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Abstract:By studying the group of rigidmotions, PSH(1), in the 3D-Heisenberg groupH1, we de�ne a density
and a measure in the set of horizontal lines. We show that the volume of a convex domain D ⊂ H1 is equal
to the integral of the length of chords of all horizontal lines intersecting D. As in classical integral geometry,
we also de�ne the kinematic density for PSH(1) and show that the measure of all segments with length `
intersecting a convex domain D ⊂ H1 can be represented by the p-area of the boundary ∂D, the volume of D,
and 2`. Both results show the relationship between geometric probability and the natural geometric quantity
in [10] derived by using variational methods. The probability that a line segment be contained in a convex
domain is obtained as an application of our results.
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1 Introduction
We adapt the methods of integral geometry to study the 3D-Heisenberg group, which is a non-compact CR
manifold with zero Tanaka-Webster torsion and zero Tanaka-Webster curvature. After introducing a brief ac-
count of integral geometry and CR geometry, we will explain how our formulas connect both �elds.

The roots of integral geometry date back to geometric probability and the study of invariant measures
by integration techniques, which consider the probability of random geometric objects interacting with each
other under a group of transformations as, for example, Bu�on’s needle problem and Bertrand’s paradox. In
the late nineteenth and early twentieth century, a variety of problems in geometric probability arose and led
to systematic studies in this �eld. Works of Crofton, Poincaré, Sylvester and others built up the foundation of
integral geometry. A series of articles related to the developments of geometric probability in this period was
elaborated by Maran [21, 22], Little [19], and Baddeley [1]. When the concept of invariant measure became
clear, Wilhelm Blaschke [3] and his school initiated integral geometry. Santaló’s book [26] has been one of
themost important monographs on the subject; Howard’s book [17] deals with the case of Riemannian geom-
etry; Zhou [34, 35] derived several integral formulas for submanifolds in Riemannian homogeneous spaces;
The book of Schneider and Weil [27] included the fundamental knowledge of integral geometry and recent
development of integral and stochastic geometry. Due to page restriction, we refer to the surveys [32] [33].

CR geometry initially studied the geometry of the boundary of a smooth strictly pseudo-convex domain in
Cn, and then evolved to the study of abstract CR manifolds. The foundational work was produced by Chern-
Moser [9] in 1974, and closely connected work was given byWebster [29] and Tanaka [28] independently; they
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introduced the pseudohermitian geometry, where a connection is given associated to a choice of a contact
form and curvature invariants. We point out that the relationship between CR geometry and pseudohermi-
tian geometry have the strong analogy to that between conformal geometry and Riemannian geometry [2].
Introductory surveys, emphasizing recent development of three dimensional pseudohermitian geometry, are
[30, 31].

Next we give the background of our studying target. For more details, we refer to [10, Appendix], [24], our
previous work [15], and also to [11, 30, 31]. Some additional works with a sub-Riemannian approach are, for
example, [4–6, 16, 18, 24, 25].

The 3D-Heisenberg group H1 is the Euclidean space R3, as a set, with the group multiplication (left-
invariant translation)

L(a,b,c) ◦ (x, y, t) = (a + x, b + y, c + t + bx − ay).

H1 is also a 3-dimensional Lie group. Any left-invariant vector �eld at the point (x, y, t) is a linear combination
of the following standard vector �elds:

e̊1 = ∂
∂x + y ∂∂t , e̊2 = ∂

∂y − x
∂
∂t , (1.1)

T = ∂
∂t , (1.2)

where T is called the Reeb vector �eld. The standard contact structure ξ = span{e̊1, e̊2} on H1 is a subbundle
of the tangent bundle TH; equivalently, we can de�ne ξ to be the kernel of the standard contact form

Θ = dt + xdy − ydx.

Note that Θ(T) = 1 and dΘ(·, T) = 0. The standard CR structure on H1 is the almost complex structure J
de�ned on ξ such that

J2 = −I, J(e̊1) = e̊2, J(e̊2) = −e̊1.

On ξ there exists a natural metric

LΘ(X, Y) = 1
2dΘ(X, JY) = 1

2
(

(dx)2 + (dy)2
)

:= 〈X, X〉,

called the Levi metric and the associated length is |X| =
√
〈X, X〉.

