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Abstract: In this paper, using the idea of ultrametrization ofmetric spaceswe introduce ultradiversi�cation of
diversities. We show that every diversity has an ultradiversi�cation which is the greatest nonexpansive ultra-
diversity image of it. We also investigate a Hausdor�-Bayod type problem in the setting of diversities, namely,
determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities
which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize
similar results in the setting of metric spaces.
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1 Introduction and Preliminaries
An ultrametric space is a metric space (X, d) in which the distance function d satis�es the strong triangle
inequality d(x, z) ≤ max{d(x, y), d(y, z)}, for all x, y, z ∈ X. A description of all metric spaces which can be
mapped onto ultrametric spaces by an injective nonexpansive map is given in [7]. Indeed, it is shown that
for any metric space (X, d) there exists an ultrametrization of X which is the greatest nonexpansive ultramet-
ric image of (X, d). This, in particular, determines that the category of ultrametric spaces and nonexpansive
maps is a re�ective subcategory in the category of all metric spaces and the nonexpansive maps. Moreover,
a complete solution of the Hausdor�-Bayod problem, namely, determining what metric spaces admit a sub-
dominant ultrametric is given in [7]. In fact, the Hausdor�-Bayod problem for nonexpansive injective maps
of metric spaces is that “For what metric spaces (X, d) does there exist an ultrametric ∆ on X such that the
identity map i : (X, d)→ (X, ∆) is nonexpansive?”ds (see [8] and references therein).

On the other hand, diversities were introduced in [2] as a generalization of metric spaces and tight span
of metric spaces was developed by diversities. Recently, some other aspects of metric space theory carried
over to diversities (see e.g., [4, 6]). In addition, a diversity counterpart of ultrametric spaces was introduced
in [9] under the name “Ultradiversity”.

In this paper, inspired by the ultrametrization method of metric spaces given in [7], we show that for
any diversity (X, δ) there exists an ultradiversi�cation of X which is the greatest nonexpansive ultradiversity
image of the diversity (X, δ) (Theorem 2.1). In addition, the question that whether for any diversity there ex-
ists an ultradiversity smaller than it leads us to investigate a Hausdor�-Bayod type problem in the setting of
diversities, i.e., determining that what diversities admit a subdominant ultradiversity (Theorem 2.2).

In order to introduce the ultradiversi�cation of diversities, an analogous notion to ultrametrization of
metric spaces, we need to review some notions. We start with some de�nitions and preliminaries regarding
diversities and ultrametrization of metric spaces.
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De�nition 1.1 [9] An ultradiversity is a pair (X, δ) in which X is a nonempty set and δ : 〈X〉 → R is a real
function on the set of all �nite subsets 〈X〉 of X satisfying:
(UD1) δ(A) ≥ 0 and δ(A) = 0 if and only if |A| ≤ 1,
(UD2) If B ≠ ∅, then

δ(A ∪ C) ≤ max
{
δ(A ∪ B), δ(B ∪ C)

}
,

for all A, B, C ∈ 〈X〉.

Notice that each ultradiversity (X, δ) is also a diversity, i.e., in addition to (UD1) and (UD2) it satis�es the
condition: If B ≠ ∅, then δ(A ∪ C) ≤ δ(A ∪ B) + δ(B ∪ C), for all A, B, C ∈ 〈X〉 (see [2]). For recent works on
diversities we also refer to [3–6].

It is worth mentioning that for every ultradiversity (diversity) (X, δ), the function d : X × X → R de�ned
as d(x, y) = δ({x, y}), for all x, y ∈ X, is an ultrametric (a metric), called the induced ultrametric (metric)
for (X, δ). Furthermore, every diversity (and therefore ultradiversity) δ enjoys the monotonicity property, i.e.,
A ⊆ B implies δ(A) ≤ δ(B). From (UD2) and the monotonicity of the ultradiversity δ, it is easy to see that if
A ∩ B ≠ ∅, then

δ(A ∪ B) = max
{
δ(A), δ(B)

}
. (1.1)

Example 1.1 let (X, d) be an ultrametric space. De�ne

δ(A) = diamd(A) = max
{
d(a, b) : a, b ∈ A

}
,

where A ∈ 〈X〉. Then (X, δ) is an ultradiversity which is called the induced diameter ultradiversity for the
ultrametric space (X, d) (or brie�y, for the ultrametric d). Furthermore, it can be seen that every a ∈ A is a
diametral point of A, i.e., d(a, b) = diamd(A), for some b ∈ A.

