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Abstract: The aim of this paper is to prove the weak type vector-valued inequality for the modi�ed Hardy–
Littlewood maximal operator for general Radon measure on Rn. Earlier, the strong type vector-valued in-
equality for the same operator and the weak type vector-valued inequality for the dyadic maximal operator
were obtained. This paper will supplement these existing results by proving a weak type counterpart.
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1 Introduction
The conclusion of this paper is that we can readily transplant the boundedness of the dyadic maximal op-
erator to modi�ed uncentered maximal operators. As a typical case, we prove the following vector-valued
inequality to supplement results in [2, 5]. Here and below, by a Radon measure, we mean a measure that is
�nite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. Here and below we
use the symbol Q to denote the set of all cubes whose edges are parallel to coordinate axes. The symbol Q(µ)
stands for the subset which consists of all cubes Q ∈ Q with µ(Q) > 0.

Theorem 1.1. Let 1 < k, q < ∞ and µ be a Radon measure such that µ(B) > 0 for any open ball B in Rn with
positive radius. For a Borel measurable function f , de�ne the modi�ed uncentered maximal operator Mk,µ by

Mk,µ f (x) = sup
Q∈Q

χQ(x)
µ(kQ)

∫
Q

|f (y)|dµ(y) (x ∈ Rn),

where kQ, which is concentric to Q, is the k-times expansion of a cube Q. Then there exists a constant C > 0
which depends only on k and q such that

µ

x ∈ Rn :

 ∞∑
j=1

Mk,µ fj(x)q
 1

q

> λ

 ≤ Cλ
∫
Rn

 ∞∑
j=1
|fj(x)|q

 1
q

dµ(x)

for any sequence of Borel measurable functions {fj}∞j=1 and any λ > 0.

The assumption on µ is not so strong. It is postulated so that we can justify χQ(x)
µ(kQ) in the above. What is impor-

tant here is that the constant C does not depend on µ. In this sense, Theorem 1.1 is a universal estimate.
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The operator Mk,µ is called the uncentered maximal operator and it is essentially di�erent from the cen-
tered maximal operator when µ is a general Radonmeasure. Theorem 2.1 will complement what is known for
Mk,µ. First of all, the usual boundedness of Mk,µ is known in [7, p. 129]. In fact, Tolsa proved the following
estimate:

Proposition 1.2. Let 1 < k, p < ∞ and µ be a Radon measure. Then there exist constants C1 = C1(k), Cp =
Cp(k) > 0 such that

µ
{
x ∈ Rn : Mk,µ f (x) > λ

}
≤ C1λ

∫
Rn

|f (x)|dµ(x) (λ > 0) (1.1)

and
‖Mk,µ f‖Lp(µ) ≤ Cp‖f‖Lp(µ) (1.2)

for any Borel measurable function f .

In [5, Theorem 1.7], the present author passed (1.2) to the vector-valued case:

Proposition 1.3. Let1 < k, p, q < ∞and µ beaRadonmeasure. Then there exists a constant Cp,q = Cp,q(k) > 0
such that ∫

Rn

 ∞∑
j=1

Mk,µ fj(x)q


p
q

dµ(x) ≤ Cp,q
∫
Rn

 ∞∑
j=1
|fj(x)|q


p
q

dµ(x).

for any sequence of Borel measurable functions {fj}∞j=1.

Notice that a counterpart of Proposition 1.3 with q = ∞ is already included in (1.2). An important idea shared
strongly by many recent researchers is that the dyadic maximal operators are much easier to handle than the
usual maximal operator. Here we recall some notions. For j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn de�ne Qjk ∈ Q

by

Qjk ≡
[
k1
2j
, k1 + 1

2j

)
× · · · ×

[
kn
2j
, kn + 1

2j

)
=

n∏
l=1

[
kl
2j
, kl + 1

2j

)
.

A dyadic cube is a set of the form Qjk for some j ∈ Z, k = (k1, k2, . . . , kn) ∈ Zn. For each j ∈ Z, Dj(Rn)
stands for the set of all dyadic cubes with volume 2−jn. Finally, D(Rn) stands for the set of all dyadic cubes.
The dyadid maximal operator MD

µ is given by

MD
µ f (x) = sup

Q∈D

χQ(x)
µ(Q)

∫
Q

|f (y)|dµ(y).

