
© 2016 Je� Cheeger et al., published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Anal. Geom. Metr. Spaces 2016; 4:104–159

Research Article Open Access

Je� Cheeger, Bruce Kleiner*, and Andrea Schioppa

In�nitesimal Structure of Di�erentiability
Spaces, and Metric Di�erentiation
DOI 10.1515/agms-2016-0005
Received October 30, 2015; accepted July 18, 2016

Abstract: We prove metric di�erentiation for di�erentiability spaces in the sense of Cheeger [10, 14, 27]. As

corollarieswe give a newproof of one of themain results of [14], a proof that the Lip-lip constant of any Lip-lip

space in the sense of Keith [27] is equal to 1, and new nonembeddability results.

Keywords: Metric measure space; bi-Lipschitz embedding; measurable di�erentiable structure; di�erentia-

bility space; metric di�erentiation

MSC: 30L99, 30L05

1 Introduction
In this paper we study the metric geometry of di�erentiability spaces in the sense of Cheeger [10, 14, 27].

We develop the in�nitesimal geometry of Lipschitz curves and Lipschitz functions, generalizing and re�ning

earlier work on spaces satisfying Poincaré inequalities and di�erentiability spaces; using this we formulate

and establish metric di�erentiation for di�erentiability spaces. We then give several applications of these

results. They include a new proof that the minimal generalized upper gradient of a Lipschitz function is its

pointwise upper Lipschitz constant, which is one of themain results of [14], an alternate proof that the Lip-lip

constant of any di�erentiability space is equal to 1 [42], and new nonembeddability results.

In order to motivate the theory and place it in context, we begin with some background. We will make

some additional historical comments at the conclusion of the introduction, after stating our results.

Metric di�erentiation for Rn

The �rst instance of metric di�erentiation was for Lipschitz maps F : Rn → Z, where Z is an arbitrary metric

space; this is due to Ambrosio in the n = 1 case and Kirchheim for general n [4, 29]. Although Rademacher’s

di�erentiability theorem for Lipschitz maps Rn → Rm does not apply in this situation, and in fact the usual

notion of di�erentiability does not even make sense since Z has no linear structure, Ambrosio and Kirch-

heim introduced a new kind of di�erentiation —metric di�erentiation— and proved that it always holds.

Metric di�erentiation associates to the map F a measurable Finsler metric, i.e. a measurable assignment

x
0
7→ ‖ · ‖

F
(x

0
) of a seminorm (here we identify the tangent space T

x
0

Rn with Rn itself), which captures

the geometry of the pullback distance function

ϱ
F

(x
1
, x

2
) = d

Z
(F(x

1
), F(x

2
)) (1.1)
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in the sense that for almost every x
0
∈ Rn, the pseudodistance ϱ

F
satis�es

ϱ
F

(x, x
0

) = ‖x − x
0
‖
F

(x
0

) + o (‖x − x0
‖RN ) . (1.2)

A slightly di�erent (and stronger) way to express metric di�erentiation is in terms of the family of pseudodis-

tances {ϱλ
F

(x
0

) : Rn ×Rn → [0,∞)}
λ∈(0,∞)

obtained by rescaling ϱ
F
centered at x

0
:

ϱ

λ

F
(x

0
)(x

1
, x

2
) = λ · ϱ

F
(x

0
+ λ

−1

(x
1

), x
0

+ λ

−1

(x
2

)) . (1.3)

For almost every x
0
, as λ →∞ the pseudodistance ϱ

λ

F

(x
0

) converges uniformly on compact subsets ofRn ×Rn

to the pseudodistance associated with the seminorm ‖ · ‖
F

(x
0

). An additional aspect of metric di�erentiation

is that for a Lipschitz curve γ : I → Rn, the length of the path F ◦ γ : I → Z is given by integrating the speed

of γ with respect to the Finsler metric ‖ · ‖
F
,

length(F ◦ γ) =

∫
I

‖γ′(t)‖
F

(γ(t)) dt , (1.4)

provided that for a.e. t ∈ I, the norm ‖ ·‖
F
is de�ned at γ(t), and (1.2) holds with x

0
= γ(t). Such curves γ exist

in abundance by Fubini’s theorem.

Like Rademacher’s theorem for Lipschitz maps Rn → Rm, metric di�erentiation for maps Rn → Z as

above can be proved by reducing to the n = 1 case. Likewise, one ingredient in our approach to metric di�er-

entiation for di�erentiability spaces is a speci�c form of the 1-dimensional case of metric di�erentiation due

to Ambrosio-Kirchheim, [8].

The Rn version of metric di�erentiation has been applied to the theory of recti�able sets and currents

in metric spaces [7, 8, 29], to the theory of Sobolev spaces with metric space targets [34], and in geometric

group theory [31, 45, 46]. As an historical note, we mention that metric di�erentiation was discovered inde-

pendently in conversations between Korevaar-Schoen and the second author in 1992-93, who were unaware

of Kirchheim’s work at the time [34].

Metric di�erentiation for Carnot groups

A generalization of metric di�erentiation to Carnot groups was established by Pauls [37]. If F : G → Z is a

Lipschitz map from a Carnot groupG equipped with a Carnot-Caratheodory metric to a metric space Z, then

for any x
0
∈ G one can apply the canonical rescaling of G to the pseudodistance ϱ

F
to produce a family of

rescaled pseudodistances

{ϱλ
F

(x
0

) : G ×G→ [0,∞)}
λ∈(0,∞)

analogous to (1.3). Pauls showed that there is a measurable assignment x
0
7→ ‖ · ‖(x

0
) of seminorms to the

horizontal subbundle of G, such that for almost every x
0
∈ G with respect to Haar measure, as λ → ∞, the

rescalings ϱ

λ

F

(x
0

) convergeoncompact subsets ofG×G to theCarnot-Caratheodorypseudodistance associated

with ‖ ·‖
F

(x
0

); however, this convergence is only asserted to hold on the subset of pairs (x
1
, x

2
) ∈ G×G lying

onhorizontal geodesics. This restriction to special pairs is necessary even in the case of theHeisenberg group,

as was shown in [30]. Pauls used his metric di�erentiation theorem to prove that nonabelian Carnot groups

cannot be bilipschitz embedded in Alexandrov spaces, generalizing an earlier result of Semmes [21] (which

was based on Pansu’s version of Rademacher’s theorem for mappings between Carnot groups). Another ap-

plication was a second proof [18] of the fact that the Heisenberg group cannot be biLipschitz embedded in L
1

(originally proved in [17]).

Di�erentiability spaces

The main goal in this paper is to generalize metric di�erentiation to a large class of metric measure spaces,

namely di�erentiability spaces. These were �rst introduced and studied in [14] without being given a name;
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see in particular, Theorem 4.38, De�nition 4.42 and the surrounding discussion. There it was shown that PI

spaces —metric measure spaces that are doubling and satisfy a Poincaré inequality in the sense of Heinonen-

Koskela [24]— are di�erentiability spaces. Di�erentiability spaces were further studied in [10, 27] (under

slightly di�erent hypotheses), where they were called spaces with a strong measurable di�erentiable struc-

ture, andLipschitz di�erentiability spaces, respectively. Examples of di�erentiability spaces includePI spaces

such as Carnot groupswith Carnot-Caratheodorymetrics, andmore generally Borel subsets of PI spaces, with

the restricted measures. We recall (see Section 2) that a di�erentiability space (X, µ) has a countable collec-

tion {(U
i
, φ

i
)} of charts, where ∪

i
U
i
has full measure in X. Also, there are canonically de�ned measurable

tangent and cotangent bundles TX, T

*

X, and for any Lipschitz function u : X → R, there is a well-de�ned

di�erential du, which is a measurable section of T

*

X.

Remark 1.5. We emphasize that the cotangent and tangent bundles are not on the same footing: the existence

of the cotangent bundle follows quite directly from de�nition of di�erentiability space, whereas the tangent

bundle is de�ned as the dual of the cotangent bundle i.e. TX = (TX

*

)

*

. It was observed in [16] that for PI

spaces, given a Lipschitz curve γ, for certain parameter values, one can de�ne a velocity vector γ′(t) ∈ Tγ(t)
X

and that such velocity vectors span the tangent space almost everywhere; in [15] “span” was upgraded to

“are dense”. As will be seen below, this new geometric characterization of tangent vectors was crucial to

subsequent developments including the papers [15], [11] and the main results of the present paper, a �rst

example being Theorem 1.7.

Remark 1.6. It is interesting to contrast the paper [6], which proves some of the results in [14] in greater gen-

erality, with some of the results proven here. While the contexts are quite di�erent, since [6] is concerned

with Sobolev spaces whereas we consider di�erentibility spaces, generalizations of the norm of the gradient

play a role both papers. Also, in both papers, some notion of curve —recti�able curves in [6] and curve frag-

ments here— as well as related notions of “directional derivative” appear. Of course the actual statements

and techniques are of necessity di�erent in spirit. This is illustrated by the example of a totally disconnected

subset S ⊂ [0, 1]

n

with positive Lebesgue measure. In this case the metric measure space (S,L S) has com-

pletely degenerate Sobolev spaces (the Sobolev norm reduces to the L

p

-norm, and the notions of gradient

they consider are all identically zero) whereas the norms considered here are simply the restrictions of the

usual norms on Rn.

For a Carnot groupGwith a Carnot-Caratheodory metric, the horizontal bundle can be canonically iden-

ti�edwith the tangent bundle TG ofG viewed as a PI space. This example indicates that in order to formulate

a version ofmetric di�erentiation for a di�erentiability space (X, µ), one needs to identify ameasurable semi-

norm on the tangent bundle TX and a family of geodesics that will play the role of the family of horizontal

geodesics. We �rst discuss these in the case of the identity map X → X, initially focussing on the measurable

seminorm on TX; the treatment in this special case may be viewed as part of the intrinsic structure theory of

X itself.

For the remainder of the introduction (X, µ) will denote a di�erentiability space.

The canonical norm on TX

We now consider several ways of de�ning a seminorm on the tangent bundle TX; as indicated above, these

will be used in the formulation of metric di�erentiation in the special case of the identity map X → X. In the

�rst, we choose a countable dense set {x
i
} ⊂ X, and let u

i
: X → R be distance function u

i
(x) = d(x, x

i
).

For every i, since the di�erential du
i
is a measurable section of the cotangent bundle, by duality it de�nes

a measurable family of linear functions on the tangent spaces, and therefore |du
i
(·)| de�nes a measurable

family of seminorms on TX; taking supremum we may de�ne

‖v‖
1

= sup

i

|du
i
(v)| .

As a variations on this, wemayde�ne ‖·‖
2
and ‖·‖

3
by replacing the collection of distance functions {u

i
}with

the collections of all distance functions and all 1-Lipschitz functions, respectively; note that this requires a
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little care since these collections are uncountable, see Lemma 2.33. Finally, it was observed in [14] that the

pointwise upper Lipschitz constant induces a canonical measurable norm on the cotangent bundle T

*

X, and

by duality this yields a norm ‖ · ‖
4
on TX.

Theorem 1.7 (See Section 6). The seminorms described above agree almost everywhere; more precisely, any

two instances of any one of the four constructions above agree almost everywhere. In particular, they are all

norms, and ‖ · ‖
1
is independent of the choice of the countable dense subset.

We will henceforth use ‖ · ‖ denote the norms ‖ · ‖
i
, 1 ≤ i ≤ 4 on the full measure set where they are

well-de�ned and agree.

Generic curves and pairs

We now discuss the role of curves in di�erentiability spaces. For this we �x a particular choice of charts

{(U
i
, φ

i
)} as above. If γ : I → X is a Lipschitz curve, then one would like to make sense, for almost every

t ∈ I, of the velocity γ′(t) and its norm ‖γ′(t)‖, where ‖ · ‖ is the norm from Theorem 1.7 (compare (1.4)).

Clearly this is impossible for an arbitrary curve γ, since it could lie entirely in the complement of the set

where the tangent bundle TX and the norm are well-de�ned. To address this, we work with generic curves,

and generic pairs. Roughly speaking (see Section 3 for the precise de�nition) if γ : I → X is Lipschitz curve

and t ∈ I, then the pair (γ, t) is generic if for some chart (U
i
, φ

i
) of the di�erentiable structure, the time t is:

• A Lebesgue density point of the inverse image γ−1

(U
i
).

• An approximate continuity point of the measurable function (φ
i
◦ γ)

′
: I → Rni .

• Adensity point of γ−1

(Y), where Y ⊂ X is a fullmeasure subset of∪
i
U
i
where the norm ‖·‖ iswell-de�ned.

The curve γ is generic if the pair (γ, t) is generic for almost every t ∈ I. It follows readily from the de�ni-

tions that for any generic pair (γ, t), both the velocity vector γ′(t) ∈ TX and its norm ‖γ′(t)‖ are well-de�ned.

More generally, we may use essentially the same notions when γ is a curve fragment rather than a curve, i.e.

a Lipschitz map γ : C → X, where C ⊂ R is closed subset; this additional generality is essential because a

di�erentiability spacemight have no nonconstant Lipschitz curves. Also, if F and C are countable collections

of Lipschitz functions and bounded Borel functions respectively, we may impose the additional requirement

that t is an approximate continuity point of (f ◦ γ)

′
and u ◦ γ for all f ∈ F, u ∈ C.

Metric di�erentiation along curves

Using the notions of genericity above, we can formulate one aspect of metric di�erentiation, which is a state-

ment about curve fragments. This uses the concept of the length of a curve fragment, which is straightforward

extension of the length of a curve.

Theorem 1.8. Suppose γ : C → X is a curve fragment.

(1) If (γ, t) is a generic pair, then t is a point ofmetric di�erentiability of γ in the sense that (1.3) holdswith F = γ,

x
0

= t, and for pairs of points x
1
, x

2
where the right-hand side is de�ned, and moreover ‖γ′(t)‖ = ‖ ∂

∂t

‖γ(t).

(2) If γ is generic, then the length of γ is given by

length(γ) =

∫
C

‖γ′(t)‖dL ,

where ‖ · ‖ is the norm of Theorem 1.7.
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Theorem 1.8 is essentially just an application of Theorem 1.7, and the method of proof of the 1-

dimensional version of metric di�erentiation given in [8], which exploits a countable collection of distance

functions as in the de�nition of ‖ · ‖
1
; See (2.5) and Theorem 4.3.

Remark 1.9. We point out that unlike in the Carnot group case (and in particular Rn), in a di�erentiability

space (for instance the Laakso spaces [35]) one can have, for a full measure set of points x ∈ X, two generic

pairs (γ
1
, t

1
), (γ

2
, t

2
) such that γ

i
(t
i
) = x, the velocity vectors γ′

1
(t

1
), γ′

2
(t

2
) coincide, but the curves are not

tangent to �rst order in the sense that lim sup
s→0

d(γ
1

(t
1

+s),γ
2

(t
2

+s))

s

> 0. Thus it somewhat surprising that the

tangent vector alone controls the speed of the curve.

The density of generic velocities in TX, and consequences

While the de�nition of genericity is convenient for stating results about individual curve fragments, in order

to use it in statements about (X, µ) that hold at almost every point, such as Theorem 1.8, it is crucial to know

that generic curve fragments exist in abundance. This is not at all obvious because the de�nition of a dif-

ferentiability space is based on the behavior of Lipschitz functions and does not involve curves explicitly; in

particular it is not even clear why X should contain any curve fragments with positive length. To deduce the

needed abundance, we invoke Bate’s fundamental work on di�erentiability spaces and Alberti representa-

tions (see Section 2.3 for the de�nition). Bate’s work shows that one can characterize di�erentiability spaces

by means of di�erentiability of Lipschitz functions along curve fragments. The main consequence that we

will use here is that for µ-a.e. p ∈ X, the set of generic velocity vectors is dense in T
p
X (see Theorem 5.3). Here

a generic velocity vector is the velocity vector γ′(t) ∈ Tγ(t)
X of a generic pair (γ, t).

Theorem 1.7 and the density of velocity vectors leads directly to the following:

Corollary 1.10. If u : X → R is a Lipschitz function, then for µ-a.e. p ∈ X, the pointwise upper Lipschitz

constant Lip u(p) is the supremal normalized directional derivative of u over generic pairs (γ, t) with γ(t) = p:

Lip u(p) = sup

{
(u ◦ γ)

′
(t)

‖γ′(t)‖
=

(u ◦ γ)

′
(t)

‖ ∂
∂t

‖γ(t)

| (γ, t) generic, γ(t) = p, γ′(t) ̸= 0

}
.

Corollary 1.10has two further consequences. The�rst is a newproof of the characterization of theminimal

generalized upper gradient in PI spaces as the pointwise Lipschitz constant (see Section 6.3); this was one

of the main results in [14]. The second is a new proof of the following recent result of the third author (see

Section 6.2).

Theorem 1.11 ([42]). If (X, µ) is a di�erentiability space, and u : X → R is a Lipschitz function, then for µ-a.e.

p ∈ X we have Lip u(p) = lip u(p). Here lip u(p) is the pointwise lower Lipschitz constant (De�nition 2.25).

We recall that [27] introduced the Lip-lip-condition for a metric measure space, which says that for some

C ∈ R, and every Lipschitz function u : X → R, the upper and lower pointwise Lipschitz constants sat-

isfy Lip u ≤ C lip u almost everywhere. Keith showed that under mild assumptions on the measure, a metric

measure space satisfying a Lip-lip-condition is a di�erentiability space. Combining this with Theorem 1.11, it

follows that one may always take C = 1. We note that when (X, µ) is PI space, or more generally a Borel sub-

set of a PI space with the restricted measure, it followed from the earlier work [14] that Lip u = lip u almost

everywhere. These results indicate a strong similarity between PI spaces and di�erentiability spaces.

For more discussion of these results we refer the reader to the corresponding Sections.

The structure of blow-ups

For a general di�erentiability space, there is no natural rescaling as in the Carnot group case, so to formulate

an analog of the convergence of the rescaled pseudodistances (1.3), we consider sequences of rescalings of X
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with the measure µ suitably renormalized, and take pointed Gromov-Hausdor� limits of the metric measure

spaces, as well as the chart functions and Alberti representations. We give a brief and informal account of

this here, and refer the reader to Section 7 for more discussion. For simplicity, in the following statement we

assume in addition that X is a doubling metric space.

Theorem 1.12. For µ-a.e. x ∈ X, if {λ
j
} is any sequence of scale factors with λ

j
→∞, and x ∈ U

i
, then there is

a sequence {λ′
j

} such that the sequence

{(λ
j
X, λ

′
j
µ, x)

φ
i−→ (λ

j
Rni , φ

i
(x))}

of pointed rescalings of the chart φ
i

: X → Rni subconverges in the pointed measured Gromov-Hausdor� sense

to a pointed blow-up map

φ̂
i

: (
ˆ
X, µ̂, *)→ (T

x
X, 0) ,

where (
ˆ
X, µ̂) is a doubling metric measure space. Moreover:

(1) When T
x
X is equipped with the norm ‖ · ‖ of Theorem 1.7, then the map φ̂

i
:

ˆ
X → T

x
X becomes a metric

submersion (see De�nition 1.13 below).

(2) For every unit vector v in the normed space (T
x
X, ‖ ·‖), there is an Alberti representation of µ̂ whose support

is contained in the collection of unit speed geodesics γ : R → ˆ
X with the property that φ̂

i
◦ γ : R → T

x
X

has constant velocity v; furthermore, the measure associated to each such γ is just arclength. This Alberti

representation is obtained by blowing-up suitable Alberti representations in X.

De�nition 1.13. A map f : Y → Z between metric spaces is a metric submersion if it is a 1-Lipschitz surjec-

tion, and for every y
1
∈ Y, z

2
∈ Z, there is a y

2
∈ f −1

(z
2

) such that d(y
1
, y

2
) = d(f (y

1
), z

2
). Equivalently,

given any two �bers f

−1

(z
1

), f

−1

(z
2

) ⊂ Y, the distance function from the �ber f

−1

(z
1

) is constant and equal

to d(z
1
, z

2
) on the other �ber f

−1

(z
2

).

To aid the reader’s intuition, it might be helpful to look at the example (R2

,L2

), where onR2

we consider

the l

1

-norm; as this norm is not strictly convex, one can obtain an Alberti representation of L2

by using

unit-speed geodesics in L2

with corners, i.e. geodesics which do not lie in straight lines. Blowing-up such

representations at a generic point, one obtains an Alberti representation of L2

whose transverse measure is

concentrated on the set of straight lines in R2

.

There are precursors to Theorem 1.12 in [14] in the case of PI spaces. In that case the blow-ups (tangent

cones) are also PI spaces, the coordinate functions blow-up to generalized linear functions, and [14] proved

the surjectivity of the canonical map Y → T
x
X. Distinguished geodesics of a di�erent sort were discussed in

[14], namely the gradient lines of generalized linear functions; however, unlike the curves in the support of

the Alberti representations of Theorem 1.12 (2), these need not be a�ne with respect to the blow-up chart φ̂
i
.

