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1 Introduction
The representation of local functionals as integral functionals has a very long history and exhibits a natural
application when dealing with relaxed functionals and Γ-limits in a suitable topology. In the Euclidean case
this problem is very well understood and we refer the reader to the papers [1, 5, 6] as well as the classical
monographs [3, 4, 10] and the references therein.
The same problem may be faced when dealing with abstract functionals de�ned on Sobolev spaces built
starting from a family of vector �elds satisfying certain natural conditions. This is the starting point of the
recent paper [17] where the authors started the study of very general functionals proving, among many other
results, that they can be represented as integral functionals whose integrand depends on a gradient modeled
on a family of vector �elds. In order to better understand the motivation behind our work, let us be more
speci�c about one of the results proved in [17]. For the sake of simplicity, we state it in the more speci�c
context of Carnot groups. We refer to Section 3 for a detailed account of all the de�nitions needed in the
following

Theorem ([17],Theorem 3.12). Let Ω ⊂ G be a bounded open set. Let p ∈ (1, +∞) and let A the class of all
open subsets of Ω. Let F : Lp(Ω) ×A→ [0, +∞] be an increasing functional satisfying the following properties:

• F is local;
• F is a measure;
• F is convex and lower semicontinuous;
• F(u + c, A) = F(u, A) for each u ∈ Lp(Ω), A ∈ A and c ∈ R;
• there exist a nonnegative function a ∈ L1loc(Ω) and a positive constant b ∈ R such that

0 ≤ F(u, A) ≤
∫
A

(
a(x) + b |∇Gu(x)|p

)
dx

for each u ∈ C1(A), A ∈ A.

Then there exists a Borel function f : Rm → [0, +∞] such that
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• for a.e. x ∈ Ω, f (x, ·) is convex;
• for each u ∈ Lp(Ω), for each A ∈ A with u|A ∈ W1,p

G,loc(A) we have

F(u, A) =
∫
A

f (x,∇Gu(x)) dx ;

• for a.e. x ∈ Ω,
0 ≤ f (η) ≤ a(x) + b |η|p ∀ η ∈ Rm .

We stress that the above result actually holds for a far more general class of vector �elds, not necessarily
related to a Carnot group structure, see [17, 18] for more details.

The aim of this note is twofold: on the one hand, we are interested in proving that under the extra
condition of being left–invariant, see De�nition 3.5, the functional is obviously still represented by an
integral, but the integrand does not depend anymore on the point, but only on the (intrinsic) gradient.
The second goal is to prove that the left–invariant condition allows to represent the functional on a wider
class of functions, namely W1,1

G,loc, and not only on W1,p
G,loc for p > 1, see De�nition 2.3. This is actually not

really a surprise, because this is precisely what happens in the classical (Euclidean) case when dealing
with translation invariant functionals, see e.g. [10, Chapter 23]. Nevertheless, the above mentioned results
cannot be directly applied in our case, indeed it is not di�cult to produce examples of functionals which are
left–invariant (w.r.t a Carnot group structure) but not translation invariant in the Euclidean sense. We also
want to stress that one of the key ingredients to get the representation over W1,1

G,loc is provided by the use of
the local convolution. This tool is far more delicate in the context of Carnot groups and it has been recently
introduced and deeply studied in [8].

We are now ready to state the main result of this paper, which is a representation theorem for local left–
invariant functionals.

Theorem 1.1. Let p ∈ [1, +∞) and let A0 the class of all bounded open subsets of G. Let F : Lploc(G) × A0 →
[0, +∞] be an increasing functional satisfying the following properties:

(a) F is local and left-invariant;
(b) F is a measure;
(c) F is convex and lower semicontinuous;
(d) F(u + c, A) = F(u, A) for each u ∈ Lploc(G), A ∈ A0 and c ∈ R;
(e) there exist a, b ∈ R+ such that

0 ≤ F(u, A) ≤
∫
A

(
a + b |∇Gu(x)|p

)
dx

for each u ∈ W1,1
G,loc(A), A ∈ A0.

Then there exists a convex function f : Rm → [0, +∞] such that

(i) for each u ∈ Lploc(G), for each A ∈ A0 with u|A ∈ W1,1
G,loc(A) we have

F(u, A) =
∫
A

f (∇Gu(x)) dx ;

(ii)
0 ≤ f (η) ≤ a + b |η|p ∀ η ∈ Rm .

We refer once again to Section 3 for details.
We believe that Theorem 1.1 has its own interest, nevertheless we can immediately apply it, in combination
with other results proved in [17], to get a Γ–compactness result for left–invariant functionals. Essentially,
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it says that, up to subsequences, the Γ-limit of a sequence of left–invariant functionals exists and it is a
left–invariant functional as well. We refer to the nowadays classical texts [3, 10] for an introduction to Γ-
convergence.

