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Abstract: In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of
diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-
diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely,
determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities
which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize
similar results in the setting of metric spaces.
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1 Introduction and Preliminaries

An ultrametric space is a metric space (X, d) in which the distance function d satisfies the strong triangle
inequality d(x, z) < max{d(x, y), d(y, 2)}, for all x, y, z € X. A description of all metric spaces which can be
mapped onto ultrametric spaces by an injective nonexpansive map is given in [7]. Indeed, it is shown that
for any metric space (X, d) there exists an ultrametrization of X which is the greatest nonexpansive ultramet-
ric image of (X, d). This, in particular, determines that the category of ultrametric spaces and nonexpansive
maps is a reflective subcategory in the category of all metric spaces and the nonexpansive maps. Moreover,
a complete solution of the Hausdorff-Bayod problem, namely, determining what metric spaces admit a sub-
dominant ultrametric is given in [7]. In fact, the Hausdorff-Bayod problem for nonexpansive injective maps
of metric spaces is that “For what metric spaces (X, d) does there exist an ultrametric A on X such that the
identity map i : (X, d) — (X, A) is nonexpansive?”ds (see [8] and references therein).

On the other hand, diversities were introduced in [2] as a generalization of metric spaces and tight span
of metric spaces was developed by diversities. Recently, some other aspects of metric space theory carried
over to diversities (see e.g., [4, 6]). In addition, a diversity counterpart of ultrametric spaces was introduced
in [9] under the name “Ultradiversity”.

In this paper, inspired by the ultrametrization method of metric spaces given in [7], we show that for
any diversity (X, 8) there exists an ultradiversification of X which is the greatest nonexpansive ultradiversity
image of the diversity (X, §) (Theorem 2.1). In addition, the question that whether for any diversity there ex-
ists an ultradiversity smaller than it leads us to investigate a Hausdorff-Bayod type problem in the setting of
diversities, i.e., determining that what diversities admit a subdominant ultradiversity (Theorem 2.2).

In order to introduce the ultradiversification of diversities, an analogous notion to ultrametrization of
metric spaces, we need to review some notions. We start with some definitions and preliminaries regarding
diversities and ultrametrization of metric spaces.
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Definition 1.1 [9] An ultradiversity is a pair (X, ) in which X is a nonempty set and § : (X) — R is a real
function on the set of all finite subsets (X) of X satisfying:
(UD1) 6(A) = 0 and 6(A) = Oif and only if |A| < 1,
(UD2) If B # (), then
8(AuC)<max{8(AUB),8(BUC)},

forall A, B, C € (X).

Notice that each ultradiversity (X, ) is also a diversity, i.e., in addition to (UD1) and (UD2) it satisfies the
condition: If B # ), then 6(A U C) < 6(A UB) + 6(BU C), forall A, B, C € (X) (see [2]). For recent works on
diversities we also refer to [3-6].

It is worth mentioning that for every ultradiversity (diversity) (X, &), the function d : X x X — R defined
as d(x,y) = 6({x,y}), forall x,y € X, is an ultrametric (a metric), called the induced ultrametric (metric)
for (X, 6). Furthermore, every diversity (and therefore ultradiversity) 6 enjoys the monotonicity property, i.e.,
A C B implies 6(4) < 6(B). From (UD2) and the monotonicity of the ultradiversity 8, it is easy to see that if
ANB#0, then

6(A U B) = max {5(A), 6(B)} . (1.1)
Example 1.1 let (X, d) be an ultrametric space. Define
8(A) = diam4(A) = max {d(a, b) : a,b € A},

where A € (X). Then (X, §) is an ultradiversity which is called the induced diameter ultradiversity for the
ultrametric space (X, d) (or briefly, for the ultrametric d). Furthermore, it can be seen that everya € Aisa
diametral point of 4, i.e., d(a, b) = diam,4(A), for some b € A.

Example 1.2 Let G be a finite connected weighted graph with positive weights and A be a subset of the ver-
tices of G. Define
6(A) = min {¢7 : T is a tree containing A}, (1.2)

where /7 is the maximum edge weight along T. Then § is an ultradiversity on vertices of G (see Figure 1).
Indeed, without loss of generality suppose that §(A U B) < 6(BU C) and let T be a tree containing B U C. Thus
ls < L1, for some tree S containing A U B. There obviously exists a tree R containing A U C consisting of edges
of P and T with ¢g = ¢7. Therefore 6(A U C) < 6(B U C) which shows § satisfies (UD2).