Remark 1.14. The third author [42] and David [22] also have results related to Theorem 1.12 (1). They show

that certain blow-up maps are Lipschitz quotient maps, which is a weaker version of the metric submersion

property. The paper [42] is concerned with the relationship between Weaver derivations [44] and Alberti rep-

resentations without the assumption that one has a di�erentiability space, so the setup there is much more

general than the one considered here. We point out that our results in Section 7 have natural counterparts in

that general context, under the assumption that µ is asymptotically doubling. We note that one of the main

ingredients in Theorem 1.12 is a procedure for blowing-up Alberti representations, which has other applica-

tions. In particular, it allows one to blow-up Weaver derivations under the assumption that the background

measure is asymptotically doubling. We point out that, as the metric measure space X does not need to pos-

sess a groupof dilations, it is not trivial to �nda correctway to rescale derivations andpass to a limit; however,

by taking advantage of the representation of Weaver derivations in terms of Alberti representations proven

in [42], one can use Theorem 7.18 to blow-up a derivation at a generic point. Moreover, as the blown-up Al-

berti representation is concentrated on the set of geodesic lines, the blown-up derivation corresponds to a

1-normal current (in the sense of Lang) without boundary. We refer the reader to Section 7 (in particular

Theorem 7.22 and Remark 7.2) for more details.
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Theorem 1.12 implies that the blow-up of any Lipschitz function at a generic point is harmonic, in the

following sense.

De�nition 1.15. Suppose (W , ζ ) is proper metric measure space, where ζ is a locally �nite Borel measure.

Then a Lipschitz function u : W → R is p-Lip-harmonic if for every ball B(x, r) ⊂ W, and every Lipschitz

function v : W → R that agrees with u outside B(x, r), we have∫
B(x,r)

(Lip v)

p

dµ̂ ≥

∫
B(x,r)

(Lip u)

p

dµ̂ .

Theorem 1.12 yields:

Corollary 1.16. Suppose u : X → R is a Lipschitz function. Then for µ a.e. x ∈ X, for any blow-up sequence as

in Theorem 1.12 there is a blow-up limit û : Y → R such that:

(1) û is p-Lip-harmonic for all p ≥ 1.

(2) For any y ∈ Y, r ∈ [0,∞) we have var(u, y, r) = r · Lip(u)(x), where var(u, y, r) is the variation of û over

B(y, r):

var(u, y, r) = sup{|u(z) − u(y)| | z ∈ B(y, r)} .

In particular, Lip(û)(y) = lip(û)(y) = Lip(u)(x) for all y ∈ Y, and Lip(u)(x) is also the global Lipschitz

constant of û.

We remark that in the terminology of [27, Sec. 6], part (2) of the corollary says that blow-ups are 1-

quasilinear; this re�nes [27, Sec. 6], where it was shown that blow-ups are K-quasilinear for some K.

It is an open question whether a blow-up of a di�erentiability space must be a PI space, or even a dif-

ferentiability space. Corollary 1.16 may be compared with the result from [14], which asserts that blow-ups

of Lipschitz functions are generalized linear functions —p-harmonic functions with constant norm gradient.

The proof in [14] is quite di�erent however —it is based on asymptotic harmonicity and breaks down in dif-

ferentiability spaces.

The results above all speak to the broader topic of the in�nitesimal structure of di�erentiability spaces.

There are a number of open questions here. The present state of knowledge makes it di�cult to formulate

compelling conjectures or questions in a precise form, but one may ask the following:

Question 1.17. If (X, µ) is a di�erentiability space, is there a countable collection {U
i
} of Borel subsets of X,

such that µ(X \ ∪
i
U
i
) = 0 and every U

i
admits a measure-preserving isometric embedding in a PI space?

If the answer is yes, then blow-ups of di�erentiability spaces at generic points will also be PI spaces, so one

may approach this question by trying to verify that blow-ups have various properties of PI spaces, such as

quasiconvexity, a di�erentiable structure, etc. It is of independent interest to gain a better understanding of

the structure of blow-ups in the PI space case. Known examples suggest that the blown-up Alberti represen-

tations may have accessibility properties similar to the accessibility one has in Carnot groups.

Remark 1.18. Since the preprint version of this paper was posted, there has been signi�cant progress on these

issues. It was shown in [43] that at almost every point, any blow-up of a di�erentiability space is again a dif-

ferentiability space. It was shown in [12] that at almost every point, every blow-up of an RNP di�erentiabil-

ity space —a metric measure space satisfying a variant of the di�erentiability space condition for Lipschitz

functions taking values in Banach spaces with the Radon-Nikodym Property— satis�es a non-homogeneous

Poincaré inequality, and consequently is a quasiconvex RNP di�erentiability space; it was also shown [12]

that RNP di�erentiability spaces may be characterized by quantitative connectedness properties of universal

Alberti representations, and by asymptotic non-homogeneous Poincaré inqualities.



In�nitesimal Structure of Di�erentiability Spaces, and Metric Di�erentiation | 111

The in�nitesimal geometry of Lipschitz maps

We now return to the general case of metric di�erentiation. Consider a Lipschitz map F : X → Z, where Z is

any metric space, and let ϱ = ϱ
F
be the pullback distance function (1.1). Our results in this case parallel what

has been discussed above for the special case of the identity map id
X

: X → X, so we will be brief and focus

on the novel features; see Section 8 for the details.

Themap F gives rise to a distinguished subset of the Lipschitz functions on X, namely the set of pullbacks

u ◦ F, where u : Z → R is Lipschitz, or equivalently, the set of functions v : X → R that are Lipschitz with

respect to the pseudodistance ϱ.

Theorem 1.19 (Theorem 8.6). There is a canonical subbundle W
ϱ
⊂ T

*

X such that the di�erential of any ϱ-

Lipschitz function v : X → R belongs to W
ϱ
µ-almost everywhere. Moreover, for any countable dense subset

D
X
⊂ X, the set of di�erentials of the corresponding ϱ-distance functions spanW

ϱ
.

Onemay construct several seminorms on TX analogous to the seminorms ‖ · ‖
j
, 1 ≤ j ≤ 4, of Theorem 1.7.

For instance, given a countable dense subset D
X
⊂ X, we may de�ne a seminorm by

‖ · ‖
1,ϱ

= sup{|dρ
x
| | x ∈ D

X
} ,

where ϱ
x
is the ϱ-distance from x; analogs of the other three seminorms are de�ned similarly, using the pseu-

dodistance ϱ instead of the distance function d
X
.

Theorem 1.20 (Theorem 8.24). The seminorms agree almost everywhere, giving rise to a canonical seminorm

‖ · ‖
ϱ
on TX.

Unlike in the case of the identitymap, when ϱ = d
X
, the canonical seminorm need not be a norm. Instead

it induces a norm on the quotient bundle TX/W⊥
ϱ

and a dual norm ‖ · ‖*
ϱ
on the canonical subbundle W

ϱ
⊂

T

*

X; hereW⊥
ϱ
⊂ TX is the annihilator of theW

ϱ
⊂ T*X, .

There are two di�erent ways to formulate metric di�erentiation in terms of blow-ups. In the �rst, we

re�ne Theorem 1.12 by bringing in the sequence of rescaled pseudodistances {λ
j
ϱ} as well. After passing to

a subsequence, these will Gromov-Hausdor� converge (in a natural sense) to a limiting pseudodistance ϱ̂ on

Y. Then in addition to conclusions (1) and (2) of Theorem 1.12, we have:

(3) When Y and T
p
X are equipped with the pseudodistance ϱ̂ and the seminorm ‖ · ‖

ϱ
of Theorem 1.20 re-

spectively, the map φ̂
i

: Y → T
p
X is a metric submersion.

(4) For every unit vector v in the normed space (T
p
X, ‖ · ‖), there is an Alberti representation of µ̂ whose

support is contained in the collection of curves γ : R → Y with the property that φ̂
i
◦ γ : R → T

p
X has

constant velocity v, γ is a unit speed d
Y
-geodesic, and a constant ‖v‖

ϱ
-speed ϱ̂-geodesic.

A second way to formulate the blow-up assertion is to take an ultralimit of the map F : X → Z. We refer

the reader to Section 8.3 for the statements.

One consequence of (4) is that the blown-up Alberti representations appearing in Theorem 1.12 (2) may

be viewed as invariants of the di�erentiability space structure, in the following way. The de�nitions readily

imply that if (X, µ) is a di�erentiability space, (Z, ν) is a metric measure space, and F : (X, µ) → (Z, ν) is a

bilipschitz homeomorphism that is alsomeasure class preserving in the sense that pushforwardmeasure F
*
µ

and ν are mutually absolutely continuous, then (Z, ν) is also a di�erentiability space. When X is doubling,

for almost every p ∈ X, we can then take a Gromov-Hausdor� limit of the the sequence of rescalings of F as

in Theorem 1.12, to obtain a bilipschitz homeomorphism

ˆ
F : (

ˆ
X, p̂) −→ (

ˆ
Z,

ˆ
F(p̂)) .

This blow-up map
ˆ
F will preserve the blow-up measures up to scale, and will preserve the blow-up Alberti

representations from Theorem 1.12(2) up to a change of speed that depends only on the choice of tangent

vector v.
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Applications to embedding

In Section 9 we apply metric di�erentiation to Lipschitz maps between Carnot groups, Alexandrov spaces

with curvature bounded above or below, and the inverse limit spaces in [20], showing that such maps are

strongly constrained on an in�nitesimal level.

Further discussion

We nowmake some remarks about the evolution of some of the main ideas in this paper —generic velocities,

the proof of abundance, the structure of blow-ups, and their distinguished geodesics.

While [14] clari�ed many points at the foundation of PI spaces, the role of curves remained somewhat

mysterious, and in particular velocity vectors to curves were not considered there. In fact, although Lips-

chitz curves were used in the original de�nition of a PI space by Heinonen-Koskela (which is based on upper

gradients) there is an equivalent de�nition in which curves do not appear at all [26].

The �rst appearance of tangent vectors to curves in the context of PI spaces was in [16]. There a notion

similar to generic velocity vectors was introduced, and it was shown that they span the tangent space at a

typical point; in addition, therewas a new characterization of theminimal generalized upper gradient, which

may be viewed as a precursor to Corollary 1.10. Metric di�erentiation for PI spaces was announced in [16,

p.1020]. This was work of the �rst two authors, which led to an unpublished account of metric di�erentiation

[15] that was similar in several respects to the present paper. For instance, it used a notion of generic velocity

vectors, and contained a blown-up statement like Theorem 1.12 involving a distinguished family of geodesics

with constant velocity in the blown-up chart; however, it did not use Alberti representations.Wemention that

is easy to see that the collection of nongeneric Lipschitz curves γ : I → X has zero p-modulus, for every p. This

yields a weak form of abundance of generic curves in the PI space case. A key ingredient in [15] was a proof

of the density of the directions of generic velocity vectors based on a much deeper argument that borrowed

ideas—a renorming argument and the equality Lip u and theminimal generalized upper gradient— from [14].

Bate’s beautiful work on Alberti representations [10, 11] greatly strengthened the connection between

curves and di�erentiability, providing several di�erent alternate characterizations of di�erentiability spaces

in terms of Alberti representations. His approach was partly motivated by the work of Alberti-Csornyei-Preiss

on di�erentiability for subsets of Rn, and an observation of Preiss that the characterization of the minimal

generalized upper gradient in [16] implied the existence of Alberti representations for PI spaces [11, Sec. 10].

When [10] appeared, the third author used it to give a proof of Lip = lip based on a renorming construc-

tion, without being aware of the contents of [15]. Independently, the �rst two authors recognized that [10]

could be used to give a stronger and more general treatment of metric di�erentiation, and proposed writing

the present paper.

2 Preliminaries

2.1 Standing assumptions and review of di�erentiability spaces

Throughout this paper, the pair (X, µ) will denote a di�erentiability space; this means that (X, d
X

) is a com-

plete, separable metric space, µ is a Radon measure, and the pair (X, µ) admits a measurable di�erentiable

structure as recalled below, cf. [14, 27].

We brie�y highlight the main features of a di�erentiability space, see below for more discussion:

(1) There is a countable collection of charts {(U
α
, φ

α
)}
α
, where U

α
⊂ X is measurable and φ

α
is Lipschitz,

such that X \(∪
α
U
α

) is µ-null, and each real-valued Lipschitz function f admits a �rst order Taylor expan-

sion with respect to the components of φ
α

: X → RNα at generic points of U
α
, i.e. there exist a.e. unique
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measurable functions

∂f

∂φ
i

α

on U
α
such that:

f (x) = f (x
0

) +

N
α∑

i=1

∂f

∂φ
i

α

(x
0

)

(
φ

i

α
(x) − φ

i

α
(x

0
)

)
+ o

(
d
X

(x, x
0

)

)
(for µ-a.e. x

0
∈ U

α
). (2.1)

(2) There are measurable cotangent and tangent bundles T

*

X and TX (see also subsection 2.5). The �bres

of T

*

X are generated by the di�erentials of Lipschitz functions, and the tangent bundle of TX is de�ned

formally by duality: part of the motivation of the present work is to give a concrete description of TX by

using velocity vectors of Lipschitz curves.

(3) Natural dual norms ‖·‖
Lip

and ‖·‖*
Lip

on T

*

X and TX respectively. The norm ‖·‖
Lip

is induced by the point-

wise upper Lipschitz constant, i.e. for any real-valued Lipschitz functions f we have ‖df‖
Lip

= Lip f (x)

for µ-a.e. x ∈ X.

We recall that Lip f (x) denotes the (upper) pointwise Lipschitz constant of f at x, that is:

Lip f (x) = lim sup

r↘0

sup

{∣∣
f (y) − f (x)

∣∣
r

: d
X

(x, y) ≤ r

}
. (2.2)

We now give a brief review of some de�nitions from [14, 27]; an exposition can be found in [33]. Let (Z, ν)

be ametricmeasure space. LetU be a (countable) collection of Lipschitz functions on Z. ThenU isdependent
at x ∈ Z if some �nite nontrivial linear combination v of elements of U is constant to �rst order at x, i.e.

|v(y) − v(x)| = o(d
X

(x, y))). Alternatively, one can say that the pointwise upper Lipschitz constant Lip v of v

vanishes at x. The dimension of U at x is the supremal cardinality of a subset that is linearly independent

at x; the dimension function dimU : Z → N ∪ {∞} is Borel whenever U is a countable collection. Suppose

that U ⊂ Z is a Borel set with positive ν-measure, and that φ : U → Rn is Lipschitz. The pair (U, φ) is a

di�erentiability chart (or simply chart) if the component functions φ
1
, . . . , φ

n
of φ are independent at ν-

a.e. x ∈ U, and if for each real-valued Lipschitz function f , the (n + 1)-tuple (φ1
, . . . , φ

n
, f ) is dependent at

ν-a.e. x ∈ U. In particular, there are, unique up to ν-null sets, Borel functions

∂f

∂φ
i

: U → R such that the

Taylor expansion (2.1) holds for ν-a.e. x
0
∈ U; in this case we also say that f is di�erentiable at x

0
with

respect to the {φ
i
}n
i=1

.

Ametricmeasure space (Z, ν)admits ameasurabledi�erentiable structure if there exists an countable

collection of charts

{
(U

α
, φ

α
)

}
α

such that Z \ (∪
α
U
α

) is ν-null. Without loss of generality, we will always

assume that for each pair (α, β), at each point of U
α
∩ U

β
the functions φ

α
are di�erentiable with respect to

the functions φ
β
.

One says that ametric measure space (Z, ν) is (almost everywhere) �nite dimensional if for any count-

able collection U of Lipschitz functions, the dimension dimU is �nite almost everywhere. It follows from a

selection argument [14, 27] that when ν is σ-�nite, then (Z, ν) admits a measurable di�erentiable structure if

and only if it is �nite dimensional. Thus, apart from being a standard condition on a measure, σ-�niteness is

a natural assumption in the present topic. As the measure ν only enters through its sets of measure zero, one

really only cares about the measure class of ν; hence if ν is σ-�nite, then without loss of generality one may

take ν to be �nite.

We �nally give a brief justi�cation of why we assume X to be complete in the de�nition of a di�eren-

tiability space, which was also a working assumption in [10, 13]. Suppose (Z, ν) is a metric measure space,

where Z is not necessarily complete. Denote by
¯
Z its completion, and let ν̄ be the pushforward of ν under the

inclusion Z → ¯
Z. Then any Lipschitz function u ∈ Lip(Z) extends uniquely to

¯
Z, and since Z is dense in

¯
Z,

the notions of dependence and dimension for a collection U ⊂ Lip(Z) at any x ∈ Z agree with the notions for

the corresponding collection
¯U ⊂ Lip(

¯
Z). Hence (Z, ν) has a measurable di�erentiable structure if and only if

(
¯
Z, ν̄) has a measurable di�erentiable structure.
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2.2 The metric derivative for 1-recti�able sets

Let Z be a separable metric space and denote by d
Z
the metric on Z. We say that a pseudometric ϱ on Z is

Lipschitz compatible if there is a nonnegative constant C such that:

ϱ ≤ Cd
Z

; (2.3)

we say that a function f : Z → W is ϱ-Lipschitz if there is a nonnegative C such that:

d
W

(f (z
1

), f (z
2

)) ≤ Cϱ(z
1
, z

2
) (∀ z

1
, z

2
∈ Z). (2.4)

Note that ϱ-Lipschitz functions are necessarily d
Z
-Lipschitz; when referring to the background metric d

Z
we

will simply use the term Lipschitz. We denote by H 1

the 1-dimensional Hausdor� measure on Z and by H 1

ϱ

the 1-dimensional Hausdor� measure associated to the pseudometric ϱ.

We now recall metric di�erentiation results of [8, 9, 29] in the case of 1-recti�able sets.

Let Y be a Lebesgue measurable subset of R and let γ : Y → Z be a Lipschitz map. We �x a countable

dense subset {z
i
} of Z, and let u

i
be the pullback of the pseudodistance function ϱ

z
i

(·) = ϱ(·, z
i
) by the map

γ. Then γ has a ϱ-metric di�erential ϱ-mdγ : Y → [0,∞), which is uniquely determined for L1

a.e. t ∈ Y,
and which has the following properties:

(MD1) Rescalings of the pullback pseudometric γ*ϱ at t converge uniformly on compact sets to ϱ-mdγ(t) dR,

that is, the Euclidean distance scaled by the factor ϱ-mdγ(t).

(MD2) Consider a point t ∈ Y such that:

(1) The point t is a Lebesgue density point of Y;

(2) The derivatives of the functions {u
i
}
i
exist at t;

(3) The derivatives {u′
i

}
i
are approximately continuous at t;

(4) The function sup
i
|u′
i

| is approximately continuous at t.

Then the ϱ-metric di�erential exists at t and is given by:

ϱ-mdγ(t) = sup

i

∣∣
u

′
i
(t)

∣∣
. (2.5)

(MD3) One has an area formula [29, Thm. 7]:∫
Z

#

{
t ∈ Y : γ(t) = z

}
dH 1

ϱ
(z) =

∫
Y

ϱ-mdγ(t) dL1

(t). (2.6)

In the case in which the metric di�erential refers to the metric d
Z
we will use the symbol md γ instead of

d
Z
-mdγ.

2.3 Alberti representations

Alberti representations were introduced in [1] to prove the so-called rank-one property for BV functions; they

were later applied to study the di�erentiability properties of Lipschitz functions f : RN → R [2, 3] and have

recently beenused to obtain a description ofmeasures in di�erentiability spaces [10].We�rst give an informal

de�nition.

An Alberti representation of a Radonmeasure µ is a generalized Lebesgue decomposition of µ in terms

of 1-recti�able measures: i.e. one writes µ as an integral:

µ =

∫
νγ dP(γ), (2.7)

where {νγ} is a family of 1-recti�able measures. The standard example is o�ered by Fubini’s Theorem; given

x ∈ RN−1

, denote by γ(x) the parametrized line inRN given by γ(x)(t) = x+te
N
; then anAlberti representation
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of the Lebesgue measure LN is given by:

LN =

∫
RN−1

H 1

γ(x)

dLN−1

(x). (2.8)

Tomake the previous account more precise we introducemore terminology. For more details we refer the

reader to [10] and [42, Sec. 2.1]; note however, that we slightly diverge from the treatments in [10, 42] because

we discuss also unbounded 1-recti�able sets: the need to do so becomes apparent in Section 7.

De�nition 2.9. A fragment in X is a Lipschitz map γ : C → X, where C ⊂ R is closed. The set of fragments

in X will be denoted by Frag(X).

We need to topologize Frag(X); let F(R×X) denote the set of closed subsets ofR×X with the Fell topology

[25, (12.7)]; we recall that a basis of the Fell topology consists those sets of the form:{
F ∈ F(R × X) : F ∩ K = ∅, F ∩ U

i
̸= ∅ for i = 1, . . . , n

}
, (2.10)

where K is a compact subset ofR × X, and {U
i
}n
i=1

is a �nite collection of open subsets ofR × X. Note that the

empty set ∅ is included in F(R×X) and that, if X is locally compact, the topological space F(R×X) is compact.

We now consider the set F
c
(R × X) = F(R × X) \ {∅} which is, if X is locally compact, a K

σ
, i.e. a countable

union of compact sets. Each fragment γ can be identi�ed with an element of F
c
(R × X) and thus Frag(X) will

be topologized as a subset of F
c
(R × X). We will use fragments to parametrize 1-recti�able subsets of X.