Corollary 1.2. Let p ∈ (1, +∞) and let A0 be the class of all open bounded subsets of G. Then, for every
sequence {Fh}h∈N of increasing functionals Fh : Lploc(G) × A0 → [0, +∞] satisfying hypothesis (a) − (e) of
Theorem 1.1 for every h ∈ N, up to a subsequence, there exists a local left–invariant functional F : Lploc(G)×A0 →
[0, +∞] such that

F(·, A) = Γ − lim
h→+∞

Fh(·, A) for each A ∈ A0

in the Lploc(G)-topology. Moreover, there exists a convex function f : Rm → [0, +∞] such that

(i) for each u ∈ Lploc(G), for each A ∈ A0 with u|A ∈ W1,p
G,loc(A) we have

F(u, A) =
∫
A

f (∇Gu(x)) dx ;

(ii)
0 ≤ f (η) ≤ a + b |η|p ∀ η ∈ Rm .

A natural comparison with [17] is now in order. As already mentioned, the representation theorem proved
in [17] does not require any Carnot group structure. Nevertheless, this setting seems to be quite necessary in
order to be able to speak about some form of invariance, in this case with respect to the group law. It would be
interesting to study similar results in more general contexts, introducing appropriate notions of invariance.
We also want to stress that several results concerning homogenization and H-convergence of operators in
Carnot groups are already available in the literature, see e.g. [11, 14–16].

The structure of the paper is the following: in Section 2 we provide the basic necessary notions of Carnot
groups and of local convolution within Carnot groups. In Section 3 we introduce the class of left–invariant
functionals. Finally, Section4 ismainly devoted to theproof of themain results, i.e., Theorem1.1 andCorollary
1.2.

2 Preliminaries
We start this section recalling the basic notions of Carnot groups.

A Carnot groupG = (Rn , ·) is a connected, simply connected and nilpotent Lie group, whose Lie algebra
g admits a strati�cation, namely there exist linear subspaces, usually called layers, such that

g = V1 ⊕ .. ⊕ Vk , [V1, Vi] = Vi+1, Vk ≠ {0}, Vi = {0} if i > k,

where k is usually called the step of the group (G, ·) and

[Vi , Vj] := span
{
[X, Y] : X ∈ Vi , Y ∈ Vj

}
.

The explicit expression of the group law · can be deduced from the Hausdor�-Campbell formula, see e.g.
[2]. The group law can be used to de�ne a di�eomorphism, usually called left–translation γy : G → G for
every y ∈ G, de�ned as

γy(x) := y · x for every x ∈ G.

A Carnot group G is also endowed with a family of automorphisms of the group δλ : G → G, λ ∈ R+, called
dilations, given by

δλ(x1, . . . , xn) := (λd1x1, .., λdn xn),
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where (x1, . . . , xn) are the exponential coordinates of x ∈ G, dj ∈ N for every j = 1, . . . , n and 1 = d1 =
. . . = dm < dm+1 ≤ . . . ≤ dn for m := dim(V1). Here the group G and the algebra g are identi�ed through the
exponential mapping. The n-dimensional Lebesgue measure Ln of Rn provides the Haar measure on G, see
e.g. [2, Proposition 1.3.21].

It is customary to denote with Q :=
∑k

i=1 i dim(Vi) the homogeneous dimension ofGwhich corresponds
to the Hausdor� dimension of G (w.r.t. an appropriate sub–Riemannian distance, see below). This is
generally greater than or equal to the topological dimension ofG and it coincides with it only whenG is the
Euclidean group (Rn , +), which is the only Abelian Carnot group.

Carnot groups are also naturally endowed with sub-Riemannian distances which make them interest-
ing examples of metric spaces. A �rst well–known example of such metrics is provided by the Carnot-
Carathéodory distance dcc, see e.g. [2, De�nition 5.2.2], which is a path–metric resembling the classical Rie-
mannian distance. In our case, we will work with metrics induced by homogeneous norms.

De�nition 2.1. A homogeneous norm | · |G : G→ R+
0 is a continuous function with the following properties:

(i) |x|G = 0 if and only if x = 0 for every x ∈ G;
(ii) |x−1|G = |x|G for every x ∈ G;
(iii) |δλx|G = λ|x|G for every λ ∈ R+ and for every x ∈ G.

A homogeneous norm induces a left–invariant homogeneous distance by

d(x, y) := |y−1 · x|G for every x, y ∈ G.

We remind that a generic distance d is left–invariant if and only if d(z · x, z · y) = d(x, y) for every x, y, z ∈ G.
A concrete example of such kind of homogeneous distance is given by the Korányi distance, see e.g. [9].
For our purposes, we are also interested in introducing a right–invariant distance dR given by

dR(x, y) := |x · y−1|G for every x, y ∈ G.

