S / 11, T1 (£;,) 00 - [6, T) (£;,..) 09| w@(0)dp(x)
J1
1/p 1/p
S / 15, 71 (F,) O wdut0 s - / 15, 71 (£;,.,.) 0] w()du()
J1 J2
1/p 1/p
- / 15, 71 (F,) O w@dut0 - / 1B, 71 (£,.,.) 0]” 0()du(x)

FIath 3
=: F1 - Fz.
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We will first consider the term F;. Assume that E;, := J\J, # 0. Then E;, C C4B](.[1+)m by (4.21) we have

u(E;,) < Ciu (B](.jjm) <u (B](.Zl)) . (4.23)
Now let
B(l) Ak 1B(1),

Jek

be the ball associates with A’Z“lB](.:) in (3.5). Then using (4.23), we have
w(BD) = n (A57BY) > u(E;,).

K2
By this, we further know that there exist finite mutually disjoint {B](l})k }sz intersecting Ej,. By (4.2) and
’ =Ro

Lemma 2.6, we conclude that

Ky-2
Z / 116, T (f;,) 00 w()duto) .28)

k=Ko,B mE, . @Bu)

_ K22 V(B](.Z))p

@\*1! k(1)
)p"’ (Bie ) w (AZBn )

Fy

[\

> — 7 A} :
kp(1) p Je
k=Ko,B{!) NE;,~0 H (Aszé )
5 ClczﬁpAano(a—p)w (B(l))x = Csw (B(I))K
Cy Je Je

IfE; := 3\ J> = 0, the inequality is still true.
Note that klim ;u(A’z‘B](.I” ) = oo. Then there exist j, € N such that
S0 +m

u(A;BP ) > A (A% B ) and (A% B ) > A Al B ).

Moreover, from the proof of (4.3), Lemma 4.4, (4.20) and (4.21), we deduce that

oo

Py / 15, TIF;, )00 P w0 du() 4.25)

k=0 lmB(n \alk B
Jiem

x-1
(A}kB(l) ) Je+m Jerm

Je+m

oo 1 (k+1)K: K> p(1
_ U (B](.h)m) L 11 A3 HDkapoy (A zB](b)m) L
<G [(u(]())} C Po w(Bl('))
£+m L+m
k=0 A(k+1)K2p’,l (AKZ B](:Jr)m) Cl H (B](llzm>

!

(1) b-Po
Ca X~ 4 (k+ D> (po-p) “(Bff ) @ \]*
2o, tm
= (ATZAZ K p(1) \FP7P° {(u (Bf“'")}
L k-0 H(AZZB]hm)

= K>(po-p)
<2 % o (82.)]
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By (4.21), (4.22),(4.24) and (4.25) we obtain

1/p
{ S 10,71 (63 00~ 16,71 (5..) WP w0t

o ()] - (%) fo ()] 2 o (59)

Thus, {[b, TIf; }]. <y is not relatively compact in L;* (X) , which implies that [b, T] is not compact on LE;* (X).
Therefore, b satisfies condition (i) of Lemma 2.4.
. . (1) — (1 1) (1)
Subcase (ii) There exists a subsequence {Bje }eeN : {B (XM o1, )}ZGN of {B] }jeN such that

d(xo, XJ(‘?) — oo as { — oo. In this subcase, by u ( BJ(‘?) — 0 as ¢ — oo, we can take a mutually disjoint

subsequence of {B(.l)}
Je 2=

that [b, T] is not compact on L2* (X), which is a contradiction to our assumption. Thus, b satisfies condition
(i) of Lemma 2.4.

Case (ii) If b does not satisfy condition (ii) of Lemma 2.4. In this case, there exist v € (0, o0) and a sequence
{BI(.Z)}EN of balls in X satisfying (4.1) and that |rB}(z)\ — o0 as j — oo. We further consider the following two

. still denoted by {B](.,l) }z . satisfying (4.14) as well. This, via Lemma 4.5 implies
i Joe

subcases as well.
Subcase (i) There exists an infinite subsequence {B](.ﬁ) }z . of {B](.z) } N and a point xo € X such that,
€ JIS]

forany ¢ e N, xg € A,C 131(5). As |rB(z>\ — oo as £ — oo, it follows that there exists a subsequence, denoted as
' .

earlier by {Bl(f) }g . such that, forany ¢ € N
: S

“(BJ('f)) .1

iy (4.26)
(2) cn
U (ng+1) 4
Observe that 24,C 1B](.f) C 2A,C 1B](§31 for any j, € N and hence
(2) (2) . v
w(24:6:B? ) 2 w (242C:BY), M (b,24;C1B;,) > S (4.27)