We now brie�y discuss the topology on Radon measures that allows to make sense of an integral like

(2.7). Let C
c
(X) denote the set of continuous function de�ned on X with compact support; recall that the set

C
c
(X) is a Fréchet space. We denote by Rad(X) the set of (nonnegative) Radon measures on X; as Rad(X) can

be identi�edwith a subset of the dual of C
c
(X), wewill topologize it with the restriction of theweak* topology.

In particular, when we assert that a map ψ : Z → Rad(X) is Borel, wemean that for each g ∈ C
c
(X), the map:

z 7→
∫
X

g(x) d

(
ψ(z)

)
(x) (2.11)

is Borel.

De�nition 2.12. An Alberti representation of the measure µ is a pair (P, ν) such that:

(Alb1) P is a Radon measure on Frag(X);

(Alb2) The map ν : Frag(X) → Rad(X) is Borel and, for each γ ∈ Frag(X), we have νγ � H 1

γ , where H 1

γ

denotes the 1-dimensional Hausdor� measure on the image of γ;

(Alb3) The measure µ can be represented as µ =

∫
Frag(X)

νγ dP(γ);

(Alb4) For each Borel set A ⊂ X and all real numbers b ≥ a, themap γ 7→ νγ
(
A ∩ γ(Dom γ ∩ [a, b])

)
is Borel.

We now recall some de�nitions regarding additional properties of Alberti representations.

De�nition 2.13. An Alberti representation A = (P, ν) is said to be C-Lipschitz (resp. (C, D)-biLipschitz) if
P-a.e. γ is C-Lipschitz (resp. (C, D)-biLipschitz).

De�nition 2.14. Let σ : X → [0,∞) be Borel and f : X → R be Lipschitz. An Alberti representationA = (P, ν)

is said to be have f -speed ≥ σ (resp. > σ) if for P-a.e. γ ∈ Frag(X) and L1

Dom γ-a.e. t one has (f ◦ γ)

′
(t) ≥

σ(γ(t)) md γ(t) (resp. (f ◦ γ)

′
(t) > σ(γ(t)) md γ(t)).

Another property regards the direction, with respect to a �nite tuple of Lipschitz functions, of the frag-

ments used in an Alberti representation. To measure the direction one can use the notion of Euclidean cone:

De�nition 2.15. Let θ ∈ (0, π/2), v ∈ Sn−1

; the open cone Cone(v, θ) ⊂ Rn with axis v and opening angle θ

is:

Cone(v, θ) = {u ∈ Rn : tan θ〈v, u〉 > ‖π⊥
v
u‖

2
}, (2.16)
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where π

⊥
v

denotes the orthogonal projection on the orthogonal complement of the line Rv.

De�nition 2.17. Given a Lipschitz function f : X → Rn, an Alberti representation A = (P, ν) is said to be

in the f -direction of the open cone Cone(v, θ) if for P-a.e. γ ∈ Frag(X) and L1

Dom γ-a.e. t one has

(f ◦ γ)

′
(t) ∈ Cone(v, θ).

For the purpose of this paper it will be convenient to obtain Alberti representations with biLipschitz con-

stants close to 1. We will thus use the following result [42, Thm. 2.64]:

Theorem 2.18. Let X be a complete separable metric space and µ a Radon measure on X. Then the following

are equivalent:

(1) The measure µ admits an Alberti representationA in the f -direction of Cone(v, θ) with g-speed > σ;

(2) For each ε > 0 the measure µ admits a (1, 1 + ε)-biLipschitz Alberti representation A in the f -direction of

Cone(v, θ) with g-speed > σ.

Moreover, one can always assume that the Alberti representation is of the form A = (P, ν), where P is a �nite

Radon measure concentrated on the set of fragments with compact domain. Additionally, one can assume that

ν = hΨ where h is a nonnegative Borel function of X and:

Ψγ = γ]

(
L1

Dom γ
)
, (2.19)

i.e. the push-forward of the restriction of the Lebesgue measure to the domain of γ.

Sometimes we will �nd it useful to restrict an Alberti representationA = (P, ν) to a Borel set U ⊂ X by

letting A U = (P, ν U). Other times one knows the existence of Alberti representations on subsets {U
α
}
α

and would like to glue them together. This is accomplished by the following gluing principle [42, Thm. 2.67]:

Theorem 2.20. Let {U
α
}
α
be Borel subsets and suppose that for each α the measure µ U

α
admits a (C, D)-

biLipschitz Alberti representation in the f -direction of Cone(v, θ) with f -speed ≥ σ (or > σ); then the measure

µ

⋃
α

U
α
also admits a (C, D)-biLipschitz Alberti representation in the f -direction of Cone(v, θ) with f -speed

≥ σ (or > σ).

2.4 Results from Bate and Speight

We now recall some results [10, 13] on the structure of measures in di�erentiability spaces. The original The-

orems [14, 27] on the existence of di�erentiable structures required the measure µ to be doubling. Bate and

Speight [13] found a partial converse of this:

Theorem 2.21. If (X, µ) is a di�erentiability space, then:

• The measure µ is asymptotically doubling, i.e. for µ-a.e. x there are (C
x
, r
x
) ∈ (0,∞)

2

such that:

µ

(
B(x, 2r)

)
≤ C

x
µ

(
B(x, r)

)
(∀r ≤ r

x
). (2.22)

As a consequence, (X, µ) is a Vitali space, i.e. the Vitali Covering Theorem holds in (X, µ), and thus also

Lebesgue’s Di�erentiation Theorem holds for µ.

• Every porous subset is µ-null.

It was shown in [11, Lemma 8.3] that if if (X, µ) is asymptotically doubling, there are countably many

Borel sets {U
α
}
α
such that µ(X \

⋃
α

U
α

) = 0 and such that each U
α
is doubling as a metric space. Moreover,

the sets {U
α
}
α
might be assumed to be closed or compact.

Remark 2.23. In particular, at generic points of each U
α
, one can obtain blow-ups/tangent cones of (X, µ)

by using Gromov’s Compactness Theorem (see Section 7). In fact, as porous sets are µ-null, blowing-up
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(U
α
, µ U

α
) at a point p of U

α
which is a Lebesgue density point for µ, and is also a point at which U

α
is

not porous in the ambient space X, will yield the same metric measure spaces as blowing-up (X, µ).

Recently Bate [10] made a deep study of the structure of measures in di�erentiability spaces by using

Alberti representations; in particular, he was able to obtain several characterizations of these spaces. For the

sake of brevity we just summarize one characterization as follows:

Theorem 2.24. The metric measure space (X, µ) is a di�erentiability space if and only if:

(1) The measure µ is asymptotically doubling and porous sets are µ-null;

(2) There is a Borel function τ : X → (0,∞) such that, for each real-valued Lipschitz function f , the measure µ

admits an Alberti representation with f -speed ≥ τ Lip f .

In [42] it was shown that one may take τ = 1: in subsection 6.2 we provide a proof of this fact which is

independent of the results in [42]. To put this in perspective we recall the following de�nition:

De�nition 2.25. Let f : X → R be Lipschitz. The lower pointwise Lipschitz constant of f at x is:

lip f (x) = lim inf

r↘0

sup

{∣∣
f (y) − f (x)

∣∣
r

: d
X

(x, y) ≤ r

}
. (2.26)

In [27] it was shown that the existence of ameasurable di�erentiable structure follows under the assump-

tion that (X, µ) satis�es a Lip-lip inequality: this means that there is a K ≥ 1 such that, for each real-valued

Lipschitz function f , one has:

Lip f (x) ≤ K lip f (x) (for µ-a.e. x). (2.27)

In particular, Theorem 2.24 implies that in a di�erentiability space the Lip-lip inequality holds by replacing

the constant K with the function τ; thus, showing that one can take τ = 1 implies that the Lip-lip inequality

self-improves to an equality. For the case of PI-spaces, the Lip-lip equality was a main result of [14], which

followed from themore general result that, for p > 1, Lip f is a representative of theminimal generalized upper

gradient of f .

The result of [10] that we will mainly use is the existence of Alberti representations in the directions of

arbitrary cones:

Theorem 2.28. Let (U, ψ)be an N-dimensional di�erentiability chart for the di�erentiability space (X, µ); then

for each v ∈ SN−1

and each θ ∈ (0, π/2), the measure µ U admits an Alberti representation in the ψ-direction

of Cone(v, θ).

2.5 Measurable Vector Bundles

In this paper we will work withmeasurable subbundles of the tangent and cotangent bundles associated to a

di�erentiability space. Sincewe dealwith di�erent (measurable) seminorms on these subbundles, we need to

introduce a bit of terminology to make the treatment precise. Let (Ω, Σ) be a measure space; a Σ-measurable
vector bundle over Ω is a quadruple V = (IV, {Nα}α∈IV , {Uα}α∈IV , {gα,β}(α,β)∈IV,∩

) such that:

(1) The index set IV is countable and {U
α
}
α∈IV is a cover of Ω consisting of Σ-measurable sets;

(2) Each N
α
is a nonnegative integer and if U

α
∩ U

β
̸= ∅, then N

α
= N

β
;

(3) The (possibly empty set) IV,∩ consists of those pairs (α, β) ∈ IV × IV such that U
α
∩ U

β
̸= ∅;

(4) Each g
α,β

is a Σ-measurable map g
α,β

: U
α
∩ U

β
→ GL

(
RNα

)
.

(5) The collection {g
α,β
} satis�es the cocycle condition, i.e. if U

α
∩U

β
∩Uγ ̸= ∅, then gα,γ = g

β,γ ◦ gα,β Σ-a.e.

If N = sup
α
N
α
< ∞ the bundle V is said to have �nite dimension N.

A section σ of V is a collection {σ
α
}
IV

of Σ-measurable maps σ
α

: U
α
→ RNα such that:

g
α,β
◦ σ

α
= σ

β
. (2.29)
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A measurable subbundle of V is a measurable choice of a hyperplane in each �bre. More precisely, let

Gr

(
RN , k

)
denote the Grassmanian of unoriented k-dimensional planes in RN ; then a subbundleW of V is

a pair ({M
α
}
IV
, {φ

α
}
IV

) such that:

(1) Each nonnegative integer M
α
satis�es M

α
≤ N

α
and if (α, β) ∈ IV,∩, then Mα

= M
β
;

(2) Each φ
α
is a Σ-measurable map φ

α
: U

α
→ Gr

(
RNα ,M

α

)
;

(3) For each pair (α, β) ∈ IV,∩ the following compatibility condition holds:

g
α,β

(
φ
α

(x)

)
= φ

β
(x) (∀x ∈ U

α
∩ U

β
). (2.30)

We now turn to the construction of seminorms on V (or on a subbundle).

We de�ne a generalized seminorm onRn to be a function ‖ · ‖ : RN → R
+
∪ {∞} satisfying the obvious

variants of the usual homogeneity and subadditivity conditions:

• ‖0‖ = 0.

• For all x ∈ RN , a ∈ (0,∞) we have ‖ax‖ = a‖x‖.
• For all x, y ∈ RN we have ‖x + y‖ ≤ ‖x‖ + ‖y‖ whenever ‖x‖ and ‖y‖ are both �nite.

For every generalized seminorm ‖ · ‖ on RN , we have the associated supergraph

SG(‖ · ‖) = {(x, y) ∈ RN ×R | y ≥ ‖x‖} .

The supergraph is a closed convex subset ofRN+1

which determines the generalized seminormuniquely. Note

that for any collection {‖ · ‖
τ
}
τ∈T of generalized seminorms on RN , the pointwise supremum sup

τ∈T ‖ · ‖τ
de�nes a generalized seminorm, which we denote by ‖ · ‖T; if the family is bounded above in the sense that

there is a seminorm ‖ · ‖
0
such that ‖ · ‖

τ
≤ ‖ · ‖

0
for all τ ∈ T, then the supremum ‖ · ‖T is a seminorm. The

supergraph SG(‖ · ‖T) is the intersection of the supergraphs {SG(‖ · ‖
τ
)}
τ∈T .

Let Sem(RN) and Sem
+∞

(RN) denote the collections of seminorms and generalized seminorms on RN ,
respectively. Taking supergraphs de�nes an injection ι from Sem

+∞
(RN) to the collection of closed subsets of

RN+1

; we topologize Sem
+∞

(RN) with the topology induced by ι from the pointed Hausdor� topology on the

collection of closed subsets ofRN+1

. Note that the subspace topology on Sem(RN) ⊂ Sem
+∞

(RN) agrees with

the compact-open topology on Sem(RN).

A seminorm (resp. a generalized seminorm) ‖ · ‖ on V is a collection {‖ · ‖
α

}
α∈IV of Σ-measurable maps

‖ · ‖
α

: U
α
→ Sem

(
RNα

)
(resp. Sem

+∞

(
RNα

)
) which satisfy, for each (α, β) ∈ IV,∩, a.e. x ∈ Uα ∩ Uβ, and

each v ∈ RNα , the following compatibility condition:

‖v‖
α

(x) =

∥∥
g
α,β

(v)

∥∥
β

(x) (∀x ∈ U
α
∩ U

β
). (2.31)

We will essentially work with measurable bundles where Ω = X, a complete separable metric space, and

where Σ is the Borel σ-algebra. However, in the case of a metric measure space (X, µ), we implicitly identify

vector bundles, sections and seminorms which agree µ-a.e. For example, consider two Borel vector bundles

V = (IV, {Nα}α∈IV , {Uα}α∈IV , {gα,β}(α,β)∈IV,∩
) and V′

= (I

′
V, {N

′
α
′}
α
′∈I′

V
, {U′

α
′}
α
′∈I′

V
, {g′

α,β

}
(α

′
,β

′
)∈I′

V,∩
) over

X; we identify them if:

(1) Whenever µ(U
α
∩ U′

α
′ ) > 0 one has N

α
= N

′
α
′ ;

(2) Whenever µ(U
α
∩ U′

α
′ ) > 0 there are a µ-full measure subset V

α,α
′ ⊂ U

α
∩ U′

α
′ and a Borel map G

α,α
′ :

V
α,α

′ → GL

(
RNα

)
, such that, if µ(U

β
∩ U′

β
′ ) > 0, one has:

G
β,β

′ ◦ g
α,β

(x) = g
α
′
,β

′ ◦ G
α,α

′ (x) (for µ-a.e. x ∈ V
α,α

′ ∩ V
β,β

′ ). (2.32)

To construct seminorms on measurable vector bundles we will use often the following lemma.

Lemma 2.33. Let V be a measurable vector bundle over X and let

{
‖ · ‖

τ

}
τ∈T be a countable collection of

generalized seminorms on V.
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Wemay de�ne a collection of measurable maps {‖ · ‖
T,α

: U
α
→ Sem

+∞
(RNα )}

α∈I
α

by taking the pointwise

supremum of seminorms:

‖ · ‖
T,α

(x) = sup

τ∈T

‖ · ‖
τ,α

(x) = ‖ · ‖
T,α

(x). (2.34)

Then

{
‖ · ‖

T,α

}
α∈IV

de�nes a generalized seminorm ‖ · ‖
T

on V, which we call the supremum of the semi-
norms {‖ · ‖

T

}
τ∈T . If there is seminorm ‖ · ‖

0
on V such that

‖ · ‖
τ
≤ ‖ · ‖

0
(2.35)

holds almost everywhere, then

‖ · ‖T ≤ ‖ · ‖0
(2.36)

almost everywhere, and ‖ · ‖T is a seminorm (almost everywhere).

Suppose now that µ is a σ-�nite Borel measure on X and let {‖ · ‖
ω

.}
ω∈Ω be a collection of seminorms on

V which is allowed to be uncountable. Then there is a µ-a.e. unique generalized seminorm ‖ · ‖
Ω

, called the

essential supremum of the collection {‖ · ‖
ω

.}
ω∈Ω, which satis�es the following properties:

(Ess-sup1) For each section σ of V and each ω ∈ Ω one has:

‖σ‖
Ω

≥ ‖σ‖
ω

µ-a.e.; (2.37)

(Ess-sup2) If ‖ · ‖′
Ω

is another generalized seminorm satisfying (2.37), then one has:

‖ · ‖′
Ω

≥ ‖ · ‖
Ω

µ-a.e. (2.38)

(Ess-sup3) There is a countable subcollection Ω

′ ⊂ Ω such that the countable supremum ‖ · ‖
Ω

′ as de�ned

after (2.34) agrees with ‖ · ‖
Ω

.

Moreover, if there are a seminorm ‖ · ‖ on V and a C ≥ 0 such that:

‖ · ‖
ω

≤ C ‖ · ‖ (2.39)

holds µ-a.e. and uniformly in ω, then ‖ · ‖
Ω

can be taken to be a seminorm satisfying:

‖ · ‖
Ω

≤ C ‖ · ‖ µ-a.e. (2.40)

Proof. The proof that ‖ · ‖
T

de�nes a generalized seminorm, which is also a norm under the additional as-

sumption (2.35), follows by unwinding the de�nition of a measurable vector bundle. To prove the second

part of Lemma 2.33 we use the approach of [23, Prop. 5.4.7].

We �rst observe that (Ess-sup1) and (Ess-sup2) are properties that hold up to µ-null sets, and thus we

can construct ‖ · ‖
Ω

independently on each V|U
α
, where V|U

α
denotes the union of the �bres of V over the

points x ∈ U
α
. We can therefore assume that the cardinality of IV is one and identify V with the product

U × RN . Without loss of generality we can also assume that µ is a probability measure on U. We take a norm

‖ · ‖ onRN , and denote by S

N−1

and H N−1

the corresponding unit sphere and (N −1)-dimensional Hausdor�

measure. We �nally let π be the probability measure

µ ⊗H N−1

S

N−1

/H N−1

(S

N−1

). (2.41)

Let {‖ · ‖
ω̂
}
ω̂∈ˆ

Ω

be the collection of supremums of all �nite subcollections of {‖ · ‖
ω
}
ω∈Ω, i.e. the collection

of all generalized seminorms of the form

‖ · ‖
ω̂

= sup{‖ · ‖
ω

1

, . . . , ‖ · ‖
ω
k

}

where {ω
1
, . . . , ω

k
} ranges over all �nite subsets of the collection {‖ · ‖

ω
}
ω∈Ω.

Then {‖ · ‖
ω
}
ω∈ˆ

Ω

is upward-�ltering, i.e. for all pairs (ω, ω

′
) ∈ ˆ

Ω

2

there is an ω

′′ ∈ ˆ
Ω satisfying:

‖ · ‖
ω

′′ = max

{
‖ · ‖

ω

, ‖ · ‖
ω

′
}
. (2.42)
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We now consider the increasing homeomorphism:

ζ : R→ (0, 1)

t 7→ e

t

e
t

+ 1

,

(2.43)

and observe that the random variables

{
ζ

(
‖ · ‖

ω

)}
ω∈ˆ

Ω

are all nonnegative and have π-expectations satisfy-

ing:

E

[
ζ

(
‖ · ‖

ω

)]
≤ 1. (2.44)

Thus the supremum:

q = sup

[
E

[
ζ

(
‖ · ‖

ω

)]
: ‖ · ‖

ω

∈ ˆ
Ω

}
(2.45)

is �nite, and we let T = {‖ · ‖
ω
n

} denote a maximizing sequence:

lim

n→∞

E

[
ζ

(
‖ · ‖

ω
n

)]
= q. (2.46)

The proof is completed by showing that the countable supremum ‖ · ‖
T

satis�es (Ess-sup1), (Ess-sup2), and
(Ess-sup3).

We �rst address (Ess-sup1): suppose that one has ‖ · ‖
ω

> ‖ · ‖
T

on a set of positive measure. Then, con-

sidering the sequence of norms

{
max

{
‖ · ‖

ω
n

, ‖ · ‖
ω

}}
⊂ ˆ
Ω one contradicts (2.46).

We now address (Ess-sup2) and take a norm ‖ · ‖′
Ω

satisfying (2.37). Let A ⊂ U be a set of positive µ-

measure: we claim that one has:

lim

n→∞

E

[
χ
A×RN ζ

(
‖ · ‖

ω
n

)]
= sup

{
E

[
χ
A×RN ζ

(
‖ · ‖

ω

)]
: ω ∈ ˆ

Ω

}
= E

[
χ
A×RN ζ

(
‖ · ‖

T

)]
. (2.47)

In fact, if any of the equalities in (2.47) failed, using that ζ is positive and that the collection {‖ · ‖
ω

.}
ω∈ˆ

Ω

is

upward-�ltering, one would contradict (2.46). As ζ is increasing, we have

E

[
χ
A×RN ζ

(
‖ · ‖′

Ω

)]
≥ E

[
χ
A×RN ζ

(
‖ · ‖

ω
n

)]
, (2.48)

and from (2.47) it follows that:

E

[
χ
A×RN ζ

(
‖ · ‖′

Ω

)]
≥ E

[
χ
A×RN ζ

(
‖ · ‖

T

)]
, (2.49)

from which (2.38) follows.

Note that (Ess-sup3) holds, since ‖ · ‖
T
is the countable supremum of the the seminorms ‖ · ‖

ω
n

, each of

which is a �nite supremum of seminorms from the collection {‖ · ‖
ω
}
ω∈Ω.

