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Abstract: The goal of the paper is to study the angle between two curves in the framework of metric (and
metric measure) spaces. More precisely, we give a new notion of angle between two curves in a metric space.
Such a notion has a natural interplay with optimal transportation and is particularly well suited for metric
measure spaces satisfying the curvature-dimension condition. Indeed one of themain results is the validity of
the cosine formula on RCD*(K, N) metric measure spaces. As a consequence, the new introduced notions are
compatible with the corresponding classical ones for Riemannian manifolds, Ricci limit spaces and Alexan-
drov spaces.
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1 Introduction
The ‘angle’ between two curves is a fundamental concept of mathematics, which aims to quantify the in-
�nitesimal distance between two crossing curves at a crossing point. Such a notion is classical in Euclidean
and in Riemannian geometries where a global (respectively in�nitesimal) scalar product is given: the cosine
of the angle between two crossing curves is by de�nition the scalar product of the velocity vectors. If the space
is not given an in�nitesimal scalar product, it is a challenging problem to de�ne angles in a sensible way. In
this paper, we will study this problem in a metric (measure) sense. More precisely, consider a metric space
(X, d), a point p ∈ X, and two geodesics γ, η such that γ0 = η0 = p. Our task is to propose a meaningful de�-
nition of the angle between the curves γ, η at the point p, denoted by∠γpη, and to establish some interesting
properties.

We recall some examples �rst. Assume that γ and η are geodesics, and the space (X, d) is an Alexandrov
space, with upper or lower curvature bounds. From the monotonicity implied by the Alexandrov condition,
it is known (see for instance [7]) that the angle ∠γpη is well de�ned by the cosine formula:

∠γpη = lim
s,t→0

arccos s
2 + t2 − d2(γs , ηt)

2st = lim
t→0

arccos 2t2 − d2(γt , ηt)
2t2 .

In order to de�ne the angle for geodesics in a more general framework, a crucial observation is that a
geodesic can be seen as gradient �ow of the distance function, i.e. a geodesic γ ‘represents’ the gradient
of −d(γ0, γ1) d(γ1, ·) on each point γt. Inspired by the seminal work of De Giorgi on gradient �ows [15], given
an arbitrarymetric space (X, d) with a geodesic γ : [0, 1]→ X and a Lipschitz function f : X → R, we say that
γ represents∇f at time 0, or γ represents the gradient of the function f at the point p = γ(0) if the following
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inequality holds
lim
t→0

f (γt) − f (γ0)
t ≥ 1

2 |lip(f )|2 + 1
2 |γ̇|

2,

where |γ̇| = d(γ0, γ1) is the (constant, metric) speed of the geodesic γ. Notice that the opposite inequality

lim
t→0

f (γt) − f (γ0)
t ≤ 1

2 |lip(f )|2 + 1
2 |γ̇|

2

is always true by Leibniz rule and Cauchy-Schwartz inequality. Hence γ represents ∇f at time 0 if and
only if the equality holds. It is easily seen that the geodesic γ always represents the gradient of fγ(·) :=
−d(γ0, γ1) d(γ1, ·) at the point γ0 (see for instance Lemma 3.5). We then say that the angle ∠γpη between
two geodesics γ, η with γ0 = η0 = p exists if the limit limt↓0

fγ (ηt)−fγ (η0)
t exists. In this case we set

∠γpη := arccos
(

1
|γ̇||η̇| lim

t↓0
fγ(ηt) − fγ(η0)

t

)
. (1.1)

Notice that in case (X, d) is the metric space associated to a smooth Riemannian manifold (M, g), the de�ni-
tion (1.1) reduces to the familiar notion of angle

∠γpη = arccos gp
(
∇fγ(p)
|γ̇0|

, η̇0
|η̇0|

)
= arccos gp

(
γ̇0
|γ̇0|

, η̇0
|η̇0|

)
.

Besides the case of Alexandrov spaces, a class of spaces where the angle is particularly well behaved
is the one of Lipschitz-in�nitesimally Hillbertian spaces. By de�nition, a metric measure space (X, d,m) is
Lipschitz-in�nitesimally Hillbertian if for any pair of Lipschitz functions f , g : X → R both the limits for
ε → 0 of |lip(f+εg)|2(x)−|lip(f )|2(x)

2ε and |lip(g+εf )|2(x)−|lip(g)|2(x)
2ε exist and are equal for m-a.e. x ∈ X, where lip(f ) is

the local Lipschitz constant of f (for the standard de�nition see (2.1)). A remarkable example of Lipschitz-
in�nitesimally Hillbertian spaces is given by the RCD*(K, N)-spaces, a class of metric measure spaces satis-
fying Ricci curvature lower bound by K ∈ R and dimension upper bound by N ∈ (1,∞) in a synthetic sense
such that the Laplacian is linear, andwhich include as notable subclasses the Alexandrov spaces with curva-
ture bounded below and the Ricci limit spaces (i.e. pointed measured Gromov-Hausdor� limits of sequences
of Riemannian manifolds with uniform lower Ricci curvature bounds).
In the class of Lipschitz-in�nitesimally Hillbertian spaces, the second author [26] introduced a notion of ‘an-
gle between three points’; more precisely for every �xed pair of points p, q ∈ X, for m-a.e. x ∈ X the angle
∠pxq given by the formula

[0, π] 3 ∠pxq := arccos
(

lim
ε→0
|lip(rp + εrq)|2(x) − |lip(rp)|2(x)

2ε

)
, (1.2)

is well de�ned, unique, and symmetric in p and q. Here rp(·) := d(p, ·) is the distance function from p. A �rst
result of the present paper is to relate the angle between three points with the angle between two geodesics:
in Theorem 3.9 we prove that if the angle ∠pxq exists in the sense of [26] then also the angle between the
geodesics γxp , γxq joining x to p and x to q exists and coincides with the angle between the three points, i.e.
∠γxpxγxq = ∠pxq. In particular it follows that in a Lipschitz-in�nitesimally Hilbertian geodesic space the
angle between two geodesics in well de�ned in an a.e. sense.

An important class of metric spaces are the spaces of probability measures over metric spaces endowed
with the quadratic transportation distance: given a metric space (X, d) denote byW2 := (P2(X),W2) the cor-
respondingWasserstein space. By using ideas similar to the ones above, together with Otto Calculus (see [28])
and the calculus tools developed by Ambrosio-Gigli-Savaré [2] and Gigli [17], in Subsection 3.3 we study in de-
tail the angle between two geodesics in W2. In particular if the underlying space (X, d,m) is an RCD*(K, N)
space, we get the angle ∠pxq between three points as the limit of the angle between the geodesics inW2 ob-
tained by joining geodesically di�used approximations of Dirac masses centered at p, x and q (see Proposi-
tion 3.15 for the precise statement; see also Proposition 3.17 for amore detailed linkwith the optimal transport
picture).

Besides the case of Alexandrov spaces, another class of spaces where the notion of angle is quite well
understood is given by Ricci limit spaces. Indeed it was proved by Honda [23] that if (X, d,m) is a Ricci-limit
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space, then for m-a.e. p ∈ X the angle between two geodesics is well de�ned and it satis�es the following
single-variable cosine formula:

cos∠γpη = lim
t→0

2t2 − d2(γt , ηt)
2t2 . (1.3)

One of the main goals of the present paper is to extend the validity of the formula (1.3) to metric measure
spaces satisfying Ricci curvature lower bounds in a synthetic sense, the so-called RCD*(K, N)-spaces (for the
de�nition and basic properties of such spaces see Section 2 and references therein). This is the content of the
next theorem (corresponding to Theorem 4.4 in the body of the manuscript), which is one of the main results
of the paper.

Theorem 1.1 (Cosine formula for angles in RCD*(K, N) spaces). Let (X, d,m) be an RCD*(K, N) space and �x
p, q ∈ X. Then for m-a.e. x ∈ X there exist unique geodesics from x to p and from x to q denoted by γxp , γxq ∈
Geo(X) and

∠γxpxγxq = ∠pxq = lim
t→0

arccos 2t2 − d2(γxpt , γxqt )
2t2 , form-a.e. x. (1.4)

The proof of Theorem 1.1 is independent and di�erent from the one given by Honda [23] for Ricci limit spaces:
indeed Honda argues by getting estimates on the smooth approximating manifolds and then passes to the
limit, while our proof for RCD*(K, N) spaces goes by arguing directly on the non smooth space (X, d,m).
More precisely, we perform a blow up argument centered at x and use that for m-a.e. x the tangent cone is
unique and euclidean [21, 27]. From the technical point of view we also make use of the �ne convergence
results for Sobolev functions proved in [4, 20], and we prove estimates on harmonic approximations of dis-
tance functions (see in particular Proposition 4.3). Harmonic approximations of distance functions are well
known for smooth Riemannian manifolds with lower Ricci curvature bounds, and are indeed one of the key
technical tools in the Cheeger-Colding theory of Ricci limit spaces [12–14]; on the other hand for non-smooth
RCD*(K, N)-spaces it seems they have not yet appeared in the literature, and we expect them to be a useful
technical tool in the future development of the �eld.
As a consequence of Theorem 1.1, we get that our de�nition of angle between two geodesics agrees (at least
in a.e. sense) with the Alexandrov’s de�nition in case (X, d) is an Alexandrov space, and with the Honda’s
de�nition [23] in case (X, d,m) is a Ricci limit space.

2 Preliminaries

2.1 Metric measure spaces

Let (X, d) be a complete metric space. A continuous map γ : [0, 1] 7→ X will be called curve. The space of
curves de�ned on [0, 1] with values in X is denoted by C([0, 1], X). The space C([0, 1], X) equipped with the
uniform distance is a complete metric space.

We de�ne the length of γ by

l[γ] := sup
τ

n∑
i=1

d(γti−1 , γti )

where τ := {0 = t0, t1, ..., tn = 1} is a partition of [0, 1], and the sup is taken over all �nite partitions. The
space (X, d) is said to be a length space if for any x, y ∈ X we have

d(x, y) = inf
γ
l[γ],

where the in�mum is taken over all γ ∈ C([0, 1], X) connecting x and y. A geodesic from x to y is a curve γ
such that:

d(γs , γt) = |s − t|d(γ0, γ1), ∀t, s ∈ [0, 1], γ0 = x, γ1 = y.