We can use a similar method as that used in Subcase (i) of Case (i) and redefine our sets in a reversed order.
That is, for any fixed ¢, k € N, let

g :=24,C,C,B?\24,C,C,BY,,

1= 5\2A2C4C131(~12),
52 = X\2A2C4C13](-f).
As in Case (i), by Lemma 4.4, (4.26) and (4.27), we conclude that the commutator [b, T] is not compact on
L2* (X) . This contradiction implies that b satisfies condition (ii) of Lemma 4.4.

Subcase (ii) For any z € X the number of {Az C 1B](.2)}. y containing z is finite. In this subcase, for
je

each square B)(.f) € {B](.z) } N’ the number of {Az C1BJ(.2)} intersecting A,C 1B](§) is finite. Then we take
je

jEN
a mutually disjoint subsequence {B}(.f) }e N satisfying (4.1) and (4.14). From Lemma 4.5, we can deduce that
S

[b, T] is not compact on L¥;* (X). Thus, b satisfies condition (ii) of Lemma 2.4.
Case (iii) Condition (iii) of Lemma 2.4 does not hold for b. Then there exists v > 0 such that for any r > 0,
there exists B ¢ X\B(xq, r) with M(b, B) > ~. As in [4] for the  above, there exists a sequence { B}(.3)} _of balls
j

such that for any j,

M (b, B](.3)) >, (4.28)

and for any i # m,

B 0B =0, 429)
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for sufficiently large ~, since, by Case (i) and (ii), { B](.3)} . satisfies the conditions (i) and (ii) of Lemma 2.4,
c

it follows that there exist positive constants Cp,;; and Cmax such that
Ciin £ 7j < Cmax, Vj€N.

By this and Lemma 4.5 we conclude that, if [b, T] is compact on L2* (X), then b also satisfies condition (iii)
of Lemma 2.4. This finishes the proof of Theorem 1.3(ii) and hence of Theorem 1.3. O

5 Appendix: Characterisation of VMO(X)

In this section, we provide a characterisation of the VMO space on X by giving the proof of Lemma 2.4.

Proof of Lemma 2.4. In the following, for any integer m, we use B™ to denote the ball B(xq, 2™), where xq is
a fixed point in X.

Necessary condition: Assume that f € VMO(X). If f € Lip.(f), then (i)-(iii) hold. In fact, by the uniform
continuity, f satisfies (i). Since f € L1(X), f satisfies (ii). By the fact that f is compactly supported, f satisfies
(iii). If f € VMO(X)\Lip,(B), by definition, for any given € > 0, there exists fe € Lip.(f) such that ||f~fe||pmo(x) <
€. Since f satisfies (i)-(iii), by the triangle inequality of BMO(X) norm, we can see (i)-(iii) hold for f.

Sufficient condition: In this proof forj = 1, 2, - - -, 8, the value g; is a positive constant depending only
onnand a; for 1 < i < j. Assume that f € BMO(X) and satisfies (i)-(iii). To prove that f € VMO(X), it suffices to
show that there exist positive constants a;, a, such that, for any € > 0, there exists ¢ € BMO(X) satisfying

he%li})fc(ﬁ) l[$e - hilmox) < @18, (5.1
and
e = fllamogx) < a2€. (5.2)
By (i), there exists i € N such that
sup {M(f, B):rg< 2"if+"} <€ (5.3)
By (iii), there exists j. € N such that
sup {M(f,B):Bmij =®} <e. (5.4)

We first establish a cover of X. Observe that

2Jetie _q Qetle _q

B =B U B(xo, v+ 027 )\B(xo,v27) | = |J ®:,
v=1 v=0
For m > je,
2j€+ig—171
B"\B"'= |J B (xo, 2l (4 1)2’”"'2"'8) \B (xo, m-1 vz’"‘ff‘if)
v=0
2}'2“'27171
= U :R:’rfm’].s’ie :
v=0
For each iR{f V= 1,2, , 21 1t @jj i, be an open cover of iR{f i consisting of open balls with radius
27% and center on the sphere S(xq, (v + 271)27%). Let B’; = {B(x0,27%)} and B{f iy be the finite subcover
of B _;,- Similarly, for each m > je and v =0, 1, -+, 20"~ 1, let B}, ; ; be the finite cover of R}’ ; ;.