3 Generic points and generic velocities
In this Section we �x a complete separable metric space X and introduce a notion of genericity for pairs

(γ, t) ∈ Frag(X) × R; this notion of genericity will be speci�ed in terms of a quadruple (F, C, S, D
X

) such

that:F is a countable collection of real-valued Lipschitz functions de�ned on X, C is a countable collection of

real-valued bounded Borel functions de�ned on X, D
X
is a countable dense subset of X, and S is a countable

collection of Lipschitz compatible pseudometrics on X which will always include the metric d
X
.

De�nition 3.1. We say that the pair (γ, t) is (F, C, S, D
X

)-generic if:

(Gen1) The point t is a Lebesgue density point of Dom(γ);

(Gen2) For each f ∈ F the derivative (f ◦ γ)

′
exists and is approximately continuous at t;

(Gen3) For each u ∈ C the function u ◦ γ is approximately continuous at t;

(Gen4) For each x ∈ D
X
and each ϱ ∈ S the derivative (ϱ

x
◦ γ)

′
exists and is approximately continuous at t;

(Gen5) For each ϱ ∈ S the function sup
x∈D

X

∣∣
(ϱ
x
◦ γ)

′
(t)

∣∣
is approximately continuous at t.
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In the case in which S consists only of d
X
we will just write (F, C, D

X
). Whenever a default choice of the

set D
X
is assumed, we will omit D

X
from the notation.

Remark 3.2. We remark that the proof of [9, Thm. 4.1.6] shows that at a point t where (Gen1), (Gen4)
and (Gen5) hold, the ϱ-metric derivative ϱ-mdγ(t) exists and equals sup

x∈D
X

∣∣
(ϱ
x
◦ γ)

′
(t)

∣∣
. Thus, if (γ, t) is

(F, C, S, D
X

)-generic, for each ϱ ∈ S the ϱ-metric derivative exists and is approximately continuous at t.

We point out that, in the case of a di�erentiability space (X, µ), De�nition 3.1 has a natural interpretation

in terms of the µ-tangent bundle TX. Let

{
(U

α
, φ

α
)

}
be an atlas for (X, µ) and suppose that F contains the

components of all the coordinate functions {φ
α
}, and that C contains all the characteristic functions {χ

U
α

}.
Suppose now that (γ, t) is (F, C, S, D

X
)-generic and that γ(t) ∈

⋃
α

U
α
; then γ′(t) is a well-de�ned element of

TX. We are thus led to the following de�nition.

De�nition 3.3. A (F, C, S, D
X

)-generic velocity vector is an element of TX of the form γ′(t), where:

• (γ, t) is (F, C, S, D
X

)-generic;

• γ(t) ∈ ∪
α
U
α
;

• For all α, F contains the components of φ
α
and C contains χ

U
α

.

As above, in the case in which S consists only of d
X
, we will just write (F, C, D

X
), and we will omit D

X

from the notation if a default choice of the set D
X
is assumed.

We now establish measurability for generic pairs.

Lemma 3.4. The set

G(F, C, S, D
X

) =

{
(γ, t) : (γ, t) is (F, C, S, D

X
)-generic

}
(3.5)

is a Borel subset of Frag(X) ×R.

Proof. We prove that G(F, C, S, D
X

) is Borel by showing that certain sets are Borel. Let DOM denote the set of

pairs (γ, t) such that t ∈ Dom γ:

DOM =

{
(γ, t) ∈ Frag(X) ×R : t ∈ Dom γ

}
; (3.6)

then DOM is closed. Fix δ > 0 and consider the set of pairs (γ, t) where t becomes isolated below scale δ:

ISOL(δ) =

{
(γ, t) ∈ DOM : Dom γ ∩ (t − δ, t + δ) contains only one point

}
; (3.7)

then ISOL(δ) is closed and ISOL =

⋃
δ∈Q

>0

ISOL(δ) is Borel and consists of the pairs (γ, t) where t is an iso-

lated point of Dom γ. We can thus attempt to de�ne, for a Lipschitz compatible pseudometric ϱ, the ϱ-metric

derivative and, for f Lipschitz, the derivative of f at pairs in DOM \ ISOL. Consider the set:

MDIFF(ϱ) =

{
(γ, t) ∈ DOM \ ISOL : ϱ-mdγ(t) exists

}
=

⋂
ε∈Q

>0

⋃
(δ,θ)∈Q

>0
×Q

≥0

{
(γ, t) ∈ DOM \ ISOL : ∀s

1
, s

2
∈ (t − δ, t + δ) ∩ Dom γ,

∣∣
ϱ(γ(s

1
), γ(s

2
)) − θ|s

1
− s

2
|
∣∣
≤ ε|s

1
− s

2
|
}

;

(3.8)

this set is Borel as all the sets in the curly brackets are closed inDOM\ISOL.Modifying the de�nition ofMDIFF

by constraining θ to lie in a speci�ed interval we also conclude that the map:

MDer(ϱ) : MDIFF→ [0,∞)

(γ, t) 7→ ϱ-mdγ(t)

(3.9)
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is Borel. Consider now a real-valued Lipschitz function f de�ned on X; the set DIFF(f ) where (f ◦ γ)

′
(t) exists

is Borel because we can write it as:

DIFF(f ) =

{
(γ, t) ∈ DOM \ ISOL : f ◦ γ is di�erentiable at t

}
=

⋂
ε∈Q

>0

⋃
(δ,θ)∈Q

>0
×Q

{
(γ, t) ∈ DOM \ ISOL : ∀s

1
, s

2
∈ (t − δ, t + δ) ∩ Dom γ,

∣∣
f ◦ γ(s

1
) − f ◦ γ(s

2
) − θ(s

1
− s

2
)

∣∣
≤ ε|s

1
− s

2
|
} (3.10)

where the sets in curly brackets are closed in DOM \ ISOL. Constraining the θ appearing in the de�nition of

DIFF(f ) to lie in a given interval we conclude that the map:

Der(f ) : DIFF(f )→ R

(γ, t) 7→ (f ◦ γ)

′
(t)

(3.11)

is Borel. Regarding condition (Gen5) we need also to take a sup of derivatives when they exist; so let Ω be a

countable set of Lipschitz functions; then the set:

DIFF(Ω) =

⋂
f∈Ω

DIFF(f ) (3.12)

and the map:

|Der(Ω)| : DIFF(Ω)→ R

(γ, t) 7→ sup

f∈Ω

∣∣
(f ◦ γ)

′
(t)

∣∣ (3.13)

are Borel.

We now turn to questions pertaining to the approximate continuity of a function at a point in the domain

of a fragment. For L ≥ 0 we will denote by SUB(L) the closed set of those fragments whose domain lies in

[−L, L]. Suppose now thatwe are given a Borel set B ⊂ DOMand aBorelmapψ : B → R. For (ε, δ, L) ∈ (Q
>0

)

3

let:

˜
Ψ(ε, δ, L, B, ψ) =

{
(γ, t, s) ∈ Frag(X) ×R2

: s, t ∈ [−L, L],

(γ, t), (γ, s) ∈ B, |t − s| ≤ δ and

∣∣
ψ(γ, t) − ψ(γ, s)

∣∣
≤ ε

}
;

(3.14)

the set
˜
Ψ(ε, δ, L, B, ψ) is Borel and [25, Thm. 17.25] shows that the map:

Leb(ε, δ, L, B, ψ) : B → R

(γ, t) 7→ L1

((
˜
Ψ(ε, δ, L, B, ψ)

)
(γ,t)

)
(3.15)

is Borel. It is then easy to prove that the sets of pairs (γ, t) ∈ B where some map is approximately continuous

at t is Borel; in fact, �rst de�ne:

ACONT(ψ) =

⋃
L∈Q

>0

⋂
ε∈Q

>0

⋃
δ∈Q

>0

⋂
r∈Q

>0

{
(γ, t) ∈ B : t ∈ [−L, L],

and for each r ≤ δ one has Leb(ε, r, L, B, ψ)(γ, t) ≥ 2(1 − ε)r

}
,

(3.16)

which is a Borel set; then, for example, ACONT(MDer(d
X

)) consists of the pairs (γ, t) where md γ exists and

is approximately continuous at t. In order to handle the approximate continuity for a Borel map u : X → R
we introduce the notation Ev(u) to denote the Borel map which evaluates u at γ(t):

Ev(u) : DOM→ R

(γ, t) 7→ u ◦ γ(t).

(3.17)
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Letting ψ : DOM → R to be the function which trivially maps each pair (γ, t) to 0, we see that ACONT(ψ) =

LEBDENS is the set of pairs (γ, t) where t is a Lebesgue density point of Dom γ.

We �nally conclude that G(F, C, S, D
X

) is Borel by observing that, whenweuse B = DOM to de�neACONT

in (3.16), we have:

G(F, C, S, D
X

) =

⋂
ϱ∈S

ACONT(MDer(ϱ)) ∩
⋂
f∈F

ACONT(Der(f ))

∩
⋂
u∈C

ACONT(Ev(u)) ∩
⋂

x∈D
X
,ϱ∈S

ACONT(Der(ϱ
x
))

∩
⋂
ϱ∈S

ACONT

(
|Der|({ϱ

x
}
x∈D

X

)

)
∩ LEBDENS.

(3.18)

4 Metric di�erentials and seminorms on TX

In this section we discuss the �rst instance of metric di�erentiation, Theorem 4.3. The point is that in the

presence of a di�erentiable structure, the H 1

ϱ
-measure of a fragment γ can be recovered using a seminorm

(canonically associated to ϱ) on the tangent bundle TX associated to the di�erentiable structure. Let (X, µ)

be a di�erentiability space with atlas

{
(U

α
, φ

α
)

}
, and �x a countable dense set D

X
⊂ X.

De�nition 4.1. Let Φ be a countable collection of Lipschitz functions on X; we say that a Borel subset V ⊂⋃
α

U
α
is a Φ-di�erentiability set if:

(Di�1) The set V has full µ-measure: µ

(⋃
α

U
α
\ V

)
= 0;

(Di�2) For each (x, f ) ∈ V ×Φ, if x ∈ U
α
, then f is di�erentiable at x with respect to the coordinate functions

φ
α
.

Let Φ
D
X
,ϱ

= {ϱ
x

: x ∈ D
X
} and let V be a Φ

D
X
,ϱ
-di�erentiability set. Using Lemma 2.33, we obtain a semi-

norm ‖ · ‖
D
X
,ϱ

on TX by de�ning, for y ∈ V and v ∈ T
y
V:

‖v‖
D
X
,ϱ

= sup

x∈D
X

∣∣
dϱ

x
|
y

(v)

∣∣
. (4.2)

Theorem 4.3. Let (F, C, S, D
X

) be as in Section 3 and let V be a Φ
D
X
,ϱ
-di�erentiability set. Assume that F

contains all the components of the coordinate functions φ
α
, thatC contains the characteristic functions {χ

U
α

}
α
∪

{χ
V
}, and that ϱ ∈ S. If γ′(t) is an (F, C, S, D

X
)-generic velocity vector and if γ(t) ∈ V, then themetric di�erential

ϱ-mdγ(t) exists and equals

∥∥γ′(t)∥∥
D
X
,ϱ

. In particular, if a fragment γ lies in V, we have:

H 1

ϱ
(Im γ) =

∫
Dom γ

∥∥γ′(t)∥∥
D
X
,ϱ

dt. (4.4)

Proof. To �x the ideas suppose that γ(t) ∈ U
α
. Because of conditions (Gen4), (Gen5), the argument in [9,

Thm. 4.1.6] implies that

ϱ-mdγ(t) = sup

x∈D
X

∣∣
(ϱ
x
◦ γ)

′
(t)

∣∣
; (4.5)

as γ(t) ∈ V, for each x ∈ D
X
the pseudodistance function ϱ

x
is di�erentiable at γ(t) with respect to the

coordinate functions φ
α
; note also that φ

α
◦ γ is di�erentiable at t by condition (Gen2). Thus,

(ϱ
x
◦ γ)

′
(t) =

∑
i

∂ϱ
x

∂φ
i

α

(γ(t))

(
φ

i

α
◦ γ
)′

(t) = dϱ
x
|γ(t)

(γ′(t)), (4.6)

which implies

sup

x∈D
X

∣∣
(ϱ
x
◦ γ)

′
(t)

∣∣
=

∥∥γ′(t)∥∥
D
X
,ϱ

. (4.7)
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Formula (4.4) follows from the area formula (2.6) for the pseudometric ϱ by observing that for a fragment γ

which lies in V, for L1

-a.e. t ∈ Dom γ, the velocity vector γ′(t) is (F, C, S, D
X

)-generic.

In Section 8 (Theorem 8.24) we will show that for di�erent choices D
X
and

˜
D
X
of the countable dense set, the

seminorms ‖ · ‖
D
X
,ϱ

and ‖ · ‖
˜
D
X
,ϱ

are the same. The proof uses the density of directions at generic points which

is discussed in the next Section. For the case in which ϱ = d
X
this follows from Theorem 6.1.

5 Density of generic directions at generic points
In this Sectionwe show that for µ-a.e. x ∈ X the set of vectors in T

x
Xwhich canbe representedby (F, C, S, D

X
)-

generic velocity vectors contains a dense set of “directions” in T
x
X. We make this idea precise with the fol-

lowing de�nition:

De�nition 5.1. If V is a �nite-dimensional vector space, we say that a subset W ⊂ V contains a dense set
of directions if:

[0,∞)W = {tw | t ∈ [0,∞), w ∈ W} = V . (5.2)

We now �x an atlas {(U
α
, φ

α
)}
α
for the di�erentiability space (X, µ) and let N

α
denote the dimension

of the chart (U
α
, φ

α
). For each α let

{
Cone(v

α,k
, θ

α,k
)

}
k∈N denote a collection of open cones with {v

α,k
} ⊂

SNα−1

dense in the unit sphere and lim
k→∞

θ
α,k

= 0. Using Theorem 2.28, we �nd Alberti representations

A
k

= (P
k
, ν
k
) of µ such that, for each α, the restrictionA

k
U
α
is in the φ

α
-direction of Cone(v

α,k
, θ

α,k
).

Theorem 5.3. Let Γ
0
⊂ Frag(X) be a Borel set such that, for each k one has P

k

(
Frag(X) \ Γ

0

)
= 0; and let

(F, C, S, D
X

) be as in De�nition 3.3. Then there is a µ-measurable subset Y ⊂ X with full µ-measure such that,

for each x ∈ Y, the set of velocity vectors

G
x

=

{
v ∈ T

x
X | v = γ′(t) for γ ∈ Γ

0
such that γ′(t) is (F, C, S, D

X
)-generic

}
, (5.4)

contains a dense set of directions in T
x
X.

Proof. Let Z
k
⊂ X × Frag(X) ×R consist of those triples (x, γ, t) satisfying:

(1) γ′(t) is an (F, C, S, D
X

)-generic velocity vector;

(2) γ(t) = x and γ ∈ Γ
0
;

(3) If γ(t) ∈ U
α
, then (φ

α
◦ γ)

′
(t) ∈ Cone(v

α,k
, θ

α,k
).

Using Lemma 3.4 we conclude that Z
k
is Borel, and therefore its projection Y

k
⊂ U on X is Suslin [25],

and hence µ-measurable. Note that for each γ ∈ Γ
0
, as ν

k
(γ) is absolutely continuous with respect to H 1

γ ,

one has ν
k
(γ)(X \ Y

k
) = 0, and therefore µ(X \ Y

k
) = 0. We conclude that Y =

⋂
k

Y
k
is a µ-full measure µ-

measurable subset of X. Let x ∈ Y ∩ U
α
, and let v ∈ T

x
X; then for each ε > 0 we can �nd a k such that, for

each w ∈ Cone(v
α,k

, θ
α,k

), there is a t
w
∈ [0,∞) with:

‖v − t
w
w‖

l
2 ≤ ε‖v‖

l
2 ; (5.5)

but as x ∈ Y ∩U
α
, there are a fragment γ

k
∈ Γ

0
and a t

k
∈ R such that the vector γ′

k

(t
k
) ∈ T

x
X is (F, C, S, D

X
)-

generic and (φ
α
◦ γ

k
)

′
(t
k
) ∈ Cone(v

α,k
, θ

α,k
); thus there is an s

k
∈ [0,∞) with

‖v − s
k
(φ

α
◦ γ

k
)

′
(t
k
)‖
l
2 ≤ ε‖v‖

l
2 , (5.6)

which implies [0,∞)G
x

= T
x
X.
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6 Consequences of density of generic directions
In this section we prove the equality of various seminorms on TX (Theorem 1.7), the equality Lip u = lip u a.e.

(Theorem 1.11), and give a new proof that in PI spaces the minimal generalized upper gradient agrees with

the pointwise Lipschitz constant.

6.1 Equality of natural seminorms on TX

The main result in this subsection is the proof of Theorem 1.7, which is based on the following result.

Theorem 6.1. Let (X, µ) be a di�erentiability space and D
X
⊂ X a countable dense set. Then the seminorm

‖ · ‖
D
X
,d
X

on TX provided by (4.2) (taking ϱ = d
X
) coincides with the norm ‖ · ‖*

Lip

(see Section 2.1); in particular,

the norm ‖ · ‖
D
X
,d
X

does not depend on the choice of D
X
.

Notation: After proving Theorem 1.7, we will change to the notation ‖ · ‖
TX

, ‖ · ‖
T
*

X
or simply ‖ · ‖ to denote

the canonical norms on TX and T

*

X.

Theorem 6.1 can be regarded as an in�nitesimal version of metric di�erentiation for the identity map

id : X → X; its proof uses the following lemma:

Lemma 6.2. Suppose that (V , ‖ · ‖) is a �nite dimensional normed vector space, with dual space (V

*

, ‖ · ‖*).
Let W be a subset of the closed unit ball B(‖ · ‖) ⊂ V, such that:

(H1) For every w ∈ W, there is a linear functional α
w
∈ V* with ‖α

w
‖* ≤ 1, such that α

w
(w) = 1;

(H2) The set W contains a dense set of directions.

Then:

(1) For all w ∈ W one has ‖α
w
‖* = 1;

(2) The set W is a dense subset of the unit sphere S(‖ · ‖);
(3) The seminorm on V de�ned by sup

w∈W |αw(·)| agrees with ‖ · ‖.

Proof. Note that by (H1) each α
w
has unit norm (which implies (1)) and that each vectorw ∈ W has unit norm,

which implies thatW ⊂ S(‖ · ‖). Let v ∈ S(‖ · ‖); by (H2), for each ε > 0 there are a w
ε
∈ W and a t

ε
∈ [0,∞):

‖v − t
ε
w
ε
‖ ≤ ε; (6.3)

let β
v
a unit norm functional on V assuming the norm at v. Then (6.3) implies:

|1 − t
ε
β
v
(w

ε
)| ≤ ε; (6.4)

as |β
v
(w

ε
)| ≤ 1, the previous equation implies t

ε
≥ 1 − ε. On the other hand, evaluating with α

w
ε

, (6.3) gives∣∣
α
w
ε

(v) − t
ε

∣∣
≤ ε; (6.5)

as the functional α
w
ε

has unit norm, t
ε
≤ 1 + ε. We thus conclude that

‖v − w
ε
‖ ≤ ‖v − t

ε
w
ε
‖ + ‖(1 − t

ε
)w

ε
‖ ≤ 2ε, (6.6)

implying (2). Note that, as the functionals α
w
have unit norm,

sup

w∈W

∥∥
α
w

(·)

∥∥
≤ ‖ · ‖. (6.7)

On the other hand, for each v ∈ V \ {0} and each ε > 0, choose w
ε
∈ W with∥∥∥∥ v

‖v‖ − wε
∥∥∥∥ ≤ ε; (6.8)
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then

α
w
ε

(
v

‖v‖

)
≥ 1 − ε, (6.9)

implying that:

sup

w∈W

∥∥
α
w

(·)

∥∥
≥ (1 − ε)‖ · ‖, (6.10)

from which (3) follows.