As for the dyadic maximal operator MD
µ , we have the following estimates:

Theorem 1.4. Let 1 < p, q < ∞.

1. For all Borel measurable functions {fj}∞j=1,∥∥∥∥∥∥∥
 ∞∑

j=1
(MD

µ fj)q
 1

q
∥∥∥∥∥∥∥
Lp(µ)

≤ Cp,q

∥∥∥∥∥∥∥
 ∞∑

j=1
|fj|q

 1
q
∥∥∥∥∥∥∥
Lp(µ)

.

Here Cp,q is a constant that is independent of {fj}∞j=1.
2. For all Borel measurable functions {fj}∞j=1 and λ > 0,

µ

x ∈ Rn :

 ∞∑
j=1

MD
µ fj(x)q

 1
q

> λ

 ≤ C1,qλ
∫
Rn

 ∞∑
j=1
|fj(x)|q

 1
q

dµ(x).

Here C1,q is a constant that is independent of {fj}∞j=1 and λ > 0.
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Theorem 1.4(2) is contained in [2, A.2], while we can argue as in [5, Theorem 1.7] for the proof of Theorem 1.4(1)
by using the estimate ∫

Rn

MD
µ f (x)p|g(x)|dµ(x) ≤ p′2p

∫
Rn

|f (x)|pMD
µ g(x)dµ(x), (1.3)

which is valid for all Borel measurable functions f and g, where p′ denotes the conjugate index. If we go
through a similar argument to [5, Corollary 2.2], then we obtain (1.3).

See [8] for more about the analysis on Euclidean space with a general Radon measure.
Thus, we can say that among these estimates, Theorem 1.1 is essentially new in this paper. The main tool

to prove Theorem 1.1 is to reduce thematters tomaximal operators generated by amore general familyD than
the family of dyadic cubes. When we are given such a familyD, we de�ne

MD
µ f (x) = sup

Q∈D

χQ(x)
µ(Q)

∫
Q

|f (y)|dµ(y).

To describe the property ofDwe desire, we set up notation. Let Q be a (right-open) cube. A (dyadic) child of a
cube Q is any of the 2n (right-open) cubes obtained by partitioning Q by the hyperplanes parallel to the faces
of Q and dividing each edge into 2 equal parts. De�ne inductively

D0(Q) = {Q}, D1(Q) = {R : R is a dyadic child of Q}, Dk(Q) =
⋃

R∈D1(Q)

Dk−1(R).

We also set

D(Q) =
∞⋃
k=1

Dk(Q).

We will be interested in familiesD which enjoy the following properties:

1. There exists a > 0 such that ∑
Q∈D,|Q|=an2jn

χQ = 1

for any j ∈ Z.
2. For any Q ∈ D,D(Q) ⊂ D.

This generalized dyadic grid includes the notion of dyadic grids in [4]. We will call suchD satisfying 1. and 2.
a generalized dyadic grid in this paper. To prove Thoerem 1.1, we will construct a family of generalized dyadic
grids that is adapted to Mµ,k, which will be done in De�nition 2.5.

As an application, we obtain the weak vector-valued maximal inequality for the Morrrey spaceMp
q(k, µ)

for k > 1 and 1 ≤ q ≤ p < ∞. De�ne theMorrey spaceMp
q(k, µ) byMp

q(k, µ) ≡
{
f ∈ Lqloc(µ) : ‖f‖Mp

q (k,µ) < ∞
}
,

where

‖f‖Mp
q (k,µ) ≡ sup

Q∈Q(µ)
µ(k Q)

1
p −

1
q

∫
Q

|f (z)|qdµ(z)

 1
q

. (1.4)

An important observation made in [6, Proposition 1.1] is that Mp
q(k, µ) and M

p
q(2, µ) are isomorphic as long

as k > 1. We have the following vector-valued maximal inequality for the modi�ed maximal operator.