Figure 1: In the finite connected graph G with edge weights indicated by the numbers near the edges, the blue vertices b, c and
f indicate a subset A of the set of all vertices {a, b, c, d, e, f}. The red tree S spans A and has maximum edge weight 6, while
any other spanning tree over A has maximum edge weight greater than 6.

Example 1.3 In the taxonomic hierarchy of organisms, taxonomic ranks from the first and smallest to the
more inclusive ones are species, genus, family, order, class, phylum, kingdom, domain, etc. For every finite
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set of organisms A define

0 Al <1
8(A) = 1 and all organisms of A belong to the same species

n all organisms of A belong to a same n™ taxonomic

rank, but not to a same n - 1 one.
Then § is an ultradiversity on the set of all organisms.
Example 1.4 Let X be a normed space. Define
0 Al<1
5(4) = Al
1 A > 1,

1+minyea [|x]|

forall A € (X). Then 6 is an ultradiversity on X.
The next example is in a more general form than the previous example.

Example 1.5 Let X be a nonempty set. If f : X — (0, o0) is an arbitrary function and g : (0, o) — (0, o) isa
decreasing function, then the real function § defined by

504) - {o 1Al <1
g (minf(4))  |A]>1,

where A € (X) is an ultradiversity on X.

Now, we review some concepts given in [7]. We recall that amap f : (X, d1) — (Y, d») of metric spaces
is nonexpansive if d,(f(x), f(¥)) < di(x, y), for all x,y € X. Let (X, d) be a metric space. By [7, Theorem 5],
there are an ultrametric space (uX, d,) and a nonexpansive surjection u : (X, d) — (uX, dy) such that for any
nonexpansive map f : (X, d) — (Y, r), where (Y, r) is an arbitrary ultrametric space, there exists a unique
nonexpansive map uf : (uX, dy) — (Y, r) that commutes the following diagram, i.e., uf ou = f:

(uX, dy) Lf» (Y,n

|

X, d)

Then, the ultrametric space (uX, dy) is called an ultrametrization of the metric space (X, d).

For £ > 0 two elements a and b of X are called e-linkable if there is a finite sequence (x,)Y_; of elements
of X with x; = a and xy = b such that d(xn, xp+1) < €, for all n < N. The function A : X x X — [0, oo) defined
by A(x, y) = inf{e : x and y are ¢-linkable}, for all x, y € X enjoys the strong triangle inequality, while the
property that A(x, y) = 0 implies x = y may not be valid generally. Consider the equivalence relation ~ on X
given by “x ~ y if and only if x and y are e-linkable, for every € > 0”. Let [x] be the equivalence class of a
point x, uX be the quotient set X / ~, and u be the canonical projection map. Then the function d, defined as

du (X, Iyl) =Alx,y),  (x,y € X) (1.3)

is an ultrametric on uX, and u : (X, d) — (uX, dy) is a nonexpansive surjection (since every pair (x, y) is
obviously d(x, y)-linkable). If f : (X, d) — (Y, r) is a nonexpansive map, where (Y, r) is an ultrametric space,
then the map uf : (uX, dy) — (Y, r) defined as

uf (Ixl) = f(x), (xeX) (1.4)
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is a nonexpansive map which is clearly unique with the property that uf ou = f. Thus, every metric space has
an ultrametrization.

In the next section, we introduce the ultradiversification of diversities. The given results generalize sim-
ilar results of [7].

2 Ultradiversification

Amap f : (X,8x) — (Y, 8y) of diversities is called nonexpansive if §y(f(4)) < 6x(A), for all A € (X) (see
[2]). Notice that for any nonexpansive map f : (X, 6x) — (Y, 8y) of diversities the map f : (X, dx) — (Y, dy)
is also nonexpansive, where dy and dy are the metrics induced by 6x and 8y, respectively. Moreover, two
diversities (X, 6x) and (Y, 6y) are said to be isomorphic if there exists a bijective map f : (X, 6x) — (Y, 6y)
such that 6x(A) = 8y(f(A)), for all A € (X). We say that a finite subset A of a diversity (X, §) is e-linkable if
each two elements a and b of A are e-linkable with respect to the induced metric of § (or equivalently, if there
exists an e-tree T containing A, i.e., atree T = (V, E) on the underlying set X with §({u, v}) < ¢, for every edge
{u,v} € E,and A C V). Moreover (X, 6) is said to be totally unlinked if its induced metric is so, i.e., each two
elements x and y of X are not &-linkable, for some positive number ¢ (see [7] and [8]).