Proof of Theorem 6.1. Let V be a di�erentiability set for the countable collection of Lipschitz functions{
d
X

(·, x) : x ∈ D
X

}
.We letF contain the components of the coordinate functions,C contain the characteristic

functions of the charts, and S = {d
X
}. Let Y be the set provided by Theorem 5.3; we will show that for each

p ∈ Y ∩ V the norm ‖ · ‖*
Lip

and the seminorm ‖ · ‖
D
X
,d
X

coincide on the �bre T
p
X. Let γ′(t) ∈ G

p
(F, C, D

X
)

with γ′(t) ̸= 0; then md γ(t) ̸= 0. Without loss of generality we assume that p belongs to the chart U
α
and we

consider a functional

∑
N
α

i=1

a
i
dφ

i

α
|
p
∈ T*

p
X; then:

∣∣∣∣∣
〈

N
α∑

i=1

a
i
dφ

i

α
|
p
,

γ′(t)

md γ(t)

〉∣∣∣∣∣ =

∣∣∣∣∑N
α

i=1

a
i

(
φ

i

α
◦ γ
)′

(t)

∣∣∣∣
md γ(t)

; (6.11)

choose s
n
↘ 0 such that t + s

n
∈ Dom γ and note that∣∣∣∣∣

N
α∑

i=1

a
i

(
φ

i

α
◦ γ
)′

(t)

∣∣∣∣∣ = lim

n→∞

∣∣∣∑N
α

i=1

a
i

((
φ

i

α
◦ γ
)

(t + s
n

) −

(
φ

i

α
◦ γ
)

(t)

)∣∣∣
s
n

≤ lim sup

n→∞

∣∣∣∑N
α

i=1

a
i

((
φ

i

α
◦ γ
)

(t + s
n

) −

(
φ

i

α
◦ γ
)

(t)

)∣∣∣
d
X

(γ(t + s
n

), γ(t))

lim sup

n→∞

d
X

(γ(t + s
n

), γ(t))

s
n

≤

∥∥∥∥∥
N
α∑

i=1

a
i
dφ

i

α
|
p

∥∥∥∥∥
T
*

X

md γ(t);

(6.12)

we thus conclude that: ∣∣∣∣∣
〈

N
α∑

i=1

a
i
dφ

i

α
|
p
,

γ′(t)

md γ(t)

〉∣∣∣∣∣ ≤
∥∥∥∥∥
N
α∑

i=1

a
i
dφ

i

α
|
p

∥∥∥∥∥
Lip

, (6.13)

which implies

γ′
(t)

md γ(t)

∈ B(‖ · ‖*
Lip

(x)).

Let

W
p

=

{
γ′(t)

md γ(t)

: γ′(t) ̸= 0 and γ′(t) ∈ G
p

(F, C, D
X

)

}
; (6.14)

by Theorem 5.3 the setW
p
contains a dense set of directions in T

p
X. Theorem 4.3 implies then∥∥γ′(t)∥∥

D
X
,d
X

= md γ(t), (6.15)

and so we can �nd a sequence

{∑
N
α

i=1

a
i,k
dφ

i

α
|
p

}
⊂ B

(
‖ · ‖

Lip

)
such that:

(1) We have:

lim

k→∞

〈
N
α∑

i=1

a
i,k
dφ

i

α
|
p
, γ′(t)

〉
= md γ(t); (6.16)

(2) For each k there is an x
k
∈ D

X
with:

d

(
d
X

(·, x
k
)

)
|
p

=

N
α∑

i=1

a
i,k
dφ

i

α
|
p
. (6.17)
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By compactnesswe can�nda subsequence of

{∑
N
α

i=1

a
i,k
dφ

i

α
|
p

}
converging toωγ′

(t)
∈ B

(
‖ · ‖

Lip

)
. Now,

(6.16) implies that

ωγ′
(t)

(
γ′(t)

md γ(t)

)
= 1; (6.18)

so for w ∈ W
p
of the form

γ′
(t)

md γ(t)

let α
w

= ωγ′
(t)
; applying Lemma 6.2 we conclude that:

‖ · ‖*
Lip

(p) = sup

w∈W
p

∣∣
α
w

(·)

∣∣
; (6.19)

but Lemma 6.2 implies also thatW
p
is dense in S

(
‖ · ‖*

Lip

)
and by (6.18) we conclude that for w

′ ∈ W
p
:

sup

w∈W
p

∣∣
α
w

(w

′
)

∣∣
= 1 =

∥∥
w

′∥∥
D
X
,d
X

, (6.20)

from which we have ‖ · ‖*
Lip

(p) = ‖ · ‖
D
X
,d
X

(p).

Proof of Theorem 1.7. Let ‖ ·‖
1
–‖ ·‖

3
be the seminorms as in Theorem 1.7, constructed using Lemma 2.33, and

let ‖ · ‖
4
be the dual Lip norm ‖ · ‖*

Lip

. Clearly we have ‖ · ‖
1
≤ ‖ · ‖

2
≤ ‖ · ‖

3
.

We claim that

‖ · ‖
3
≤ ‖ · ‖*

Lip
µ − a.e. (6.21)

To see this, recall that by Lemma 2.33 there is a countable collection {f
i
} of 1-Lipschitz functions such that

for µ-a.e. p ∈ X, the di�erentials df
i
(p) ∈ T*

p
X are well-de�ned, and

‖ · ‖
3

(p) = sup

i

|df
i
(p)| .

Recalling that for µ a.e. p ∈ X we have ‖df
i
(p)‖

Lip
= Lip f

i
(p), we get that for µ a.e. p ∈ X, every i, and every

v ∈ T
p
X,

|df
i
(v)| ≤ ‖df

i
‖

Lip
· ‖v‖*

Lip
= Lip f

i
(p) · ‖v‖*

Lip
≤ ‖v‖*

Lip

since f
i
is 1-Lipschitz. Taking supremum gives (6.21).

By Theorem 6.1 we have ‖ · ‖
1

= ‖ · ‖*
Lip

µ-a.e., so Theorem 1.7 follows.

6.2 A new proof of lip f = Lip f in di�erentiability spaces

In this subsection we provide a proof, independent of the one given in [42], of the following result:

Theorem 6.22. Let (X, µ) be a di�erentiability space and f : X → R Lipschitz. The for all (ε, σ) ∈ (0, 1)

2

there

is a (1, 1 + ε)-biLipschitz Alberti representation of µ with f -speed ≥ σ Lip f . In particular,

Lip f (x) = lip f (x) for µ-a.e. x. (6.23)

The equality (6.23) generalizes one of themain results in [14, Thm. 6.1], which is a consequence of the fact

that, in a PI-space (X, µ), the function Lip f is a representative of the minimal generalized upper gradient g
f

of f . This last statement does not make sense in a general di�erentiability space as one might have g
f
< Lip f

on a positive measure set, e.g. because X might not contain enough curves and one might then have g
f

= 0.

However, in a di�erentiability space the concept of the maximal slope of f along fragments passing at time

t = 0 through x and having 0 as a density point of their domain, remains useful and can be interpreted as

the size of the gradient of f . The result (6.23) is also proven in [42] in a conceptually di�erent way, and there

it is also shown that in a di�erentiability space one has Lip f = |df |, where |df | is the local norm of the form

df , which is the Weaver di�erential form associated to the function f . The proof of Theorem 6.22 relies on the

following lemma.
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Lemma 6.24. Let ‖ · ‖
l
2
denote the standard l

2

-normonRN , and let ‖ · ‖′ denote another normonRN satisfying:

1

C

‖ · ‖
l
2
≤ ‖ · ‖′ ≤ C ‖ · ‖

l
2
. (6.25)

Then the diameter of the set Cone(v, θ) ∩ S
(
‖ · ‖′

)
, with respect to the norm ‖ · ‖′, is at most

4C

2

(1 − cos θ + sin θ). (6.26)

Proof. Let v
1
, v

2
∈ Cone(v, θ) ∩ S

(
‖ · ‖′

)
; then we can �nd u

1
, u

2
∈ S

(
‖ · ‖

l
2

)
such that: v

i
=

u
i

‖u
i
‖′ ; now

‖u
1
− u

2
‖
l
2
≤ 2(1 − cos θ + sin θ) (6.27)

by using the de�nition of Euclidean cone. Observe also that (6.25) implies:∣∣‖u
1
‖′ − ‖u

2
‖′
∣∣
≤ ‖u

1
− u

2
‖′ ≤ 2C(1 − cos θ + sin θ); (6.28)

thus ∥∥∥∥ u
1

‖u
1
‖′
−

u
2

‖u
2
‖′

∥∥∥∥′ =

∥∥∥∥ u
1

‖u
1
‖′
−

u
2

‖u
1
‖′

+

u
2

‖u
1
‖′
−

u
2

‖u
2
‖′

∥∥∥∥′
≤

‖u
1
− u

2
‖′

‖u
1
‖′

+

‖u
2
‖′

‖u
1
‖′ ‖u

2
‖′
∣∣‖u

1
‖′ − ‖u

2
‖′
∣∣

≤ C ‖u
1
− u

2
‖′ + C

∣∣‖u
1
‖′ − ‖u

2
‖′
∣∣

≤ 4C

2

(1 − cos θ + sin θ).

(6.29)

Proof of Theorem 6.22. We�x anN-dimensional chart (U, φ) and a countable dense setD
X
⊂ X.Wewill show

that, for each (ε, σ) ∈ (0, 1)

2

, the measure µ U admits a (1, 1 + ε)-biLipschitz Alberti representation with

f -speed ≥ σ Lip f ; the result about µ will then follow by applying the gluing principle Theorem 2.20.

We �rst consider the special case in which f is of the form 〈v*
0
, φ〉 for some v

*

0
∈ RN \ {0}. For each

η ∈ (0, 1) we can use Egorov and Lusin Theorems to �nd disjoint compact sets C
α
∈ U, and dual norms ‖ · ‖

α

and ‖ · ‖*
α

on RN such that:

µ

(
U \

⋃
α

C
α

)
= 0; (6.30)

1

1 + η

‖ · ‖
TX

≤ ‖ · ‖
α

≤ (1 + η) ‖ · ‖
TX

(on the �bres of TX | C
α
);

1

1 + η

‖ · ‖
T
*

X

≤ ‖ · ‖*
α

≤ (1 + η) ‖ · ‖
T
*

X

(on the �bres of T

*

X | C
α
).

(6.31)

By Theorem 6.1 we can also assume that on the �bres of each TX | C
α
one has:

‖ · ‖
TX

= ‖ · ‖
D
X
,d
X

. (6.32)

Having �xed α, we will show that µ C
α
admits a (1, 1 + ε)-biLipschitz Alberti representation with 〈v*

0
, φ〉-

speed ≥ σ

∥∥
v

*

0

∥∥
T
*

X

for each σ ∈ (0, 1); the result about µ U will follow again by using Theorem 2.20. As we

can rescale v

*

0
, we can assume that

∥∥
v

*

0

∥∥*
α

= 1; we will denote by v
0
∈ S

(
‖ · ‖

α

)
a vector where v

*

0
assumes

the norm. We let M denote a constant such that:

1

M

‖ · ‖
l
2
≤ ‖ · ‖

α

≤ M ‖ · ‖
l
2
. (6.33)

We �x ε
0
∈ (0, 1) and θ ∈ (0, π/2) and, using 2.28 and Theorem 2.18. we �nd a (1, 1 + ε

0
)-biLipschitz Alberti

representationA of µ C
α
in the φ-direction of Cone

(
v

0

‖v
0
‖
l
2

, θ

)
. Let F contain the components of φ and {f},
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and let C contain χ
U
. Using the Alberti representationA and (6.32) we conclude that for µ C

α
-a.e. p there is

an (F, C)-generic velocity vector γ′(t) ∈ T
p
X such that:

md γ(t) =

∥∥γ′(t)∥∥
TX

∈ [1, 1 + ε
0

];

(φ ◦ γ)

′
(t) ∈ Cone

(
v

0

‖v
0
‖
l
2

, θ

)
.

(6.34)

In particular, (6.34) and (6.31) imply that:∥∥γ′(t)∥∥
α

∈
[

1

1 + η

, (1 + η)(1 + ε
0

)

]
. (6.35)

We now use Lemma 6.24 to get∥∥∥∥∥ (φ ◦ γ)

′
(t)∥∥

(φ ◦ γ)
′
(t)

∥∥
α

− v
0

∥∥∥∥∥
α

≤ 4M

2

(1 − cos θ + sin θ); (6.36)

as ∣∣
1 −

∥∥
(φ ◦ γ)

′
(t)

∥∥
α

∣∣
≤ max

(
1 −

1

1 + η

, (1 + η)(1 + ε
0

) − 1

)
, (6.37)

we obtain ∥∥
(φ ◦ γ)

′
(t) − v

0

∥∥
α

≤ 4M

2

(1 − cos θ + sin θ) + max

(
1 −

1

1 + η

, (1 + η)(1 + ε
0

) − 1

)
= a(η, ε

0
, θ),

(6.38)

where lim
η,ε

0
,θ→0

a(η, ε
0
, θ) = 0. Recall that t ∈ Dom γ is a Lebesgue density point, and assume that 〈v*

0
, φ〉◦

γ, which is ML(φ)(1 + ε
0

)-Lipschitz because of (6.33), has been extended to a neighbourhood of t by using

MacShane’s Lemma:

〈v*
0
, φ〉 ◦ γ(t + h) − 〈v*

0
, φ〉 ◦ γ(t) =

t+h∫
t

(
〈v*

0
, φ〉 ◦ γ

)′
(s) ds

≥

∫
[t,t+h]∩Dom γ

(
〈v*

0
, φ〉 ◦ γ

)′
(s) −ML(φ) (1 + ε

0
)L1

([t, t + h] ∩ Dom γ)︸ ︷︷ ︸
o(h)

=

∫
[t,t+h]∩Dom γ

〈v*
0
, v

0
〉 ds +

∫
[t,t+h]∩Dom γ

〈v*
0
, (φ ◦ γ)

′
(s) − v

0
〉 ds + o(h)

≥ L1

([t, t + h] ∩ Dom γ) − h a(η, ε
0
, θ) + o(h),

(6.39)

where in the last step we used the approximate continuity of (φ ◦ γ)

′
(s) at t. Now (6.39) implies that

(〈v*
0
, φ〉 ◦ γ)

′
(t) ≥

1 − a(η, ε
0
, θ)

(1 + η)
2

(1 + ε
0

)

md γ(t) Lip〈v*
0
, φ〉(γ(t)), (6.40)

and it su�ces to choose η, ε
0
, θ small enough to guarantee

1 − a(η, ε
0
, θ)

(1 + η)
2

(1 + ε
0

)

≥ σ;

ε ≥ ε
0
.

(6.41)

Wenowconsider the general case inwhich df is not constant.We letV ⊂ U be a full-measureBorel subset

where f is di�erentiable with respect to the chart functions φ. On the set where df = 0 we have Lip f = 0, so

we can assume that df ̸= 0 on V. We �x η > 0 and use Lusin and Egorov Theorems to �nd disjoint compact

sets C
α
⊂ V and v

*

α
∈ RN \ {0} such that µ

(
V \

⋃
α

C
α

)
= 0 and:∥∥∥df (x) − v

*

α

∥∥∥
T
*

X

≤ η

∥∥
df (x)

∥∥
T
*

X

(∀x ∈ C
α

). (6.42)
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We �x σ

′ ∈ (0, 1) and, using the special case f = 〈v*
α
, φ〉, we obtain a (1, 1 + ε)-biLipschitz Alberti represen-

tation A
α

= (P
α
, ν
α

) of µ C
α
with 〈v*

α
, φ〉-speed ≥ σ′

∥∥
v

*

α

∥∥
T
*

X

; then for P
α
-a.e. γ and γ*νγ -a.e. t we have:

(f ◦ γ)

′
(t) ≥ (〈v*

α
, φ〉 ◦ γ)

′
(t) − ηmd γ(t) ‖df‖

T
*

X

≥

(
σ

′
∥∥∥v*

α

∥∥∥
T
*

X

− η ‖df‖
T
*

X

)
md γ(t)

≥ (σ

′
− (1 + σ

′
)η) Lip f (γ(t)) md γ(t),

(6.43)

and it su�ces to choose η small enough and σ

′
close to 1 to guaratee that σ

′
− (1 + σ

′
)η ≥ σ.

The proof of (6.23) is now immediate. Let F contain the components of the chart functions and f , and let

C contain the characteristic functions of the charts. Now, for each σ ∈ (0, 1), we conclude that for µ-a.e. x ∈ X
there is an (F, C)-generic velocity vector γ′(t) ∈ T

x
X with

(f ◦ γ)

′
(t) ≥ σ Lip f (γ(t)) md γ(t); (6.44)

observing that ∣∣
(f ◦ γ)

′
(t)

∣∣
≤ lip f (γ(t)) md γ(t), (6.45)

we conclude that the Borel set {
x ∈ X : lip f (x) ≥ σ Lip f (x)

}
(6.46)

has full µ-measure, and then let σ ↗ 1.

6.3 A new proof of gf = Lip f in PI-spaces

In this subsection we give a new proof of the characterization of the minimal generalized upper gradient
g
f
of a Lipschitz function f in a PI-space.

Before proceeding, we brie�y recall some needed facts about PI spaces; see [14] for more detail.

We now assume that in addition to our standing assumptions from Subsection 2.1, our metric measure

space (X, µ) is a PI space, i.e. µ is a doubling measure, and (X, µ) satis�es a Poincaré inequality in the sense

of Heinonen-Koskela. Then:

(i) X is proper, i.e. closed balls are compact, since X is a complete and doubling metric space.

(ii) X is quasiconvex. This follows from the fact that X is complete, and a theorem of Semmes.

(iii) [14, Sec. 2] For every 1 < p < ∞, and every Lipschitz function f : X → R, there is a canonical minimal

generalized p-upper gradient g
f
∈ L

p

loc

(X, µ). Here a generalized p-upper gradient for f is a function

g ∈ Lp
loc

(X, µ) such that there exist sequences {f
i
}, {g

i
} ∈ Lp

loc

(X, µ), such that f
i

L

p

loc−→ f , g
i

L

p

loc−→ g, and g
i

is an upper gradient for f
i
for all i.

(iv) The Sobolev space H

1,p

(X, µ) from [14, Sec. 2], is re�exive provided (X, µ) satis�es a (1, p)-Poincaré in-

equality.

We mention that [5] also gives a di�erent proof that g
f

= Lip f in PI spaces. In the same paper they show

that the re�exivity of the Sobolev spaces, which plays an important role in our argument and in [14], is valid

assuming only a doubling condition on the metric. However, their proof that g
f

= Lip f requires both the

doubling condition on the measure and the Poincaré inequality.

Our goal is to give a new proof of [14, Thm. 6.1]:

Theorem 6.47. If (X, µ) is a PI-space with a (1, p)-Poincaré inequality, and if f ∈ Lip(X), then Lip f is a repre-

sentative of theminimal generalized p-upper gradient of f (and hence theminimal generalized q-upper gradient

of f is independent of q for all q ≥ p ).

We �rst give some remarks on how the new proof di�ers from the original one. The original proof con-

tained two steps:
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(S1) Proof of Theorem 6.47 under the additional assumption that (X, µ) is a length space.

(S2) Removing the assumption that (X, µ) is a length space.

The argument for (S1) was motivated by the observation that, whenever (X, µ) is a length space and g is a

continuous upper gradient of f , then g ≥ Lip f holds at each point. Therefore the strategy in [14] was to prove

an approximation result [14, Thm. 5.3] which states that for any f ∈ Lip(X) ∩ H1,p

(X, µ) there is a sequence

(f
k
, h

k
) ⊂ H1,p

(X, µ) × L

p

(µ) such that f
k
→ f in H

1,p

(X, µ), the function h
k
is a continuous upper gradient of

f
k
, and h

k
→ g

f
in L

p

(µ). This approximation result is probably the most technical part of Cheeger’s original

proof.

The �rst simpli�cation of the new argument is that one does not need to handle �rst the case in which

(X, µ) is a length space. The strategy of the proof is motivated by the observation (Lemma 6.48) that if g is a

bounded upper gradient of f , then g ≥ Lip f holds µ-a.e.: this is where Alberti representations are used. Had

the minimal generalized upper gradient been de�ned by minimizing the p-energy on bounded upper gradi-

ents, then Theorem 6.47 would have followed directly from Lemma 6.48. However, as an upper gradient in

L

p

(µ) can be in�nite on a null set, one needs, roughly speaking, to approximate f in Lip(X) ∩ H1,p

(X, µ) by

functions which have bounded upper gradients. Here we use an instance of the argument “modulus equals

capacity” [47] which appears also in the proof of [14, Thm. 5.3]: however, as we do not need to build approxi-

mations which use continuous upper gradients, there are fewer technical details to handle.

The following lemma relates bounded upper gradients and Alberti representations.

Lemma 6.48. If (X, µ) is a PI-space, u : X → R is Lipschitz, and g is a bounded upper gradient of u, then

g ≥ Lip u µ-a.e. (6.49)

Proof. For each ε > 0 we can �nd countably many disjoint compact sets {K
α
} and nonnegative real num-

bers {λ
α
} such that:

(1) For each x ∈ K
α
one has g(x) ∈ [λ

α
, λ

α
+ ε);

(2) The {K
α
} cover X in measure: µ

(
X \

⋃
α

K
α

)
= 0.

By Theorem 6.22 for µ K
α
-a.e. x there is a (1, 1 + ε)-biLipschitz fragment γ:

(1) The domain Dom γ is a compact subset of [−1,∞) and γ(Dom γ) ⊂ K
α
;

(2) One has γ(0) = x and:

lim

r↘0

L1

(
Dom γ ∩ (−r, r)

)
2r

= 1; (6.50)

(3) The point 0 is an approximate continuity point of (u ◦ γ)

′
and

(u ◦ γ)

′
(0) ≥

1

1 + ε

Lip u(x). (6.51)

Let [c, d] be the minimal interval containing Dom γ and let {(a
i
, b

i
)} denote the set of components of [c, d] \

Dom γ; we extend γ on each interval (a
i
, b

i
) by choosing a C-quasigeodesic joining γ(a

i
) to γ(b

i
): note that

this is possible because a PI-space is C-quasiconvex for some C [14, Sec. 17]¹. Then:∣∣∣∣∣∣
r∫

0

(u ◦ γ)

′
(s) ds

∣∣∣∣∣∣ =

∣∣
u

(
γ(r)

)
− u(x)

∣∣
≤

r∫
0

g ◦ γ md γ(t) dt

≤ (λ
α

+ ε)(1 + ε)r + o(r);

(6.52)

dividing by r and letting r ↘ 0 we get:

Lip u(x) ≤ (1 + ε)

2

(
g(x) + ε

)
, (6.53)

and the result follows letting ε ↘ 0.

