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Abstract:We apply Gromov’s ham sandwich method to get: (1) domain monotonicity (up to a multiplicative
constant factor); (2) reverse domain monotonicity (up to a multiplicative constant factor); and (3) universal
inequalities for Neumann eigenvalues of the Laplacian on bounded convex domains in Euclidean space.
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1 Introduction and the statement of main results
Let Ω be a bounded domain in Rn with piecewise smooth boundary. We denote by λD0 (Ω) ≤ λD1 (Ω) ≤ · · · ≤
λDk (Ω) ≤ · · · the Dirichlet eigenvalues of the Laplacian on Ω and by 0 = λN0 (Ω) < λN1 (Ω) ≤ λN2 (Ω) ≤ · · · ≤
λNk (Ω) ≤ · · · the Neumann eigenvalues of the Laplacian on Ω. It is known that the following two properties
for these eigenvalues hold:

1. (Domain monotonicity for Dirichlet eigenvalues) If Ω ⊆ Ω′ are bounded domains, then λDk (Ω
′) ≤ λDk (Ω)

for any k.
2. (Restricted reverse domain monotonicity for Neumann eigenvalues) If in addition Ω′ \ Ω has measure

zero then λNk (Ω) ≤ λ
N
k (Ω

′) for any k.

These two properties are direct consequence of Courant’s minimax principle (see [5]). The following two ex-
amples suggest that domain monotonicity does not hold for Neumann eigenvalues in general.

Example 1.1. Let Ω′ be the n-dimensional unit cube [ 0, 1 ]n. Then λN1 (Ω′) = 1. However, if Ω is a convex
domain in [ 0, 1 ]n that approximates the segment connecting the origin and the point (1, 1, · · · , 1) then
λN1 (Ω) ∼ 1/n.

Example 1.2. Let p ∈ [ 1, 2 ] and Bnp be the n-dimensional `p-ball centered at the origin. Suppose that rn,p is
the positive number such that vol(rn,pBnp) = 1 and set Ω′ := rn,pBnp. Then rn,p ∼ n1/p and λN1 (Ω′) ≥ c for some
absolute constant c > 0 ([27, Section 4 (2)]). If the segment in Ω′ connecting the origin and (rn,p , 0, 0, · · · , 0)
is approximated by a convex domain Ω in Ω′ then λN1 (Ω) ∼ r−2n,p ∼ n−2/p.

In this paper we study the above two properties for Neumann eigenvalues of the Laplacian on convex
domains in a Euclidean space. For two real numbers α, β we denote α . β if α ≤ cβ for some absolute
constant c > 0.
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One of our main results is the following:

Theorem 1.3. For any natural number k ≥ 2 and any two bounded convex domains Ω, Ω′ inRn with piecewise
smooth boundaries such that Ω ⊆ Ω′ we have

λNk (Ω
′) . (n log k)2λNk−1(Ω).

As a corollary we get the following inner radius estimate:

Corollary 1.4. Let Ω ⊆ Rn be a bounded convex domain with piecewise smooth boundary. For any k ≥ 2 we
have

inrad(Ω) .
n log k

√
λNk−1(B1)√

λNk (Ω)
,

where B1 is a unit ball in Rn.

We also obtain the opposite inequality to the one in Theorem 1.3:

Theorem 1.5. Let Ω, Ω′ be bounded convex domains inRn having piecewise smooth boundaries. Assume that
Ω is symmetric with respect to the origin (i.e., Ω = −Ω) and Ω ⊆ Ω′. Set v := vol Ω/ vol Ω′ ∈ [ 0, 1 ]. Then for
any natural number k ≥ 3 we have

λNk−2(Ω
′) & min

{ (log(1 − v))2
n8(log k)6 , 1

n6(log k)4
}
λNk (Ω). (1.1)

For general (not necessarily symmetric) Ω we have

λNk−2(Ω
′) & min

{ (log(1 − 2−nv))2
n8(log k)6 , 1

n6(log k)4
}
λNk (Ω). (1.2)

As a corollary of Theorems 1.3 and 1.5 we obtain

λNk (Ω
′) . (n log k)2λNk (Ω) and λ

N
k (Ω

′) & min
{ (log(1 − 2−nv))2

n8(log k)6 , 1
n6(log k)4

}
λNk (Ω)

for all k ≥ 2, which corresponds to the above properties (1) and (2) up to multiplicative constant factors. In
[22] E. Milman obtained the corresponding inequality for k = 1 (see (5.1)). Despite the fact that his inequality
is independent of dimension, our two inequalities above involve dimensional terms. However log k bounds in
the two inequalities are nontrivial (Compare with (5.2)). The case where p = 1 in Example 1.2 shows that the
n2 order in Theorem 1.3 cannot be improved. Probably there is a chance to express themultiplicative constant
factor in Theorem 1.3 in terms of the volume ratio v = vol Ω/ vol Ω′ to avoid the dependence of dimension (see
Question 5.3).