Example 1.2 Let G be a �nite connected weighted graph with positive weights and A be a subset of the ver-
tices of G. De�ne

δ(A) = min {`T : T is a tree containing A} , (1.2)

where `T is the maximum edge weight along T. Then δ is an ultradiversity on vertices of G (see Figure 1).
Indeed, without loss of generality suppose that δ(A ∪ B) ≤ δ(B ∪ C) and let T be a tree containing B ∪ C. Thus
`S ≤ `T , for some tree S containing A ∪ B. There obviously exists a tree R containing A ∪ C consisting of edges
of P and T with `R = `T . Therefore δ(A ∪ C) ≤ δ(B ∪ C) which shows δ satis�es (UD2).
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Figure 1: In the �nite connected graph G with edge weights indicated by the numbers near the edges, the blue vertices b, c and
f indicate a subset A of the set of all vertices {a, b, c, d, e, f}. The red tree S spans A and has maximum edge weight 6, while
any other spanning tree over A has maximum edge weight greater than 6.

Example 1.3 In the taxonomic hierarchy of organisms, taxonomic ranks from the �rst and smallest to the
more inclusive ones are species, genus, family, order, class, phylum, kingdom, domain, etc. For every �nite
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set of organisms A de�ne

δ(A) =


0 |A| ≤ 1
1 and all organisms of A belong to the same species
n all organisms of A belong to a same nth taxonomic

rank, but not to a same n − 1th one.

Then δ is an ultradiversity on the set of all organisms.

Example 1.4 Let X be a normed space. De�ne

δ(A) =

0 |A| ≤ 1
1

1+minx∈A ‖x‖ |A| > 1,

for all A ∈ 〈X〉. Then δ is an ultradiversity on X.

The next example is in a more general form than the previous example.

Example 1.5 Let X be a nonempty set. If f : X → (0,∞) is an arbitrary function and g : (0,∞)→ (0,∞) is a
decreasing function, then the real function δ de�ned by

δ(A) =
{

0 |A| ≤ 1
g
(

min f (A)
)

|A| > 1,

where A ∈ 〈X〉 is an ultradiversity on X.

Now, we review some concepts given in [7]. We recall that a map f : (X, d1) → (Y , d2) of metric spaces
is nonexpansive if d2(f (x), f (y)) ≤ d1(x, y), for all x, y ∈ X. Let (X, d) be a metric space. By [7, Theorem 5],
there are an ultrametric space (uX, du) and a nonexpansive surjection u : (X, d)→ (uX, du) such that for any
nonexpansive map f : (X, d) → (Y , r), where (Y , r) is an arbitrary ultrametric space, there exists a unique
nonexpansive map uf : (uX, du)→ (Y , r) that commutes the following diagram, i.e., uf ◦ u = f :

(uX, du) (Y , r)

(X, d)

uf

u
f

Then, the ultrametric space (uX, du) is called an ultrametrization of the metric space (X, d).
For ε > 0 two elements a and b of X are called ε-linkable if there is a �nite sequence (xn)Nn=1 of elements

of X with x1 = a and xN = b such that d(xn , xn+1) ≤ ε, for all n < N. The function ∆ : X × X → [0,∞) de�ned
by ∆(x, y) = inf{ε : x and y are ε-linkable}, for all x, y ∈ X enjoys the strong triangle inequality, while the
property that ∆(x, y) = 0 implies x = y may not be valid generally. Consider the equivalence relation ∼ on X
given by “x ∼ y if and only if x and y are ε-linkable, for every ε > 0”. Let [x] be the equivalence class of a
point x, uX be the quotient set X

/
∼, and u be the canonical projection map. Then the function du de�ned as

du
(

[x], [y]
)

= ∆(x, y), (x, y ∈ X) (1.3)

is an ultrametric on uX, and u : (X, d) → (uX, du) is a nonexpansive surjection (since every pair (x, y) is
obviously d(x, y)-linkable). If f : (X, d)→ (Y , r) is a nonexpansive map, where (Y , r) is an ultrametric space,
then the map uf : (uX, du)→ (Y , r) de�ned as

uf
(

[x]
)

= f (x), (x ∈ X) (1.4)
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is a nonexpansive mapwhich is clearly unique with the property that uf ◦u = f . Thus, every metric space has
an ultrametrization.