1 This result is due to Semmes.
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Remark 6.54. Note that in Lemma 6.48 we had to work with bounded upper gradients to establish (6.52);

in fact, to apply the Fundamental Theorem of Calculus, one needs curves, and the K
α
might only contain

fragments, and thus, �lling-in the fragments in K
α
using that a PI-space is quasiconvexmight produce curves

where g is unbounded or in�nite on a set of positive length. Note also that in a PI-space one can use curves

instead of fragments in building Alberti representations; this follows from a general observation in [40] that if

µ is a Radonmeasure on a quasiconvexmetric space X, a Lipschitz Alberti representation of µ can be replaced

by one which gives the same derivation and whose probability measure has support contained in the set of

curves in X.

To prove Theorem 6.47 we can just consider, as in [14], upper gradients which are lower semicontinuous.

In fact, the Vitali-Carathéodory Theorem [38, Thm. 2.25] states that for any h ∈ L1

(µ) and any ε > 0 there

are functions u and v such that u ≤ h ≤ v, u is upper semicontinuous and bounded from above, v is lower

semicontinuous and bounded from below, and ‖u − v‖
L

1

(µ)
< ε. Since wemay assume µ is a �nite measure by

working in a ball, any upper gradient of f can be replaced, up to slightly increasing the L

p

(µ)-norm, by one

which is lower semicontinous and bounded below by a small positive constant. We thus only need to prove:

Theorem 6.55. Suppose (X, µ) is a PI-space, u is a real-valued Lipschitz function de�ned on X and g is a lower-

semicontinuous upper gradient of u. Then:

g ≥ Lip u µ-a.e. (6.56)

To prove Theorem 6.55 we recall a consequence of the Poincaré inequality, which follows from the char-

acterization of the Poincaré inequality in terms of the maximal function associated to an upper gradient [24,

Lem. 5.15]. Suppose that g is an upper gradient for the function u and that g ∈ Lp(µ); consider for N ∈ (0,∞)

the set:

A(g, N) =

x ∈ X : sup

r>0

−

∫
B(x,r)

g

p

dµ ≤ N

p

 ; (6.57)

then if x, y ∈ A(g, N) are Lebesgue points of u, one has∣∣
u(x) − u(y)

∣∣
≤ CNd(x, y), (6.58)

where C is a universal constant that depends only on the PI-space (X, µ).

Proof. Let N,M be natural numbers and S = A(g, N) ∩ B(x,M); it su�ces to show that (6.56) holds µ S-a.e.

Fix ε > 0 and n ∈ N, and let:

u
n

(x) = inf


∫
γ

(g ∧ n + ε) dH 1

γ + u(y) : γ is a Lipschitz curve joining x to y ∈ S

 . (6.59)

As (X, µ) is C-quasiconvex for some C, the function u
n
is C(n + ε)-Lipschitz. Note also that h

n
= g ∧ n + ε is

an upper gradient of u
n
. We let S

m
be a �nite

1

m

-dense set in S, which exists because X is proper. Since the h
n

are lower-semicontinuous and uniformly bounded away from zero, it follows that for each m ∈ N there is an

N
m
∈ N such that, for n ≥ N

m
, one has (compare [47, 3.3, 3.4] and [14, Lem. 5.18]):

u
n

(s) = u(s) (∀s ∈ S
m

). (6.60)

To see this, assume by contradiction that for some s ∈ S
m
and some subsequence {n

k
},

sup

k

u
n
k

(s) < u(s) − η .

Thenwe could �nd a sequence of 1-Lipschitz curves {γ
k

: [0, L
k
]→ X}with γ

k
(0) = s and u(γ

k
(L
k
))+

∫
γ
k

h
n
k

≤

u(s)− η. But nowwe obtain sup L
k
< ∞ so by Arzela-Ascoli, after passing to a subsequence, we have γ

k

C

0

→ γ
∞
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for some curve γ
∞

: [0, L
∞

]→ X, and by the lower-semicontinuity of gwe get that

∫
γ
∞

(g+ε) < u(s)−u(γ(L
∞

)),

contradicting the assumption that g is an upper gradient of u.

Let v
n
be obtained by truncating u

n
so that∣∣
v
n

(x)

∣∣
≤ sup

y∈B(x,M)

∣∣
u
n

(y)

∣∣
; (6.61)

thus, for n ≥ N
m
one has:

v
n

(s) = u(s) (∀s ∈ S
m

). (6.62)

Note that h
n
is an upper gradient of v

n
and that (6.58) implies that for every m, the function v

N
m

, when re-

stricted to the set S
1
of Lebesgue points of S, is C(N + ε)-Lipschitz; therefore, (6.60) implies that v

N
m

→ u

uniformly on S
1
as m → ∞. As the Banach space H

1,p

(µ B(x,M)) is re�exive, by applying Mazur’s Lemma

we can �nd Lipschitz functions w
n
and integers Q

n
such that:

(1) The sequence {w
n
} converges to the function w in H

1,p

(µ B(x,M)) and w = u on S;

(2) Each function w
n
is a convex combination of �nitely many of the functions v

N
m

;

(3) The function g ∧ Q
n

+ ε is an upper gradient for w
n
.

We then recall that in a PI-space there is a constant C such that, for each Lipschitz function f , one has Cg
f
≥

Lip f µ-a.e [14, Prop. 4.26]. As w
n
→ w in H

1,p

(µ B(x,M)), one has that the generalized minimal upper

gradients {g
w
n
−w
} converge to 0 in L

p

(µ B(x,M)); by the locality property of generalized minimal upper

gradients [14, Cor. 2.25], as u = w on S, we have that {g
w
n
−u
} converges to 0 in L

p

(µ S); we thus conclude

that Lip(w
n
− u) → 0 in L

p

(µ S). As |Lipw
n
− Lip u| ≤ Lip(w

n
− u), we can then pass to a subquence such

that Lipw
n
→ Lip u µ S-a.e. Now, by Lemma 6.48 we have that g∧Q

n
+ ε ≥ Lipw

n
holds µ S-a.e., and thus

g ≥ Lip u holds µ S-a.e.

7 The geometry of blow-ups/tangent cones
In this section we show that, if (X, µ) is a di�erentiability space, blowing-up the measure µ at a generic

point yields measures which possess Alberti representations concentrated on distinguished geodesic lines

on which the blow-ups of the chart functions have constant derivatives, and are harmonic. This general-

izes and strengthens the fact that in PI-spaces the blow-ups are generalized linear functions [14, Secs. 3, 10].

Weaker versions of the results presented here, where the blow-up of the measure is not discussed, have been

obtained in [42], and [22]. The result in [42] is more general than [22] because it applies also in the context of

Weaver derivations: we point out that the results in this section, under the assumption that µ is asymptoti-

cally doubling, have natural counterparts in that context. We �rst recall some notions of blow-ups of metric

measure spaces and Lipschitz functions. Note that we use the terminology blow-up to avoid a con�ict with

the word tangent which is used for di�erent objects in this paper; often, instances of what we call blow-ups

are called tangent cones / tangent spaces in the literature.

7.1 Blow-ups of metric measure spaces and Lipschitz maps

De�nition 7.1. A blow-up of ametric space X at a point p is a (complete) pointedmetric space (Y , q) which

is a pointed Gromov-Hausdor� limit of a sequence (

1

r
n

X, p) where r
n
↘ 0: the notation

1

r
n

X means that the

metric on X is rescaled by 1/r
n
; the class of blow-ups of X at p is denoted by Bw-up(X, p).

Remark 7.2. In Subsection 8.3 we discuss blow-ups of metric spaces in a more general context which requires

the notion of ultralimits: under suitable assumptions on X, a sequence (

1

r
n

X, p) will always be precompact

and the two notions will agree. This is the case, for example, if X is a doubling metric space. However, in the

context of di�erentiability spaces wemerely know (Theorem 2.21) that µ is asymptotically doubling, and that

porous sets are µ-null. This implies that, for µ-a.e. p ∈ X, there is a compact set S
p
such that: S

p
is metrically



134 | Je� Cheeger, Bruce Kleiner, and Andrea Schioppa

doubling, and for each ε > 0, there is an r
0
> 0 such that, for each r ≤ r

0
, the set S

p
∩ B(p, r) is εr-dense in

B(p, r). This allows essentially to reduce the existence of blow-ups to the case in which X is doubling.

Recall that if the sequence (

1

r
n

X, p) converges to (Y , q) in the pointed Gromov-Hausdor� sense, there is a

pointed metric space (Z, z) such that there are isometric embeddings ι
n

: (

1

r
n

X, p) → (Z, z) and ι : (Y , q) →
(Z, z), and, for each R > 0, one has:

lim

n→∞

sup

y∈B(z,R)∩ι(Y)

dist

(
ι
n

(
1

r
n

X

)
, {y}

)
= 0,

lim

n→∞

sup

y∈B(z,R)∩ι
n

(

1

r
n

X)

dist (ι (Y) , {y}) = 0.

(7.3)

In particular, each q

′ ∈ Y can be approximated by a sequence p

′
n
∈ 1

r
n

X such that ι
n

(p

′
n

) → ι(q

′
) in Z. This

notion can be made independent of the embedding in Z and one can represent each point q

′ ∈ Y by some

sequence (p

′
n

) ⊂ X of points converging to p (compare the treatment with ultralimits in subsection 8.3).

Moreover, if (p

′
n

) represents q

′
, and if (p̃

′
n

) represents q̃

′
, we have:

d
Y

(q

′
, q̃

′
) = lim

n→∞

d
X

(p

′
n
, p̃

′
n

)

r
n

. (7.4)

De�nition 7.5. Let (X, µ) be a metric measure space; a blow-up of (X, µ) at p is a triple (Y , ν, q) such that

one has (

1

r
n

X, p) → (Y , q) ∈ Bw-up(X, p), and, having chosen a pointed metric space (Z, z) and isometric

embeddings ι
n

: (

1

r
n

X, p)→ (Z, z) and ι : (Y , q)→ (Z, z) such that (7.3) holds, one has:

(ι
n

)]
µ

µ

(
B(p, r

n
)

) w*−−→ ι]ν. (convergence in the weak* topology). (7.6)

The set of blow-ups of (X, µ) at p will be denoted by Bw-up(X, µ, p).

Remark 7.7. Note that if µ is asymptotically doubling and if porous sets are µ-null, then for µ-a.e. p ∈ X one

has Bw-up(X, µ, p) ̸= ∅. In fact, at a generic point p, for each sequence of scaling factors r
n
↘ 0, there is a

subsequence r
n
k

such that (

1

r
n

k

X, p) → (Y , q) ∈ Bw-up(X, p), and there is a doubling measure ν such that

(7.6) holds.

We �nally discuss blow-ups of Lipschitz mappings which take values into Euclidean spaces.

De�nition 7.8. Let (X, µ) be a metric measure space and ψ : X → RN a Lipschitz map; then a blow-up of
(X, µ, ψ) at p is a tuple (Y , ν, φ, q) such that one has that (Y , ν, q) ∈ Bw-up(X, µ, p), where the blow-up is

realized by considering scaling factors r
n
↘ 0, and where φ : Y → RN is a Lipschitz function such that,

whenever (p

′
n

) ⊂ X represents q

′
, one has:

φ(q

′
) = lim

n→∞

ψ(p

′
n

) − ψ(p)

r
n

. (7.9)

The set of blow-ups of (X, µ, ψ) at p will be denoted by Bw-up(X, µ, ψ, p).

Remark 7.10. If µ is asymptotically doubling and porous sets are µ-null, then for µ-a.e. p ∈ X one has that

Bw-up(X, µ, ψ, p) ̸= ∅ by an application of Ascoli-Arzelá.

Before proceeding to the main results about blowing-up Alberti representations, we �rst point out that

the fact that Lip = lip a.e. (from [42] and Theorem 6.22 from Subsection 6.2) already implies a weak form of

Theorem 1.12.

Suppose (U, ψ) is a chart for a di�erentiability space (X, µ), and that (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p) is

realized by choosing scales r
n
↘ 0.

Let f : X → R be a Lipschitz function that di�erentiable at p with respect to the {ψi}N
i=1

:

f (x) − f (p) =

∑
i

a
i
(ψ

i

(x) − ψ

i

(p)) + o(d(x, p)) .
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Then it follows readily from the de�nitions that the maps

f − f (p)

r
n

:

1

r
n

X → R (7.11)

converge to the blow-up map
ˆ
f : Y → R given by

ˆ
f (y) =

N∑
i=1

a
i
φ

i

(y). (7.12)

We now have:

Corollary 7.13. Assume that for all (a
1
, . . . , a

N
) ∈ QN

, the point p is an approximate continuity point of both

Lip(

∑
i

a
i
ψ

i

) and lip(

∑
i

a
i
ψ

i

) . Then for any Lipschitz function f : X → R which is di�erentiable w.r.t ψ at p, if

ˆ
f : Y → R denotes the function as in (7.12), then for all y ∈ Y, r ∈ (0,∞), the global Lipschitz constant LIP(

ˆ
f )

satis�es:

LIP(
ˆ
f ) = Lip(

ˆ
f )(y) = lip(

ˆ
f )(y) =

1

r

var(
ˆ
f , y, r) . (7.14)

Proof. This follows from the fact that Lip = lip almost everywhere ([42] and Theorem 6.22 from Section 6) and

Lemmas 6.25, 6.26 from [27].

Under the assumptions of Corollary 7.13, the map

∑
i

a
i
ψ

i

= f 7→ ˆ
f in (7.12) is injective by (7.14), so it yields a

linear isomorphism T

*

p
X ' span{φi}.

De�nition 7.15. Under the assumptions of Corollary 7.13, if we identify T

*

p
X with span{φi} using the iso-

mophism above, the evaluation map yields a canonical map

E : Y → (T
p
X)

** ' T
p
X

where

E(y)(

∑
i

a
i
φ

i

) =

∑
i

a
i
φ

i

(y) . (7.16)

A further consequence is:

Corollary 7.17. The map

E : Y −→ (T
p
X, ‖ · ‖

x
= ‖ · ‖*

Lip
)

is 1-Lipschitz.

Proof. If y
1
, y

2
∈ Y, then by the de�nition of ‖ · ‖*

Lip

, there exist (a
1
, . . . , a

N
) ∈ RN , such that if f =

∑
i

a
i
ψ

i

,

then Lip(f )(p) = ‖df (p)‖
Lip

= LIP(
ˆ
f ) = 1, and ‖E(y

2
) − E(y

1
)‖*

Lip

=
ˆ
f (E(y

2
) − E(y

1
)), and so

‖E(y
2

) − E(y
1

)‖*
Lip

=
ˆ
f (E(y

2
) − E(y

1
)) =

ˆ
f (y

2
) −

ˆ
f (y

1
)

≤ LIP(
ˆ
f )d(y

1
, y

2
) = d(y

1
, y

2
) .

7.2 Blowing up Alberti representations

We can now state the main result of this Section.

Theorem 7.18. Let (U, ψ) be an N-dimensional di�erentiability chart for the di�erentiability space (X, µ); then

for µ U-a.e. p, for each blow-up (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p) and for each unit vector v
0
∈ T

p
X, the

measure ν admits an Alberti representationA = (Q,Φ) where:
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(1) Q is concentrated on the set Lines(φ, v
0

) of unit speed geodesic lines in Y with (φ ◦ γ)

′
= v

0
;

(2) For each γ ∈ Lines(φ, v
0

) the measure Φγ is given by:

Φγ = H 1

γ . (7.19)

Suppose that X

′ ⊂ X and that themeasures µ

′
and µ X

′
are in the samemeasure class. Then an applica-

tion of measure di�erentiation shows that for µ X

′
-a.e. p the sets Bw-up(X

′
, µ

′
, p) and Bw-up(X, µ, p) coin-

cide. Given (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p) wewill then obtain the Alberti representations of ν by blowing-up

Alberti representations of measures µ

′ � µ which admit Alberti representations of a special form.

De�nition 7.20 (Simpli�ed Alberti representations). We say that the Alberti representationA = (P, Ψ) of the

measure µ

′
is simpli�ed if there are (C

0
, D

0
, τ

0
) ∈ (0,∞)

3

such that:

(1) The measure P is �nite and is supported on the set of (C
0
, D

0
)-biLipschitz fragments whose domain is a

subset of [0, τ
0

];

(2) Denoting by M(X) the set of �nite Radon measures on X, Ψ is the Borel map:

Ψ : Frag(X)→ M(X)

γ 7→ γ]

(
L1

Dom γ
)
.

(7.21)

To prove Theorem 7.18 we will use the following technical result about blow-ups of a simpli�ed Alberti

representationA.

Theorem 7.22. Suppose that the simpli�ed Alberti representation A of the �nite measure µ

′ � µ is in the ψ-

direction of a cone C and that it has 〈v
0
, ψ〉-speed ≥ σ

0
‖v

0
‖
T
*

X

. Then there is a Borel set U with full µ

′
-measure

such that for each p ∈ U, for each (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p) and each R
0
> 0 the measure ν B(q, R

0
)

admits an Alberti representationA
R

0

= (Q
R

0

,Φ) such that:

(1) The �nite Radonmeasure Q
R

0

has support contatined in a compact set S
R

0

⊂ Frag(Y) of geodesic segments;

(2) The totalmass of Q
R

0

is bounded by

D
0

2R
0

(
As(µ, p)

)
log

2

R
0

+1

, whereAs(µ, p)denotes the asymptotic doubling

constant of µ at p, i.e.:

As(µ, p) = lim sup

r↘0

µ

(
B(p, 2r)

)
µ

(
B(p, r)

) ; (7.23)

(3) The set S
R

0

consists of those geodesic segments γ which have domain contained in

[
0,

4R
0

C
0

]
, image con-

tained in
¯
B(q, 2R

0
), which have both endpoints lying outside of B(q,

3

2

R
0

), which intersect
¯
B(q, R

0
), which

have constant speed θγ ∈ [C
0
, D

0
], which satisfy:

sgn(s
2
− s

1
)

〈
v

0
, φ ◦ γ(s

2
) − φ ◦ γ(s

1
)

〉
≥ σ

0
θγ(s

2
− s

1
) Lip (〈v0

, ψ〉) (p) (∀s
1
, s

2
∈ Dom γ), (7.24)

and such that there is a wγ ∈ ¯C for which the following holds:

φ ◦ γ(s
2

) − φ ◦ γ(s
1

) = (s
2
− s

1
)wγ (∀s

1
, s

2
∈ Dom γ); (7.25)

(4) For each γ ∈ S
R

0

the measure Φγ is given by:

Φγ =

1

θγ
H 1

γ B(q, r
0

). (7.26)

We now introduce a bit of terminology to split the measure on fragments in a good and a bad part.

De�nition 7.27. Let ε > 0 and S > 0; with parameters as in Theorem 7.22, we denote by

R̃eg(ψ, C, v
0
, σ

0
, [C

0
, D

0
], τ

0
, ε, S) the set of pairs (γ, p) ∈ Frag(X) × X such that:

(Reg1) The fragment γ is [C
0
, D

0
]-biLipschitz with domain contained in [0, τ

0
];

(Reg2) There is a t ∈ Dom γ with p = γ(t) and for each r
1
, r

2
≤ S one has:

L1

(
Dom γ ∩ [t − r

1
, t + r

2
]

)
≥ (1 − ε)(r

1
+ r

2
); (7.28)
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(Reg3) There are a θ ∈ [C
0
, D

0
] and w ∈ C such that if r ≤ S and s

1
, s

2
∈ [t − r, t + r] ∩ Dom γ one has:∣∣

d(γ(s
1

), γ(s
2

)) − θ|s
1
− s

2
|
∣∣
≤ ε|s

1
− s

2
|∣∣

ψ ◦ γ(s
1

) − ψ ◦ γ(s
2

) − w(s
1
− s

2
)

∣∣
≤ ε|s

1
− s

2
|;

(7.29)

(Reg4) If r ≤ S and s
1
, s

2
∈ [t − r, t + r] with s

1
≤ s

2
then:〈

v
0
, ψ ◦ γ(s

2
) − ψ ◦ γ(s

1
)

〉
≥ (σ

0
− ε)θ Lip (〈v0

, φ〉) (p)(s
2
− s

1
). (7.30)

In the following we will usually �x a choice of (ψ, C, v
0
, σ

0
, [C

0
, D

0
], τ

0
) and vary (ε, S) ∈ (0,∞)

2

; we thus

introduce the shorter notation PAR(ε, S) for (ψ, C, v
0
, σ

0
, [C

0
, D

0
], τ

0
, ε, S). We denote by Reg(PAR(ε, S)) the

subset of those (γ, p) ∈ R̃eg(PAR(ε, S)) such that:

(Reg5) For all r
1
, r

2
≤ S one has:

L1

(
γ−1

(
R̃eg(PAR(ε, S))

)
γ
∩ [t − r

1
, t + r

2
]

)
≥ (1 − ε)(r

1
+ r

2
), (7.31)

where then notation

(
R̃eg(PAR(ε, S))

)
γ
denotes the γ-section of the set R̃eg(PAR(ε, S)).