The space of all geodesics on X will be denoted by Geo(X). It is a closed subset of C([0, 1], X).
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Given p ∈ [1, +∞] and a curve γ, we say that γ belongs to ACp([0, 1], X) if

d(γs , γt) ≤
ˆ t

s
G(r) dr, ∀t, s ∈ [0, 1], s < t ,

for some G ∈ Lp([0, 1]). In particular, the case p = 1 corresponds to absolutely continuous curves, whose
class is denoted by AC([0, 1], X). It is known that for γ ∈ AC([0, 1], X), there exists an a.e. minimal function
G satisfying this inequality, called metric derivative and denoted by |γ̇|. The metric derivative of γ can be
computed for a.e. t ∈ [0, 1] as

|γ̇t| := lim
h→0

d(γt+h , γt)
|h| .

It is known that (see for example [7]) the length of a curve γ ∈ AC([0, 1], X) can be computed as

l[γ] :=
ˆ 1

0
|γ̇t|dt.

In particular, on a length space X we have

d(x, y) = inf
γ

ˆ 1

0
|γ̇t|dt

where the in�mum is taken among all γ ∈ AC([0, 1], X) which connect x and y.
Given f : X 7→ R, the local Lipschitz constant lip(f ) : X 7→ [0,∞] is de�ned as

lip(f )(x) := lim
y→x
|f (y) − f (x)|

d(x, y) (2.1)

if x is not isolated, 0 otherwise, while the (global) Lipschitz constant is de�ned as

Lip(f ) := sup
x≠y

|f (y) − f (x)|
d(x, y) .

If (X, d) is a length space, we have Lip(f ) = supx lip(f )(x).
We are not only interested in metric structures, but also in the interaction between metric and measure.

For the metric measure space (X, d,m), basic assumptions used in this paper are:

Assumption 2.1. The metric measure space (X, d,m) satis�es:

• (X, d) is a complete and separable length space,
• m is a non-negative Borel measure with respect to d and �nite on bounded sets,
• suppm = X.

In this paper, we will often assume that the metric measure space (X, d,m) satis�es the RCD*(K, N) con-
dition, for some K ∈ R and N ∈ [1,∞] (when N = ∞ it is denoted by RCD(K, ∞) ). The RCD(K, ∞) and
RCD*(K, N) conditions are re�nements of the curvature-dimensions proposed by Lott-Sturm-Villani (see [25]
and [30, 31] for CD(K, ∞)), and Bacher-Sturm (see [9] for CD*(K, N)) in order to isolate the non-smooth ‘Rie-
mannian’ structures from the ‘Finslerian’ ones.More precisely, theRCDconditions are obtainedby reinforcing
the corresponding CD conditions by adding the requirement that the Sobolev spaceW1,2(X, d,m) is a Hilbert
space (see the next subsection for more details). It is then clear that the following relations hold

RCD*(K, N) ⊂ CD*(K, N) and RCD(K, ∞) ⊂ CD(K, ∞);

moreover one has that

RCD*(K, N) ⊂ RCD(K, ∞) and CD*(K, N) ⊂ CD(K, ∞).

It is known that, for �nite N ∈ [1,∞), a CD*(K, N) space (X, d,m) satis�es the following properties:

• (X, d,m) is locally doubling and therefore a locally compact space, [9];
• (X, d,m) supports a local Poincaré inequality, [29].

For more details about RCD(K, ∞) and RCD*(K, N) spaces, we refer to [1, 3, 5, 16].
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2.2 Optimal transport and Sobolev functions

The set of Borel probability measures on (X, d) will be denoted by P(X). We also use P2(X) ⊆ P(X) to denote
the set of measures with �nite secondmoment, i.e. µ ∈ P2(X) if µ ∈ P(X) and

´
d2(x, x0) dµ(x) < +∞ for some

(and thus every) x0 ∈ X. For t ∈ [0, 1], the evaluation map et : C([0, 1], X)→ X is given by

et(γ) := γt , ∀γ ∈ C([0, 1], X).

The space P2(X) is naturally endowed with the quadratic transportation distanceW2 de�ned by:

W2
2 (µ, ν) := inf

π

ˆ
X×X

d2(x, y) dπ(x, y), (2.2)

where the inf is taken among all couplings π ∈ P(X×X) withmarginals µ and ν, i.e. (P1)]π = µ and (P2)]π = ν
where Pi, i = 1, 2 are the projection maps onto the �rst and second coordinate respectively. The metric space
(P2(X),W2) will be denoted byW2. Let us recall that the in�mum in the Kantorovich problem (2.2) is always
attained by an optimal coupling π. We denote the set of optimal couplings between µ and ν by Opt(µ, ν).
Below we recall some fundamental properties of the metric spaceW2 we will use throughout the paper.

Proposition 2.2 (Geodesics in the Wasserstein space). Let (X, d) be a metric space and �x µ0, µ1 ∈ P2(X).
Then the curve (µt)t∈[0,1] ⊂W2 is a constant speed geodesic connecting µ0 and µ1, i.e. it satis�es

W2(µs , µt) = |s − t|W2(µ0, µ1), ∀s, t ∈ [0, 1] (2.3)

if and only if there exists Π ∈ P(Geo(X)) ⊆ P(C([0, 1], X)), called optimal dynamical plan (or simply optimal
plan), such that

µt = (et)]Π ∀t ∈ [0, 1] and (e0, e1)]Π ∈ Opt(µ0, µ1).

The set of optimal dynamical plans from µ0 to µ1 is denoted by OptGeo(µ0, µ1).
Moreover, if X is a geodesic space, thenW2 is also geodesic.

Absolutely continuous curves inW2 are characterized by the following theorem:

Theorem 2.3 (Superposition principle, [24]). Let (X, d) be a complete and separable metric space and let
(µt) ∈ AC2([0, 1],P2(X)). Then there exists a measure Π ∈ P(C([0, 1], X)) concentrated on AC2([0, 1], X) such
that:

(et)]Π = µt , ∀t ∈ [0, 1]ˆ
|γ̇t|2 dΠ(γ) = |µ̇t|2, for a.e. t ∈ [0, 1].

Moreover, the in�mum of the energy
´ 1

0
´
|γ̇t|2 dΠ′(γ) dt among all the Π′ ∈ P(C([0, 1], X)) satisfying

(et)]Π′ = µt for every t ∈ [0, 1] is attained by such Π.

De�nition 2.4 (Test plan). Let (X, d,m) be a metric measure space and Π ∈ P(C([0, 1], X)). We say that Π ∈
P(C([0, 1], X)) has bounded compression provided there exists C > 0 such that

(et)]Π ≤ Cm, ∀t ∈ [0, 1].

We say that Π is a test plan if it has bounded compression, is concentrated on AC2([0, 1], X) and
ˆ 1

0

ˆ
|γ̇t|2 dΠ(γ) dt < +∞.

The notion of Sobolev function is given in duality with that of test plan:
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De�nition 2.5 (The Sobolev class S2(X)). Let (X, d,m) be ametricmeasure space. ABorel function f : X → R
belongs to the Sobolev class S2(X) (resp. S2

loc(X)) provided there exists a non-negative function G ∈ L2(X,m)
(resp. L2

loc(X,m)) such that
ˆ
|f (γ1) − f (γ0)|dΠ(γ) ≤

ˆ ˆ 1

0
G(γs)|γ̇s|ds dΠ(γ), ∀ test plan Π.

In this case, G is called a 2-weak upper gradient of f , or simply weak upper gradient.

It is known, see e.g. [2], that there exists a minimal function G in the m-a.e. sense among all the weak upper
gradients of f .Wedenote suchminimal function by |Df | or |Df |X to emphasizewhich spacewe are considering
and call it minimal weak upper gradient. Notice that if f is Lipschitz, then |Df | ≤ lip(f ) m-a.e., because lip(f )
is a weak upper gradient of f .

It is known that the locality holds for |Df |, i.e. |Df | = |Dg|m-a.e. on the set {f = g}, moreover S2
loc(X, d,m)

is a vector space and the inequality

|D(αf + βg)| ≤ |α||Df | + |β||Dg|, m-a.e., (2.4)

holds for every f , g ∈ S2
loc(X, d,m) and α, β ∈ R. Moreover, the space S2

loc ∩ L∞loc(X, d,m) is an algebra, with
the inequality

|D(fg)| ≤ |f ||Dg| + |g||Df |, m-a.e., (2.5)

being valid for any f , g ∈ S2
loc ∩ L∞loc(X, d,m).

The Sobolev spaceW1,2(X, d,m), also denoted byW1,2(X) for short, is de�ned as

W1,2(X) := S2(X, d,m) ∩ L2(X,m)

and is endowed with the norm

‖f‖2
W1,2(X) := ‖f‖2

L2(X,m) + ‖|Df |‖2
L2(X,m).

W1,2(X) is always a Banach space, but in general it is not a Hilbert space. (X, d,m) is said in�nitesimally
Hilbertian ifW1,2(X) is a Hilbert space.

On an in�nitesimally Hilbertian space, we have a natural pointwise inner product 〈∇·,∇ · 〉 :
[W1,2(X)]2 7→ L1(X) de�ned by

〈∇f ,∇g〉 := 1
4
(
|D(f + g)|2 − |D(f − g)|2

)
.

In order to prove the cosine formula we will use properties of harmonic functions in open sets of a m.m.
space. Let us de�ne the relevant quantities and recall the properties we will use; for simplicity, as always we
assume the space (X, d) to be proper, complete and separable, and the measure m to be �nite on bounded
sets (this indeed is the geometric case correspoding to RCD*(K, N) spaces, for N < ∞wewill be interested in).
For the general case see for instance [6, 17, 19].