In the next section, we introduce the ultradiversi�cation of diversities. The given results generalize sim-
ilar results of [7].

2 Ultradiversi�cation
A map f : (X, δX) → (Y , δY ) of diversities is called nonexpansive if δY (f (A)) ≤ δX(A), for all A ∈ 〈X〉 (see
[2]). Notice that for any nonexpansive map f : (X, δX) → (Y , δY ) of diversities the map f : (X, dX) → (Y , dY )
is also nonexpansive, where dX and dY are the metrics induced by δX and δY , respectively. Moreover, two
diversities (X, δX) and (Y , δY ) are said to be isomorphic if there exists a bijective map f : (X, δX) → (Y , δY )
such that δX(A) = δY (f (A)), for all A ∈ 〈X〉. We say that a �nite subset A of a diversity (X, δ) is ε-linkable if
each two elements a and b of A are ε-linkable with respect to the inducedmetric of δ (or equivalently, if there
exists an ε-tree T containing A, i.e., a tree T = (V , E) on the underlying set X with δ({u, v}) ≤ ε, for every edge
{u, v} ∈ E, and A ⊆ V). Moreover (X, δ) is said to be totally unlinked if its induced metric is so, i.e., each two
elements x and y of X are not ε-linkable, for some positive number ε (see [7] and [8]).

Example 1.1 shows that any ultrametric space induces an ultradiversity, namely, the diameter ultradiver-
sity. Unlike the variety of diversities (see the diversities in [2–6]), ultradiversities have a common intrinsic
form. The following result allows us to consider every ultradiversity as a diameter ultradiversity.

Proposition 2.1 Let (X, δ) be an ultradiversity with induced metric space (X, d). Then (X, δ) is the induced
diameter ultradiversity (X, diamd).

Proof. Let A = {a1, a2, · · · , an} be any �nite subset of X and diamd(A) = d(ai , aj), for some i and j. From the
monotonicity of δ and (1.1) we have

diamd(A) = δ
(
{ai , aj}

)
≤ δ(A)
= max {δ ({a1, a2}) , δ ({a2, . . . , an})}
= max {δ ({a1, a2}) , δ ({a2, a3}) , δ ({a3, . . . , an})}
...

= max {δ ({a1, a2}) , δ ({a2, a3}) , . . . , δ ({an−1, an})}
≤ diamd(A).

�

Theorem 2.1 Let (X, δ) be a diversity. Then, there exists a unique ultradiversity (uX, δu) up to isomorphism
having the following property: There is a nonexpansive surjection u : (X, δ)→ (uX, δu) such that for any nonex-
pansive map f : (X, δ) → (Y , σ) where (Y , σ) is an arbitrary ultradiversity, there exists a unique nonexpansive
map uf : (uX, δu)→ (Y , σ) that commutes the following diagram, i.e., uf ◦ u = f :

(uX, δu) (Y , σ)

(X, δ)

uf

u
f
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Proof. Let (X, d) be the induced metric space of (X, δ). Let (uX, du) be the ultrametrization of (X, d) de�ned
as (1.3), and u : X → uX be the canonical projection map. If A = {a1, a2, · · · , an} is a �nite subset of X, then

du(u(ai0 ), u(aj0 )) = max
1≤i,j≤n

du(u(ai), u(aj)),

for some i0 and j0. Let δu be the diameter diversity of du. Since u is nonexpansive in the sense of metrics and
δ is monotone, we have

du(u(ai0 ), u(aj0 )) ≤ d(ai0 , aj0 ) = δ({ai0 , aj0}) ≤ δ(A).

This implies that u : (X, δ)→ (uX, δu) is also nonexpansive in the sense of diversities. Let f : (X, δ)→ (Y , σ)
be any nonexpansive map where (Y , σ) is an ultradiversity, and r be the induced metric of σ. Since the map
f : (X, d) → (Y , r) is nonexpansive, so is the map uf : (uX, du) → (Y , r) de�ned as (1.4). Note that it is also
unique with the property uf ◦ u = f . For any �nite subsetA =

{
[a1], [a2], · · · , [an]

}
of 〈uX〉 we have

σ(uf (A)) = diamr(uf (A))
= r(uf ([ai0 ]), uf ([aj0 ])) (for some i0 and j0)
≤ du([ai0 ], [aj0 ])
≤ δu(A).