A rigid motion (called a pseudohermitian transformation) in H1 is a di�eomorphism Φ de�ned on H1
preserving the CR structure J and the contact form Θ, namely,

Φ*J = JΦ* on the contact plane ξ , Φ*Θ = Θ in H1.

Denote the group of pseudohermitian transformations by PSH(1). Similarly to the group of rigidmotions
in R3, in the previous work [15] we showed that any pseudohermitian transformation ΦQ,α ∈ PSH(1) can be
represented by a left-invariant translation LQ for Q = (a, b, c) ∈ R3 and a rotation Rα ∈ SO(2). Actually there
exists the following one-to-one correspondence between the group actions and the matrix multiplications

ΦQ,α(x, y, t) := L(a,b,c) ◦ Rα(x, y, t)←→


1 0 0 0
a cos α − sin α 0
b sin α cos α 0
c b −a 1




1
x
y
t

 . (1.3)

Notice that understanding of the structure of PSH(1) plays an important role when using themethod of mov-
ing frames (see (2.4)).

Let Σ be a smooth hypersurface in H1. Recall that a point p ∈ Σ is called singular if the contact plane
conincides with the tangent plane at p, namely, ξp = TpΣ; otherwise the point p is called regular. Let SΣ
denote the set of singular points. It is easy to see that SΣ is a closed set. At each regular point p, there exists
a vector e1 ∈ ξp ∩ TpΣ, unique up to a sign, that de�nes a one-dimensional foliation consisting of integral
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curves of e1, called characteristic curves. The vector e2 = Je1 perpendicular to e1, in the sense of Levi metric,
is called the Legendrian normal or the Gauss map [10].

Let D ⊂ H1 be a smooth domain with boundary ∂D = Σ and (ω1, ω2, Θ) be the dual basis of (e1, e2, T).
Cheng-Hwang-Malchiodi-Yang [10] studied the minimal surface in H1 via a variational approach and de�ned
the volume and the p-area respectively by

V(D) = 1
2

∫
D

Θ ∧ dΘ, (1.4)

p-area(Σ) =
∫
Σ

Θ ∧ w1. (1.5)

We point out that 1
2 is a normalization constant and this volume is just the usual Euclidean volume. While

the p-area comes from a variation of the surface Σ in the normal direction fe2 for some suitable function with
compact support on the regular points of Σ. Note that we can continuously extendΘ∧ω1 over the singular set
SΣ in such away that it vanishes on SΣ. Thus the p-area is globally de�ned on Σ. In the samepaper, the authors
also de�ned the p-mean curvature and the associated p-minimal surfaces; Malchiodi [20] summarized other
two equivalent de�nitions for the p-mean curvature. Moreover, similar notions of volume and area were also
studied in [5, 16, 24, 25], when considering a C1-surface Σ enclosing a bounded set D; in this case the area of
Σ coincides with the H1-perimeter of of D. The authors adapt the usual normal vector perpendicular to the
surface, while we consider the Legendrian normal, later used on the study of umbilic hypersurfaces in the
higher dimensional Heisenberg groups Hn, see [12].

A horizontal line in H1 is a line inR3 such that its velocity vector is always tangent to the contact plane. In
the next section, we shall show that every horizontal line L can be uniquely determined by three parameters
(p, θ, t) ∈ R × [0, 2π) × R (equivalently, by the base point B ∈ L). We frequently use the notation Lp,θ,t
to emphasize the parameters. We make use of the convention that all lines considered here are oriented.
The integral formulas for the non-oriented lines will be one-half of our cases. Following classical integral
geometry [8, 26], we show, see (2.5), that the three-form dp ∧ dθ ∧ dt is invariant under PSH(1). We have the
following de�nition of a measure for a set of horizontal lines.

De�nition 1.1. The measure of a set X of horizontal lines Lp,θ,t is de�ned by the integral over the set X,

m(X) =
∫
X

dG,

where the di�erential form dG = dp ∧ dθ ∧ dt is called the density for sets of horizontal lines.

Notice that the density dG is the only one that is invariant under motions of PSH(1). By convention, the
density will always be taken at absolute value.