De�nition 2.6 (Sobolev classes in Ω ). Let (X, d,m) be a m.m. space and let Ω ⊂ X be an open subset. The
space S2(Ω) is the space of Borel functions f : Ω → R such that χf ∈ S2(X) for any Lipschitz function
χ : X → [0, 1] such that supp χ ⊂ Ω, where χf is taken 0 by de�nition on X \Ω. LetW1,2(Ω) := L2(Ω)∩ S2(Ω)
be the corresponding Sobolev space endowed with the natural norm, and denote byW1,2

0 (Ω) ⊂ W1,2(X) the
closure of compactly supported Lipschitz functions on Ω.

De�nition 2.7 (Measure valued Laplacian). Let (X, d,m) be a m.m. space, Ω ⊂ X an open subset and f :
Ω → R a Borel function. We say that f is in the domain of the Laplacian in Ω, and write f ∈ D(∆, Ω) provided
f ∈ S2(Ω) and there exists a locally �nite Borel measure µ on Ω such that for any φ ∈ LIP(X) with compact
support contained in Ω it holds ˆ

X
φ dµ = −

ˆ
X
〈∇φ,∇f 〉dm.
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In this case the measure µ is unique and we denote it by ∆fxΩ, or simply ∆f . If ∆fxΩ � m, we denote its
density with respect tom by ∆fxΩ or simply by ∆f .
A function f ∈ D(∆, Ω) is said to be harmonic in Ω, or simply harmonic, if ∆fxΩ = 0.

For simplicity we state the next proposition for RCD*(K, N) space, though it is valid more generally for dou-
bling spaces supporting a weak-local 1-2 Poincaré inequality (see [6] for details).

Proposition 2.8. Let (X, d,m) be a RCD*(K, N) space, for some K ∈ R and N ∈ [1,∞), and let Ω ⊂ X be a
bounded open set. Then the following properties hold.

i) Regularity. Let f : Ω → R be harmonic in Ω. Then f admits a continuous representative (actually even
locally Lipschitz).

ii) Comparison. If f , g ∈ D(∆, Ω) are such that f ∈ W1,2
0 (Ω), |g| ≤ Cm-a.e. on Ω for some C ∈ R and ∆(f +g) ≥ 0

then f ≤ 2C m-a.e. on Ω.
ii) Existence and uniqueness of harmonic functions. Assume that m(X \ Ω) > 0 and let f ∈ W1,2(X). Then

there exists a unique harmonic function g on Ω such that f − g ∈ W1,2
0 (Ω).

iv) Strongmaximum principle. Let f : Ω → R be harmonic in Ω and assume that its continuous representative
has a maximum at a point x0 ∈ Ω. Then f is constant on the connected component of Ω containing x0.

In order to state the Laplacian Comparison Theorem, let us introduce the coe�cients σ̃K,N(·) : [0,∞) → R
de�ned by

σ̃K,N(θ) :=


θ
√

K
N cotan

(
θ
√

K
N

)
, if K > 0,

1 if K = 0,
θ
√
− KN cotanh

(
θ
√
− KN
)
, if K < 0.

Theorem 2.9 (Laplacian comparison, [17]). Let (X, d,m) be an RCD*(K, N) space for some K ∈ R and N ∈
(1,∞). Then

d2(x0, ·)
2 ∈ D(∆, X) with ∆d2(x0, ·)

2 ≤ N σ̃K,N(d(x0, ·))m ∀x0 ∈ X

and
d(x0, ·) ∈ D(∆, X \ {x0}) with ∆d(x0, ·)xX \ {x0} ≤

N σ̃K,N(d(x0, ·)) − 1
d(x0, ·)

m ∀x0 ∈ X.

2.3 Pointed measured Gromov-Hausdor� convergence and convergence of functions

In order to study the convergence of possibly non-compact metric measure spaces, it is useful to �x reference
points. We then say that (X, d,m, x̄) is a pointed metric measure space, p.m.m.s. for short, if (X, d,m) is a
m.m.s. as before and x̄ ∈ X plays the role of reference point. Recall that, for simplicity, we always assume
suppm = X. We will adopt the following de�nition of convergence of p.m.m.s. (see [7], [20] and [32]):

De�nition 2.10 (Pointed measured Gromov-Hausdor� convergence). A sequence (Xj , dj ,mj , x̄j) is said to
converge in the pointedmeasured Gromov-Hausdor� topology (p-mGH for short) to (X∞, d∞,m∞, x̄∞) if there
exists a separable metric space (Z, dZ) and isometric embeddings {ιj : (Xj , dj) → (Z, dZ)}i∈N̄ such that for
every ε > 0 and R > 0 there exists j0 such that for every j > j0

ι∞(BX∞R (x̄∞)) ⊂ BZε [ιj(B
Xj
R+ε(x̄j))] and ιj(B

Xj
R (x̄j)) ⊂ BZε [ι∞(BX∞R+ε(x̄∞))],

where BZε [A] := {z ∈ Z : dZ(z, A) < ε} for every subset A ⊂ Z, and

lim
j→∞

ˆ
Z
φ d((ιj)](mj)) =

ˆ
Z
φ d((ι∞)](m∞)) ∀φ ∈ Cb(Z),

where Cb(Z) denotes the set of real valued bounded continuous functions with bounded support in Z.



54 | Bang-Xian Han and Andrea Mondino

Sometimes in the following, for simplicity of notation, we will identify the spaces Xj with their isomorphic
copies ιj(Xj) ⊂ Z. It is obvious that this is in fact a notion of convergence for isomorphism classes of p.m.m.s.,
moreover it is induced by a metric (see e.g. [20] for details).
Next, following [20], we recall various notions of convergence of functions de�ned on p-mGH converging
spaces.

De�nition 2.11 (Pointwise convergence of scalar valued functions). Let (Xj , dj ,mj , x̄j), j ∈ N ∪ {∞} be a p-
mGH converging sequence of p.m.m.s. and let fj : Xj 7→ R, j ∈ N ∪ {∞} be a sequence of functions. We say
that fj converge pointwise to f∞ provided:

fj(xj)→ f∞(x∞) for every sequence of points xj ∈ Xj such that ιj(xj)→ ι∞(x∞) in (Z, dZ).

If for any ϵ > 0 there exists N ∈ N such that |fj(xj) − f∞(x∞)| ≤ ϵ for every j ≥ N and every xj ∈ Xj , x∞ ∈ X∞
with dZ(ιj(xj), ι∞(x∞)) ≤ 1

N , we say that fj → f∞ uniformly.

De�nition 2.12 (L2 weak and strong convergence). Let (Xj , dj ,mj , x̄j), j ∈ N ∪ {∞} be a p-mGH converging
sequence of pointed metric measure spaces and let fj ∈ L2(Xj ,mj), j ∈ N ∪ {∞} be a sequence of functions.

• We say that (fj) convergesweakly in L2 to f∞ provided (ιj)](fj mj) ⇀ (ι∞)](f∞m)weakly asRadonmeasures,
i.e. ˆ

Xj
fj(x) φ(ιj(x)) dmj(x)→

ˆ
X∞
f∞(x) φ(ι∞(x)) dm∞(x), ∀φ ∈ Cb(Z),

and
sup
j∈N

ˆ
Xj
|fj|2 dmj < ∞.

• We say that (fj) converges strongly in L2 to f∞ provided it converges weakly in L2 to f∞ and moreover

lim
j→∞

ˆ
Xj
|fj|2 dmj =

ˆ
X∞
|f∞|2 dm∞.

De�nition 2.13 (W1,2 weak and strong convergence). Let (Xj , dj ,mj , x̄j), j ∈ N∪{∞} be a p-mGH converging
sequence of pointed metric measure spaces and let fj ∈ W1,2(Xj , dj ,mj), j ∈ N ∪ {∞} be a sequence of
functions. We say that (fj) converges weakly in W1,2 to f∞ if fj are L2-weakly convergent to f and

sup
j∈N

ˆ
Xj
|Dfj|2 dmj < ∞.

Strong convergence in W1,2 is de�ned by requiring L2-strong convergence of the functions and that

lim
j→∞

ˆ
Xj
|Dfj|2 dmj =

ˆ
X∞
|Df∞|2 dm∞.

The next result proved in [4, Corollary 5.5] (see also [20, Corollary 6.10]) will be useful in the sequel.

Proposition 2.14. Let (Xj , dj ,mj , x̄j), j ∈ N∪{∞} be a p-mGH converging sequence of pointedmetric measure
spaces. If for every j ∈ N one has fj ∈ W1,2(Xi), fj ∈ D(∆j , Xj) with ∆j fj uniformly bounded in L2, and (fj)
converges strongly in L2 to f∞, then f∞ ∈ D(∆∞, X∞) and (fj) converges to f∞ strongly in W1,2.

2.4 Euclidean tangent cones to RCD*(K , N) spaces

Let us �rst recall the notion of measured tangents. Let (X, d,m) be am.m.s., x̄ ∈ X and r ∈ (0, 1); we consider
the rescaled and normalized p.m.m.s. (X, r−1d,mx̄

r , x̄) where the measuremx̄
r is given by

mx̄
r :=

(ˆ
Br(x̄)

1 − 1
r d(·, x̄) dm

)−1
m. (2.6)

Then we de�ne:
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De�nition 2.15 (Tangent cone and regularity). Let (X, d,m) be am.m.s. and x̄ ∈ X. A p.m.m.s. (Y , dY , n, y) is
called a tangent to (X, d,m) at x̄ ∈ X if there exists a sequence of rescalings rj ↓ 0 so that (X, r−1

j d,mx̄
rj , x̄) →

(Y , dY , n, y) as j →∞ in the p-mGH sense. We denote the collection of all the tangents of (X, d,m) at x̄ ∈ X by
Tan(X, d,m, x̄). A point x̄ ∈ X is called regular if the tangent is unique and euclidean, i.e. if Tan(X, d,m, x̄) =
{(Rn , dE ,Ln , 0n)}, where dE is the Euclidean distance and Ln is the properly rescaled Lebesgue measure of
Rn.