In the special case where Ω = Ω′ in Theorem 1.3 we obtain the following universal inequalities among
Neumann eigenvalues :

λNk (Ω) . (n log k)2λNk−1(Ω). (1.3)

By ‘universal’ we mean it does not depend on the underlying domain Ω itself. Payne, Pólya, and Weinberger
studied universal inequalities among Dirichlet eigenvalues ([24, 25]). Since then many universal inequali-
ties for Dirichlet eigenvalues were studied (see [1]). For Neumann eigenvalues, Liu ([19]) showed the sharp
inequalities

λNk (Ω) . k2λN1 (Ω) (1.4)

for any bounded convex domain Ω, which improves author’s exponential bounds in k in [11]. On the other
hand, one can get

λNk (Ω) & k2/nλN1 (Ω) (1.5)
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for any bounded convex domain Ω ⊆ Rn. This inequality follows from the combination of E. Milman’s result
[22, Remark 2.11] and Cheng-Li’s result [7] (see [26, Chapter III §5]). In fact E. Milman described the Sobolev
inequality in terms of λN1 (Ω) and Cheng-Li showed lower bounds of λNk (Ω) in terms of the Sobolev constant.
The Weyl asymptotic formula says that the inequality (1.5) is sharp. In particular combining (1.4) with (1.5)
we can obtain

λNk (Ω) . k2−2/nλNk−1(Ω).

Compared with this inequality our inequality (1.3) includes the dimensional term. However the dependence
on k is the best possible to author’s knowledge. It should bementioned that the author’s conjecture in [11, 12]
is λNk (Ω) . λNk−1(Ω) for any bounded convex domain Ω with piecewise smooth boundary.

In theproof of Theorems 1.3 and 1.5wewill useGromov’smethodonbisections of �nite subsets by the zero
set of a �nite combination of eigenfunctions. It enables us to get lower bounds for eigenvalues of the Laplacian
in terms of the Cheeger constants and the maximal multiplicity of a covering of a domain (Proposition 3.1).
We will try to �nd ‘nice’ convex partitions in order to get ‘nice’ lower bounds for the Cheeger constants of
pieces of the partition.

2 Preliminaries

2.1 Separation distance

Let Ω be a bounded domain in Euclidean space. For two subsets A, B ⊆ Ω we set dΩ(A, B) := inf{|x − y| | x ∈
A, y ∈ B}. We denote by µ the Lebesgue measure on Ω normalized as µ(Ω) = 1.

De�nition 2.1 (Separation distance, [13]). For any κ0, κ1, · · · , κk ≥ 0 with k ≥ 1, we de�ne the (k-)separation
distance Sep(Ω; κ0, κ1, · · · , κk) of Ω as the supremum of mini≠j dΩ(Ai , Aj), where A0, A1, · · · , Ak are any
Borel subsets of Ω satisfying µ(Ai) ≥ κi for all i = 0, 1, · · · , k.

Theorem 2.2 ([12, Theorem 1]). There exists an absolute constant c > 0 satisfying the following property. Let
Ω be a bounded convex domain in Euclidean space with piecewise smooth boundary and k, l be two natural
numbers with l ≤ k. Then we have

Sep(Ω; κ0, · · · , κl) ≤
ck−l+1√
λNk (Ω)

max
i≠j

log 1
κiκj

.

The case where k = l = 1 was �rst proved by Gromov and V. Milman without the convexity assumption
([14]). Chung, Grigor’yan, and Yau then extended the result to the case where k = l ([8, 9]). To reduce the
number l of subsets in Ω in a dimension-free way we need the convexity of Ω (see [12]).

2.2 Cheeger constant and eigenvalues of the Laplacian

For a Borel subset A ⊆ Ω and r > 0we denote by Ur(A) the r-neighborhood of A inΩ. We de�ne theMinkowski
boundary measure of A as

µ+(A) := lim inf
r→0

µ(Ur(A) \ A)
r .