As before, dR is right–invariant if and only if dR(x · z, y · z) = dR(x, y) for every x, y, z ∈ G.
From now on we will write B(x, ε) and BR(x, ε) to denote the balls of center x ∈ G and radius ε > 0 w.r.t

the distances d and dR respectively. We notice that for any ε > 0

B(0, ε) = BR(0, ε).

We also de�ne two left–translation operators, one acting on functions and the other one acting on sets,
which will be relevant in the upcoming sections.

De�nition 2.2. Let y ∈ G be any point. We de�ne τy : Lploc(G)→ Lploc(G) as

τyu(x) := u(y−1 · x) for every x ∈ G.

With an abuse of notation, we also de�ne τy : A0 → A0 as

τyA := y · A = {x ∈ G : y−1 · x ∈ A},

whereA0 denotes the family of all bounded open sets ofG.

We now want to introduce the relevant Sobolev spaces needed in the rest of the paper. Let u : G → R be a
su�ciently smooth function and let (X1, .., Xm) be a basis of the horizontal layer V1, made of left-invariant
vector �elds, i.e., Xj(τyu) = τy(Xju) for any j = 1, . . . ,m and for any y ∈ G. Then the horizontal gradient∇Gu
of u : G→ R is given by

∇Gu :=
m∑
j=1

(Xju)Xj = (X1u, .., Xmu).
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De�nition 2.3. Let Ω ⊂ G be an open set and let 1 ≤ p < +∞. The Sobolev space W1,p
G (Ω) is given by

W1,p
G (Ω) :=

{
u ∈ Lp(Ω) : ∇Gu ∈ (Lp(Ω))m

}
.

Moreover,
W1,p

G,loc(Ω) :=
{
u ∈ W1,p

G (Ω′), for every open set Ω′ b Ω
}
.

The next part of this section is devoted to the introduction and a brief recap of themain properties of the local
convolution recently introduced in [8]. First, we need to recall the notion of smooth molli�er.

De�nition 2.4. Given a smooth compactly supported function φ ∈ C∞0 (B(0, 1)), for ε > 0 we de�ne the family
of functions φε : G→ R as

φε(x) := 1
εQ φ (δε−1x) .

We say that {φε}ε is a family of molli�ers if it satis�es the following conditions:

• φε ≥ 0 inG, for all ε > 0;
• supp(φε) ⊂ B(0, ε), for all ε > 0;
•
∫
B(0,ε) φε dx = 1, for all ε > 0.

Following [8], wemove to a proper de�nition of local convolution. Let Ω ⊂ G be any open set. For every ε > 0
we can de�ne the open set

ΩR
ε :=

{
x ∈ G : distR(x,G \ Ω) > ε

}
where

distR(x,G \ Ω) := inf
{
dR(x, y) : y ∈ G \ Ω

}
.

Let φ be a smooth molli�er with support within B(0, 1). For any u ∈ L1loc(Ω) and x ∈ G, we can de�ne the
local convolution

uε(x) := (φε * u)(x) :=
∫
Ω

φε(x · y−1)u(y) dy.

If we restrict the domain of de�nition by considering x ∈ ΩR
ε , we can write

(φε * u)(x) =
∫

BR(x,ε)

φε(x · y−1)u(y) dy =
∫

B(0,ε)

φε(y)u(y−1 · x) dy

=
∫

B(0,1)

φ(z)u
(
(δεz)−1 · x

)
dz.

(2.1)

where we used that for every ε > 0, BR(0, ε) = B(0, ε). We are �nally ready to state the natural counterparts
of the classical results holding for the Euclidean convolution, see e.g. [12]. We refer to [13] for the analogous
result when dealing with global convolution onG.

Proposition 2.5. Let Ω ⊂ G be an open set and let p ∈ [1, +∞). Let u ∈ Lploc(Ω) and let {φε}ε a family of
molli�ers according to De�nition 2.4. Then

φε * u −→ u (strongly) in Lploc(Ω). (2.2)

Moreover, if u ∈ W1,p
G,loc(Ω), then

φε * u −→ u (strongly) in W1,p
G,loc(Ω). (2.3)

Proof. The proof of (2.2) follows from similar arguments of the classical Euclidean proof, see e.g. [12, Theorem
4.1]. We report it here for the sake of completeness.
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Let u ∈ Lploc(Ω) and let us pick a point x ∈ V b W b Ω, with V ,W being open sets. Since for ε > 0 small
enough V ⊂ ΩR

ε , we can exploit (2.1). We �rst prove an auxiliary estimate which holds true for p ∈ (1, +∞).
In this case, let us set p′ to be conjugate exponent of p, namely 1

p +
1
p′ = 1. We �nd

|uε(x)| ≤
∫

B(0,1)

φ(z)
∣∣∣u ((δεz)−1 · x)∣∣∣ dz = ∫

B(0,1)

φ(z)
1
p φ(z)

1
p′
∣∣∣u ((δεz)−1 · x)∣∣∣ dz

≤

 ∫
B(0,1)

φ(z) dx


1
p′
 ∫
B(0,1)

φ(z)
∣∣∣u ((δεz)−1 · x)∣∣∣p dz


1
p

=

 ∫
B(0,1)

φ(z)
∣∣∣u ((δεz)−1 · x)∣∣∣p dz


1
p

.