The a.e. regularity was settled for Ricci-limit spaces by Cheeger-Colding [12–14]; for an RCD*(K, N)-space
(X, d,m), it was proved in [21] that form-a.e. x ∈ X there exists a blow-up sequence converging to a Euclidean
space. The m-a.e. uniqueness of the blow-up limit, together with the recti�ability of an RCD*(K, N)-space,
was then established in [27]. More precisely the following holds:

Theorem 2.16 (m-a.e. in�nitesimal regularity of RCD*(K, N)-spaces). Let (X, d,m) be an RCD*(K, N)-space
for some K ∈ R, N ∈ (1,∞). Then m-a.e. x ∈ X is a regular point, i.e. for m-a.e. x ∈ X there exists
n = n(x) ∈ [1, N] ∩ N such that, for any sequence rj ↓ 0, the rescaled pointed metric measure spaces
(X, r−1

j d,mx
rj , x) converge in the p-mGH sense to the pointed Euclidean space (Rn , dE ,Ln , 0n).

3 De�nition of angle

3.1 Angle between three points

In [26], the second author proposed a notion of angle between three points p, x, q ∈ X in ametric space (X, d).
In general such an angle is not unique, the possible causes of non-uniqueness being a lack of regularity of the
distance function (e.g. x is in the cut locus of p or q) or a lack of in�nitesimal strict convexity of the distance
function (for more details we refer to [26, Sections 1,2]). For simplicity, here we only treat the case when the
angle is unique. Given two points p, q ∈ X, consider the distance functions

rp(·) := d(p, ·), rq(·) := d(q, ·). (3.1)

De�nition 3.1. We say that the angle ∠pxq exists if and only if the limit for ε → 0 of the quantity
|lip(rp+εrq)|2(x)−|lip(rp)|2(x)

2ε exists. In this case we set

[0, π] 3 ∠pxq := arccos
(

lim
ε→0
|lip(rp + εrq)|2(x) − |lip(rp)|2(x)

2ε

)
. (3.2)

Note that if (X, d) is a smooth Riemannian manifold and x is not in the cut locus of p and q, then ∠pxq is
the angle based at x between ∇rp(x) and ∇rq(x); in other words ∠pxq is the angle based at x “in direction
of p and q”. As already mentioned, for a general triple pxq in a general metric space (X, d) the angle ∠pxq
may not exist; moreover, even if both ∠pxq and ∠qxp exist they may not be equal in general. On the other
hand, such a de�nition satis�es some natural properties one expects from the geometric picture: the angle
is invariant under a constant rescaling of the metric d, moreover for any two points x, p ∈ X the angle ∠pxp
always exists and, if (X, d) is a length space, is equal to 0.

We now discuss an important class of metric measure spaces (X, d,m) where the angle exists and is sym-
metric in an a.e. sense, the so called Lipschitz-in�nitesimally Hilbertian spaces.

De�nition 3.2. A metric measure space (X, d,m) is said to be Lipschitz-in�nitesimally Hilbertian if for
any pair of Lipschitz functions f , g ∈ LIP(X) both the limits for ε → 0 of (|lip(f+εg)|2(x)−|lip(f )|2(x)

2ε and
|lip(g+εf )|2(x)−|lip(g)|2(x)

2ε exist and are equal form-a.e. x ∈ X, i.e.

lim
ε→0
|lip(f + εg)|2(x) − |lip(f )|2(x)

2ε = lim
ε→0
|lip(g + εf )|2(x) − |lip(g)|2(x)

2ε , m-a.e. x. (3.3)
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It is clear that if (X, d,m) is Lipschitz-in�nitesimally Hilbertian then, given p, q ∈ X, form-a.e. x ∈ X both the
angles ∠pxq,∠qxp exist and ∠pxq = ∠qxp.

Remark 3.3. The concept of Lipschitz-in�nitesimally Hilbertian space was proposed in [26] as a variant of the
notion of in�nitesimally Hilbertian space introduced in [3, 17], using the language of minimal weak upper
gradients; let us mention that Lipschitz-in�nitesimally Hilbertian always implies in�nitesimally Hilbertian,
but the converse is not clear in general. An important class of spaces where also the converse implication
holds is the one of locally doubling spaces satisfying a weak Poincaré inequality. Indeed, by a celebrated
result of Cheeger [11], we have that for every f ∈ LIP(X) it holds lip(f ) = |Df | m-a.e., in other words the local
Lipschitz constant is equal to the minimal weak upper gradient m-a.e. In particular for CD*(K, N) spaces,
K ∈ R, N ∈ [1,∞) the two notions are equivalent. For more details we refer to [26, Remark 3.3].
It follows thatRCD*(K, N)-spaces are Lipschitz-in�nitesimallyHilbertian, forN < ∞; let us recall that the class
of RCD*(K, N)-spaces include �nite dimensional Alexandrov spaces with curvature bounded below and Ricci
limit spaces as remarkable sub-classes.

3.2 Angle between two geodesics

First of all observe that if (X, d) is a metric space and γ ∈ Geo(X) is a geodesic, then |γ̇t| = d(γ0, γ1) for a.e.
t ∈ [0, 1]; we will denote such a constant simply by |γ̇|. The next de�nition is inspired by the De Giorgi’s
metric concept of gradient �ow [15].

De�nition 3.4 (A geodesic representing the gradient of a Lipschitz function). Let f ∈ LIP(X) be a Lipschitz
function on (X, d). We say that γ ∈ Geo(X) represents∇f at time 0, or γ ∈ Geo(X) represents the gradient of
f at the point x = γ0 if the following inequality holds

lim
t→0

f (γt) − f (γ0)
t ≥ 1

2 lip(f )2(γ0) + 1
2 |γ̇|

2. (3.4)

Notice that the opposite inequality is always true, indeed

lim
t→0

f (γt) − f (γ0)
t ≤ lip(f )(γ0) |γ̇| ≤ 1

2 lip(f )2(γ0) + 1
2 |γ̇|

2.

Hence γ ∈ Geo(X) represents∇f at time0 if andonly if the equality holds.Note that, in the case of Riemannian
manifolds, γ represents∇f at time 0 if and only if γ̇0 = ∇f .
It is easy to check that the geodesic γ ∈ Geo(X) represents the gradient of f ∈ LIP(X) at x ∈ X if and only if
for every α ∈ (0, 1) the rescaled geodesic γ̃ ∈ Geo(X) de�ned by γ̃t := γαt, ∀t ∈ [0, 1], represents the gradient
of the Lipschitz function αf at x. In the next lemma we give a simple but important example of a geodesic
representing the gradient of a function.

Lemma 3.5. Let (X, d) be a metric space, �x p ∈ X and let rp(·) := d(p, ·). If for some x ∈ X there exists a
geodesic γxp ∈ Geo(X) such that γ0 = x and γ1 = p then γxp represents the gradient of f (·) := −d(p, x) rp(·) at x.

Proof. For every t ∈ (0, 1) it holds

f (γxpt ) − f (γxp0 )
t = d(p, x) d(p, x) − d(p, γxpt )

t = d(p, x) d(x, γxpt )
t = d(p, x) td(x, p)

t
= d(p, x)2.

On the other hand, by triangle inequality it is clear that lip(rp) ≤ 1 and with an analogous argument as above
it is easily checked that actually lip(rp)(x) = 1. Therefore lip(f )(x) = d(p, x) =: |γ̇xp| and the claim follows.

We can now de�ne the angle between two geodesics.
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De�nition 3.6 (Angle between two geodesics). Let (X, d) be a metric space and let γ, η ∈ Geo(X) be two
geodesics with γ0 = η0 = p. Let f ∈ LIP(X) be a Lipschitz function such that γ represents the gradient of
f at time 0. We say that the angle ∠ηpγ exists if and only if the limit as t ↓ 0 of f (ηt)−f (η0)

t exists. In this case
we set

[0, π] 3 ∠ηpγ := arccos
(

1
|η̇||γ̇| lim

t↓0
f (ηt) − f (η0)

t

)
. (3.5)

Remark 3.7 (Locality of the angle between two geodesics). It is easily seen that the angle between the two
geodesics γ, η ∈ Geo(X) at the point p = γ0 = η0 depend just on the germs of the curves at p. To see that, �x
arbitrary Tγ , Tη ∈ (0, 1) and call γ̃, η̃ the restrictions of γ, η to [0, Tγ ], [0, Tη] properly rescaled, i.e:

γ̃(t) := γ(Tγ t), η̃(t) := η(Tη t), ∀t ∈ [0, 1].

Of coursewe still have γ̃, η̃ ∈ Geo(X), and it is readily seen that γ̃ represents the gradient of f̃ := Tγ f . It follows
that ∠ηpγ exists if and only if ∠η̃pγ̃ exists, and in this case it holds

∠ηpγ := arccos
(

1
|η̇||γ̇| lim

t→0
f (ηt) − f (η0)

t

)
= arccos

(
1
| ˙̃η|| ˙̃γ|

lim
t→0

f̃ (η̃t) − f̃ (η̃0)
t

)
= ∠η̃pγ̃.

Remark 3.8 (Dependence on the function f ). Note also in the generality of metric spaces, the angle ∠γpη as
given in De�nition 3.6 may depend on the function f chosen in (3.5) (for instance this is the case of a tree with
a vertex in p and two edges made by γ and η). In case (X, d,m) is an RCD*(K, N)-space we will see later in
the paper that actually the angle between two geodesics is well de�ned for m-a.e. base point p just in terms
of the geometric data, so it does not depend on the choice of f . In the general case of a metric space, a way
to overcome the problem would be to �x a canonical Lipschitz function f such that γ represents ∇f at time
0. In view of Lemma 3.5, a natural choice is to consider fγ(·) := −d(γ0, γ1)d(γ1, ·). In case (X, d,m) is not an
RCD*(K, N) space we will tacitly make such a choice so to have a good de�nition.

The next goal is to relate the angle between three points with the angle between two geodesics, i.e. relate
De�nitions 3.1 and 3.6.

Theorem 3.9. Let (X, d) be a metric space and let p ≠ x ≠ q ∈ X satisfy the following assumptions:

• the angle ∠pxq exists in the sense of De�nition 3.1,
• there exist geodesics γxp , γxq ∈ Geo(X) from x to p and from x to q respectively.