De�nition 2.3 (Cheeger constant). For a bounded domain Ω in a Euclidean space we de�ne the Cheeger con-
stant of Ω as

h(Ω) := inf
A0 ,A1

max
{
µ+(A0)
µ(A0)

, µ+(A1)µ(A1)

}
,

where the in�mum runs over all non-empty disjoint two Borel subsets A0, A1 of Ω.



320 | Kei Funano

Let µ be a �nite Borel measure on a bounded domain Ω ⊆ Rn and f : Ω → R be a Borel measurable
function. A real number mf is called amedian of f if it satis�es

µ({x ∈ Ω | f (x) ≥ mf }) ≥ µ(Ω)/2 and µ({x ∈ Ω | f (x) ≤ mf }) ≥ µ(Ω)/2.

The following characterization of the Cheeger constant is due to Maz’ya and Federer-Fleming. See [22,
Lemma 2.2] for example.

Theorem 2.4 ([10], [21]). The Cheeger constant h(Ω) is the best constant for the following (1, 1)-Poincaré in-
equality:

h(Ω)‖f − mf ‖L1(Ω,µ) ≤ ‖|∇f |‖L1(Ω,µ) for any f ∈ C
∞(Ω).

Theorem 2.5 (E. Milman [23, Theorem 2.1]). Let Ω be a bounded convex domain in Euclidean space and as-
sume that Ω satis�es the following concentration inequality for some r > 0 and κ ∈ ( 0, 1/2 ) : µ(Ω \ Ur(A)) ≤ κ
for any Borel subset A ⊆ Ω such that µ(A) ≥ 1/2. Then h(Ω) ≥ (1 − 2κ)/r.

One can easily check that Theorem 2.5 has the following equivalent interpretation in terms of separation
distance.

Proposition 2.6. Let Ω be a convex domain in a Euclidean space. Then for any κ ∈ ( 0, 1/2 ) we have

Sep(Ω; κ, 1/2) ≥ (1 − 2κ)/h(Ω).

In particular we have

diamΩ ≥ 1/h(Ω).

The latter statement canbe found in [16, Theorem5.1] and [22, Theorem5.12] up to someabsolute constant.

Theorem 2.7 ([17, Theorem 1.1], [6]). Let Ω be a bounded convex domain in Rn with piecewise smooth bound-
ary. For any natural number k we have

diamΩ . nk/
√
λNk (Ω).

The Buser-Ledoux inequality asserts that
√
λN1 (Ω) & h(Ω) for any bounded convex domain Ω ⊆ Rn with

piecewise smooth boundary ([4], [18]). As a corollary of Theorem 2.7 we obtain

diamΩ . n/h(Ω). (2.1)

2.3 Voronoi partition

Let X be a metric space and {xi}i∈I be a subset of X. For each i ∈ I we de�ne the Voronoi cell Ci associated
with the point xi as

Ci := {x ∈ X | d(x, xi) ≤ d(x, xj) for all j ≠ i}.

Note that if X is a bounded convex domain Ω in a Euclidean space then {Ci}i∈I is a convex partition of Ω (the
boundaries ∂Ci may overlap each other). Observe also that if the balls {B(xi , r)}i∈I of radius r cover Ω then
Ci ⊆ B(xi , r), and thus diam Ci ≤ 2r for any i ∈ I.

3 Gromov’s ham sandwich method
In this section we explain Gromov’s ham sandwich method to estimate eigenvalues of the Laplacian from
below. Recall that the classical ham sandwich theorem in algebraic topology asserts that given three subsets
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in R3 of �nite volume, there is a plane that bisects all these subsets ([20]). Instead of bisecting by a plane,
bisecting by the zero set of a �nite combination of eigenfunctions of the Laplacian is considered in Gromov’s
ham sandwich method.

LetΩ be a bounded domain in a Euclidean space with piecewise smooth boundary and {Ai}li=1 be a �nite
covering of Ω; Ω =

⋃
i Ai. We denote byM({Ai}) themaximal multiplicity of the covering {Ai} and by h({Ai})

the minimum of the Cheeger constants of Ai, i = 1, 2, · · · , l.
Although the following argument essentially appears in [13, Appendix C+] we include the proof for com-

pleteness.

Proposition 3.1 (Compare with [13, Appendix C+]). Under the above situation, we have

λNl (Ω) ≥
h({Ai})2
4M({Ai})2

.