Example 1.1 shows that any ultrametric space induces an ultradiversity, namely, the diameter ultradiver-
sity. Unlike the variety of diversities (see the diversities in [2-6]), ultradiversities have a common intrinsic
form. The following result allows us to consider every ultradiversity as a diameter ultradiversity.

Proposition 2.1 Let (X, ) be an ultradiversity with induced metric space (X, d). Then (X, 8) is the induced
diameter ultradiversity (X, diamy).

Proof.Let A = {ai, ay, -+ , an} be any finite subset of X and diam,(A) = d(a;, a;), for some i and j. From the
monotonicity of § and (1.1) we have

diamgy(4) = 6 ({a;, a;})
<6(4)
=max {6 ({a1, a2}), 6 ({az, ..., an})}
=max {6 ({ai, a>}),6({az, a3}), 6 ({as, ..., an})}

=max {6 ({a1, a2}),6 ({az, as}), ..., 6({an-1, an})}
< diamy(A).

O

Theorem 2.1 Let (X, §) be a diversity. Then, there exists a unique ultradiversity (uX, 8,4) up to isomorphism
having the following property: There is a nonexpansive surjection u : (X, 6) — (uX, 8y) such that for any nonex-
pansive map f : (X, §) — (Y, o) where (Y, 0) is an arbitrary ultradiversity, there exists a unique nonexpansive
map uf : (uX, 6y) — (Y, 0) that commutes the following diagram, i.e., uf ou = f:

uf

(uX, 64)

|

X, 6)

(Y,0)
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Proof. Let (X, d) be the induced metric space of (X, §). Let (uX, d,) be the ultrametrization of (X, d) defined
as (1.3), and u : X — uX be the canonical projection map. If A = {a1, az, - , an} is a finite subset of X, then

du(u(a;)), u(aj))) = max du(u(ay), u(ay)),

for some ip and jo. Let 6, be the diameter diversity of dy. Since u is nonexpansive in the sense of metrics and
6 is monotone, we have

du(u(ay,), ulaj,)) < d(aj,, aj,) = 6({a;,, a;,}) < 6(A).

This implies that u : (X, §) — (uX, 6,) is also nonexpansive in the sense of diversities. Let f : (X, §) — (Y, 0)
be any nonexpansive map where (Y, 0) is an ultradiversity, and r be the induced metric of . Since the map
f:(X,d) — (Y, r)is nonexpansive, so is the map uf : (uX, dy) — (Y, r) defined as (1.4). Note that it is also
unique with the property uf o u = f. For any finite subset A = {[al], [as], -+, [an]} of (uX) we have
o(uf(A)) = diam,(uf(A))

= r(uf(la;, D, uf([a;,])) (for some i and jo)

< du([a; ], [aj,])

< 6u (A).
Moreover, if (vX, dy) is another ultradiversity which has this property with the corresponding nonexpansive

surjection v : (X,d) — (vX, dy), then there are nonexpansive maps uf : (uX,dy) — (vX,dy) and vf :
(vX, dv) — (uX, du) such that uf o vf = 1,x 4y and vf o uf = 1(,x 4.)- Thus uf is an isomorphism. O

We call the ultradiversity (uX, 6,) given in Theorem 2.1 an ultradiversification of the diversity (X, 6). In
fact, it can also be considered as the greatest nonexpansive ultradiversity image of (X, §). To see this, let
(X, A) be such an ultradiversity with a corresponding surjection nonexpansive map u : (X, §) — (X, A), i.e.,
for every nonexpansive map f from (X, 6) to an arbitrary ultradiversity (Y, o) we have

o (f(A)) < A(u(d) (A€ X). .1)

Define g : (X, A) — (Y, 0) by g(n) = f(x) for some x with u(x) = 5. If u(x) = u(y) for some x,y € X,
then o (f({x,y})) < A (u({x,y})) (= 0). Thus f(x) = f(y) and so g is well-defined. The nonexpansivity of g
can be easily seen from (2.1) and g is clearly the unique map with the property g o u = f. Thus (X, A) is an
ultradiversification of (X, ). On the other hand, every ultradiversification (X, A) of (X, §) has obviously the
property (2.1).

Remark 2.1 According to the method given in [7], to reach an ultrametrization of a metric space, an alterna-
tive way can also be used to identify the ultradiversification diam, (Theorem 2.1). Indeed, define

A(A) = inf{e : Ais e-linkable} (4 € (X)). .2)
Then, diamg, (A) = ﬁ(A) in which A = u(A). To see this, we first show that for every A € (X) we have
A(A) = max{A(a, b) : a, b € A}.
By definition, we see that if A is e-linkable, then A(a, b) < A (A) for every a, b ¢ A. Hence
max{A(a,b):a,b € A} < E(A).