Then the angle ∠γxpxγxq exists in the sense of De�nition 3.6 and

∠γxpxγxq = ∠pxq. (3.6)

Note that if (X, d) is a geodesic Lipschitz-in�nitesimally Hilbertian space then for every given p, q ∈ X the
two assumptions of Theorem 3.9 are satis�ed for m-a.e. x ∈ X. This is in particular the case for RCD*(K, N)
spaces (see Remark 3.3).

Proof. Let fp(·) := −d(p, x) rp(·) and fq(·) := −d(p, x) rq(·). Recall from Lemma 3.5 that γxp represents ∇fp at
x = γxp0 in the sense of De�nition 3.4, i.e.

lim
t↓0

fp(γxpt ) − fp(γxp0 )
t ≥ lip(fp)2(x)

2 + |γ̇
xp|2

2 . (3.7)

On the other hand

lim
t↓0

(fp + εfq)(γxpt ) − (fp + εfq)(γxp0 )
t ≤ lip(fp + εfq)2(x)

2 + |γ̇
xp|2

2 . (3.8)
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Subtracting (3.7) from (3.8) yields

lim
t↓0

ε fq(γxpt ) − fq(γxp0 )
t ≤ lip(fp + εfq)2(x) − lip(fp)2(x)

2

= d(p, x)2 lip(rp + εrq)2(x) − lip(rp)2(x)
2 . (3.9)

If ε > 0, dividing both sides by εd(p, x)2 and letting ε ↓ 0 we get

lim
t↓0

1
d(p, x)2

fq(γxpt ) − fq(γxp0 )
t ≤ lim

ε↓0
lip(rp + εrq)2(x) − lip(rp)2(x)

2ε = cos(∠pxq),

where in the last identity we used the assumption that∠pxq exists. Analogously, if ε < 0, dividing both sides
by εd(p, x)2 and letting ε ↑ 0 we get

lim
t↓0

1
d(p, x)2

fq(γxpt ) − fq(γxp0 )
t ≥ lim

ε↑0
lip(rp + εrq)2(x) − lip(rp)2(x)

2ε = cos(∠pxq).

The combination of the last two inequalities gives the existence of the limit for t ↓ 0 of 1
d(p,x)2

fq(γxpt )−fq(γxp0 )
t and,

more precisely,

lim
t↓0

1
d(p, x)2

fq(γxpt ) − fq(γxp0 )
t = cos(∠pxq).

Multiplying and dividing by d(q, x) the left hand side, we get

lim
t↓0

1
d(p, x)

d(q,x)
d(p,x) fq(γxpt ) − d(q,x)

d(p,x) fq(γxp0 )
t = cos(∠pxq).

Since by Lemma 3.5 we know that γxq represents the gradient of −d(q, x)rq(·) = d(q,x)
d(p,x) fq(·) at x = γxq0 in the

sense of De�nition 3.4, we get that the left hand side coincides with ∠γxpxγxq and the thesis follows.

3.3 Angles in Wasserstein spaces

In the Wasserstein space, we have the notion of “Plans representing gradients” which is similar to the one of
“geodesic representing the gradient” above.

De�nition 3.10 (Plans representing gradients, see [17]). Let (X, d,m) be a metric measure space, g ∈ S2(X)
and Π ∈ P(C([0, 1], X)) be a test plan. We say that Π represents the gradient of g if

lim
t↓0

ˆ g(γt) − g(γ0)
t dΠ(γ) ≥ 1

2

ˆ
|Dg|2(γ0) dΠ(γ) + 1

2 lim
t↓0

1
t

¨ t

0
|γ̇s|2 ds Π(γ).

Let (µt) ∈ AC2([0, 1],P2(X)) be with uniformly bounded densities, Π be its lifting given by Theorem 2.3, and
let φ ∈ S2(X). In case (X, d,m) is in�nitesimally Hilbertian, it is proved in [18, Theorem 4.6] that Π represents
the gradient of φ if and only if

d
dt
∣∣∣
t=0

ˆ
X
f dµt =

ˆ
X
〈∇f ,∇φ〉dµ0, ∀f ∈ S2(X). (3.10)

If (3.10) holds, we also say that the velocity �eld of µt at time 0 is∇φ.
Combing the above technical tools with ideas from Otto’s calculus [28], we can de�ne the angle between

two geodesics inW2.

De�nition 3.11 (Angle between curves inW2). Let (X, d,m) be an in�nitesimally Hilbertian metric measure
space, let (µt), (νt) ∈ AC2([0, 1],P2(X)) be with bounded compression, and such that µ0 = ν0 =: η. Assume
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there exist lifting test plans of (µt) and (νt) representing the gradients of f and g respectively, for some f , g ∈
S2(X). Then the angle between µ = (µt) and ν = (νt) at t = 0 is de�ned by

[0, π] 3 ∠Wµην := arccos
( ´

X 〈∇f ,∇g〉dη
‖|Dg|‖L2(X,η)‖|Df |‖L2(X,η)

)
.

The same de�nition makes sense if f , g ∈ S2
loc(X) provided (µt), (νt) have uniformly bounded supports.

From the formula (3.10), we can see that the value of the angle does not depend on the choice of f , g, but just
on (µt), (νt).

Remark 3.12 (Locality of the angle in the Wasserstein space). The angle∠Wµην depends just on the germs of
the curves µ and ν at t = 0; i.e., given T1, T2 ∈ (0, 1), called µ̃t := µT1 t , ν̃t := νT2 t for all t ∈ [0, 1] the
restrictions of µ, ν to [0, T1] and [0, T2] respectively, it holds ∠µην = ∠µ̃ην̃. Indeed let Π, lift of the curve
(µt)t∈[0,1], be a test plan representing the gradient of f ∈ S2(X); �x T ∈ (0, 1) and let µ̃t := µTt for every
t ∈ [0, 1] be the restriction of the curve µ to [0, T]; called Π̃ the lift of (µ̃t)t∈[0,1], it is easily seen that Π̃
represents the gradient of f̃ := Tf . The claim follows.

Thanks to the locality expressed in Remark 3.12, given two curves (µt)t∈[0,1], (νt)t∈[0,1] such that they are of
bounded compression once restricted to [0, T] for some T ∈ (0, 1), we can de�ne the angle between them
as the angle between their restrictions µ̃, ν̃ to [0, T]. This will be always tacitly assumed throughout the paper.

Let us brie�y discuss the particular but important case when (µt) and (νt) areW2-geodesics in a general
m.m.s. (X, d,m). If (µt) is aW2-geodesic with bounded compression then any lift Π of (µt) is a test plan and
moreover is an optimal dynamical plan, i.e. Π ∈ OptGeo(µ0, µ1). Moreover, as a consequence of the Metric
Brenier Theorem proved in [2] (see also [18, Theorem 5.2] for the present formulation), if (µt) has bounded
compression and φ ∈ S2(X) is a Kantorovich potential from µ0 to µ1, then any lift Π of (µt) represents the
gradient of −φ. Therefore, specializing De�nition 3.11 to this case we get the following notion.

De�nition 3.13 (Angle between geodesics inW2). Let (X, d,m) be an in�nitesimally Hilbertian metric mea-
sure space, let (µt), (νt) be W2-geodesics with bounded compression, and such that µ0 = ν0 =: η. Assume
there exist φ, ψ ∈ S2(X) Kantorovich potentials from µ0 to µ1 and from ν0 to ν1 respectively. Then the angle
between µ = (µt) and ν = (νt) at t = 0 is de�ned by

[0, π] 3 ∠Wµην := arccos
( ´

X 〈∇φ,∇ψ〉dη
‖|Dφ|‖L2(X,η)‖|Dψ|‖L2(X,η)

)
.

The same de�nition makes sense if φ, ψ ∈ S2
loc(X) provided (µt), (νt) have uniformly bounded supports.

Note that, thanks to Otto calculus and (3.10), De�nition 3.13 is the analog for W2 geometry of the angle be-
tween two geodesics in a general metric space in the sense of De�nition 3.6.

3.4 The case of RCD*(K , N) spaces

In Theorem3.9we related the angle between three pointswith the angle between twogeodesics, i.e.we related
De�nitions 3.1 and 3.6. Now, adding a curvature assumption on the space, we wish to relate De�nition 3.13
withDe�nition 3.1 andDe�nition 3.6, i.e. the angle between two geodesics inW2 with the angle between three
points and the angle between two geodesics of X. To this aim the next lemma will be useful.
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Lemma 3.14. Let (X, d,m) be an RCD*(K, N) space, and let φ1, φ2 be locally Lipschitz functions on X. Then
the functions

F+(x) := lim
ϵ↓0
|lip(φ1 + ϵφ2)|2(x) − |lip(φ1)|2(x)

2ϵ ,

F−(x) := lim
ϵ↑0
|lip(φ1 + ϵφ2)|2(x) − |lip(φ1)|2(x)

2ϵ

are well de�ned at every x ∈ X and it holds

F+ = F− = 〈∇φ1,∇φ2〉, m-a.e. .

Proof. From the de�nition of local Lipschitz constant we know that the function ϵ 7→ |lip(φ1 + ϵφ2)|2(x) is
convex for any x. Consider the function

Fϵ(x) := ϵ 7→ |lip(φ1 + ϵφ2)|2(x) − |lip(φ1)|2(x)
2ϵ ,

and observe that ϵ 7→ Fϵ(x) is non-decreasing on (−∞, 0) and (0, +∞) for any �xed x. Hence F+ and F− are
well-de�ned for any point x ∈ X as

F+(x) := inf
ϵ>0
Fϵ(x) = lim

ϵ↓0
Fϵ(x), F−(x) := sup

ϵ<0
Fϵ(x) = lim

ϵ↑0
Fϵ(x).