Sketch of Proof. We abbreviate M := M({Ai}) and h := h({Ai}). Take orthonormal eigenfunctions
f1, f2, · · · , fl, with eigenvalues λN1 (Ω), λN2 (Ω), · · · , λNl (Ω), respectively.

Step 1. Use the Borsuk-Ulam theorem to get constants c0, c1, · · · , cl such that f := c0+
∑l

i=1 ci fi bisects each
A1, A2, · · ·Al, i.e.,

µ(Ai ∩ f −1[ 0,∞ )) ≥ µ(Ai)/2 and µ(Ai ∩ f −1( −∞, 0 ]) ≥ µ(Ai)/2.

In fact, according to the Corollary in [29], in order to bisect l subsets by a �nite combination of f0 ≡
1, f1, · · · , fl, it su�ces to check that f0, f1, · · · , fl are linearly independent modulo sets of measure zero (i.e.,
whenever a0f0 + a1f1 + · · · + al fl = 0 over a Borel subset of positive measure, we have a0 = a1 = · · · = al = 0).
This is possible since the zero set of any �nite combination of f0, f1, · · · , fl has �nite codimension 1Hausdor�
measure ([2, Subsection 1.1.1]).

Step 2. Put f+(x) := max{f (x), 0} and f−(x) := max{−f (x), 0}. Then we set g± := f 2± . Note that 0 is the median
of the restriction of g± to each Ai by Step 1. Apply Theorem 2.4 to get h‖g±‖L1(Ai ,µ|Ai ) ≤ ‖|∇g±|‖L1(Ai ,µ|Ai ) for
each i.

Step 3. Use Step 2 to get

ˆ
Ω
g±dµ ≤

l∑
i=1

ˆ
Ai
g±dµ ≤

1
h
∑ˆ

Ai
|∇g±|dµ ≤

M
h

ˆ
Ω
|∇g±|dµ.

Recalling that g± = f 2± and using the Cauchy-Schwarz inequality we have
ˆ
Ω
f 2± dµ ≤

4M2

h2

ˆ
Ω
|∇f±|2dµ.

Since the zero set f −1(0) has measure zero we get
ˆ
Ω
f 2dµ ≤ 4M

2

h2

ˆ
Ω
|∇f |2dµ.

We therefore obtain
∑l

i=0 c
2
i ≤ (4M2/h2)

∑l
i=1 c

2
i λNi (Ω) and thus the conclusion of the proposition.

Remark 3.2. 1. In [13] Gromov treated the case where Ω is a closed Riemannian manifold of Ricci curvature
≥ −(n−1) and the covering consists of some balls Bi of radius ε inΩ. Instead of considering the (1, 1)-Poincaré
inequality in terms of Cheeger constants in Step 2 he proved that ‖g‖L1(Bi ,µ|Bi ) ≤ c(n, ε)‖|∇g|‖L1(B̃i ,µ|B̃i )

, where

g = f 2, c(n, ε) is a constant depending only on dimension n and ε, and B̃i is the ball of radius 2ε with the
same center of Bi.

2. The above proposition is also valid for the case where Ω is a closed Riemannianmanifold or a compact
Riemannian manifold with boundary. In the latter case we impose the Neumann boundary condition.
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As an application of Proposition 3.1 we can obtain estimates of eigenvalues of the Laplacian of closed
hyperbolic manifolds due to Buser ([3, Theorems 3.1, 3.12, 3.14]). In fact, Buser gave a partition of a closed
hyperbolic manifold and lower bound estimates of Cheeger constants of each piece of the partition.

4 Proof of main theorems
Let Ω, Ω′ be bounded convex domains in a Euclidean space. Throughout this section µ will be the Lebesgue
measure on Ω′ normalized by µ(Ω′) = 1.

Proof of Theorem 1.3. We apply Gromov’s ham sandwich method (Proposition 3.1) to bound λNk−1(Ω) from be-
low in terms of λNk (Ω

′). To apply the proposition we want to �nd a �nite partition {Ωi}li=1 of Ω with l ≤ k − 1
such that the Cheeger constant of each Ωi can be comparable with

√
λNk (Ω′).

According to Theorem 2.2 we have

Sep
(
Ω′; 1

kn ,
1
kn , · · · ,

1
kn︸ ︷︷ ︸

k times

)
≤ cn log k√

λNk (Ω′)
(4.1)

for some absolute constant c > 0. We set R := (cn log k)/
√
λNk (Ω′).