Next we state some classical results and our corresponding results. Recall the classical Crofton’s formula:
for a convex domain D ⊂ R2 with boundary length `, we have ([26], Chapter 4.2)∫

{L:L∩D≠∅}

dG = 2`, (1.6)

where L = Lp,θ denotes the lines and dG = dp ∧ dθ is the density of lines in R2. In our previous work ([15]
Theorem 1.11), by using the method of moving frame for the convex domain D ⊂ H1 with boundary ∂D = Σ,
we show the Crofton-type formula ∫

{L:L∩D≠∅}

dG = 2 · p-area(Σ), (1.7)

where L denotes a horizontal line and dG is the density of set of horizontal lines in H1.
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Going back to the Euclidean plane, in Chapter 3 of [26] it is showed that the area of a convex domain
D ⊂ R2 is equal to the integral of the length of chords σ over all lines L intersecting D, namely,∫

{L:L∩D≠∅}

σ dG = π · area(D).

In a similar way, we have the following result in H1:

Theorem 1.2. Given a convex domain D ⊂ H1, denote by G the set of horizontal lines intersecting D and let σ
be the length of the intersection w.r.t. the Levi metric. Then∫

G

σdG = 2πV(D),

where dG is the density in the space of horizontal lines and V(D) is the Lebesgue volume D.

Remark 1.3. To simplify our argument, the domain is assumed to be convex. However, in general the con-
vexity is not necessary. In the general case, we will need the additional assumption that there exists �nitely
many components of intersections of lines with the domain.

Once we have de�ned the measure of sets of lines, the probability ([26] Chapter 2) that a random line L is
in the set X when it is known to be in the set Y containing X can be de�ned by the quotient of the measures

P(L ∈ X|L ∈ Y) = m(L ∩ X ≠ ∅)
m(L ∩ Y ≠ ∅) , (1.8)

where m(L ∩ Z) =
∫
L∩Z≠∅ dG is the measure of the set Z ⊂ R2 with respect to the density dG. Thus, by (1.7)

and the conditional probability (1.8), we immediately have the corollary:

Corollary 1.4. Given a convex 3-domain D in H1 with boundary ∂D = Σ, and randomly throw an oriented
horizontal line L intersecting D once a timewith chord length σ. The average chord length of the lines intersecting
D is

m(σ; L ∩ D ≠ ∅)
m(L; L ∩ D ≠ ∅) =

∫
L∩D≠∅ σdG∫
L∩D≠∅ dG

= 2πV(D)
2 · p-area(Σ) .

For our second theorem, recall that any element in the groupof rigidmotions inR2 canbe associated to an
orthogonal frame by the Lie group action. Similarly, we can have the association to PSH(1) and the frames
in H1 as follows: using the Lie group structure of H1, we de�ne the the moving frame (Q; e1(Q), e2(Q), T)
at the point Q by moving the standard frame (O; e̊1(O), e̊2(O), T) (de�ned in (1.1)) at the original O under
translations in PSH(1). Note that the contact plane ξQ = span{e1(Q), e2(Q)} for any Q ∈ H1. There exists a
one-to-one correspondence between PSH(1) and the moving frames, and thus any element in PSH(1) can be
uniquely parameterized by four variables (a, b, c, ϕ), where the point Q = (a, b, c) determines the position
of the frame, ϕ the rotation from e̊1 to e1 at Q. In the next section, we shall show that the following 4-form is
invariant under PSH(1), and hence one de�nes it as the kinematic density.

De�nition 1.5. The invariant 4-form

dK := da ∧ db ∧ dc ∧ dϕ (1.9)

is called the kinematic density for the group of motions PSH(1) in H1, where Q = (a, b, c), and ϕ is the angle
from the standard vector e̊1(Q) to the frame vector e1(Q).

When restricting the frame to a horizontal line L, and denoting by h the oriented distance from the base
point B ∈ L to Q w.r.t. the Levi metric, we shall show, see (2.7), that the invariant volume element of PSH(1)
has the alternative expression

dK = dG ∧ dh, (1.10)
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where dG is the density de�ned in De�nition 1.1.
By integrating dK over a domain in PSH(1), one gets the measure m of the corresponding set of motions

(as in [26] called the kinematicmeasure). This kinematicmeasure is related to an unexpected geometric quan-
tity, the p-area, so it is worth to believe that this approach can help us in understanding some aspects of CR
(pseudohermitian) geometry using the viewpoint of integral geometry. The following result gives an evidence
of the connection between these two �elds.