Lemma 7.32. The set Reg(PAR(ε, S)) is a Borel subset of Frag(X) × X.

Proof. We �rst show that the set R̃eg(PAR(ε, S)) is Borel. The set of fragments satisfying (Reg1) is closed in

Frag(X). Now consider the set

IMG =

{
(γ, p) ∈ Frag(X) × X : p ∈ γ(Dom γ)

}
, (7.33)

which is closed in Frag(X) × X; let IMG(C
0
, D

0
, τ

0
) denote the closed subset of those (γ, p) ∈ IMG such that γ

satis�es (Reg1); then the map:

Inv : IMG(C
0
, D

0
, τ

0
)→ R

(γ, p) 7→ γ−1

(p)

(7.34)

is continuous. Using an argument similar to that used to prove that the map de�ned at (3.15) is Borel, we see

that, for �xed r
1
, r

2
> 0, the map:

ψ
r

1
,r

2

: Frag(X) ×R→ R

(γ, t) 7→ L1

(
Dom γ ∩ [t − r

1
, t + r

2
]

) (7.35)

is Borel; then the set of pairs (γ, p) satisfying (Reg1)–(Reg2) is Borel since it can be written as:⋂
r

1
,r

2
∈[0,S]∩Q

{
(γ, p) ∈ IMG(C

0
, D

0
, τ

0
) : ψ

r
1
,r

2

(
γ, γ−1

(p)

)
≥ (1 − ε)(r

1
+ r

2
)

}
. (7.36)

That the set of pairs satisfying (Reg3)–(Reg–4) is Borel follows by arguments similar to those used in the

proof of Lemma 3.4, compare (3.8), (3.10).

Consider the set:

TRIP =

{
(γ, p, t) ∈ Frag(X) × X ×R : t ∈ Dom γ, γ(t) = p

}
, (7.37)

which is closed in Frag(X) × X ×R. We now �x r
1
, r

2
≥ 0 and de�ne the Borel set:

A
r

1
,r

2

=

{
(γ, p, t) ∈ R̃eg(PAR(ε, S)) ×R ∩ TRIP : γ−1

(p) ∈ [t − r
1
, t + r

2
]

}
; (7.38)

using [25, Thm. 7.25] we get that the map:

Ω
r

1
,r

2

: Frag(X) ×R ×M(X)→ R

(γ, t, µ) 7→ µ

(
(Ar

1
,r

2
)

(γ,t)

) (7.39)

is Borel. The proof that Reg(PAR(ε, S)) is Borel is completed by observing that (Reg5) can be expressed as:

Ω
r

1
,r

2

(
γ, γ−1

(p), Ψ(γ)

)
≥ (1 − ε)(r

1
+ r

2
) (∀r

1
, r

2
∈ [0, S] ∩Q). (7.40)
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Consider the map Ψ de�ned in (7.21); we can decompose the measures Ψ(γ) as follows:

Ψ
PAR(ε,S)

(γ) = Ψ(γ)

(
Reg(PAR(ε, S))

)
γ

;

Ψ

c

PAR(ε,S)

(γ) = Ψ(γ)

(
Reg(PAR(ε, S))

)
c

γ
.

(7.41)

Lemma 7.42. The maps Ψ
PAR(ε,S)

and Ψ

c

PAR(ε,S)

are Borel. Thus, given an Alberti representation A of the �nite

measure µ

′
satisfying the assumptions of Theorem 7.22, we can de�ne the �nite Radon measures:

µ

′
PAR(ε,S)

=

∫
Frag(X)

Ψ
PAR(ε,S)

(γ) dP(γ)

µ

′c
PAR(ε,S)

=

∫
Frag(X)

Ψ

c

PAR(ε,S)

(γ) dP(γ),

(7.43)

which satisfy:

µ

′
PAR(ε,S)

+ µ

′c
PAR(ε,S)

= µ

′
, (7.44)

and:

lim

S↘0

∥∥
µ

′c
PAR(ε,S)

∥∥
= 0. (7.45)

Proof. By [25, Thm. 7.25] the map:

Ω : Frag(X) ×M(X)→ R

(γ, µ) 7→ µ

(
Reg(PAR(ε, S))

)
γ

(7.46)

is Borel, and thus Ψ
PAR(ε,S)

is Borel as Ψ
PAR(ε,S)

(γ) can be written as Ω

(
γ, Ψ(γ)

)
; the proof for Ψ

c

PAR(ε,S)

is

similar.

Now note that

∥∥∥Ψ c

PAR(ε,S)

(γ)

∥∥∥ ≤ τ0
and that, for each γ, one has

lim

S↘0

∥∥
Ψ

c

PAR(ε,S)

(γ)

∥∥
= 0, (7.47)

as for L1

-a.e. t ∈ Dom γ there is an S(t) such that, for s ≤ S(t), one has (γ, γ(t)) ∈ Reg(PAR(ε, S)). Then (7.45)

follows by the Dominated Convergence Theorem.

The next lemma follows from (7.45) and a standard argument in measure di�erentiation.

Lemma 7.48. Let {ε
m
} ⊂ (0,∞) be a sequence with

∑
m

ε
m
< ∞; then there are a Borel U ⊂ X and a sequence

of pairs {(s
m
, S

m
)}
m
⊂ (0,∞)

2

such that:

(1) One has µ(X \ U) ≤

∑
m

ε
m
and, for each m, one also has s

m
≤ S

m
;

(2) For each x ∈ U and for each r ≤ s
m
, one has:

µ

′c
PAR(ε

m
,S
m

)

(
B(x, r)

)
≤ ε

m
µ

′ (
B(x, r)

)
. (7.49)

Proof of Theorem 7.22. We �x a sequence ε
m

such that

∑
m

ε
m

< ∞: the set U is the intersection of the set

provided by Lemma 7.48 and the set of points p where the limit:

lim

r↘0

µ

′ (
B(x, r

n
)

)
µ

(
B(x, r

n
)

) (7.50)

exists and is �nite. Having �xed a point p ∈ U, we let r
n
be a sequence converging to 0 such that the rescalings(

1

r
n

X,

µ

′

µ
′
(
B(p, r

n
)

) , ψ − ψ(p)

r
n

, p

)
(7.51)
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converge to (Y , ν, φ, q) in the measured Gromov-Hausdor� sense. We let X
n

=

1

r
n

X. As in the following we

consider simultaneously di�erent metric spaces, we will use subscripts to denote objects which “live” in a

given metric space, e.g. B
X
n

(p, R
0

) denotes the ball of radius R
0
and center p in the metric space X

n
.

By the theory of measured Gromov-Hausdor� convergence we can �nd a compact metric space Z, which

is a convex compact subset of some Banach space (e.g. `∞), which satis�es the following properties:

(Z1) There are isometric embeddings:

J
n

:

(
¯
B
X
n

(p, 4R
0

), p

)
→ (Z, q

Z
)

J
∞

:

(
¯
B
Y

(q, 4R
0

), q

)
→ (Z, q

Z
);

(7.52)

in the following we will often implicitly identify balls like B
X
n

(p, r) and B
Y

(q, r) with their images in Z;

(Z2) There are compact sets K
n
,

˜
K
n
⊂ Z and a sequence η

n
↘ 0 such that:

¯
B
X
n

(p, R
0

) ⊂ K
n
⊂ ¯
B
X
n

(p, R
0

+ η
n

)

¯
B
X
n

(p, 2R
0

) ⊂ ˜
K
n
⊂ ¯
B
X
n

(p, 2R
0

+ η
n

)

d
Z,H

(K
n
,

¯
B
Y

(q, R
0

)) ≤ η
n

d
Z,H

(
˜
K
n
,

¯
B
Y

(q, 2R
0

)) ≤ η
n
,

(7.53)

where d
Z,H

(·, ·) denotes the Hausdor� distance between subsets of Z;

(Z3) There is an L(ψ)-Lipschitz function ψ
Z

: Z → RN such that, denoting by ψ
X
n

the restriction

ψ
Z
|¯B
X
n

(p, 2R
0

) and by ψ
Y
the restriction ψ

Z
|¯B
Y

(q, 2R
0

), one has:

ψ
X
n

◦ J
n

=

ψ − ψ(p)

r
n

ψ
Y
◦ J
∞

= φ;

(7.54)

(Z4) Letting µ
n
and µ

∞
denote, respectively, the measures

J
n]
µ

′
B
X
n

(p, R
0

)

µ
′
(
B
X

(p, r
n

)

)
J
∞]ν B

Y
(q, R

0
),

(7.55)

one has µ
n

w*−−→ µ
∞
.

We chose Z convex to “�ll-in” fragments to Lipschitz curves; speci�cally, let Curves(Z) denote the set of

Lipschitz maps γ : K → Z, where K ⊂ R is a (possibly degenerate) compact interval; we topologize Curves(Z)

with the Vietoris topology. Let

Fill : Frag(Z)→ Curves(Z) (7.56)

be the map which extends a fragment γ to a Lispchitz curve, with domain the minimal compact interval I(γ)

containing Dom γ, by extending γ linearly on each component of I(γ) \ Dom γ. The map Fill is continuous.

Let Γ
X
n

⊂ Frag(X) denote the set of those [C
0
, D

0
]-biLipschitz fragments which intersect

¯
B
X

(p, 2R
0
r
n

);

note that Γ
X
n

is closed. We de�ne maps:

Rep
n

: Γ
X
n

→ Frag(Z) (7.57)

by composing J
n
◦
(
γ|γ−1

(
¯
B
X

(p, 2R
0

))

)
, where we naturally identify γ with a fragment in X

n
, with the unique

a�ne map Aγ : R→ R which has dilating factor

1

r
n

and which maps the point:

min

{
t : t ∈ γ−1

(
¯
B
X

(p, 2R
0

))

}
(7.58)

to 0. Note that Rep
n
is continuous.

Wewill now refer back to themapΨ de�ned in (7.21), adding subscripts regarding themetric space. From

the de�nition of Rep
n
we see that:

r
n
Ψ
Z

(
Rep

n
(γ)

)
= J

n]ΨX
n

(γ)
¯
B
X
n

(p, 2R
0

) (7.59)
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Let g ∈ C
c
(Z) so that:

lim

n→∞

∫
g dµ

n
=

∫
g dµ

∞
; (7.60)

then ∫
g dµ

n
=

1

µ
′
(
B
X

(p, r
n

)

) ∫
B
X
n

(p,R
0

)

g ◦ J
n
dµ

′

=

1

µ
′
(
B
X

(p, r
n

)

) ∫
B
X
n

(p,R
0

)

g ◦ J
n
d(µ

′
PAR(ε

m
,S
m

)

+ µ

′c
PAR(ε

m
,S
m

)

);

(7.61)

Note that ∣∣∣∣∣∣∣
1

µ
′
(
B
X

(p, r
n

)

) ∫
B
X
n

(p,R
0

)

g ◦ J
n
dµ

′c
PAR(ε

m
,S
m

)

∣∣∣∣∣∣∣ ≤ ‖g‖∞
µ

′c
PAR(ε

m
,S
m

)

(
B
X

(p, r
n
R

0
)

)
µ
′
(
B
X

(p, r
n

)

) ; (7.62)

for n su�ciently large r
n
R

0
≤ s

m
so that by (7.49) and using that µ

′
is asymptotically doubling we conclude

that:

lim

n→∞

1

µ
′
(
B
X

(p, r
n

)

) ∫
B
X
n

(p,R
0

)

g ◦ J
n
dµ

′c
PAR(ε

m
,S
m

)

= 0. (7.63)

We also introduce some notation to deal with regularity in Z and X; so we let:

PAR
X

(ε, S) =

(
ψ, C, v

0
, σ

0
, [C

0
, D

0
], τ

0
, ε, S

)
PAR

Z
(ε, S) =

(
ψ, C, v

0
, σ

0
, [C

0
, D

0
],

4R
0

C
0

, ε, S

)
;

(7.64)

in particular, inspection of conditions (Reg1)–(Reg5) shows that:

1

µ
′
(
B
X

(p, r
n

)

) ∫
B
X
n

(p,R
0

)

g ◦ J
n
dµ

′
PAR

X
(ε
m
,S
m

)

=

1

µ
′
(
B
X

(p, r
n

)

) ∫
Γ
X
n

dP(γ)

∫
Z

g r
n
χ
B
X
n

(p,R
0

)
dΨ

PAR
Z

(ε
m
,S
m
/r
n

)

(
Rep

n
(γ)

)
. (7.65)

Let
˜
Γ
X
n

be the Borel subset of those γ ∈ Γ
X
n

such that:

χ
B
X
n

(p,R
0

)
Ψ

PAR
Z

(ε
m
,S
m
/r
n

)

(
Rep

n
(γ)

)
̸= 0; (7.66)

then (7.66) implies that there is a pγ = γ(t) ∈
(

Reg(PAR
X

(ε
m
, S

m
))

)
γ
∩ B

X
(p, r

n
R

0
). Note that the set

Bγ,n = γ−1

(
¯
B
X

(p, 2r
n
R

0
)

)
has diameter at most

4R
0
r
n

C
0

; let aγ , bγ be minimal such that the interval [tγ −

aγ , tγ +bγ ] contains γ−1

(Bγ,n). For n-su�ciently large one has aγ , bγ ≤ Sm so that by (Reg2) the ε
m

(aγ +bγ)-

neighbhourhood ofBγ,n contains [tγ − aγ , tγ + bγ ]. A similar conclusion holds for the smallest interval con-

taining γ−1

(
B
X
n

(p, R
0

)

)
from which we get:

r
n

∥∥
Ψ

PAR
Z

(ε
m
,S
m
/r
n

)

(
Rep

n
(γ)

)
B
X
n

(p, R
0

) − Ψ
Z

(
Fill ◦Rep

n
(γ)

)
B
Z

(q
z
, R

0
)

∥∥
≤ ε

m
r
n

2R
0

C
0

. (7.67)

Note also that:

γ

(
Dom γ ∩ [tγ −

r
n
R

0

D
0

, tγ +

r
n
R

0

D
0

]

)
⊂ B

X
(p, 2r

n
R

0
); (7.68)

as for n su�ciently large one has

r
n
R

0

D
0

≤ S
m
, we have:

r
n
Ψ

PAR
Z

(ε
m
,S
m
/r
n

)

(
Fill ◦Rep

n
(γ)

) (
B
X
n

(p, 2r
n
R

0
)

)
≥ 2(1 − ε

m
)

r
n
R

0

D
0

. (7.69)
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For n su�ciently large we also have

3r
n
R

0

C
0

≤ S
m
which implies:

L1

(
Dom γ ∩

[
tγ , tγ +

3r
n
R

0

C
0

])
≥ (1 − ε

m
)

3R
0

C
0

r
n

L1

(
Dom γ ∩

[
tγ −

3r
n
R

0

C
0

, tγ

])
≥ (1 − ε

m
)

3R
0

C
0

r
n

;

(7.70)

so we can �nd s
1,γ ≤ tγ ≤ s2,γ with:∣∣

tγ − si,γ

∣∣
≥ (1 − ε

m
)

3r
n
R

0

C
0

(for i = 1, 2)

d
X

(p, γ(s
i,γ)) ≥

(
(1 − ε

m
)

3R
0

C
0

− R
0

)
r
n

(for i = 1, 2);

(7.71)

in particular, form su�ciently large (7.71) implies that themaximum andminimumpoint inBγ,n aremapped

by γ outside of B
X

(p,

3

2

R
0
r
n

). Thus, the endpoints of Fill ◦Rep
n

(γ) lie out of B
Z

(q
Z
,

3

2

R
0

).

We now obtain an upper estimate for P(
˜
Γ
X
n

) (note that we assume that n is su�ciently large depending

on m):

2(1 − ε
m

)

r
n
R

0

D
0

P(
˜
Γ
X
n

) ≤ r
n

∫
Frag(X)

Ψ
PAR

Z
(ε
m
,S
m
/r
n

)

(
Rep

n
(γ)

) (
B
X

(p, 2r
n
R

0
)

)
dP(γ)

≤ µ

′ (
B
X

(p, 2R
0
r
n

)

)
;

(7.72)

in particular, using (7.67),

lim

n→∞

1

µ
′
(
B
X

(p, r
n

)

)
∣∣∣∣∣∣∣
∫

˜
Γ
X
n

dP(γ)

∫
g r

n
χ
B
X
n

(p,R
0

)
dΨ

PAR
Z

(ε
m
,S
m
/r
n

)

(
Rep

n
(γ)

)

−

∫
˜
Γ
X
n

dP(γ)

∫
g r

n
χ
B
Z

(q
Z
,R

0
)
dΨ

PAR
Z

(ε
m
,S
m
/r
n

)

(
Fill ◦Rep

n
(γ)

)∣∣∣∣∣∣∣
≤ lim sup

n→∞

1

µ
′
(
B
X

(p, r
n

)

)‖g‖
∞
P(

˜
Γ
X
n

) r
n
ε
m

2R
0

C
0

≤ lim sup

n→∞

‖g‖
∞

ε
m

1 − ε
m

D
0

C
0

µ

′ (
B
X

(p, 2r
n
R

0
)

)
µ
′
(
B
X

(p, r
n

)

)
= O(ε

m
),

(7.73)

where in the last step we used that µ

′
is doubling. As n → ∞we can send m → ∞ so that the left hand side

of (7.73) converges to 0.

Let Ω
m
⊂ Curves(Z) denote the set of D

0
-Lipschitz curves such that there exists a θγ ∈ [C

0
, D

0
] and a

w ∈ ¯C such that (note the constant C
2
will be speci�ed later):

(Ω1) For all s
1
, s

2
∈ Dom γ one has:∣∣

d
Z

(γ(s
1

), γ(s
2

)) − θγ |s1
− s

2
|
∣∣
≤ C

2
ε
m

; (7.74)

(Ω2) The domain of γ is a subset of

[
0,

4R
0

C
0

]
;

(Ω3) The image of γ is contained in the C
2
ε
m
-neighbourhood of

¯
B
X
n

(p, 2R
0

);

(Ω4) For all s
1
, s

2
∈ Dom γ one has:∣∣

ψ
Z
◦ γ(s

1
) − ψ

Z
◦ γ(s

2
) − w|s

1
− s

2
|
∣∣
≤ C

2
ε
m

; (7.75)

(Ω5) For all s
1
, s

2
∈ Dom γ with s

2
≥ s

1
one has:〈

v
0
, ψ

Z
◦ γ(s

2
) − ψ

Z
◦ γ(s

1
)

〉
≥ (σ

0
− ε

m
)θγ Lip (〈v0

, φ〉) (p)(s
2
− s

1
) − C

2
ε
m
. (7.76)
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Note that the set Ω
m

is compact. We also de�ne Ω
∞

by requiring in (Ω3) that γ lies in
¯
B
Y

(p, 2R
0

) and

that the error term ε
m

is replaced by 0. In view of (Reg1)–(Reg5), for an appropriate choice of C
2
one has

Fill ◦Rep
n

(
˜
Γ
X
n

) ⊂ Ω
m
for n ≥ N(m). If we let P

n
denote the Radon measure on Curves(Z):

P
n

=

1

µ
′
(
B
X

(p, r
n

)

) r
n

Fill ◦Rep
n

(γ)]P
˜
Γ
X
n

; (7.77)

we have that P
n
has support contained in Ω

m
for n ≥ N(m). By (7.72) the total mass of P

n
is bounded by:

D
0

2(1 − ε
m

)R
0

µ

′ (
B
X

(p, 2R
0
r
n

)

)
µ
′
(
B
X

(p, r
n

)

) . (7.78)

Moreover, an application of Ascoli-Arzelá shows that the set Ω =

⋃
m

Ω
m
∪Ω

∞
is compact; we can thus �nd a

subsequence n
m
≥ N(m) such that P

n
m

w*−−→ Q
R

0

. The previous discussion on the properties of the fragments

in
˜
Γ
X
n

implies that the support sptQ
R

0

of Q
R

0

is a subset of S
R

0

⊂ Ω
∞

and that point (2) in the statement of

this Theorem follows from (7.78). We now observe that:

1

µ
′
(
B
X

(p, r
n

)

) ∫
˜
Γ
X
n
m

dP(γ)

∫
gr
n
χ
B
Z

(q
Z
,R

0
)
dΨ

Z

(
Fill ◦Rep

n
m

(γ)

)

=

∫
Ω

dP
n
m

(γ)

∫
gχ

B
Z

(q
Z
,R

0
)
dΨ

Z
(γ);

(7.79)

�x a ξ ∈ (0, 1), and let ψ
ξ
be a continuous function, which takes values in [0, 1] and which equals 1 on

¯
B
Z

(q
Z
, R

0
+ ξ ) and which vanishes out of B

Z
(q
Z
, R

0
+ 2ξ ); then:∣∣∣∣∣∣

∫
Ω

dP
n
m

(γ)

∫
g

(
χ
B
Z

(q
Z
,R

0
)
− ψ

ξ

)
dΨ

Z
(γ)

∣∣∣∣∣∣ ≤ Pnm (Ω)‖g‖
∞

2ξ

C
0

; (7.80)

as the map γ 7→
∫
gψ

ξ
dΨ

Z
(γ) is continuous:

lim

m→∞

∫
Ω

dP
n
m

(γ)

∫
gψ

ξ
dΨ

Z
(γ) =

∫
Ω

dQ
R

0

(γ)

∫
gψ

ξ
dΨ

Z
(γ). (7.81)

Also, ∣∣∣∣∣∣
∫
Ω

dQ
R

0

(γ)

∫
gψ

ξ
dΨ

Z
(γ) −

∫
Ω

dQ
R

0

(γ)

∫
g dΨ

Z
(γ) B

Y
(q, R

0
)

∣∣∣∣∣∣ ≤ QR0

(Ω)‖g‖
∞

ξ

C
0

; (7.82)

so we conclude that:

lim

m→∞

∫
g dµ

n
m

=

∫
S
R

0

dQ
R

0

∫
g dΨ

Z
(γ) B

Y
(q, R

0
); (7.83)

in particular, if we let:

Φγ = Ψ
Z

(γ) B
Y

(q, R
0

) =

1

θγ
H 1

γ , (7.84)

we get that (Q
R

0

,Φ) gives an Alberti representation of ν B
Y

(q, R
0

). It might be worth noting that in (7.84) we

used that γ is a geodesic with constant speed θγ and that the function γ 7→ θγ is continuous.