Conversely, suppose that ag and bg are two elements of A which maximize A(a, b) and ¢ is a positive
real number. Since each two elements a and b in A are (A(a, b) + e) -linkable, A is (A(ao, bo) + s)-linkable.
Therefore, A(A) < A(agp, bo) + €. Since € was arbitrary, we have

A(A) < max{A(a, b) : a,b € A}.
Now, for every A € (uX) with u(A) = A we have
diamg, (A) = max{du(lal, [b]) : a, b € A} = max{A(a,b): a,b c A} = A(A). (2.3)
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Figure 2: The blue points indicate a finite subset A of X. Having noted to the balls drawn, one can see that if a is the minimum
distance between points of the n‘lh line and the ny + 1™ line, which is equal to the distance between the two black points, then
there obviously exists an a-tree containing A, while for no € smaller than this distance A is e-linkable.

It is clear that every ultradiversity is an ultradiversification of itself. In addition, it is not hard to see that
any two diversities on a set X with equivalent induced metrics can have the same uX. To illustrate it more, let
us see the diversities given in the following example.

Example 2.1 Let X = {(x,x+ 1) : x € R, n € N}. Suppose that (x, x + ) ~ (y,y + =) ifand only if n = m.
Then, each class of the form [(x, x + %)] can be identified with n and therefore uX with N. In addition, for
every finite subset A = {[(xl, X1+ n—ll)], <o [0, X + nlk)]} of uX, without loss of generality we can assume
that ny < --- < ng. Then,

1. For any diversity 6 on X which has Euclidean metric as its induced metric, we have

V2

(6E)u(~A) = m

2. For the ¢, -diversity §; given by
2
61(4) = max |a; - b;|,
(&)= 3 max oy~ b

where A € (X) (see [4]), we have
1

(61)u(A) = D

3. For the /fe-diversity .. which is in fact the diameter diversity of the supremum metric de, i.e.,
§oo(A) = max |a; - by,
a,beA
1<i<2

where A € (X), we have
1
2ni(ng +1)°
An intuition of the ultradiversification &, of the diversities (X, §) given in Example 2.1 can be seen in
Figure 2.

(5w)u(A) =

Example 2.2 Let § be any diversity in R which induces the dp-metric (the standard metric of the classical
space P) on R¥, for some p € [1, o). Since each two elements x and y of R* are e-linkable for any positive
real number ¢, the trivial diversity on any singleton can be considered as an ultradiversification of (]Rk, 6).

Example 2.3 Let (X, 0) be a finite diversity and G be the complete graph on vertices X with edge weight
o({x, y}) for every edge {x, y}. Let 6 be defined as in (1.2). Then (X, 6) is an ultradiversification for (X, o).
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The previous example and the fact that every ultradiversity is an ultradiversification of itself allow us to con-
sider every finite ultradiversity as that of given in Example 1.2.
By the next example it is seen that different diversities can have a same ultradiversification.

Example 2.4 Let
11

) § ) i )
Let X = D x R and 6 be a diversity on X with induced metric dp, where (1 < p < o). Then

D =(-00,0) U {--- 1,2,3,---}.

1 - -
’511,2a3)“'}’

W =

uX={0}u{--,

where 0 = (o0, 0) xR = [(x, y)] and % ={I}xR=[(%,y)], forall x € (-00,0),y € R, and n € N. Note also
thatn = {n} xR = [(n, y)], forall y € R and n € N. The canonical projection map u is

0 x<0
(@) ={1  x-}
n X=n,

for all (x, y) € X. Now an ultradiversification 6, is given as
6u(A) =m-sup (D\[m,0)), (AC (uX))
in which m = sup{x : x e Rand u ((x, 0)) € A}.

While the following proposition gives a characterization of ultradiversities, it is also a generalization of
Lemma 6 in [7].

Proposition 2.2 A diversity (X, 6) is an ultradiversity if and only if no finite subset A of X is e-linkable for any
€ < 6(A). In particular, every ultradiversity is totally unlinked.

Proof. Let (X, 6) be an ultradiversity and A be a finite subset of X. By induction on the cardinal number of A
we show that if A is e-linkable, then §(A) < €. This is trivial when |A| = 1. We also assume that this is true for
every n-point subset of X. If A is an e-linkable subset of X with |A| = n + 1, then there is an e-tree T = (V, E)
containing A. Let u be an arbitrary leaf of T and v be the vertex for which {u, v} € E. Since 6 ({u, v}) < e and
A\ {u} is an n-point e-linkable subset of X, from equation (1.1) we have

8(A) =max {6 ({u,v}),6 (A\{u})} <e.