Suppose that Ω′ includes k (4R)-separated points x1, x2, · · · , xk. By Theorem 2.7 we have diamΩ′ ≤
c′nk/

√
λNk (Ω′) for some absolute constant c′ > 0. Applying the Bishop-Gromov inequality we have

µ(B(xi , R)) ≥ (R/ diamΩ′)n ≥ (c log k)n/(c′k)n

for each i. If we take a larger c in (4.1) so that (c log k)/c′ ≥ 1 we get µ(B(xi , R)) ≥ 1/kn. Since B(xi , R)’s are
2R-separated this contradicts (4.1).

Let y1, y2, · · · , yl be maximal 4R-separated points in Ω′, where l ≤ k − 1. Since Ω′ ⊆
⋃l
i=1 B(yi , 4R), if

{Ω′
i}
l
i=1 is the Voronoi partition associated with {yi} then we have diamΩ′

i ≤ 8R. Setting Ωi := Ω′
i ∩ Ω we

get Ω =
⋃l
i=1 Ωi and diamΩi ≤ 8R. Since each Ωi is convex, Proposition 2.6 gives h(Ωi) ≥ 1/(8R). Applying

Proposition 3.1 to the covering {Ωi} we obtain

λNk−1(Ω) ≥ λ
N
l (Ω) ≥ 1/{4(8R)

2} ≥ λNk (Ω
′)/(16cn log k)2,

which yields the conclusion of the theorem. This completes the proof.

In order to prove Theorem 1.5 we prove several lemmas.

Lemma 4.1 ([22, Lemma 5.2]). Let Ω, Ω′ be bounded convex domains in Rn such that Ω ⊆ Ω′. Assume that
vol Ω ≥ v vol Ω′. Then we have h(Ω′) ≥ v2h(Ω).

Lemma 4.2. Let Ω, Ω′ be bounded convex domains inRn with piecewise smooth boundaries such that Ω ⊆ Ω′.
Assume that vol Ω ≥ (1 − k−n) vol Ω′ for some natural number k ≥ 2. Then we have

(n2 log k)2λNk−1(Ω
′) & λNk (Ω).

Proof. Due to Theorem 2.2 we have

Sep
(
Ω; 1
kn ,

1
kn , · · · ,

1
kn︸ ︷︷ ︸

k times

)
≤ cn log k√

λNk (Ω)
. (4.2)

We set R := (cn2 log k)/
√
λNk (Ω). As in the proof of Theorem 1.3 we have maximal 4R-separated points

x1, x2, · · · , xl ∈ Ω such that l ≤ k − 1. We get Ω ⊆
⋃l
i=1 B(xi , 4R).
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Claim 4.3. UR(Ω) = Ω′.

Let us admit the above claim for a while. Then we have Ω′ ⊆
⋃l
i=1 B(xi , 5R). Let {Ω

′
i}
l
i=1 be the Voronoi

partition associated with {xi} then we have diamΩ′
i ≤ 10R. Proposition 2.6 gives h(Ω′

i) ≥ 1/(10R). According
to Proposition 3.1 we obtain

λNk−1(Ω
′) ≥ 1/(20R)2 = λNk (Ω)/(20cn

2 log k)2,

which implies the lemma.
Suppose that UR(Ω) ≠ Ω′. There exists x ∈ ∂Ω′ such that B(x, R) ∩ Ω = ∅. Lemma 4.1 together with

Proposition 2.6 and (2.1) show that

diamΩ′ . n/h(Ω′) . n/h(Ω) ≤ n diamΩ,

which gives the existence of an absolute constant c1 > 0 such that diamΩ′ ≤ c1n diamΩ. The Bishop-Gromov
inequality yields

µ(B(x, R)) ≥ (R/ diamΩ′)n ≥ Rn/(c1n diamΩ)n .

Since diamΩ ≤ c2nk/
√
λNk (Ω) for some absolute constant c2 > 0 (Theorem 2.7) we have

µ(B(x, R)) ≥ (c log k)n/(c1c2k)n > 1/kn ,

provided that c is a large enough absolute constant such that (c log k)/(c1c2) > 1. We thereby obtain

µ(B(x, R) ∪ Ω) = µ(B(x, R)) + µ(Ω) > 1/kn + (1 − 1/kn) = 1,

which is a contradiction.

In order to adapt to the hypothesis of Lemma 4.2 we use the following improvement of Borell’s lemma.