Corollary 1.5. If k, κ > 1, 1 < q ≤ p < ∞ and 1 < r ≤ ∞, then

sup
λ>0

λ

∥∥∥∥∥∥∥χ(λ,∞]


 ∞∑

j=1
Mκ,µ fj r

 1
r

∥∥∥∥∥∥∥
M

p
q (k,µ)

.n,p,q,r,κ,k

∥∥∥∥∥∥∥
 ∞∑

j=1
|fj|r
 1

r
∥∥∥∥∥∥∥
M

p
q (k,µ)

.

for all sequences {fj}∞j=1 ⊂ L0(µ).
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Let
k′ ≡ 4κ(κ + 7)

(3κ + 1)(κ − 1) .

The proof of Corollary 1.5 is analogous to [6, Theorem 2.4], where we showed∥∥∥∥∥∥∥
 ∞∑

j=1
Mκ,µ fj r

 1
r
∥∥∥∥∥∥∥
M

p
q

(
k′ ,µ
) .n,p,q,r,κ,k

∥∥∥∥∥∥∥
 ∞∑

j=1
|fj|r
 1

r
∥∥∥∥∥∥∥
M

p
q

(
4κ

3κ+1 ,µ
)

under the additional assumption q > 1. If we modify the proof of [6, Theorem 2.4] suitably, then thanks to
Theorem 1.1, we obtain

sup
λ>0

λ

∥∥∥∥∥∥∥χ(λ,∞]


 ∞∑

j=1
Mκ,µ fj r

 1
r

∥∥∥∥∥∥∥
M

p
q (k′ ,µ)

.n,p,q,r,κ,k

∥∥∥∥∥∥∥
 ∞∑

j=1
|fj|r
 1

r
∥∥∥∥∥∥∥
M

p
q (k,µ)

.

SinceMp
q(k, µ) andM

p
q(k′, µ) are isomorphic, we obtain the desired result.

The remaining part of this paper is devoted to the proof of Theorem 1.1.

2 Proof of Theorem 1.1
The proof of Theorem 1.1 hinges on the following result in [2] as well as a construction of generalized dyadic
grids.

Lemma 2.1. Let D be a generalized dyadic grid and let 1 < q < ∞. Then, for all Borel measurable functions
{fj}∞j=1 and λ > 0,

µ

x ∈ Rn :

 ∞∑
j=1

MD
µ fj(x)q

 1
q

> λ

 ≤ Cλ
∫
Rn

 ∞∑
j=1
|fj(x)|q

 1
q

dµ(x),

where C depends only on q.

Proof. Aswementioned,whenD = D, this is Theorem 1.4,whichwas proved in [2, A.2]. By a slight adaptation
of the proof there, we still have the same result for the case where

D = D(a, b) := {Q : {ay + b : y ∈ Q} ∈ D}

for some a > 0 and b ∈ Rn.
For the proof of Lemma 2.1 in the general case, we let

D≤R = {Q ∈ D : |Q| ≤ Rn}.

Since D is a generalized dyadic grid, thanks to the properties of 1. and 2. of generalized dyadic cubes there
exists a > 0 and b ∈ Rn such that

D≤R = D(a, b) ∩ {Q ∈ D : |Q| ≤ Rn}.

Thus,we can reduce thematters to themaximal operator generatedbyD(a, b); there exists C > 0 independent
of R such that

µ

x ∈ Rn :

 ∞∑
j=1

MD≤R
µ fj(x)q

 1
q

> λ

 ≤ Cλ
∫
Rn

 ∞∑
j=1
|fj(x)|q

 1
q

dµ(x).

Letting R →∞, we obtain the desired result.
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We will move on to the construction of generalized dyadic grids.

De�nition 2.2. Let N ∈ N be an odd integer.

1. Let j ∈ Z. Set
D†j (R) ≡

{
2−j[m,m + 1) : m ∈ N−1Z

}
and

D†j (Rn) ≡ {Q1 × Q2 × · · · × Qn : Q1, Q2, . . . , Qn ∈ D†j (R)}.

2. SetD†(Rn) ≡
⋃
j∈Z

D†j (Rn).

3. SetD†(b)(Rn) ≡ {Q : {b−1y : y ∈ Q} ∈ D†(Rn)} for b ≥ 1.

We write
Q(N)
m ≡ N−1[m1,m1 + N) × N−1[m2,m2 + N) × · · · × N−1[mn ,mn + N)

for m ∈ Zn and N ∈ N.