consisting of open balls with radius 2™ 7=~ and center on the sphere S(xq, (2™ ! + (v + 271)2mJe i),
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We define By as follows. If x € B¢, then thereis v € {0, 1, - - - , 2" — 1} such that x € ®*__ , let By be

V,—ig’
aballin B, that contains x. If x € B" \B™ !, m > jg, then thereis v € {0, 1,---, 2¢*="1 — 1} such that

X € R i let Bybeaballin BY, . that contains x. We can see that if Bx N By # (), then
either rg <2rp, or rg, <2rp,. (5.5)
In fact, if rp, > 2rp,, then there is mo € N such that x € B™*2\ B"*! and x’ € B™, thus

d(x, x') = d(xo, %) = d(xg, x') 2 2™M0*1 = 2™M0 > Mo*2erle y pMoTjele —pp yyp |

which is contradict to the fact that By N B, # 0 (Without loss of generality, here we assume that Ao = 1 in the
quasi-triangle inequality. Otherwise, we just need to take rg» = ([240] + 1)™ and make some modifications).
Now we define ¢¢. By (ii), there exists m¢ > j¢ large enough such that when rg > 2™¢7'=7J= we have

M(f, B) < 2"Cleder " 1g, (5.6)
Define
I8, if x € B™,
Pe(x) = P . m
meg\Bmg—l, if XGX\B €,

We claim that there exist positive constants a3, a, such thatif By "B, # 0 or x, x" € X \ B™1 then
|pe(x) - Pe(x')| < aze. (5.7)
And if 2By N 2B, # 0, then for any x; € By, x, € B,/, we have
|pe(x1) - Pe(x2)] < ase. (5.8)

Assume (5.7) and (5.8) at the moment, we now continue to prove the sufficiency of Lemma 2.4.
Now we show (5.1). Let he(x) := ¢e(x) — fgme \gme-1. By definition of ¢., we can see that he(x) = O for
x € X\ B™ and Hﬁg-(pgﬂBMO(X) = 0. )
Observe that supp (hg) C B™ and there exists a function he € Cc(X) such that for any x € X, |he(x) -
he(x)| < €. Let nj(s) be an infinitely differentiable function defined on [0, o) such that 0 < n(s) < 1,n(s) = 1
for0 < s <1andn(s)=0fors = 2. And let

-1
ptr .0 = ( [ ndee 2/0dutz))  nidcx, 1o
X

and
Ri() = / p(x, v, Ohe) ().
X

Then by [31, Lemmas 3.15 and 3.23], h(x) approaches to h(x) uniformly for x € X as t goes to 0 and h ¢
Lip.(B) for B > 0. Since

||h§ = Pellpmory) < Hhé = hellsmox) + lhe = hellgmocx) + I1he = @ellpmocx)
< || - hellpmogx) + 2€.

we can obtain (5.1) by letting ¢ go to O and by taking a; = 2.
Now we show (5.2). To this end, we only need to prove that for any ball B C X,

M(f — ¢pe, B) < az€.

We first prove that for every By with x € B™,

[ 176 = 92| ') = asentB. (59)
By
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In fact,

/ FO) - e)| du(x’) = / F) - f, [duG) + / ) = Famegme-s [dp).

Bx ByNB™e ByN(X\B™e)

When x € B(xg, 2™ — 2Me~ie7je) then By C B™e, thus

/ ) - el)| dpulx’) = / FO) - fis, | duG)
| /

By

< / FO) — i du(x) + / Fs, fo, |du()
By By
- WBOM, B+ [ If, ~fo, [dn(0).
By

Note that if X' € By, then By N By # (. Therefore, If By N B’ = §, by (5.4) and (5.7), we have

[ 1762~ 96| ') < (e + aseIuB
By

If By N B'* # (), then rg, < 27*1, then by (5.3) and (5.7),

[ 1762 = 92| du) < (e + aeluB)

BX

When x € B™ \ B(xg, 2™ — 2™ 7Je72) it is clear that By N B’* = (), then by (5.4), (5.6) and (5.7), we have

/ () - o) dp(x)

By
< / F ) — fia ldp(x) + / s, ~ f,, |du(x")
ByNB™e ByNB™Me
+ / ‘f(X/) _fB'”s+1 |d}l(X/) + / |meg+1 _meg\Bm8—l |d}1(XI)

BxN(X\B™me) BxN(X\Bme)

u(B™*M)pu(By)

< mg+1 me+1
< K(BAMI, Bx) + asep(B) + u(B" M, B™ ) + S =

M(f, Bm€+1)
< (C1& + aze)u(By).