Since (X, d,m) is a RCD*(K, N) metricmeasure space, it holds a local Poincaré inequality and it is locally dou-
bling. Then, from [11, Theorem6.1], we know lip(f )(x) = |Df |(x) form-a.e. x ∈ X. The de�nition of in�nitesimal
Hilbertian space and of 〈∇φ1,∇φ2〉, then gives

〈∇φ1,∇φ2〉 = ess inf
ϵ>0

|D(φ1 + ϵφ2)|2 − |Dφ1|2

2ϵ = ess inf
ϵ>0

Fϵ

and
〈∇φ1,∇φ2〉 = ess sup

ϵ<0

|D(φ1 + ϵφ2)|2 − |Dφ1|2

2ϵ = ess sup
ϵ<0

Fϵ .

Hence
〈∇φ1,∇φ2〉 = ess inf

ϵ>0
Fϵ = ess sup

ϵ<0
Fϵ .

In particular, we infer F+ = F− = 〈∇φ1,∇φ2〉m-a.e..

In the next result we relate De�nition 3.13 with De�nition 3.1. Before stating it, let us recall [22, Theorem 1.1]
that if (X, d,m) is an RCD*(K, N) m.m.s., µ0, µ1 ∈ P2(X) with µ0 � m, then there exists a uniqueW2 geodesic
connecting µ0 and µ1; let usmention that the same result holdsmore generally for essentially non-branching
m.m.s satisfying the weaker MCP(K, N) condition [10].

Proposition 3.15. Let (X, d,m) be an RCD*(K, N) m.m.s. and �x p, q ∈ X. For every x ∈ X and R > 0 let
µR0 = νR0 = ηR := 1

m(BR(x))mxBR(x) and let µR := (µRt )t∈[0,1], νR := (νRt )t∈[0,1] be the unique W2-geodesics from
µR0 to δp and from νR0 to δq respectively. Then

∠pxq = lim
R↓0

∠WµRηRνR , form-a.e. x ∈ X. (3.11)

Proof. Calling as usual rp(·) := d(p, ·), rq(·) := d(q, ·), Lemma 3.14 implies

cos(∠pxq) := lim
ε→0
|lip(rp + εrq)|2(x) − |lip(rp)|2(x)

2ε = 〈∇rp ,∇rq〉(x), m-a.e. x ∈ X.

On the other hand, it is easily seen that φ(·) := 1
2 rp(·)2, ψ(·) := 1

2 rq(·)2 are Kantorovich potentials from η = µR0
to δp and from η = νR0 to δq respectively. Moreover the geodesics (µRt ), (νRt ) have uniformly bounded supports,
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and bounded compression once restricted to [0, 1 − δ] for every δ ∈ (0, 1), see for instance [22, Corollary 1.7].
Then, De�nition 3.13 yields

lim
R↓0

cos(∠WµRηRνR) := lim
R↓0

´
X 〈∇φ,∇ψ〉dη

‖|Dφ|‖L2(X,η)‖|Dψ|‖L2(X,ηR)

= lim
R↓0

1
m(BR(x))

´
BR(x) rp(y) rq(y) 〈∇rp ,∇rq〉(y) dm(y)
‖rp‖L2(X,ηR)‖rq‖L2(X,ηR)

= 〈∇rp ,∇rq〉(x) form-a.e. x ∈ X.

The combination of the two formulas gives the claim.

Remark 3.16. For uniformity with the rest of the paper we decided to state Proposition 3.15 for RCD*(K, N)
spaces, but using the results of [10] the same conclusion holds for essentially non-branching Lipschitz-
in�nitesimally Hilbertian spaces satisfying MCP(K, N).

In the next result we relate De�nition 3.6 with the optimal transport picture.

Proposition 3.17. Assume that (X, d,m) is an RCD*(K, N) metric measure space. Let (µ1
t ) and (µ2

t ) be W2-
geodesics with bounded compression and with µ1

0 = µ2
0 =: η; let Π1, Π2 ∈ OptGeo(X) be corresponding lifts.

Then, for i = 1, 2, we can �nd Γi ⊂ Geo(X) with Πi(Γi) = 1, such that for η-a.e. x there exist unique geodesics
γx,i ∈ Γi with γx,i0 = x, and the angle ∠γx,1xγx,2 exists according to the De�nition 3.6. Moreover

cos∠γx,1xγx,2 = cos∠γx,2xγx,1 = lim
t↓0

φ1(γx,2t ) − φ1(γx,20 )
t lip(φ1)(x) |γ̇x,2| = lim

t↓0

φ2(γx,1t ) − φ2(γx,10 )
t lip(φ2)(x) |γ̇x,1|

= 〈∇φ1,∇φ2〉(x)
lip(φ1)(x) lip(φ2)(x) , for η-a.e. x, (3.12)

where −φi ∈ S2(X) is any locally Lipschitz Kantorovich potential from η = µi0 to µi1.

Proof. From [3, 18] we know that any lift Πi of (µit) represents the gradient of φi, for i = 1, 2, i.e:

lim
t↓0

ˆ φi(γt) − φi(γ0)
t dΠi(γ) ≥ 1

2

ˆ
|Dφi|2(γ0) dΠi(γ) + 1

2 lim
t↓0

1
t

¨ t

0
|γ̇s|2 ds dΠi(γ).

From [17, Proposition 3.11] we then get for i = 1, 2:

lim
t↓0

φi(γt) − φi(γ0)
t = 1

2 |Dφi|
2(γ0) + 1

2 |γ̇|
2 = 1

2 |lip(φi)|2(γ0) + 1
2 |γ̇|

2, Πi-a.e. γ. (3.13)

In other words, for Πi-a.e. γ, we have that γ represents∇φi at γ0, i = 1, 2.
For any ϵ > 0, consider the function φ1 + ϵφ2 and observe that

lim
t↓0

(φ1 + ϵφ2)(γt) − (φ1 + ϵφ2)(γ0)
t ≤ 1

2 |lip(φ1 + ϵφ2)|2(γ0) + 1
2 |γ̇|

2, ∀γ ∈ Geo(X). (3.14)

The di�erence between (3.14) and (3.13), for i = 1, gives

ϵ lim
t↓0

φ2(γt) − φ2(γ0)
t ≤ |lip(φ1 + ϵφ2)|2(γ0) − |lip(φ1)|2(γ0)

2 , Π1-a.e. γ. (3.15)

Multiplying by ϵ−1 > 0 both sides of (3.15) yields

lim
t↓0

φ2(γt) − φ2(γ0)
t ≤ |lip(φ1 + ϵφ2)|2(γ0) − |lip(φ1)|2(γ0)

2ϵ , Π1-a.e. γ.

Letting ϵ ↓ 0 and using Lemma 3.14, we infer

lim
t↓0

φ2(γt) − φ2(γ0)
t ≤ 〈∇φ2,∇φ1〉(γ0), Π1-a.e. γ.
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Following verbatim the same arguments after (3.13), but now for ϵ < 0, gives

lim
t↓0

φ2(γt) − φ2(γ0)
t ≥ 〈∇φ2,∇φ1〉(γ0), Π1-a.e. γ.

Since from [22, Theorem 3.4] we can �nd Γi ⊂ Geo(X) with Πi(Γi) = 1, such that for η-a.e. x there exists unique
geodesics γx,i ∈ Γi with γx,i0 = x, it follows that

lim
t↓0

φ2(γx,1t ) − φ2(γx,10 )
t = 〈∇φ2,∇φ1〉(x), η-a.e. x. (3.16)

Recalling from (3.13) thatΠ2-a.e. γ represents the gradient of φ2 at γ0, we get that for η-a.e. x the geodesic γx,2
represents the gradient ofφ2 at x. Therefore (3.16) proves that for η-a.e. x the angle∠γx,1xγx,2 exists according
to De�nition 3.6 and coincides with arccos

(
〈∇φ2,∇φ1〉(x)

)
. With the same arguments, just exchanging i = 1

with i = 2, we get that also ∠γx,2xγx,1 exists for η-a.e. x, and that the identities (3.12) hold.

4 The cosine formula for angles in RCD*(K , N) spaces
The goal of this section is to prove Theorem 4.4, stating that the cosine formula holds for the angle between
two geodesics in an RCD*(K, N) space. The �rst lemma states the almost everywhere uniqueness and extend-
ability of geodesics in RCD*(K, N) spaces; this fact is already present in the literature under slightly di�erent
formulations so we just brie�y sketch the proof.

Lemma 4.1. Let (X, d,m) be an RCD*(K, N) space for some K ∈ R, N ∈ (1,∞), and �x p, q ∈ X. Then for
m-a.e. x there exist unique geodesics γxp , γxq ∈ Geo(X) such that

• γxp0 = γxq0 = x, γxp1 = p, γxq1 = q,
• both γxp and γxq are extendable to geodesics γ̃xp and γ̃xq having x as interior point; in other words there

exist γ̃xp , γ̃xq ∈ Geo(X) and t̄ ∈ (0, 1) such that γ̃xpt̄ , γ̃xqt̄ = x and γ̃xp[t̄,1] = γxp[0,1], γ̃
xq
[t̄,1] = γxq[0,1].

Proof. Step 1. ∀p ∈ X,m-a.e. x ∈ X is an interior point of a geodesic with end point at p.
Fix p ∈ X and R > 0. Consider

µ0 := 1
m(BR(p)) mxBR(p) and µ1 := δp .

Analyzing the optimal transport from µ0 to µ1 by following verbatim the proof of [21, Lemma 3.1] (i.e. use
Jensen’s inequality and the convexity property of the entropy granted by the curvature condition), we get
that for m-a.e. x ∈ BR(0) there exists a geodesic γ ∈ Geo(X) such that γ1 = p and γt = x, for some t ∈ (0, 1).
The claim then follows by the arbitrariness of R > 0.

Step 2. ∀p ∈ X,m-a.e. x ∈ X there exists a unique geodesic from x to p.
The uniqueness of geodesics connecting a �xed p ∈ X andm-a.e. x ∈ X is a consequence of [22, Theorem 3.5]
applied to the optimal transportation from the measures µ0, µ1 above.

Step 3. Applying steps 1 and 2 to p and q, since the union of two negligible sets is still negligible, the
thesis follows.

The next lemma will be useful to get good estimates on harmonic approximations of distance functions.