Moreover, if (vX, dv) is another ultradiversity which has this property with the corresponding nonexpansive
surjection v : (X, d) → (vX, dv), then there are nonexpansive maps uf : (uX, du) → (vX, dv) and vf :
(vX, dv)→ (uX, du) such that uf ◦ vf = 1(vX,dv) and vf ◦ uf = 1(uX,du). Thus uf is an isomorphism. �

We call the ultradiversity (uX, δu) given in Theorem 2.1 an ultradiversi�cation of the diversity (X, δ). In
fact, it can also be considered as the greatest nonexpansive ultradiversity image of (X, δ). To see this, let
(X,∆) be such an ultradiversity with a corresponding surjection nonexpansive map u : (X, δ)→ (X,∆), i.e.,
for every nonexpansive map f from (X, δ) to an arbitrary ultradiversity (Y , σ) we have

σ
(
f (A)

)
≤ ∆

(
u(A)

)
(A ∈ 〈X〉) . (2.1)

De�ne g : (X,∆) → (Y , σ) by g(η) = f (x) for some x with u(x) = η. If u(x) = u(y) for some x, y ∈ X,
then σ

(
f ({x, y})

)
≤ ∆

(
u({x, y})

)
(= 0). Thus f (x) = f (y) and so g is well-de�ned. The nonexpansivity of g

can be easily seen from (2.1) and g is clearly the unique map with the property g ◦ u = f . Thus (X,∆) is an
ultradiversi�cation of (X, δ). On the other hand, every ultradiversi�cation (X,∆) of (X, δ) has obviously the
property (2.1).

Remark 2.1 According to the method given in [7], to reach an ultrametrization of a metric space, an alterna-
tive way can also be used to identify the ultradiversi�cation diamdu (Theorem 2.1). Indeed, de�ne

∆̂(A) = inf{ε : A is ε-linkable} (A ∈ 〈X〉) . (2.2)

Then, diamdu (A) = ∆̂(A) in whichA = u(A). To see this, we �rst show that for every A ∈ 〈X〉 we have

∆̂(A) = max{∆(a, b) : a, b ∈ A}.

By de�nition, we see that if A is ε-linkable, then ∆(a, b) ≤ ∆̂(A) for every a, b ∈ A. Hence

max{∆(a, b) : a, b ∈ A} ≤ ∆̂(A).

Conversely, suppose that a0 and b0 are two elements of A which maximize ∆(a, b) and ε is a positive
real number. Since each two elements a and b in A are

(
∆(a, b) + ε

)
-linkable, A is

(
∆(a0, b0) + ε

)
-linkable.

Therefore, ∆̂(A) ≤ ∆(a0, b0) + ε. Since ε was arbitrary, we have

∆̂(A) ≤ max{∆(a, b) : a, b ∈ A}.

Now, for everyA ∈ 〈uX〉 with u(A) = A we have

diamdu (A) = max{du([a], [b]) : a, b ∈ A} = max{∆(a, b) : a, b ∈ A} = ∆̂(A). (2.3)
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Figure 2: The blue points indicate a �nite subset A of X. Having noted to the balls drawn, one can see that if α is the minimum
distance between points of the nth1 line and the n1 + 1th line, which is equal to the distance between the two black points, then
there obviously exists an α-tree containing A, while for no ε smaller than this distance A is ε-linkable.

It is clear that every ultradiversity is an ultradiversi�cation of itself. In addition, it is not hard to see that
any two diversities on a set X with equivalent induced metrics can have the same uX. To illustrate it more, let
us see the diversities given in the following example.

Example 2.1 Let X = {(x, x + 1
n ) : x ∈ R, n ∈ N}. Suppose that (x, x + 1

n ) ∼ (y, y + 1
m ) if and only if n = m.

Then, each class of the form [(x, x + 1
n )] can be identi�ed with n and therefore uX with N. In addition, for

every �nite subsetA =
{

[(x1, x1 + 1
n1

)], · · · , [(xk , xk + 1
nk )]
}
of uX, without loss of generality we can assume

that n1 < · · · < nk. Then,

1. For any diversity δE on X which has Euclidean metric as its induced metric, we have

(δE)u(A) =
√

2
2 n1(n1 + 1) .