Then (5.9) holds by taking a5 = (C; + a3).
Let B be an arbitrary ball in X, then M(f - ¢, B) < M(f, B) + M(¢¢, B). If B C B™ and max{rp, : BxNB #
¢} > 8rg, then

min{rg_: BxNB #0} > 2rp. (5.10)

In fact, assume that rp_ = max{rp_: BxN B # 0} andx € B®\ B"™! for some ly € Z. Then B ¢ B n 3B;.
If Iy < je, then (5.10) holds. If Iy > je, then rp_ = 2077 and

1 lo—je—ic—3
T'B<§YB;=20]€£ .

Since for any x’ € 3By,

d(xo, x') = d(x, %) - d(x, x') 2 2071 - %Zlo"k_if > plo=1 _ ploTjesietl
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we have 3
dist(xo, 2By) := inf d(xg,x’) > 2lo7t — ploTerierl
2 X’G%B;

Thus B ¢ B\ 3 B2, Therefore, if Bx N B # 0, then x € Bl \ B2, which implies that rp_=> 207277 > 2rp.
From (5.10) we can see that if By, N B # @ and By; N B # 0, then 2By, N 2By; # 0. Then by (5.8), we can get

1 1 / /
Me,B) = i B/ 5 B/ |6 ) - e )| dp(x')dp(x)

=(%)2 > > / |e(x) - pe ()] du(x')du(x)
K itBy, NB#0p, ‘g J:By;"B#0p, B

1
< a4£}1(T)2 ( Z U(By, nB)) Z u(Bx; NB) | < azaie.

i:BxiﬁB#@ i:BX]. NB#0

Moreover, if B N Bs # (), then by (5.10), rg < 27, thus by (5.3), we have M(f, B) < €. If B B = (), then by
(5.4), M(f, B) < €. Consequently,

M(f - ¢e, B) < M(f, B) + M(¢, B) < (1 + a4ag) e.

If B ¢ B™ and max{rp, : Bx N B # 0} < 8rp, since the number of Bx with x € B™ that covers B is
bounded by a7, by (5.9), we have

2
u(B)

3 / 1£00 - )| du()

i:BXI.ﬁB#@BX_
1

2
M(f-ge.B) < s B/ 100 - ()] dpa(x) <

2 2
< ﬁa5€ Z H(BX,) < ﬁa5a7€y(83) < CrasazE.
a 1By, NB#) u

If BC X\ B™1, then BN B = (), from (5.4) we can see M(f, B) < €. By (5.7),

1 1 / /
M@ D)< s B/ 5 B/ e00) - pe()| dp( () < ase.

Therefore,
M(f - ¢¢, B) < M(f, B) + M(¢pe, B) < (1 + a3)e.

If BN (X\B™) #(and BN B™ ! # (. Let p; be the smallest integer such that B  BP2, then p; > me. If
ps=me +1,thenrg > 3(2M - 2M="1) = 2M72 If p, > m, + 1, then rg > 3(2P5~1 - 2™71), Thus

uB’) G

<

uB) ~2°

Therefore,
1
M(f - ¢€, B) < ﬁ B/ ’f(x) - ¢£(X) - (f— ¢8)BPB ‘ d}l(X) + ‘(f - ¢8)BPB - (f - ¢£)B}

. H(BPB) 1
T 7 uB) uB)

/ 100 - ) — (F = e)on | du(x)
BPB

< C3 (M(f, BP?) + M(¢e, B"?)) < C5 (£ + M(¢e, B'?)) ,

where the last inequality comes from (5.6). By definition,

1
u(BPs)

M(¢e, BP?) <

/ |6e0) — (@) gragne | A1) + | () praygme — (D) |
BPB
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du(x).

s@/@e(ﬂ—((f’s)mgwme
BPB

By (5.4), (5.9) and the fact that ¢¢(x) = fgm\pme—1 if x € X \ B™¢, we have

1 ' /
B / b0~ (P)prmme | du(x) sB/ Sy | 400~ et)ldut)auo)

BPB\Bme

=/|¢€(X)_me£\Bmg—l|dy(X)

Bme

¢ [ 1900 FIan00+ [ 1) i -+ WB™ i ~ ey
Bre Bme

d B™ HB™ 1\ e g
< . Z |pe(x) = FO)[dpu(x) + | u( )+ W f, )
i:By,NB™e #(D,x,-eB’"sBxi
<ase Z U(Bx,) + 3eu(B™) < (asag + 3)eu(B™).
i:BxiﬁB’"e#(b,xieBms

Therefore,

M(f - ¢e, B) < C3 (& + M(¢pe, B?)) < C3 (e + 25(3?)(0(50(8 + 3)8>
< C4 (a5a8 + 3) E.