Theorem 1.6. Given a convex domain D ⊂ H1 with boundary Σ, let G` be the set of points (Q, ϕ) = (a, b, c, ϕ)
such that the segment starting at Q with direction ϕ and length |v| = ` (w.r.t. the Levi metric) meets D. Then∫

G`

dK = 2πV(D) + 2` · p-area(Σ), (1.11)

where dK is the kinematic density for the group of motions PSH(1), p-area(Σ) is the (sub-Riemannian) p-area
of the boundary Σ, and V(D) the Lebesgue volume of D.

A geometric interpretation of the integral in Theorem 1.6, which will be used later in the proof of the
theorem, is as follows: For any point (Q, ϕ), there exists a unique horizontal line L and a vector v such that v
starts at Q with direction ϕ and length |v| = `, see Figure 1. Then

∫
G`
dK represents the measure of the set of

vectors v such that the intersection of v and D is not empty.

Figure 1: Random intersections of vector v

Remark 1.7. We take for granted that (Q, ϕ) meets D (equivalently, v ∩ D ≠ ∅) in the sense of v ∩ D ≠ ∅ or
v ∩ Σ ≠ ∅. When we restrict our attention to v $ D only, the equation (1.11) becomes∫

L∩D≠∅,v⊂D

(σ − `)dG

and the measure of v ⊂ D is
m(v; v ⊂ D) = 2πV(D) − 2` · p-area(Σ).

With the measure, we immediately have the probability of containment problem.

Corollary 1.8. Let Di ⊂ H1 be convexdomainswithboundary Σi for i = 1, 2, such that D1 ⊂ D2. Theprobability
of randomly throwing a vector v with length ` w.r.t. the Levi metric in D2 intersecting D1 is

P(v ∩ D1|v ∩ D2) = 2πV(D1) + 2` · p-area(Σ1)
2πV(D2) + 2` · p-area(Σ2) .
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2 Invariants for sets of horizontal lines
In the section, we will derive the invariants for the set of horizontal lines as shown in De�nition 2.5 and the
other expression of the kinematic density for PSH(1).

Given a regular curve γ : t ∈ I 7→ H1. Its velocity can always be decomposed into the part tangent to the
contact plane ξ and the other orthogonal to ξ w.r.t. the Levi metric, namely,

γ′(t) = γ′ξ (t)︸︷︷︸
∈ξ

+ γ′T(t)︸ ︷︷ ︸
∈T

.

A horizontally regular curve is a regular curve with non-zero contact part

γ′ξ (t) ≠ 0 for all t ∈ I.

In Proposition 4.1 in [15], the authors showed that any horizontally regular curve can be parametrized by
the horizontal arc-length s such that |γ′ξ (s)| = 1. Throughout the article, we always assume that the curve (or
line) is parametrized under this condition. Moreover, if γ(s) is a curve joining points A = γ(s0) and B = γ(s1),
we have the length

length(γ) =
s1∫
s0

|γ′ξ (s)|ds. (2.1)

In particular, denote by |AB| the length of the line segment joining the points A and B.
Nowwe characterize the horizontal lines. Any horizontal line L inH1 can be uniquely determined by three

parameters (p, θ, t) ∈ R × [0, 2π) ×R, and therefore we also use the notation L = Lp,θ,t. Denote the projection
π(L) of L onto the xy-plane. It is known that any line on the plane can be determined by its distance p from
the origin and the angle θ(0 ≤ θ < 2π) of the normal with the x-axis (Figure 2). We also denote

• the footpoint b = (p cos θ, p sin θ, 0) ∈ π(L),
• the base point B: the lift of b on L,
• t: the t-coordinate of the base point B.

Since L is horizontal, by (1.1) we also have the unit vector U along L

• U = sin θ e̊1(B) − cos θ e̊2(B).

Using this, we immediately observe that the horizontal line L can be parametrized by the parameter s ∈ R
with B and U, namely,

L : B + sU = (p cos θ, p sin θ, t) + s(sin θe̊1(B) − cos θe̊2(B))
= (p cos θ + s · sin θ, p sin θ − s · cos θ, t + s(y sin θ + x cos θ)). (2.2)

Moreover, (2.2) implies that the points (x, y, z) ∈ L satisfy the conditions

p = x cos θ + y sin θ,
z = (x sin θ − y cos θ)p + t.