Theorem 4.4 ([15, Section 1 Remark]). Let Ω, Ω′ be bounded convex domains such that Ω ⊆ Ω′. Assume that
Ω is symmetric. Then for any r ≥ 1 we have

µ(Ω′ \ rΩ) ≤ (1 − µ(Ω))
r+1
2 ,

where rΩ := {rx | x ∈ Ω}.

Proof of Theorem 1.5. We �rst consider the case where Ω is symmetric. According to Theorem 4.4, setting

r := 2max
{ n log k
− log(1 − v) , 1

}
we have µ(Ω′ \ rΩ) < 1/kn. Take a bounded convex domain Ω̃ ⊆ rΩ ∩ Ω′ with piecewise smooth boundary
such that Ω ⊆ Ω̃ and µ(Ω′ \ Ω̃) < 1/kn. Since Ω̃ ⊆ rΩ Theorem 1.3 implies

(nr log k)2λNk−1(Ω̃) & r2λNk (rΩ) = λ
N
k (Ω). (4.3)

Using Lemma 4.2 we also obtain

(n2 log k)2λNk−2(Ω
′) & λNk−1(Ω̃). (4.4)

Combining the above two inequalities (4.3) and (4.4) we obtain (1.1).
For general (not necessarily symmetric) Ω, there exists a choice of a center (wemay assume here that the

center is the origin without loss of generality) such that vol(Ω ∩ −Ω) ≥ 2−n vol Ω ([28, Corollary]). By virtue of
Theorem 4.4, setting

r := 2max
{ n log k
− log(1 − 2−nv) , 1

}
we get µ(Ω′ \ rΩ) ≤ µ(Ω′ \ r(Ω ∩ −Ω)) < 1/kn. Thus applying the same proof of the symmetric case we obtain
(1.2). This completes the proof.
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5 Questions
In this section we raise several questions concerning this paper.

Question 5.1. Let Ω be a bounded convex domain inRn with piecewise smooth boundary. Then, for any natural
number k and κ0, κ1, · · · , κk > 0, can we get

Sep(Ω; κ0, κ1, · · · , κk) .
1

(log k)
√
λNk (Ω)

max
i≠j

log 1
κiκj

?

We can subtract log k terms in Theorems 1.3 and 1.5 once we get an a�rmative answer to Question 5.1
since [12, Theorem 3.4] gives

Sep(Ω; κ0, κ1, · · · , κl) ≤
ck−l+1

(log k)
√
λNk (Ω)

max
i≠j

log 1
κ1κj

for any two natural numbers l ≤ k and any κ0, κ1, · · · , κl > 0, where c > 0 is an absolute constant.

Question 5.2. Let Ω be a bounded convex domain in Rn with piecewise smooth boundary and assume that Ω
satis�es the following (k − 1)-separation inequality for some k:

Sep((Ω, µ); κ0, κ1, · · · , κk−1) ≤
1
D max

i≠j
log 1

κiκj
(∀κ0, κ1, · · · , κk−1 > 0).

Then, does there exist an absolute constant c > 0 and a convex partition Ω =
⋃l
i=1 Ωi with l ≤ k − 1 such that

µ(Ωi) ≥
1
ck and Sep((Ωi , µ|Ωi ); κ, κ) ≤

c
D log 1κ

for any κ ?

An a�rmative answer to Question 5.2 would imply the universal inequality λNk (Ω) . (log k)2λNk−1(Ω) via
Theorem 2.5 and Proposition 3.1. If both Questions 5.1 and 5.2 is a�rmative then we can obtain λNk (Ω) .
λNk−1(Ω).

Question 5.3. Let Ω, Ω′ be bounded convex domains with piecewise smooth boundaries such that Ω ⊆ Ω′.
Set v := vol Ω/ vol Ω′ ∈ [ 0, 1 ]. Can we prove λNk (Ω) ≤ f1(v)g1(log k)λ

N
k (Ω

′) and λk(Ω′) ≤ f2(v)g2(log k)λNk (Ω),
where f1 and f2 are any functions and g1 and g2 are some rational functions ?

When k = 1 E. Milman obtained

λN1 (Ω′) ≥ v4λN1 (Ω) and λN1 (Ω) & (1/ log(1 + 1/v))2λN1 (Ω′) (5.1)

(see [22, Lemmas 5.1, 5.2]). Combining this inequality with (1.4) and (1.5) we can get

λNk (Ω
′) & v4k

2
n −2λNk (Ω) and λ

N
k (Ω) & (k

1
n −1/ log(1 + 1/v))2λNk (Ω

′), (5.2)

but this does not imply an answer to Question 5.3.
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