Then (5.2) holds by taking a, = max{1 + asaZ, 1 + a3, C4 (#sag + 3)}. This finishes the proof of Lemma 2.4.

Proof of (5.7):
We first claim that
sup{|fBX ~fz,|:x,x € B™ \B”‘“l} < Cse. (5.11)
By (5.6), for any x € B™ \ B™~, we have
~ u(B™e+1) 1 / n_ /
|fo fpmen| < u(Bx) p(B™e+1) |f(X ) = fpme | du(x’)
Bme+1

_ H(Bmﬁl) me+1 &
= 7}1(&) M(f,B ) < 5 €

Similarly, for any x’ € B™ \ B™71, | fB, — fpmen| < %e. Consequently, (5.11) holds.
For the case x, x' € X\ B™1, firstly, if x, x’ € X \ B™¢, then by definition

|pe(x) — Pe(x)] = 0.
Secondly, if x, x' € B™ \ B™"1, then by (5.11), we have
|¢£(X) - ¢£(X,)‘ < Cse.

Thirdly, without loss of generality, we may assume that x € B™ \ B™ ! and x’ € X \ B™, then by (5.6), we
have

‘¢e(X) - ¢£(X/)‘ = !fBX _fB"'E\B"'S’1

< }fBX _meg+1 + ‘megﬂ _me‘:\Bmg”l ’

 HB™) _ BT
<SBY M(f, Bm,.,) + LB \Bmg—l)M(f’ Bm...)

< ]l(Bmg+1) ],l(Bm'5+1) >
_< u(Bx) +}1(Bms\Bmf1) M(f, Bm,,,)
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< C6€.

For the case BxN By # # and x, X’ € B™ !, we may assume By # B, and rg_<rg,.By(5.5), By C 5Bx C
15B,.. If x' € Bi=*1, then by (5.3), we have

|pe() - pe(X)| = |f5, - f5,

<|fs, ~fsB,| +|fB, —f38,

_(KGBy) . uG3By)
: ( WBy) * uBy) >M(f’ 3By)

< Cye.

If x' ¢ B<*1, then 3B, N B’ = 0, by (5.4), we have
|pe(x) - pe(x')| < C7M(f, 3By) < Cre.
Therefore, (5.7) holds by taking a3 = max{Cs, C¢, C7}.
Proof of (5.8):

Since x1 € Bx, x> € By, we have By, N Bx # () and By, N By # 0, by (5.7),

|pe(x1) = Pe(x2)] < [Pe(x1) = Pe(X)| + |Pe(X) = Pe(X)| + |Pe(X') - Pe(x2))|
<2038 + | Pe(x) - e (x)] .

We may assume By # By and rp, < rp,.If x,x’ € X\ B™!, then (5.8) follows from (5.7). If x,x" € B™*,
when x’ € B'**!, then 27 < rp < rp, < 27*1, thus By C 10Bx C 60By, by (5.3), we have

- H(6BX,) H(6BX/)
) ( uB,) " uBy) )M(f, 6By)

|pe() — pe(X)| < |f5, — fo,,

+|fs, —fe,
< Coe.

When x’ ¢ B=*1, then there exist iy € N and g = je + 2 such that x' € B™ \ B™~1, Since 2By N 2By # 0,
we have By C 6B,.. Note that 6B,, N B™~2 = (), (in fact, for any X € 6B,,, d(xo, %) = d(xo, x") - d(x', %) =
2Mo~1 _ 6 . pMoTJele 5 DM0=2) thyus By N B™2 = ¢ and then Jrg, = 2Mo1eTle < pp < Mool = pp
Therefore, By, C 10By. Then by (5.4), we have

|§00) ~ pe(x)| < CoM(f, 6By) < Coe.

Ifx € B" tandx’ € X\B™!, since 2BxN2B, # 0, by the construction of By we can see that x € B™e~1\B™:~2
and x’ € B™ \ B™~1, Thus, By, C 10Bx C 40B,.. Then by (5.6), we have

|pe(x) - Ppe(x)| < C1oM(f, 4By) < Cioe.
Taking a, = C9 + C19 + 2a3, then (5.8) holds. O
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