Hence, and now for every p ∈ [1, +∞), we obtain that

‖uε‖pLp(V) ≤
∫

B(0,1)

φ(z)

∫
V

∣∣∣u ((δεz)−1 · x)∣∣∣p dx
 dz

≤
∫
W

|u(y)|p dy = ‖u‖pLp(W)

for ε > 0 su�ciently small.

Let us now �x δ > 0. Since u ∈ Lp(W), there exists v ∈ C(W) such that ‖u − v‖Lp(W) ≤ δ. Moreover, by the last
estimate, ‖uε − vε‖Lp(V) ≤ ‖u − v‖Lp(W) ≤ δ. Thus

‖uε − u‖Lp(V) ≤ ‖uε − vε‖Lp(V) + ‖vε − v‖Lp(V) + ‖v − u‖Lp(V) ≤ 3δ

since vε converges uniformly to v in any compact subset ofW.
Let us now move to the proof of (2.3). Thanks to (2.2), it is enough to prove that

Xjuε = φε * Xju in ΩR
ε

for every j = 1, . . . ,m. Let us �x x ∈ ΩR
ε . By the left-invariance of each vector �eld Xj, we get

Xjuε(x) = Xj

 ∫
B(0,ε)

φε(y)u(y−1 · z) dy

∣∣z=x = ∫
B(0,ε)

Xj(φε(y)u(y−1 · x)) dy

=
∫

B(0,ε)

φε(y)(Xju)(y−1 · x) dy = (φε * Xju)(x)

as desired.

We close this section recalling the following version of the Jensen Inequality in Banach spaces.

Lemma 2.6. Let X be a Banach space and let F : X → [0, +∞] be a lower semicontinuous convex function. Let
(E, ε, µ) be a measure space with µ ≥ 0 and µ(E) = 1. Then,

F

∫
E

u(s) dµ(s)

 ≤ ∫
E

F(u(s)) dµ(s) (2.4)

for every µ–integrable function u : E → X.

We refer to [10, Lemma 23.2] for a proof.



A. Maione and E. Vecchi, Integral Representation of Local Left-Invariant Functionals | 7

3 Left-invariant functionals
In this section we introduce the object of our study. We recall thatA0 denotes the family of all bounded open
sets ofG and, from now on, we consider p ∈ [1,∞). First of all, let us recall few de�nitions already appeared
in the introduction.

De�nition 3.1. Let α : A0 → [0,∞] be a set function. We say that:

(i) α is increasing if α(A) ≤ α(B), for each A, B ∈ A0 with A ⊆ B;
(ii) α is inner regular if

α(A) = sup
{
α(B) : B ∈ A0, B b A

}
for each A ∈ A0;

(iii) α is subadditive if α(A) ≤ α(A1) + α(A2) for every A, A1, A2 ∈ A0 with A ⊂ A1 ∪ A2;
(iv) α is superadditive if α(A) ≥ α(A1) + α(A2) for every A, A1, A2 ∈ A0 with A1 ∪ A2 ⊆ A and A1 ∩ A2 = ∅;
(v) α is a measure if there exists a Borel measure µ : B(G)→ [0,∞] such that α(A) = µ(A) for every A ∈ A0.

Remark 3.2. Let us recall that, if α : A0 → [0,∞] is an increasing set function, then it is a measure if and only
if it is subadditive, superadditive and inner regular. For details see, for instance, [10, Theorem 14.23].

De�nition 3.3. Let F : Lploc(G) ×A0 → [0, +∞] be a functional. We say that:

• F is increasing if, for every u ∈ Lp(G), F(u, ·) : A0 → [0, +∞] is increasing as set function;
• F is inner regular (onA0) if it is increasing and, for each u ∈ Lp(G), F(u, ·) : A0 → [0, +∞] is inner regular

as set function;
• F is a measure, if for every u ∈ Lp(G), F(u, ·) : A0 → [0, +∞] is a measure as set function ;
• F is local if

F(u, A) = F(v, A)

for each A ∈ A0, u, v ∈ Lp(G) such that u = v a.e. on A;
• F is lower semicontinuous if, for every A ∈ A0, F(·, A) : Lp(G)→ [0, +∞] is lower semicontinuous;
• F is convex if, for every A ∈ A0, F(·, A) : Lp(G)→ [0, +∞] is convex.