Therefore, we have the following expression for any horizontal line

Lp,θ,t =
{

(x, y, z) ∈ R3
∣∣∣∣ p = x cos θ + y sin θ,

z = (x sin θ − y cos θ)p + t
}
. (2.3)

Nowwe show that the 3-form dp∧dθ∧dt is invariant under PHS(1) and introduce the invariantmeasure.
Suppose thehorizonal line L′p′ ,θ′ ,t′ is obtainedby Lp,θ,t transformedunder apseudohermition transformation
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Figure 2: horizontal line Lp,θ,t

LQ ◦ Φα. By the matrix multiplication (1.3), it is easy to calculate the transformed line L′p′ ,θ′ ,t′ satisfying

L′p′ ,θ′ ,t′ :


θ′ = θ − α
p′ = p + a cos(θ − α) + b sin(θ − α)
t′ = 2p(a sin(θ − α) + b cos(θ − α)) + c + t,

(2.4)

and therefore
dp ∧ dθ ∧ dt = dp′ ∧ dθ′ ∧ dt′. (2.5)

To the end, the 3-form dp ∧ dθ ∧ dt is invariant under the rigid motions in H1. In addition, suppose that the
measure of a set X of horizontal lines is de�ned by any integral of the form

m(X) =
∫
X

f (p, θ, t)dp ∧ dθ ∧ dt (2.6)

for some function f . Following the spirit of classical integral geometry and geometric probability, the most
naturalmeasure shouldbe invariant under the groupof rigidmotions PSH(1) inH1. Ifwewish that themeasure
m(X) be equal to the measure of transformed set m(X′) = m(LQ ◦ΦαX) for any set X and any motion, by (2.4)
and (2.5), the function f must be a constant. Choosing the constant equal to one, De�nition 1.1 is obtained.

Next we derive an alternative expression of the kinematic density (1.10). Let (Q; e1(Q), e2(Q), T) be the
moving frame obtained from the standard frame (O; e̊1, e̊2, T) at the origin O by the left-invariant translation
to the point Q and the angle ϕ that makes e1(Q) with the standard vector e̊1(Q), as in Figure 3.

We observe that e2(Q) = Je1(Q) ∈ ξQ and that the angle ϕ indicates the rotation of the frame vector e1(Q)
from the vector e̊1(Q) on the contact plane ξQ. Denote the oriented distance

h = ±| ~BQ|,
w.r.t. the Levi metric, the sign depending on the direction ~BQ and the orientation of L. Since

Q = (a, b, c) = B + h(sin θ, − cos θ, p) = (p cos θ + h sin θ, p sin θ − h cos θ, t + hp),
we have 

a = p cos θ + h sin θ,
b = p sin θ − h cos θ,
c = t + hp,
ϕ = π/2 ± θ (the sign needs the orientations of line L).

Taking derivatives andmaking the wedge product, we reach the expression (1.10) of the kinematic density for
the group of motions in H1

da ∧ db ∧ dc ∧ dϕ = dp ∧ dθ ∧ dt ∧ dh = dG ∧ dh, (2.7)
which is indeed invariant under PSH(1) by (2.5).
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Figure 3: PSH(1)-action

3 Proof of Theorem 1.2
We shall prove Lemma 3.1 �rst. Take a horizontal line γ(s) and two points A = γ(s0), B = γ(s1) on L. Since L is
horizontal, B ∈ ξA ∩ ξB. If we consider the distance joining A and B de�ned as (2.1), the in�nitesimal lengths
|γ′(s)| vary depending on the Levi-metric, de�ned on di�erent contact planes ξγ(s) for all points γ(s) between
A and B. Considering B ∈ ξA, we de�ne the distance

|AB|A :=
s1∫
s0

|γ′(s)|ξAds, (3.1)

where the in�nitesimal length |γ′(s)|ξA depends only on the contact plane ξA of the initial point A. However,
both distances are exactly same.

Lemma 3.1. Given an oriented horizontal line γ(s), parametrized by horizontal arc-length s, passing through
the points A = γ(s0) to B = γ(s1). Then the two distances de�ned by (2.1) and (3.1) coincide: |AB|A = |AB|.

Proof. Note that, since γ(s) is horizontal, A ∈ ξB and B ∈ ξB. Thus, |AB|A = |AB|B. Therefore, we can always
consider any point between A and B being parameterized as the end of the vector ejecting from A by

γ(s) := A + s(sin θe̊1(A) − cos θe̊2(A)).