2. For the `1-diversity δ1 given by

δ1(A) =
2∑
i=1

max
a,b∈A

|ai − bi|,

where A ∈ 〈X〉 (see [4]), we have
(δ1)u(A) = 1

n1(n1 + 1) .

3. For the `∞-diversity δ∞ which is in fact the diameter diversity of the supremummetric d∞, i.e.,

δ∞(A) = max
a,b∈A
1≤i≤2

|ai − bi|,

where A ∈ 〈X〉, we have
(δ∞)u(A) = 1

2 n1(n1 + 1) .

An intuition of the ultradiversi�cation δu of the diversities (X, δ) given in Example 2.1 can be seen in
Figure 2.

Example 2.2 Let δ be any diversity in Rk which induces the dp-metric (the standard metric of the classical
space `p) on Rk, for some p ∈ [1,∞]. Since each two elements x and y of Rk are ε-linkable for any positive
real number ε, the trivial diversity on any singleton can be considered as an ultradiversi�cation of (Rk , δ).

Example 2.3 Let (X, σ) be a �nite diversity and G be the complete graph on vertices X with edge weight
σ({x, y}) for every edge {x, y}. Let δ be de�ned as in (1.2). Then (X, δ) is an ultradiversi�cation for (X, σ).
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The previous example and the fact that every ultradiversity is an ultradiversi�cation of itself allow us to con-
sider every �nite ultradiversity as that of given in Example 1.2.

By the next example it is seen that di�erent diversities can have a same ultradiversi�cation.

Example 2.4 Let
D = (−∞, 0) ∪ {· · · , 1

3 ,
1
2 , 1, 2, 3, · · · }.

Let X = D ×R and δ be a diversity on X with induced metric dp, where (1 ≤ p ≤ ∞). Then

uX = {0̄} ∪ {· · · , 1̄
3 ,

1̄
2 , 1̄, 2̄, 3̄, · · · },

where 0̄ = (−∞, 0) × R = [(x, y)] and 1̄
n = { 1

n } × R = [( 1
n , y)], for all x ∈ (−∞, 0), y ∈ R, and n ∈ N. Note also

that n̄ = {n} ×R = [(n, y)], for all y ∈ R and n ∈ N. The canonical projection map u is

u
(

(x, y)
)

=


0̄ x < 0
1̄
n x = 1

n

n̄ x = n,

for all (x, y) ∈ X. Now an ultradiversi�cation δu is given as

δu(A) = m − sup
(
D \ [m, ∞)

)
, (A ⊆ 〈uX〉)

in which m = sup{x : x ∈ R and u
(

(x, 0)
)
∈ A}.

While the following proposition gives a characterization of ultradiversities, it is also a generalization of
Lemma 6 in [7].

Proposition 2.2 A diversity (X, δ) is an ultradiversity if and only if no �nite subset A of X is ε-linkable for any
ε < δ(A). In particular, every ultradiversity is totally unlinked.

Proof. Let (X, δ) be an ultradiversity and A be a �nite subset of X. By induction on the cardinal number of A
we show that if A is ε-linkable, then δ(A) ≤ ε. This is trivial when |A| = 1. We also assume that this is true for
every n-point subset of X. If A is an ε-linkable subset of X with |A| = n + 1, then there is an ε-tree T = (V , E)
containing A. Let u be an arbitrary leaf of T and v be the vertex for which {u, v} ∈ E. Since δ ({u, v}) ≤ ε and
A \ {u} is an n-point ε-linkable subset of X, from equation (1.1) we have

δ(A) = max
{
δ ({u, v}) , δ

(
A \ {u}

)}
≤ ε.

Conversely, if (X, δ) is not an ultradiversity, then there exist A, B, C ∈ 〈X〉 such that δ(A ∪ C) >
max

{
δ(A ∪ B), δ(B ∪ C)

}
. Since A ∪ B and B ∪ C are δ(A ∪ B)-linkable and δ(B ∪ C)-linkable, respectively,

we have that A ∪ C is max
{
δ(A ∪ B), δ(B ∪ C)

}
-linkable. In fact, if A consists of n points a1, · · · , an, then

the graph (A, E) where E = {{ai , ai+1}}n−1
i=1 is obviously a δ(A)-tree, since δ({ai , ai+1}) ≤ δ(A) for each i, and

therefore A is δ(A)-linkable. �

Let (X, d) be a metric space. Given the collection {di : i ∈ I} of ultrametrics on X dominated by d, the
ultrametric

s(x, y) = sup{di(x, y) : i ∈ I}, (x, y ∈ X)

is the largest ultrametric on X dominatedby dwhich is called the subdominant ultrametric of themetric d (see
[1]). The following result is a Hausdor�-Bayod type problem (see [8, Problem 1]) in the setting of diversities. It
determines that what diversities admit a subdominant ultradiversity.