Remark 3.4. Let F : Lploc(G) ×A0 → [0, +∞] be a non-negative increasing functional such that F(u, ∅) = 0 for
every u ∈ Lploc(G). Then, by [10, Theorem 14.23], F is a measure if and only if F is subadditive, superadditive
and inner regular.

By means of the operators introduced in De�nition 2.2, we are ready to de�ne the class of left–invariant func-
tionals.

De�nition 3.5. Let F : Lploc(G) ×A0 → R be a functional. F is left–invariant if for every y ∈ G

F(τyu, τyA) = F(u, A) (3.1)

for every u ∈ Lploc(G) and for every A ∈ A0.

We stress that whenever G = (Rn , +), the above de�nition boils down to the one considered in [10, Chapter
23] and it is therefore possible to provide many examples of translation–invariant functionals.
A less trivial example directly adapted to the Carnot group situation is provided by the following functional

F(u, A) :=
{ ∫

A f (∇Gu(x)) dx if u ∈ W1,1
G,loc(A),

+∞ otherwise,
(3.2)

where f is a non-negative Borel function. We remind that the functional F de�ned above is increasing, sub-
additive, inner regular and, therefore, it is a measure. For details, see e.g. [10, Example 15.4].

Proposition 3.6. Let F : Lploc(G) ×A0 → R be a functional as in (3.2). Then F is left–invariant.
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Proof. First, we notice that, due to the left-invariance of the vector �elds X1, . . . , Xm, for any u ∈ Lploc(G) and
A ∈ A0

τyu ∈ W1,1
G,loc(τyA) if and only if u ∈ W1,1

G,loc(A).

Therefore, it is su�cient to prove the result for functions u ∈ Lploc(G) such that u|A ∈ W1,1
G,loc(A).

Let us �x u ∈ Lploc(G) and A ∈ A0 such that u|A ∈ W1,1
G,loc(A). By a change of variables, it follows that

F(τyu, τyA) =
∫
τyA

f (∇Gτyu(x)) dx =
∫
A

f (∇Gu(z)) dz = F(u, A) (3.3)

as desired.

Remark 3.7. The previous result trivially holds if we replace W1,1
G,loc(A) with W1,p

G,loc(A) for p > 1.

We close this section by proving a couple of auxiliary results needed in the upcoming section. The �rst one is
the natural counterpart of a classical result of Carbone and Sbordone, see [7].

Theorem 3.8. Let F : Lploc(G) × A0 → R be a left–invariant, increasing, convex and lower semicontinuous
functional and let {φh}h∈N be a sequence of molli�ers, as in De�nition 2.4. Then

F(u, A′) ≤ lim inf
h→+∞

F(φh * u, A′) ≤ lim sup
h→+∞

F(φh * u, A′) ≤ F(u, A)

for every u ∈ Lploc(G) and for every A, A′ ∈ A0 with A′ b A.

Proof. The �rst inequality trivially follows from the lower semicontinuity of F, while the second is always
trivially satisi�ed. It remains to prove that

lim sup
h→+∞

F(uh , A′) ≤ F(u, A), (3.4)

where uh := φh * u. To this aim, let us �x u ∈ Lploc(G), A, A
′ ∈ A0 such that A′ b A. Moreover, let h ∈ N be

such that 1
h < distR(A′,G \ A) and let us de�ne Bh := B(0, 1h ). We can notice that, for every x ∈ A′

uh(x) =
∫
Bh

u(y−1 · x)φh(y) dy =
∫
Bh

τyu(x)φh(y) dy. (3.5)

By (3.5), Lemma 2.6 and being F left–invariant, we get

F(uh , A′) = F

∫
Bh

τyu φh(y) dy, A′

 ≤ ∫
Bh

F(τyu, A′)φh(y) dy

=
∫
Bh

F(u, τy−1A′)φh(y) dy ≤
∫
Bh

F(u, A)φh(y) dy = F(u, A)

where the last inequality follows observing that τy−1A′ ⊂ A for each y ∈ Bh. Indeed, for any x ∈ τy−1A′, that
is y · x ∈ A′, if x ∈ G \ A we would have

dR(x, y · x) = |y|G < 1
h < dR(A′,G \ A),

which is impossible. Then, taking the lim sup as h → +∞ we get (3.4).

The next result yields the lower semicontinuity of integral functionals of the form (3.2), under appropriate
assumptions on the integrand. See [19] for the Euclidean case.
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Theorem 3.9. Let f : Rm → [0, +∞] be a convex and lower semicontinuous function and let A be an open
subset ofG. Then, the functional F : W1,1

G,loc(A)→ R, de�ned as

F(u) :=
∫
A

f (∇Gu(x)) dx

is lower semicontinuous on W1,1
G,loc(A) with respect to the topology induced by L1loc(A).