Clearly, γ′(s) = sin θe̊1(A)−cos θe̊2(A) is a unit vector on ξA∩ξγ(s) for any s ∈ [s0, s1], so |γ′(s)|ξA = |γ′(s)|ξγ(s) =
1 and the result follows immediately.

Now we prove Theorem 1.2.

Proof. First we observe that the slope of projection π(L) of L on xy-plane is − cot θ, which is independent of
the orientation of L. Now �xed a pair of (p, θ) and consider the cross-section of domain D and the vertical
plane along the projection π(L)

Sp,θ =
{

(x, y, t) ∈ R3; p = x cos θ + y sin θ, (x, y) ∈ π(L ∩ D), t ∈ I2 for some interval I2
}
.

Since the projection π(Sp,θ) onto the xy-plane is again π(L), we may set the �rst two coordinates of points on
Sp,θ satisfying

y = yp,θ(x) = p − x cot θ.
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Thus, for θ ≠ 0 or π, the plane Sp,θ can be parameterized by

X : (u, v) ∈ I1 × I2 7→ (x(u, v), y(u, v), t(u, v)),

for some interval I1, I2 depending the range of domain D, where

x(u, v) = u,
y(u, v) = yp,θ(u) = p − u cot θ, (3.2)
t(u, v) = v.

Now we use the following Lemma.

Lemma 3.2 ([15] Lemma 8.7). Let E = αXu + βXv be the tangent vector �eld de�ned on the regular surface
X(u, v) in H1. Then the vector E is also on the contact bundle ξ (and hence in TH1 ∩ ξ) if and only if pointwisely
the coe�cients α and β satisfy

α(tu + xyu − yxu) + β(tv + xyv − yxv) = 0. (3.3)

Since X(u, v) ∩ ξX(u,v) is an one-dimensional foliation (a horizontal line in this case) E restricted on Sp,θ,
E is a linear combination of Xu and Xv. By Lemma 3.2, we choose α := −(tv +xyv −yxv) and β := (tu +xyu −yxu)
which satisfy (3.3). Use (3.2), we have

E := E(u, v) := −(tv + xyv − yxv)Xu + (tu + xyu − yxu)Xv
= −(1 + x · 0 − y · 0)(1, y′, 0) + (0 + xy′ − y)(0, 0, 1)
= (−1, −y′, xy′ − y)
= (−1)e̊1(x, y, z) + (−y′)e̊2(x, y, z). (3.4)

By Lemma 3.1 and (3.4),

σ = |E|A = |E| (3.5)

=
∫
q∈E

√
〈E(q), E(q)〉ξq

=
∫

u∈I1

√
1 + (y′)2du

=
∫

u∈I1

| csc θ|du.

When θ = 0 or π, the set {θ = 0} ∩ {θ = π} has measure 0, which implies the density

dG = 0. (3.6)

Finally, combining both cases, (3.5) and (3.6), we have∫
Lp,θ,t∩D≠∅

σdG =
∫

θ≠0,π

σdG +
∫

θ=0,π

σdG

=
∫ ( ∫

x∈I1

| csc θ|dx
)
dt ∧ dp ∧ dθ

=
∫ ∫
x∈I1

| csc θ|dx ∧ dt ∧ (dx cos θ + dy sin θ) ∧ dθ

=
∫ ∫
x∈I1

dx ∧ dt ∧ dy ∧ dθ

= 2πV(D),
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where we have used the fact that dx ∧ dy ∧ dt is the Lebesgue volume form in R3 in the last identity. This
completes the proof.

Remark 3.3. If D consists of �nitely many simply-connected subsets, then the right-hand-side of (1.2) be-
comes the sum of the volumes of each subset.

4 Proof of Theorem 1.6
Proof. For any element in G`, there exists the corresponding vector v and the horizontal line L = Lp,θ,t such
that L intersects D at two points and v ∈ L starts from Q with direction ϕ and length |v| = `. Notice that when
vmoves along L such that v∩D ≠ ∅, the point Q also travels over the distance σ+` on L. Therefore by Theorem
1.2, (1.7), and (2.7) we have ∫

G`

dK =
∫

v∩D≠∅

dp ∧ dθ ∧ dt ∧ dh

=
∫

L∩D≠∅

(σ + `)dG

= 2πV(D) + 2` · p-area(Σ).
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