Lemma 4.2. Let B be a unit ball in an RCD*(K, N) metric measure space (X, d,m), K ∈ R, N ∈ (1,∞). Then
there exists a function G : B → R with G ∈ D(∆, B) such that

∆GxB = (∆GxB)mxB, ∆GxB = 1, 0 ≤ G ≤ C on B,

where C = C(K, N) > 0 is a constant which depends only on K and N.
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Proof. Since (X, d,m) is a RCD*(K, N) metric measure space, it satis�es a local (1-2)-Poincaré inequality and
it is locally doubling. It is also known [3, Remark 6.9 and Theorem 6.10] that the metric d is induced by the
Dirichlet form f 7→

´
|Df |2 dm. Therefore the standing assumptions of [8] are ful�lled and from [8, Corollary

1.2] we know that for any f ∈ Lp(B,m), p > 2 , there exists a function uf ∈ W1,2
0 (B) such that

ˆ
B
〈∇uf ,∇v〉dm =

ˆ
B
fv dm

for any v ∈ W1,2
0 (B). In other words, we know uf ∈ D(∆, B) and

∆uf = f m-a.e. .

Furthermore, from [8, Theorem 4.1] we know

sup
B
|uf | ≤ cm(B)−

1
p ‖f‖Lp(B,m)

where c only depends on the constants in the Poincaré inequality and in the doubling condition. In our case,
c only depends on N and K.
Now, choosing f = 1 on B, we get that G := uf + c satis�es the thesis with C = 2c.

Using Lemma 4.2, in the next proposition we prove a key estimate in order to establish the cosine formula for
angles.

Proposition 4.3. Let (X, d,m) be an RCD*(K, N) metric measure space, for some K ∈ R, N ∈ (1,∞), and
�x x0 ∈ X. Let R ≥ 2, p, p̂ ∈ X such that d(x0, p) + d(x0, p̂) = d(p, p̂), and d(x0, p), d(x0, p̂) ≥ R. We denote
bp(·) := d(p, ·)−d(p, x0) and bp̂(·) := d(p̂, ·)−d(p̂, x0). Assume that there exists a function Φ(R|K, N) satisfying
limR→+∞ Φ(R|K, N) = 0 for �xed K, N, such that 0 ≤ bp̂(x) + bp(x) ≤ Φ(R|K, N) for any x ∈ B1(x0).

Then there exists a harmonic approximation bp of bp with the following properties:

1. bp − bp ∈ W1,2
0 (B1(x0)), bp ∈ D(∆, B1(x0)) with ∆bpxB1(x0) = 0,

2. it holds
‖bp − bp‖L∞(B1(x0)) + 1

m(B1(x0))

ˆ
B1(x0)

|D(bp − bp)|2 dm ≤ Ψ(R|K, N), (4.1)

where Ψ : R3 → R>0 satis�es limR→+∞ Ψ(R|K, N) = 0 for �xed K, N.

Proof. From Proposition 2.8 we know there exists bp satisfying (1) of the thesis. Similarly, we can �nd a har-
monic approximation bp̂ of bp̂.
We are then left to show the validity of the estimate (4.1). To this aim, let G : B1(x0)→ R≥0 be given by Lemma
4.2, so that

∆GxB1(x0) = (∆GxB1(x0))mxB1(x0), ∆GxB1(x0) = 1, 0 ≤ G ≤ C on B1(x0),

where C(K, N) depends only on K, N and in particular is independent of R.
From Laplacian Comparison Theorem 2.9 we know that bp , bp̂ ∈ D(∆, B1(x0)) and

∆bpxB1(x0) ≤ Ψ(R|K, N)m (4.2)

and
∆bp̂xB1(x0) ≤ Ψ(R|K, N)m (4.3)

for some suitable Ψ : R3 → R>0 satisfying limR→+∞ Ψ(R|K, N) = 0 for �xed K, N. Then we have

∆(bp − bp − ΨG)xB1(x0) ≤ 0, ∆(−bp̂ + bp̂ + ΨG)xB1(x0) ≥ 0.

Applying the comparison statement of Proposition 2.8 to (−bp + bp) + ΨG we get that

−bp + bp ≤ 2Ψ sup
B1(x0)

|G| ≤ 2C(K, N)Ψ , m-a.e. on B1(x0). (4.4)
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Analogously, applying the comparison statement of Proposition 2.8 to −bp̂ + bp̂ + ΨG we get

−bp̂ + bp̂ ≤ 2Ψ sup
B1(x0)

|G| ≤ 2C(K, N)Ψ , m-a.e. on B1(x0).

By assumption, we know there exists a function Φ(R|K, N) satisfying limR→+∞ Φ(R|K, N) = 0 for �xed K, N,
such that 0 ≤ bp̂(x) + bp(x) ≤ Φ(R|K, N) for any x ∈ B1(x0). Using maximum principle of Proposition 2.8, we
know

0 ≤ bp̂(x) + bp(x) ≤ Φ(R|K, N)

for any x ∈ B1(x0). The combination of the last three estimates gives

bp − bp = (bp + bp̂) − (bp + bp̂) + (−bp̂ + bp̂) ≤ Φ(R|K, N) + 2C(K, N)Ψ(R|K, N), on B1(x0). (4.5)

Putting together (4.4) and (4.5), we get

‖bp − bp‖L∞(B1(x0)) ≤ 2 C(K, N)Ψ(R|K, N) + Φ(R|K, N). (4.6)

Next, write B = B1(x0) for short. Recalling that ∆bpxB = 0, combining (4.2) with (4.6) and using that (bp −
bp) ∈ W1,2

0 (B) in order to integrate by parts, we obtain
ˆ
B
|D(bp − bp)|2 dm = −

ˆ
B

(bp − bp) d
(
∆(bp − bp)

)
=
ˆ
B

(
‖bp − bp‖L∞(B) + (bp − bp)

)
d (∆bp) + ‖bp − bp‖L∞(B)

ˆ
B

d
(
∆(bp − bp)

)
≤
ˆ
B

(
‖bp − bp‖L∞(B) + (bp − bp)

)
Ψ(R|K, N) dm

≤ 2‖bp − bp‖L∞(B) m(B) Ψ(R|K, N)
≤ 2
(

2C(K, N)Ψ(R|K, N) + Φ(R|K, N)
)
m(B)Ψ(R|K, N), (4.7)

where we used that, since (bp − bp) ∈ W1,2
0 (B), it holds

ˆ
B

d
(
∆(bp − bp)

)
=
ˆ
B

1 d
(
∆(bp − bp)

)
= −
ˆ
B
〈∇(bp − bp),∇1〉dm = 0.

Summing up (4.6) and (4.7) we get (4.1) by renaming with Ψ(R|K, N) the quantity 2
(

2C(K, N)Ψ(R|K, N) +
Φ(R|K, N)

)
Ψ(R|K, N) + 2 C(K, N)Ψ(R|K, N) + Φ(R|K, N).

Theorem 4.4. Let (X, d,m) be an RCD*(K, N) space for some K ∈ R, N ∈ (1,∞), and �x p, q ∈ X. Then for
m-a.e. x ∈ X let γxp , γxq ∈ Geo(X) be the unique geodesics from x to p and from x to q given by Lemma 4.1. We
may also assume that the tangent cone at x is unique and isomorphic as m.m. space to (Rk , dE ,Lk), for some
k = k(x) ∈ N ∩ [1, N]. Let ri ↓ 0 be any sequence, p̄, q̄ ∈ Rk be the limit points of γxp(ri), γxq(ri) under the
rescalings (X, r−1

i d,mx
ri , x) which converge to (Rk , dE ,Lk , O) in p-mGH sense. Then

∠γxpxγxq = ∠pxq = ∠p̄Oq̄ = lim
t↓0

arccos 2t2 − d2(γxpt , γxqt )
2t2 , form-a.e. x. (4.8)

Proof. Step 1. Fix p, q ∈ X. Combining Theorem 2.16, Remark 3.3, Theorem 3.9 and Lemma 4.1 we get that for
m-a.e. x ∈ X

• we can �nd unique geodesics γxp , γxq ∈ Geo(X) such that γxp0 = γxq0 = x, γxp1 = p, γxq1 = q, and both
γxp , γxq are extendable beyond x in the sense of Lemma 4.1, so we can assume that γxp , γxq could be
extended to p̂ := γxp−ε , q̂ := γxq−ε respectively, for some ε > 0,

• both the angles ∠pxq and ∠γxpxγxq exist in the sense of De�nitions 3.1, 3.6 respectively, and ∠pxq =
∠γxpxγxq,

• x ∈ X is a Lebesgue point for 〈∇rp ,∇rq〉 so that

cos∠pxq := 〈∇rp ,∇rq〉(x) = lim
r↓0

1
m(Br(x))

ˆ
Br(x)
〈∇rp ,∇rq〉dm, (4.9)
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• the tangent to X at x is unique and euclidean.

From the locality of the angle (see Remark 3.7) we know that

∠pxq = ∠γxpxγxq = ∠(γxp|s0) x (γxq|t0), ∀s, t ∈ (0, 1), (4.10)

where
(
γ|s0
)
t := γst for all t ∈ [0, 1].

Let ri ↓ 0 be any sequence and let (X, r−1
i d,mx

ri , x) be the corresponding sequence of rescaled spaces. Since
by assumption x is regular, we know that (X, r−1

i d,mx
ri , x) p-mGH converge to (Rk , dE ,Lk , O) for some

k = k(x) ∈ N∩ [1, N]. Since by assumption both γxp and γxq are extendable beyond x, they converge in p-GH
sense to half lines `p , `q in Rk such that O ∈ `p ∩ `q and both `p , `q are extendable to full lines of Rk. We
parametrize such half lines on [0, +∞) such that for every t > 0 one has that `p(t), `q(t) are the limit points of
γxp(ri t), γxq(ri t) respectively. Denote by p̄ = `p(1), q̄ = `q(1) ∈ Rk be the limit points of γxp(ri), γxq(ri). By the
uniqueness of the tangent space, the parametrized half lines `p , `q and the points p̄, q̄ ∈ Rk do not depend
on the choice of the rescaling sequence (ri).
Let ˆ̀p , ˆ̀q be the half lines inRk antipodal to `p , `q respectively; in other words `p ∪ ˆ̀p and `q ∪ ˆ̀q are straight
lines inRk intersecting atO.Weparametrize ˆ̀p , ˆ̀q on (−∞, 0] such that d

dt |t=t1 ˆ̀p(t) = d
dt |t=t2`p(t), ddt |t=t1 ˆ̀q(t) =

d
dt |t=t2`q(t), for all t1 < 0 < t2.