Conversely, if (X, §) is not an ultradiversity, then there exist A,B,C < (X) such that §(A U C) >
max {6(A UB),8(BU C)}. Since A U B and B U C are §(A U B)-linkable and 6(B U C)-linkable, respectively,

we have that A U C is max {S(A UB), 6(BU C)}-linkable. In fact, if A consists of n points aq,--- , an, then
the graph (A, E) where E = {{a;, a,-+1}}?:’11 is obviously a 6§(A)-tree, since 6({a;, aj,1}) < 6(A) for each i, and
therefore A is 6(A)-linkable. O

Let (X, d) be a metric space. Given the collection {d; : i € I} of ultrametrics on X dominated by d, the
ultrametric
s(x,y) =sup{di(x,y):iel}, (x,yeX)
is the largest ultrametric on X dominated by d which is called the subdominant ultrametric of the metric d (see

[1]). The following result is a Hausdorff-Bayod type problem (see [8, Problem 1]) in the setting of diversities. It
determines that what diversities admit a subdominant ultradiversity.

Theorem 2.2 Let (X, 6) be a diversity and d be its induced metric. Then (X, 6) is totally unlinked if and only
if there exists an ultradiversity A dominated by 6, i.e., A(A) < 6(A) for every A € (X). In addition, for every
arbitrary diversity § if  is defined as

Y(4) =supA(4), (A€ (X))
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in which supremum is taken over all ultradiversities A on X dominated by 6, then (X, 1) is the induced diameter
diversity for the subdominant ultrametric s of d. Furthermore, (X, ) is an ultradiversification of (X, 6) provided
that (X, 6) is totally unlinked.

Proof. Suppose that § is totally unlinked. If a finite subset A of X is e-linkable for any € > 0, then it does not
have more than one point. Therefore, the function A defined as (2.2) satisfies (UD1). Further, since by (2.3) we
have diam, (u(4)) = A(A), it also satisfies (UD2). Thus 4 is an ultradiversity which is clearly dominated by 6
since every A € (X) is 6(A)-linkable.

Conversely, let A < § for some ultradiversity A. By the fact that every ultradiversity is totally unlinked
and the fact that for two diversities §; and 8, on X such that §; < §,, if §; is totally unlinked, so is 6, we
imply that § is totally unlinked. Now, let A be an ultradiversity dominated by § and d, be the induced metric
for A. Let A be a finite subset of X, and ag and bg in A be such that diams(A) = s(ag, bg). Since dy < d,
we have d, < s and therefore d,(a, b) < s(a, b) < s(ag, bo), for all a, b € A. Thus, by Proposition 2.1,
A(A) = diamg, (A) < diams(A). Hence, i < diams. On the other hand, since diams(4) < diam,(4) < §(4),
for any finite subset A of X, we have y = diams.

Now we show that A = Y. By the definition of i, it is obvious that A< Y. For the reverse, suppose that
A is an ultradiversity on X dominated by 8. Also, suppose that A is a finite subset of X which is e-linkable
for some &, and A(A) = A({a, b}) for some a, b € A. There is a finite sequence (xn))_; of elements of X with
x1 = a and xy = b such that d(xn, x,1) < &, for all n < N. By (1.1) we have

A({a, b}) < maxA ({Xn, Xn+1}) < max 8 ({Xn, Xn+1}) < €.
n<N n<N

This implies that i < A. Finally, as (X, 6) is totally unlinked, we have [x] = {x}, for all x € X and therefore
two ultradiversities (uX R diamdu) and (X, A) are obviously isomorphic (see (2.3)). Thus, (X, i) is an ultradi-
versification of (X, 8). O

Theorem 2.2 describes all diversities (X, §) which can be mapped onto an ultradiversity (X, A) by an
injective nonexpansive map f. In particular, if such f : (X,6) — (X, A) exists, then the identity map
i:(X,6) — (X, A’)is nonexpansive in which A’ is an ultradiversity defined as A’(4) = A(f(4)), forall A € (X).
We also have the following.

Corollary 2.1 The following statements are equivalent:

i) The diversity (X, 6) is totally unlinked;

ii) The identity map i : (X, 6) — (X, A) is nonexpansive, for some ultradiversity A4;

iii) There exists an injective nonexpansive map f : (X, 6) — (X, A), for some ultradiversity A.
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