Lemma 2.3. For any m = (m1,m2, . . . ,mn) ∈ Zn, any odd integer N > 0 and j ∈ N, there uniquely exists
R ∈ D†(Rn) such that Q(N)

m ∈ Dj(R).

Proof. We will consider the case n = 1; a passage to higher dimensions can be achieved by means of the
product. We write Q(N)

m = [N−1m, N−1(m + N)) with m ∈ Z.
We will induct on j. We start with the base case j = 1. If m is even, then R = [N−1m, N−1(m + 2N)) is the

only cube inD†(R) that containsQ(N)
m and satis�es |R| = 2|Q(N)

m |. Ifm is odd, then R = [N−1(m−N), N−1(m+N))
is the only cube inD†(R).

We will move on to the general case. Let j ≥ 2. So far, by the induction assumption, we know that there
uniquely exists S ∈ D†(R) such that Q(N)

m ∈ Dj−1(S). As we have shown, there exists a cube R such that
S ∈ D1(R). Thus, Q(N)

m ∈ Dj(R). Let us discuss the uniqueness. If R′ is another cube such that Q(N)
m ∈ Dj(R′).

Let T ∈ Dj−1(R) be such that Q(N)
m ∈ D1(T), and let T′ ∈ Dj−1(R′) be such that Q(N)

m ∈ D1(T′). Since we have
already proved the assertion for the case where j = 1, we have T′ = T. Thus, T ∈ Dj−1(R) ∩Dj−1(R′). By the
induction assumption, R = R′, proving the uniqueness of R.

Remark 2.4. For any m = (m1,m2, . . . ,mn) ∈ Zn, N > 0 and j ∈ N, one has∑
m̃∈m+NZn

∑
R:Q(N)

m̃ ∈Dj(R)

χR = 1.

In fact, a simple induction argument reduces matters to the case where j = 1. In that case, one can reexamine
the argument above to have the desired equality.

Using the cube
Q(N)
m ≡ N−1[m1,m1 + N) × N−1[m2,m2 + N) × · · · × N−1[mn ,mn + N)

above, we de�ne the setDm as follows:

De�nition 2.5. Let N be an odd integer and m = (m1,m2, . . . ,mn) ∈ {0, 1, 2, . . . , N − 1}n. Then de�ne

Dm(Rn) ≡
⋃

m̃∈m+NZn
D(Q(N)

m̃ ) ∪
⋃

m̃∈m+NZn
{R ∈ D†(Rn) : Q(N)

m̃ ∈ D(R)}.

See [1, 3] for the prototype results. In particular, when N = 3, our grid goes back to [3, Theorem 1.7].

Theorem 2.6. Let N be an odd integer.

1. For each m = (m1,m2, . . . ,mn) ∈ {0, 1, 2, . . . , N − 1}n, if Q ∈ Dm(Rn), thenD(Q) ⊂ Dm(Rn).
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2. We have ∑
Q∈Dm(Rn),`(Q)=2−j

χQ = 1.

3. We have a partition ofD†(Rn):

D†(Rn) =
⋃

m=(m1 ,m2 ,...,mn)∈{0,1,2,...,N−1}n
Dm(Rn).

Proof.

1. If Q ∈ Dm(Rn), then there exists m̃ ∈ m+NZn such that Q ∈ D(Q(N)
m̃ ) or that Q(N)

m̃ ∈ D(Q). If Q ∈ D(Q(N)
m̃ ),

then D(Q) ⊂ D(Q(N)
m̃ ) and hence D(Q) ⊂ Dm(Rn). If Q(N)

m̃ ∈ D(Q), then for any cube R ∈ D(Q) there
exists m* ∈ m + NZn = m̃ + NZn such that Q(N)

m* ⊂ R or that R ⊂ Q(N)
m* , or equivalently Q

(N)
m* ∈ D(R) or that

R ∈ D(Q(N)
m* ). Thus, R ∈ Dm(Rn). Since R is arbitrary, it follows thatD(Q) ⊂ Dm(Rn).