Step 2. We claim that
∠γxpxγxq = ∠pxq = ∠p̄Oq̄ = ∠`pO`q . (4.11)

Since the �rst identity is true by construction, and the last is trivially true because the ambient space is Rk,
it is enough to show that ∠pxq = ∠p̄Oq̄. Given any sequence of rescalings ri ↓ 0, let di(·, ·) := 1

ri d(·, ·) and
de�ne

bip(·) := di(p, ·) − di(p, x), biq(·) := di(q, ·) − di(q, x). (4.12)

Set also b∞p , b∞q : Rk → R to be the Busemann functions associated to `p , `q, i.e.

b∞p (·) := lim
t→+∞

t − dE(`p(t), ·), b∞q (·) := lim
t→+∞

t − dE(`q(t), ·). (4.13)

Since by construction we know that (X, di , x) → (Rk , dE , O) in p-GH sense, γxpri t → `p(t) and γxqri t → `q(t) for
every t > 0, it follows that

bip → b∞p , biq → b∞q pointwise in the sense of De�nition 2.11. (4.14)

More strongly, since bip are all Lipschitz with unit Lipschitz constant, by an Arzelá-Ascoli procedure (see for
instance in [27, Proposition 2.12]) we get that the convergences are uniform on bounded subsets, in the sense
of De�nition 2.11. In particular, since the measuresmx

ri are converging weakly to Lk we get that

bip → b∞p , biq → b∞q strongly in L2 in the sense of De�nition 2.12. (4.15)

De�ne bip̂ , b∞p̂ , biq̂ , b∞q̂ analogously to (4.12)-(4.13):

bip̂(·) := di(p̂, ·) − di(p̂, x), biq̂(·) := di(q̂, ·) − di(q̂, x),
b∞p̂ (·) := lim

t→−∞
−t − dE(ˆ̀p(t), ·), b∞q̂ (·) := lim

t→−∞
−t − dE(ˆ̀q(t), ·).

With analogous arguments as above we get

bip̂ → b∞p̂ , biq̂ → b∞q̂ uniformly on bounded subsets in the sense of De�nition 2.11.

Sincewe areworking in the euclidean spaceRk, it is not di�cult to see that b∞p +b∞p̄ = 0 and b∞q +b∞q̄ = 0. Note
that such equalities holdsmore generally inmanifoldswith non-negative Ricci curvature: the argument, used
in the proof of the Cheeger-Gromoll Splitting Theorem, goes viamaximumprinciple; here in any case one can
arguemore directly by using the geometry of the euclidean space. It follows that bip +bip̂ → 0 and bip +bip̂ → 0
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uniformly on bounded sets in the sense of De�nition 2.11. Hence there exists a function Φ(R|K, N) satisfying
limR→+∞ Φ(R|K, N) = 0 for �xed K, N, such that 0 ≤ bip(y) + bip̂(y) ≤ Φ( 1

ri |K, N) and 0 ≤ biq(y) + biq̂(y) ≤
Φ( 1

ri |K, N) for any y ∈ Bdi
1 (x).

Using Proposition 4.3, for every i ∈ Nwe can construct harmonic approximationsbip , biq of bip , biq, respec-
tively, in the unit ball Bdi

1 (x) of the space (X, di ,mx
ri ). Since di(p, x) = 1

ri d(p, x)→∞, di(q, x) = 1
ri d(q, x)→∞

and the spaces (X, di ,mx
ri ) are RCD*(r2

i K, N), so in particular RCD*(−1, N) for i large enough, we infer that

‖bip − bip‖L∞(Bdi1 (x)) + 1
mxri (B

di
1 (x))

ˆ
Bdi

1 (x)
|D(bip − bip)|2 dmx

ri → 0 as i →∞, (4.16)

‖biq − biq‖L∞(Bdi1 (x)) + 1
mxri (B

di
1 (x))

ˆ
Bdi

1 (x)
|D(biq − biq)|2 dmx

ri → 0 as i →∞. (4.17)

The combination of (4.15), (4.16) and (4.17) yields

bipxBdi
1 (x)→ b∞p xBdE

1 (O), biqxBdi
1 (x)→ b∞q xBdE

1 (O) strongly in L2.

Since by construction ∆bipxBdi
1 (x) = 0, by Proposition 2.14 we get that

bipxBdi
1 (x)→ b∞p xBdE

1 (O), biqxBdi
1 (x)→ b∞q xBdE

1 (O) strongly inW1,2.

But then the gradient estimates in (4.16)-(4.17) give that

bipxBdi
1 (x)→ b∞p xBdE

1 (O), biqxBdi
1 (x)→ b∞q xBdE

1 (O) strongly inW1,2. (4.18)

In particular, for every ρ ∈ (0, 1) we have

lim
i→∞

1
mxri (B

diρ (x))

ˆ
Bdi
ρ (x)
〈∇bip ,∇biq〉dmx

ri = 1
Lk(BdEρ (O))

ˆ
BdE
ρ (O)

〈∇b∞p ,∇b∞q 〉dLk . (4.19)

We now analyze the two sides of (4.19). Recalling (4.9), from the very de�nitions of mx
ri and of di it follows

that

lim
i→∞

1
mxri (B

diρ (x))

ˆ
Bdi
ρ (x)
〈∇bip ,∇biq〉dmx

ri = lim
i→∞

1
m(Bdriρ(x))

ˆ
Bd
ri ρ

(x)
〈∇bp ,∇bq〉dm

= ∠pxq. (4.20)

On the other hand, since b∞p , b∞q are the Busemann functions of the lines `p , `q in Rk it is readily seen that

lim
ρ↓0

1
Lk(BdEρ (O))

ˆ
BdE
ρ (O)

〈∇b∞p ,∇b∞q 〉dLk = ∠p̄Oq̄. (4.21)

Putting together (4.19), (4.20) and (4.21) �nally yields

∠p̄Oq̄ = lim
ρ↓0

1
Lk(BdEρ (O))

ˆ
BdE
ρ (O)

〈∇b∞p ,∇b∞q 〉dLk = lim
ρ↓0

lim
i→∞

1
mxri (B

diρ (x))

ˆ
Bdi
ρ (x)
〈∇bip ,∇biq〉dmx

ri

= ∠pxq,

as desired.

Step 3. We claim that

∠pxq = lim
t↓0

arccos 2t2 − d(γxpt , γxqt )2

2t2 . (4.22)

To this aim, �rst of all observe that the cosine formula in Rk ensures that

∠p̄Oq̄ = arccos 2 − dE(p̄, q̄)
2 . (4.23)
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Let now ti ↓ 0 be any sequence and set ri := ti. De�ne the rescaled spaces (X, di , x) as above, with di(·, ·) :=
r−1
i d(·, ·). Notice �rst of all that the p-GH convergence of (X, di , x) to (Rk , dE , O) ensures that

lim
i→∞

di(γxpti , γ
xq
ti ) = dE(p̄, q̄). (4.24)

It follows that

lim
i→∞

2t2i − d(γxpti , γ
xq
ti )2

2t2i
= lim
i→∞

2 − di(γxpti , γ
xq
ti )2

2
(4.24)= 2 − dE(p̄, q̄)

2
(4.23)= cos (∠p̄Oq̄)

(4.11)= cos (∠pxq) . (4.25)

Since the sequence ti ↓ 0 was arbitrary, (4.25) implies (4.22).
The thesis then follows by combining (4.11) and (4.22).

Remark 4.5. The cosine formula in Rk ensures that

∠p̄Oq̄ = arccos s
2 + t2 − dE(`p(s), `q(t))2

2st ∀s, t > 0. (4.26)

It is natural to ask if the same formula holds in the non-smooth case. This remains an open problem even for
Ricci limit spaces, so a fortiori in RCD*(K, N) spaces.
Here let us brie�y mention that with analogous arguments as above one can show the weaker statement

∠pxq = lim
s,t↓0, 1

C ≤ st ≤C
arccos s

2 + t2 − d(γxps , γxqt )2

2st , for every C ≥ 1. (4.27)

To this aim let si ↓ 0, ti ↓ 0 be any two sequences. Up to subsequences, we may assume that for all i ∈ N
it holds either 0 ≤ si ≤ ti or 0 ≤ ti ≤ si. Without loss of generality we may assume the �rst case. Up to further
subsequences we may also assume that si/ti has a limit s̄ ∈ (0, 1] as i → ∞. Let ri := ti ↓ 0 and de�ne the
rescaled spaces (X, di , x) as above, with di(·, ·) := r−1

i d(·, ·). Calling s′i := r−1
i si → s̄, t′i := r−1

i ti = 1, the p-GH
convergence of (X, di , x) to (Rk , dE , O) ensures

lim
i→∞

di(γxpsi , γ
xq
ti ) = dE(`p(s̄), q̄).

Then we have

lim
i→∞

s2
i + t2i − d(γxpsi , γ

xq
ti )2

2si ti
= lim
i→∞

(s′i)2 + (t′i)2 − di(γxpsi , γ
xq
ti )2

2s′i t′i

= lim
i→∞

(s′i)2 + (t′i)2 − dE(`p(s′i), `q(t′i))2

2s′i t′i
(4.26)= cos (∠p̄Oq̄)
(4.11)= cos (∠pxq) . (4.28)

Since the sequences si , ti ↓ 0 were arbitrary, (4.28) implies (4.27).

Acknowledgement: The �rst authorwould like to thankNicola Gigli, Shouhei Honda andKarl Theodor Sturm
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