Proof. Let us �x A open subset ofG and uh , u ∈ W1,1
G,loc(A) such that uh → u in L1loc(A). We just need to show

that
F(u) ≤ lim inf

h→+∞

∫
A

f (∇Guh) dx. (3.6)

To this aim, let us �x A′ b A, k ∈ N such that 1
k < dist

R(A′,G \A) and let us consider a sequence of molli�ers
{φk}k∈N as in De�nition 2.4. Moreover, let us denote Bk := B

(
0, 1k

)
. By Lemma 2.6 and Proposition 3.6, we

have ∫
A′

f (∇G(φk * uh)(x)) dx =
∫
A′

f ((φk *∇Guh)(x)) dx

=
∫
A′

f

∫
Bk

∇Guh(y−1 · x)φk(y) dy

 dx
≤
∫
A′

∫
Bk

f (∇Guh(y−1 · x))φk(y) dy

 dx

=
∫
Bk

∫
A′

f (∇Gτyuh(x)) dx

φk(y) dy
=
∫
Bk

 ∫
τy−1A′

f (∇Guh(x)) dx

φk(y) dy
≤
∫
Bk

∫
A

f (∇Guh(x)) dx

φk(y) dy = ∫
A

f (∇Guh(x)) dx

(3.7)

where the last inequality follows from the same arguments used in the proof of Theorem 3.8.
Let us now show that

φk * uh → φk * u in C∞(A′). (3.8)

Recalling that uh → u in L1loc(A) as h → +∞ by Proposition 2.5 then, for each α, h ∈ N and for every x ∈ A′

and j = 1, ..,m, it holds that∣∣(Xαj (φk * uh) − Xαj (φk * u))(x)∣∣ = ∣∣Xαj (φk * uh − φk * u)(x)∣∣
=
∣∣∣Xαj ( ∫

BR(x, 1k )

(uh(y) − u(y))φk(x · y−1) dy)
)∣∣∣

=
∣∣∣ ∫
BR(x, 1k )

(uh(y) − u(y))Xαj φk(x · y−1) dy)
∣∣∣

≤
∫

BR(x, 1k )

∣∣uh(y) − u(y)∣∣ ∣∣∣Xαj φk(x · y−1)∣∣∣ dy
≤ ‖Xαj φk‖L∞(A)

∫
A

∣∣uh(y) − u(y)∣∣ dy.
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Passing to the supremum in A′ and taking the limit as h → +∞, we get (3.8). As a consequence, the sequence
{∇G(φk * uh)}h uniformly converges to∇G(φk * u) in A′, as h → +∞.

We can also notice that, by the lower semicontinuity of f , by (3.7) and applying the Fatou’s Lemma, then∫
A′

f (∇G(φk * u)) dx ≤ lim inf
h→+∞

∫
A′

f (∇G(φk * uh)) dx ≤ lim inf
h→+∞

∫
A

f (∇Guh) dx. (3.9)

Moreover, being∇G(φk * u) convergent to∇Gu in L1(A′), in according with Proposition 2.5, we �nally get, by
the lower semicontinuity of f , the Fatou’s Lemma and by (3.9)∫

A′

f (∇Gu) dx ≤ lim inf
k→+∞

∫
A′

f (∇G(φk * u)) dx ≤ lim inf
h→+∞

∫
A

f (∇Guh) dx.

We close this section recalling a de�nition which will be useful in the sequel. See, for instance, [10, Chapter
15] for details.

De�nition 3.10. Let X be a topological space and let F : X ×A0 → R be an increasing functional, in according
with De�nition 3.3. We de�ne the inner regular envelope of F the increasing functional F− : X ×A0 → R de�ned
as

F−(x, A) := sup{F(x, B) : B ∈ A0, B b A}

for every x ∈ X and for every A ∈ A0.
Moreover, we de�ne the lower semicontinuous envelope of F the functional sc−F : X ×A0 → R, de�ned as

(sc−F)(x, A) := sup
U∈N(x)

inf
y∈U

F(y, A)

for every x ∈ X and for every A ∈ A0, whereN(x) denotes the set of all open neighbourhoods of x in X.

Remark 3.11. If the functional F is increasing and lower semicontinuous, then F− is also increasing, lower semi-
continuous and inner regular. If F is just increasing, then sc−F is still increasing and lower semicontinuous, but,
in general, it is not inner regular, even if F is inner regular. See for instance [10, Example 15.11].

Finally, named F := (sc−F)− the inner regular envelope of the lower semicontinuous envelope of F, then F
is the greatest increasing, inner regular and lower semicontinuous functional less than or equal to F.