2. We will use the backward induction on j because (2) is true for j = 0 and this also shows that (2) is also
true for j ≥ 0. Suppose that (2) is true for j = j0 ≤ 0. We will prove∑

Q∈Dm(Rn)∩D†
j0−1

(Rn)

χQ = 1.

Since for any cube R ∈ Dm(Rn)∩D†j0 (R
n), there uniquely exists Q ∈ Dm(Rn) such that R ∈ D1(Q) thanks

to Lemma 2.7, we have
1 =

∑
R∈Dm(Rn)∩D†

j0
(Rn)

χR ≤
∑

Q∈Dm(Rn)∩D†
j0−1

(Rn)

χQ .

It thus remains to show that ∑
Q∈Dm(Rn)∩D†

j0−1
(Rn)

χQ ≤ 1.

If two cubes Q1, Q2 ∈ Dm(Rn) ∩ D†j0−1(R
n) meet at a point x, then there uniquely exists a cube R ∈

Dm(Rn) ∩ D†j0 (R
n) such that x ∈ R by the induction assumption. Since D1(Q1) ∪ D1(Q2) ⊂ Dm(Rn) ∩

D†j0 (R
n) and x ∈ R ∩Q1 ∩Q2, it follows from Remark 2.4 that R ∈ D1(Q1)∪D1(Q2). Thus, by Lemma 2.3,

Q1 = Q2.
3. Let Q ∈ D†(Rn). If |Q| < 1, then there uniquely exists m̃ ∈ Zn such that Q ∈ D(Q(N)

m̃ ). If |Q| ≥ 1, then
there uniquely exists m̃ ∈ Zn such that Q(N)

m̃ ∈ D(Q). In any case, if we choose m = (m1,m2, . . . ,mn) ∈
{0, 1, 2, . . . , N − 1}n so that m̃ ∈ m + NZn, then Q ∈ D†m(Rn).

Lemma 2.7. Suppose that we have positive parameters k, a > 1 and an odd integer N ∈ N such that

a−1 + N−1 < 1, N−1 < k − 12 a−2, a <
√
k + 1
2 . (2.1)

For each cube Q and k > 1, such that a−2 < `(Q) ≤ a−1 there exists R ∈ D†(Rn) such that Q ⊂ R ⊂ kQ.

Proof. It su�ces to consider the case where n = 1; a passage to higher dimensions can be achieved by the
tensor product. Choose a cube R ∈ D†0(R) so that −N−1 < inf R − inf Q ≤ 0. Since `(Q) < a−1 < 1 − N−1, it
follows that Q ⊂ R.

Meanwhile, since supQ = `(Q) + inf Q > a−2 + inf Q,

sup R − supQ = inf R − supQ + 1 < inf R − inf Q + 1 − a−2 ≤ 1 − a−2.

Since kQ is obtained by adding two intervals of length k−1
2 `(Q) to both sides of Q, it follows that R ⊂ kQ.
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Note that we can choose a > 1 and N ∈ N so that (2.1) holds and that (log2 a)−1 ∈ N. In fact, we choose
a <

√
k+1
2 slightly greater than 1 so that S ≡ (log2 a)−1 ∈ N. If we choose N � 1, then the �rst two conditions

in (2.1) are also satis�ed.
Here and below we �x a > 1 and N ∈ N so that (2.1) are also satis�ed and that S = (log2 a)−1 ∈ N.
By a scaling, we transform Lemma 2.7 to the form which we use.

Corollary 2.8. For each cube Q and k > 1, there exists l = 0, 1, . . . , S − 1 and R ∈ D†(2 l
S )(Rn) such that

Q ⊂ R ⊂ kQ.

Proof. Since there exists l = 0, 1, . . . , S − 1 and j ∈ Z such that a−2 < 2j− l
S `(R) ≤ a−1, we can �nd R ∈

D†(2 l
S )(Rn) such that Q ⊂ R ⊂ kQ from Lemma 2.7

We conclude the proof of Theorem 1.1. To prove Theorem 1.1, we observe

Mk,µφ ≤
S−1∑
l=1

MD(2
l
S )

µ φ

thanks to Corollary 2.8. This means that we can reduce the matters to MD†(S
l
S )

µ , which is a consequence of
Lemma 2.1.
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