Theorem 2.2 Let (X, δ) be a diversity and d be its induced metric. Then (X, δ) is totally unlinked if and only
if there exists an ultradiversity ∆ dominated by δ, i.e., ∆(A) ≤ δ(A) for every A ∈ 〈X〉. In addition, for every
arbitrary diversity δ if ψ is de�ned as

ψ(A) = sup ∆(A), (A ∈ 〈X〉)



Ultradiversi�cation of Diversities | 417

in which supremum is taken over all ultradiversities ∆ on X dominated by δ, then (X, ψ) is the induced diameter
diversity for the subdominant ultrametric s of d. Furthermore, (X, ψ) is an ultradiversi�cation of (X, δ) provided
that (X, δ) is totally unlinked.

Proof. Suppose that δ is totally unlinked. If a �nite subset A of X is ε-linkable for any ε > 0, then it does not
have more than one point. Therefore, the function ∆̂ de�ned as (2.2) satis�es (UD1). Further, since by (2.3) we
have diamdu (u(A)) = ∆̂(A), it also satis�es (UD2). Thus ∆̂ is an ultradiversity which is clearly dominated by δ
since every A ∈ 〈X〉 is δ(A)-linkable.

Conversely, let ∆ ≤ δ for some ultradiversity ∆. By the fact that every ultradiversity is totally unlinked
and the fact that for two diversities δ1 and δ2 on X such that δ1 ≤ δ2, if δ1 is totally unlinked, so is δ2 we
imply that δ is totally unlinked. Now, let ∆ be an ultradiversity dominated by δ and d∆ be the induced metric
for ∆. Let A be a �nite subset of X, and a0 and b0 in A be such that diams(A) = s(a0, b0). Since d∆ ≤ d,
we have d∆ ≤ s and therefore d∆(a, b) ≤ s(a, b) ≤ s(a0, b0), for all a, b ∈ A. Thus, by Proposition 2.1,
∆(A) = diamd∆ (A) ≤ diams(A). Hence, ψ ≤ diams. On the other hand, since diams(A) ≤ diamd(A) ≤ δ(A),
for any �nite subset A of X, we have ψ = diams.

Now we show that ∆̂ = ψ. By the de�nition of ψ, it is obvious that ∆̂ ≤ ψ. For the reverse, suppose that
∆ is an ultradiversity on X dominated by δ. Also, suppose that A is a �nite subset of X which is ε-linkable
for some ε, and ∆(A) = ∆({a, b}) for some a, b ∈ A. There is a �nite sequence (xn)Nn=1 of elements of X with
x1 = a and xN = b such that d(xn , xn+1) ≤ ε, for all n < N. By (1.1) we have

∆ ({a, b}) ≤ max
n<N

∆ ({xn , xn+1}) ≤ max
n<N

δ ({xn , xn+1}) ≤ ε.

This implies that ψ ≤ ∆̂. Finally, as (X, δ) is totally unlinked, we have [x] = {x}, for all x ∈ X and therefore
two ultradiversities

(
uX, diamdu

)
and (X, ∆̂) are obviously isomorphic (see (2.3)). Thus, (X, ψ) is an ultradi-

versi�cation of (X, δ). �

Theorem 2.2 describes all diversities (X, δ) which can be mapped onto an ultradiversity (X, ∆) by an
injective nonexpansive map f . In particular, if such f : (X, δ) → (X, ∆) exists, then the identity map
i : (X, δ)→ (X, ∆′) is nonexpansive in which ∆′ is an ultradiversity de�ned as ∆′(A) = ∆(f (A)), for all A ∈ 〈X〉.
We also have the following.

Corollary 2.1 The following statements are equivalent:
i) The diversity (X, δ) is totally unlinked;
ii) The identity map i : (X, δ)→ (X, ∆) is nonexpansive, for some ultradiversity ∆;
iii) There exists an injective nonexpansive map f : (X, δ)→ (X, ∆), for some ultradiversity ∆.
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