4 Proof of Theorem 1.1
In this section we can �nally prove the main results of the paper.

Proof of Theorem 1.1. We start de�ning the auxiliary function uξ : G→ R as

uξ (x) := 〈ξ , Π(x)〉Rm for every ξ ∈ Rm , (4.1)

where Π : Rn → Rm denotes the projection over the horizontal layer V1, here identi�ed with Rm.
We note that uξ is smooth and

∇Guξ (x) = ξ for every x ∈ G. (4.2)

We also note that

τxuξ (y) = uξ (x−1 · y) = 〈ξ , Π(x−1 · y)〉Rm =
m∑
i=1

ξi(yi − xi) = uξ (y) − uξ (x) (4.3)

for every x, y ∈ G.
Therefore, by the left-invariance of F, (4.3) and by property (d), we get

F(uξ , Bρ(0)) = F(uξ (y), Bρ(0)) = F(τxuξ (y), τxBρ(0)) = F(uξ (y) − c, Bρ(x)) = F(uξ , Bρ(x)) (4.4)
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for every x ∈ G. We stress that c := uξ (x) is a constant w.r.t. y.
Now, by [17, Theorem 3.12], there exists a function f : G ×Rm → [0, +∞] such that

F(uξ , Bρ(x)) =
∫

Bρ(x)

f (z,∇Guξ (z)) dz.

Since |Bρ(x)| = |Bρ(0)| for every x ∈ G, by (4.4) and Lebesgue’s di�erentation Theorem, we have that, taking
the limit as ρ → 0+,

f (0, ξ )← 1
|Bρ(0)|

∫
Bρ(0)

f (z,∇Guξ (z)) dz =
1

|Bρ(x)|

∫
Bρ(x)

f (z,∇Guξ (z)) dz → f (x, ξ )

for every x ∈ G. Therefore, we can consider the well–de�ned function f0 : Rm → [0, +∞] given by

f0(ξ ) := f (0, ξ ) for every ξ ∈ Rm .

Moreover, such function f0 inherits all the properties of f proved to hold in [17, Theorem 3.12]. Namely, f0 is
convex and

0 ≤ f0(ξ ) ≤ a + b|ξ |p for every ξ ∈ Rm .
Moreover,

F(u, A) =
∫
A

f0(∇Gu(x)) dx (4.5)

for every u ∈ C∞(G) and for every A ∈ A0.
It remains to show that the same representation (4.5) holds for every u ∈ Lploc(G) with u|A ∈ W1,1

G,loc(A)
(for every A ∈ A0).
Let A′ ∈ A0 such that A′ b A and let {φh}h is a family of smooth molli�ers as in De�nition 2.4 (here with
h = 1

ε ). Hence, by (2.3), the Fatou’s Lemma, the representation among smooth functions (4.5) and by Theorem
3.8, we get ∫

A′

f0(∇Gu) dx ≤ lim inf
h→+∞

∫
A′

f0(∇Guh) dx = lim inf
h→+∞

F(uh , A′) ≤ F(u, A),

where uh := φh * u for every h ∈ N.
Therefore, by taking the supremum for A′ b A, we get∫

A

f0(∇Gu(x)) dx ≤ F(u, A). (4.6)

We now proceed with the proof of the opposite inequality. First, we notice that, by Theorem 3.9, the
functional F is lower semicontinuous inW1,1

G,loc(A). Hence

F(u, A′) ≤ lim inf
h→+∞

F(uh , A′). (4.7)

Now, as before, we denote by Bh := B
(
0, 1h

)
for every h ∈ N. Whenever 1

h < distR(A′,G \ A) then, by Lemma
2.6 and the left-invariance of F, it holds that

F(uh , A′) =
∫
A′

f0
(∫
Bh

∇Gu(y−1 · x)φh(y) dy
)
dx

≤
∫
A′

(∫
Bh

f0(∇Gu(y−1 · x))φh(y) dy
)
dx

=
∫
Bh

(∫
A′

f0(∇Gu(y−1 · x)) dx
)
φh(y) dy

≤
∫
Bh

(∫
A

f0(∇Gu(x)) dx
)
φh(y) dy

=
∫
A

f0(∇Gu(x)) dx.
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We stress that the last inequality follows from the same argument used at the end of the proof of Theorem 3.8.
Combined with (4.7), this yields

F(u, A′) ≤
∫
A

f0(∇Gu(x)) dx,

which in turn gives
F(u, A) ≤

∫
A

f0(∇Gu(x)) dx, (4.8)

by passing to the supremum for A′ b A. Taking into account (4.6) and (4.8), we close the proof.

As for the classical case, we can prove that left–invariant functionals are uniquely determined on Lploc(G) by
their prescription on a class of regular functions. Taking into account De�nition 3.10, we preliminary need
the following

Theorem 4.1. Let F : Lploc(G) ×A0 → [0, +∞] be an increasing functional satisfying the assumptions (a) − (e)
of Theorem 1.1 and let f : Rm → [0, +∞] be as in Theorem 1.1. Let F : Lploc(G) ×A0 → [0, +∞] be the functional
de�ned as

F(u, A) :=
{ ∫

A f (∇Gu(x))dx if u ∈ W1,1
G,loc(A),

+∞ otherwise.

Let F be the inner regular envelope of the lower semicontinuous envelope of F. Then,

F(u, A) =
∫
A

f (∇Gu(x)) dx (4.9)

for every A ∈ A0 and for every u ∈ Lploc(G) such that u|A ∈ W1,1
G,loc(A).

Moreover,
F(u, A) = F(u, A) (4.10)

for every u ∈ Lploc(G) and for every A ∈ A0.

Proof. By Theorem 3.9, the functional F is lower semicontinuous on W1,1
G,loc(A) with respect to the topology

induced by L1loc(A). Moreover, by Proposition 3.6, F is also left–invariant. Finally, it is easy to check that F
satis�es properties (a) − (e) of Theorem 1.1. Therefore, (4.9) directly follows.

Concerning (4.10), we �rst recall that F is an increasing, inner regular and lower semicontinuous func-
tional, which is also the greatest functional with these properties less than or equal to F. Therefore, since
F(u, A) ≤ F(u, A) for every A ∈ A0 and for every u ∈ Lploc(G), we get that

F(u, A) ≤ F(u, A)

for every A ∈ A0 and for every u ∈ Lploc(G).
In order to complete the proof we need to show that the opposite inequality holds true as well. To this

aim, let us consider u ∈ Lploc(G) and A ∈ A0. We then consider A′ ∈ A0 such that A′ b A and a sequence of
molli�ers {φh}h∈N as in De�nition 2.4.
Since uh := φh * u is smooth, then, by Theorem 1.1 (see in particular (4.5)), we have

F(uh , A′) = F(uh , A′)

for every h ∈ N. Now, the lower semicontinuity of F implies that

F(u, A′) ≤ lim inf
h→+∞

F(uh , A′) ≤ lim sup
h→+∞

F(uh , A′) ≤ F(u, A)

by Theorem 3.8. Since F is inner regular, then, taking the supremum among sets A′ b A, we �nally get

F(u, A) ≤ F(u, A)

for every A ∈ A0 and for every u ∈ Lploc(G).
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As a direct consequence, we can �nally prove

Theorem 4.2. Let F, G : Lploc(G) ×A0 → [0, +∞] be two increasing functionals satisfying (a) − (e) of Theorem
1.1. Let ∅ ≠ A0 ∈ A0 and, for every ξ ∈ Rm, let uξ : G→ R be de�ned as in (4.1). Moreover, assume that

F(uξ , A0) = G(uξ , A0) for every ξ ∈ Rm . (4.11)

Then, F = G on Lploc(G) ×A0.

Proof. By Theorem 1.1, we know the existence of two convex functions f , g : Rm → [0, +∞] such that

F(u, A) =
∫
A

f (∇Gu(x)) dx and G(u, A) =
∫
A

g(∇Gu(x)) dx

for every A ∈ A0 and for every u ∈ Lploc(G) such that u|A ∈ W1,1
G,loc(A).

Moreover, by (4.11) and (4.2), we get

f (ξ )|A0| = F(uξ , A0) = G(uξ , A0) = g(ξ )|A0|

for every ξ ∈ Rm. Applying Theorem 4.1 we get the desired conclusion.

We close the section with the

Proof of Corollary 1.2. By Theorem 1.1, there exists a sequence of convex functions fh : Rm → [0, +∞] such
that

Fh(u, A) =
∫
A

fh(∇Gu(x)) dx

for every h ∈ N for every A ∈ A0 and for every u ∈ Lploc(G) such that u|A ∈ W1,1
G,loc(A).

Moreover, since the bounds on Fh are uniform, we have that

0 ≤ fh(η) ≤ a + b |η|p

for every η ∈ Rm and for every h ∈ N.
Now, by [17, Theorem 4.20], up to a subsequence, there exist a local functional F : Lploc(G)×A0 → [0, +∞]

and a convex function f : Rm → [0, +∞] such that

(i)
0 ≤ f (η) ≤ a + b|η|p for every η ∈ Rm;

(ii)
F(·, A) = Γ − lim

h→+∞
Fh(·, A) for every A ∈ A0 ;

(iii) F admits the following representation

F(u, A) =
{∫

A f (∇Gu(x))dx if A ∈ A0, u|A ∈ W1,p
G,loc(A)

+∞ otherwise
. (4.12)

Finally, by Remark 3.7 we can infer that the Γ-limit F is left–invariant.

Remark 4.3. We remind that Corollary 1.2 cannot be expected to hold in general even for p = 1, since this is
false already in the Euclidean case. We refer to [10, Example 3.14] for more details.
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