Lemma 7.85. Under the hypotheses of Theorem 7.18, there is a Borel U ⊂ X with full µ-measure such that, for

each p ∈ U, for each (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p), for each R
0
> 0 and each v

0
∈ S(‖ · ‖

p,Lip
* ), the measure

ν B(q, R
0

) admits an Alberti representation (Q
R

0

,Φ) which satis�es the following conditions:

(1) The measure Q
R

0

is a �nite Radon measure with total mass at most

1

2R
0

(
As(µ, p)

)
log

2

R
0

+1

;
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(2) The support of Q
R

0

is contatined in a compact set S
R

0

⊂ Frag(Y) which consists of the unit-speed geodesic

segments γ whose domain lies in [0, 4R
0

], whose image lies in
¯
B(q, 2R

0
), which have both endpoints lying

outside of B(q,

3

2

R
0

), which intersect
¯
B(q, R

0
), and which satisfy:

φ ◦ γ(s
2

) − φ ◦ γ(s
1

) = (s
2
− s

1
)v

0
(∀s

1
, s

2
∈ Dom γ); (7.86)

(3) For each γ ∈ S
R

0

the measure Φγ is given by:

Φγ = H 1

γ B(q, R
0

). (7.87)

Proof. By Theorem 6.22 we can choose Borel maps v
n

: X → TX ² with 1 ≤ ‖v
n
‖
TX
≤ 1 +

1

n

and such that:

(1) For each x ∈ X the closure of the set {v
n

(x)}
n
contains S(‖ · ‖

p,Lip
* );

(2) For each n there is a measure µ

′
n
in the same measure class of µ and there are countably many disjoint

compact sets {K
n,α
}whose union has µ-negligible complement and such that the function v

n
is constant

on each K
n,α

;

(3) The measure µ

′
n

K
n,α

admits a simpli�ed and (1, 1 +

1

n

)-biLipschitz Alberti representation A
n,α

in the

ψ-direction of the cone C
(
v
n

K
n,α

/‖v
n

K
n,α
‖

2
, π/2n

)
with 〈v

n
K
n,α

, ψ〉-speed ≥ (1 − 1/n).

LetU
n
be aBorel subset of

⋃
α

K
n,α

with full µ-measure and such that, for each p ∈ U
n
∩K

n,α
, the conclusion of

Theorem 7.22 holds takingA = A
n,α

. Let U =

⋂
U
n
and �x p ∈ U and (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p). Choose

a sequence n
m

such that v
n
m

(p) → v
0
and let Q

R
0
,n
m

, Φ
n
m

and S
R

0
,n
m

be the measures and sets of geodesics

provided by Theorem 7.22. By Ascoli-Arzelá the set Ω = S
R

0

⋃
m

S
R

0
,n
m

is a compact subset of Frag(Y); as

the measures Q
R

0
,n
m

are uniformly bounded and supported in Ω, we can pass to a subsequence such that

Q
R

0
,n
m

w*−−→ Q
R

0

. Note also that Q
R

0

is supported in S
R

0

. For g ∈ C
b

(Y) one proves that:

lim

m→∞

∫
Ω

dQ
R

0
,n
m

(γ)

∫
g d(Φ

n
m

)γ =

∫
S
R

0

dQ
R

0

(γ)

∫
g dΦγ (7.88)

by using an argument similar to the one used to derive the estimates (7.80) and (7.82). Thus the pair (Q
R

0

,Φ)

provides the desired Alberti representation.

To prove Theorem 7.18 we need to introduce a bit more of terminology. We can regard parametrized Lip-

schitz curves in Y, whose domain is a possibly in�nite interval of R, as elements of F
c
(R × Y) by identifying

them with their graph. We denote by Geo(Y) the set of unit speed geodesic segments, half-lines or lines in Y;

note that Geo(Y) is a K
σ
. Moreover, if we let:

Φ : Geo(Y)→ Rad

γ 7→H 1

γ ,
(7.89)

then, for each g ∈ C
c
(Y), the map:

Φ
g

: Geo(Y)→ R

γ →
∫
gdΦγ =

∫
R

g ◦ γ(t) dt

(7.90)

is continuous.

Proof of Theorem 7.18. Let U be the µ-full measure subset provided by Lemma 7.85 and consider p ∈ U and

(Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p). Fix a diverging sequence of radii {R
n
} with R

n
> 2R

n−1
and let Q

R
n

and S
R
n

be the corresponding measures and sets provided by Lemma 7.85. Note that S
R
n

can also be regarded as a

compact subset of F
c
(R × Y); for i ≤ n we de�ne the sets:

S
n,i

=

{
γ ∈ S

R
n

: dist(γ, q) ∈ (R
i−1

, R
i
]

}
, (7.91)

2 A choice of the representative of TX is implied.



144 | Je� Cheeger, Bruce Kleiner, and Andrea Schioppa

where we take R
0

= 0, and observe that the sets S
n,i

are Borel. We also consider the following Borel subsets

of F
c
(R × Y) ×R:

˜S
i,n

=

{
(γ, t) : t ∈ Dom γ, γ ∈ S

i,n
, d

(
γ(t), q

)
∈ (R

i−1
, R

i
]

}
; (7.92)

note that the sets
˜S
i,n

have compact sections, i.e. for γ ∈ F
c
, each section (

˜S
i,n

)γ is compact. By the Lusin-

Novikov Uniformization Theorem [25, Thm. 18.18], we can �nd Borel maps τ
i,n

: S
i,n
→ R such that

(γ, τ
i,n

(γ)) ∈ ˜S
i,n

. In particular, we can de�ne a Borel map Tran
n

: Geo(Y) → Geo(Y) by requiring that

for γ ∈ ˜S
i,n

the geodesic segment Tran
n

(γ) is the composition of γ with the translation by τ
n,i

(γ). Note that if

γ ∈ ˜S
i,n

the extremes of Dom γ are at distance at least

3

2

R
n
− R

i
from τ

n,i
(γ) and so[

−

R
n

2

,

R
n

2

]
⊂ DomTran

n
(γ) ⊂ [−3R

n
, 3R

n
]. (7.93)

Let Q
n

= Tran
n]QR

n

and denote by K(m, i) the set of geodesic segments γ whose domain is contained in

[−3R
m
, 3R

m
], and which intersect

¯
B(q, R

i
) in a point pγ = γ(tγ) where tγ is at distance at most 2R

i
from 0.

The set K(∞, i) is de�ned similarly by requiring γ to be a geodesic line. Note that the sets:

K(i) = K(∞, i) ∪
⋃
m

K(m, i) (7.94)

are compact and that Q
n
is concentrated on the set

⋃
i≤n

K(n, i). We now obtain an upper bound on Q
n

(
K(i)

)
:

ν

(
B(q, 2R

i
)

)
=

∫
Geo(Y)

H 1

γ

(
B(q, 2R

i
)

)
dQ

n
(γ) ≥

∫
K(i)

H 1

γ

(
B(q, 2R

i
)

)
dQ

n
(γ); (7.95)

if γ ∈ Tran
n

(
S
n,l

)
and if l ≤ i and n ≥ i, one has H 1

γ

(
B(q, 2R

i
)

)
≥

R
i

2

so from (7.95) we obtain:

Q
n

(
K(i)

)
≤ 2

ν

(
B(q, 2R

i
)

)
R
i

. (7.96)

In particular, we can pass to a subsequence and �nd a Radon measure Q on Geo(Y) such that for each i one

has Q
n
K(i)

w*−−→ Q K(i); in particular Q
n

w*−−→ Q. Moreover, as Q
n
is concentrated on

⋃
i

K(n, i), themeasure

Q has support contained in Lines(φ, v
0

). To show that (Q,Φ) gives an Alberti representation of ν we take

g ∈ C
c
(Y) and choose i su�ciently large so that spt g ⊂ B(q, R

i
):∫

Y

g dν =

∫
K(i)

dQ
n

(γ)

∫
g dH 1

γ =

∫
K(i)

Φ
g
(γ) dQ

n
(γ), (7.97)

and

lim

n→∞

∫
K(i)

Φ
g
(γ) dQ

n
(γ) =

∫
K(i)

Φ
g
(γ) dQ(γ) =

∫
Geo(Y)

dQ(γ)

∫
g dH 1

γ . (7.98)

We nowdiscuss consequences of Theorem 7.18 in terms of the canonicalmaps from blow-ups of X to the �bres

of TX.

Retaining the assumptions of Theorem 7.18, suppose (Y , ν, φ, q) ∈ (X, µ, ψ, p) is realized by choosing

scales r
n
↘ 0.

Corollary 7.99 (cf. Theorem 1.12). Let p ∈ U be a point where the conclusion of Theorem 7.18 holds. Then:

(1) The canonical map E : Y → T
p
X of De�nition 7.15 is a metric submersion.

(2) For each q̃ ∈ Y, and v
0
∈ T

p
X there is a line γ ∈ Lines(φ, v

0
) passing through it, and there is a cγ ∈ R such

that:

E

(
γ(t)

)
= v

0
(t − cγ) (∀t ∈ R). (7.100)
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Proof. (2). This follows immediately fromTheorem 7.18 since themeasure ν has full support in Y, andwe have

a blow-up Alberti representation of ν that is supported on lines in the direction v
0
.

(1). The map E is 1-Lipschitz by Corollary 7.17. Given y
1
∈ Y, z

2
∈ T

p
X \ E(y

1
), let ∆t = ‖z

2
− E(y

1
)‖
p
,

and v
0

=

1

∆t

(z
2
− E(y

1
)). By (2) there is a unit speed geodesic γ : R → Y such that E ◦ γ has velocity v

0
, and

γ(t
1

) = y
1
for some t

1
∈ R. Then putting y

2
= γ(t

1
+ ∆t), we have

d(y
2
, y

1
) = d(γ(t

2
), γ(t

1
)) = ∆t = ‖z

2
− E(y

1
)‖
p

and

E(y
2

) = E(γ(t
1

+ ∆t)) = E(γ(t
1

)) + ∆tv
0

= z
2
.

Corollary 7.99 generalizes [14, Sec. 13] where the surjectivity of the map E was proven for the case in which

(X, µ) is a PI-space. The surjectivity of the map E in the case in which (X, µ) is a di�erentiability space has

already been proven in [22, 42].

7.3 Harmonicity of blow-up functions

In this subsection we prove Corollary 1.16.

Proof of Corollary 1.16. Let u : X → R be a Lipschitz function, and suppose that x ∈ X a point of di�erentia-

bility of u where x is as in the statement of Theorem 1.12.

Note that (2) of Corollary 1.16 follows from Corollary 7.13.

Choose a unit vector ξ ∈ (T
x
X, ‖ · ‖

TX

(x)) supporting du(x) ∈ T*
x
X, i.e.

du(x)(ξ ) =

∥∥
du(x)

∥∥
T
*

X

=

∥∥
du(x)

∥∥
T
*

X

· ‖ξ‖
TX

. (7.101)

Since x is a point of di�erentiability, the blow-up û of u will be of the form û = α ◦ φ̂
i
for some α ∈ T*

x
X. Now

consider an Alberti representation for µ̂ as in Theorem 1.12 (2), which is supported on unit speed geodesics γ

with (φ̂
i
◦ γ)

′ ≡ ξ . Fix such a unit speed geodesic γ : R→ ˆ
X. Note that for all t ∈ R

(û ◦ γ)

′
(t) = α

(
(φ̂

i
◦ γ)

′
(t)

)
= α(ξ ) = ‖du(x)‖

T
*

X
,

and by part (2) of the corollary we have

‖du(x)‖
T
*

X
≡ Lip(û)(γ(t)) = (Lip(û ◦ γ))(t) .

If v :
ˆ
X → R is Lipschitz and agrees with û outside a compact subset K ⊂ ˆ

X, then for all t ∈ R we have

Lip(v ◦ γ)(t) ≤ Lip(v)(γ(t)), and for L-a.e. t ∈ R \ γ−1

(K) we have

Lip(v ◦ γ) = |(v ◦ γ)

′
(t)| = |(û ◦ γ)

′
(t)| = Lip(û ◦ γ)(t) = Lip(u)(x) .

Therefore if γ−1

(K) ⊂ [a, b], then∫
γ−1

(K)

[
Lip(v)( γ(t)) ]

p

dt −

∫
γ−1

(K)

[
Lip(û)(γ(t))

]
p

dt ≥

∫
γ−1

(K)

[
Lip(v ◦ γ)(t))

]
p

dt −

∫
γ−1

(K)

[
Lip(û ◦ γ)(t))

]
p

dt

=

∫
[a,b]

[
Lip(v ◦ γ)(t))

]
p

dt −

∫
[a,b]

[
Lip(û ◦ γ)(t))

]
p

dt

≥

∫
[a,b]

|(v ◦ γ)

′
(t)|p dt −

∫
[a,b]

|(û ◦ γ)

′
(t)|p dt

≥ 0

by Jensen’s inequality. Integrating this with respect to the measure on curves coming from the Alberti repre-

sentation, we get that ∫
K

[
Lip(v)

]
p

dµ̂ ≥

∫
K

[
Lip(û)

]
p

dµ̂ . (7.102)
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8 Lipschitz mappings f : X → Z and metric di�erentiation

8.1 The canonical subbundle determined by a pseudodistance

In this subsection we associate a canonical subbundleW
ϱ
of T

*

X to a Lipschitz compatible pseudometric ϱ;

we denote by C
ϱ
the Lipschitz constant of ϱ, that is, ϱ ≤ C

ϱ
d
X
.

De�nition 8.1. Let Φ be a countable set of ϱ-Lipschitz functions and let V be a Φ-di�erentiability set; we

de�ne a subbundleW
Φ
of T

*

X by letting, for x ∈ V, the �breW
Φ

(x) equal the linear span of

{
df (x) : f ∈ Φ

}
.

The collection Sub(ϱ) of subbundles associated to countable sets of ϱ-Lipschitz functions has a partial

order�: we say thatW
Φ
�W

Φ
′ if for µ-a.e. x ∈ X one hasW

Φ
(x) ⊆W

Φ
′ (x).

Lemma 8.2. The poset (Sub(ϱ),�) contains a maximal elementW
ϱ
which we call the canonical subbundle

associated to ϱ.

Proof. As the constructions depend only on themeasure class of µ, we can assume that µ is a probabilitymea-

sure. We basically follow the argument used in the proof of Lemma 2.33: to eachW
Φ
∈ Sub(ϱ) we associate a

“size”, which is the expectation of the random variable dimW
Φ
:

‖W
Φ
‖ =

∫
dimW

Φ
(x) dµ(x); (8.3)

note that the �nite dimensionality of T

*

X implies that

S = sup

W
Φ
∈Sub(ϱ)

‖W
Φ
‖ < ∞. (8.4)

Let W
Φ
n

be a maximizing sequence and let Φ
∞

=

⋃
n

Φ
n
; then ‖W

Φ
∞

‖ = S. Suppose, by contradiction, that

for some W
Φ
∈ Sub(ϱ) one has W

Φ
�̸ W

Φ
∞

; then there is a positive measure set V such that, if x ∈ V, one
has

W
Φ
∞

(x) ( span

(
W
Φ

(x) ∪W
Φ
∞

(x)

)
; (8.5)

but then we obtain the contradiction ‖W
Φ∪Φ

∞

‖ > S.

Let D
X
⊂ X be a countable dense set and Φ

D
X
,ϱ

= {ϱ
x

: x ∈ D
X
}; we let W

D
X
,ϱ

= W
Φ
D
X
,ϱ

. We now show that

W
D
X
,ϱ

equals W
ϱ
: this is a stronger result than [28, Thm. 2.7] because it applies to subbundles associated to

Lipschitz compatible pseudometrics, and does not require a Poincaré inequality.

Theorem 8.6. For any countable dense set D
X
⊂ X we haveW

D
X
,ϱ

= W
ϱ
.

We o�er two conceptually di�erent proofs of Theorem 8.6.

Proof of Theorem 8.6 via a measurable Hahn-Banach. AsW
D
X
,ϱ
�W

ϱ
, assume by contradiction that there is

a positive measure Borel set U such that, for each x ∈ U one has:

W
D
X
,ϱ

(x) ( W
ϱ

(x). (8.7)

Without loss of generality we can assume that there are 1-Lipschitz functions {φ
i
}N
i=1

such that (U, {φ
i
}N
i=1

)

is a di�erentiability chart. Let

˜
U =

{
(x, a) ∈ U ×RN :

N∑
i=1

a
i
dφ

i
(x) ∈W

ϱ
(x) ∩ S(‖ · ‖

T
*

X

(x)), and

dist‖ · ‖
T
*
X

(x)

(
N∑
i=1

a
i
dφ

i
(x),W

D
X
,ϱ

(x)

)
≥

1

2

}
. (8.8)
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Note that the distances in the �bre T

*

x
X are computed with respect to the norm ‖ · ‖

T
*

X

(x). The set
˜
U is Borel

and by (8.7) for each x ∈ U the section
˜
U
x
is nonempty (compare [39, Lem. 4.22]) and compact. By the Lusin-

Novikov Uniformization Theorem [25, Thm. 18.10] we obtain a unit-normBorel sectionω ofW
ϱ
| U satisfying:

dist‖ · ‖
T
*
X

(x)

(
ω(x),W

D
X
,ϱ

(x)

)
≥

1

2

(∀x ∈ U). (8.9)

Using Hahn-Banach in each �bre T

*

x
X and an argument similar to the one above, we obtain a Borel section ξ

of TX | U such that:

‖ξ‖
TX

≤ 2;

〈ω(x), ξ (x)〉 = 1 (∀x ∈ U),

(8.10)

and such that ξ (x) is annihilated by the functionals inW
D
X
,ϱ

(x). Up to shrinking U we can assume that there

are
˜
N ≤ N, (1, ϱ)-Lispchitz functions {ψ

i
}˜
N

i=1

and bounded Borel maps s
i

: U → R satisfying:

‖s
i
‖ ≤ C;

ω =

˜
N∑
i=1

s
i
dψ

i
.

(8.11)

Let F contain the φ
i
, the ψ

i
and the components of the chart functions; let C contain χ

U
, the s

i
and the

characteristic functions of the charts; let S contain d
X
and ϱ; by Theorem 5.3 we obtain an µ-measurable

subset V ⊂ U of full µ-measure with G
x
(F, C, S, D

X
) containing a dense set of directions in T

x
X for each

x ∈ V. In particular, �x ε > 0 and let γ′(t) ∈ T
x
X be an (F, C, S, D

X
)-generic velocity vector such that:∥∥

ξ (x) − γ′(t)
∥∥
TX

≤ ε; (8.12)

then ∣∣〈
dϱ

x
, γ′(t)

〉∣∣
≤ C

ϱ
ε +

∣∣〈
dϱ

x
, ξ (x)

〉∣∣
= C

ϱ
ε; (8.13)

by Theorem 4.3 we conclude that:

ϱ-mdγ(t) ≤ C
ϱ
ε. (8.14)

However,

∥∥γ′(t)∥∥
TX

≤ 2 + ε and so 〈
ω, γ′(t)

〉
≥

1

2

− ε(2 + ε); (8.15)

note also that ∣∣〈
ω, γ′(t)

〉∣∣
=

∣∣∣∣∣∣
˜
N∑
i=1

s
i

(
γ(t)

)
(ψ

i
◦ γ)

′
(t)

∣∣∣∣∣∣ ≤ ˜
NCmax

i

∣∣
(ψ

i
◦ γ)

′
(t)

∣∣
; (8.16)

now choose s
n
↘ 0 with t + s

n
∈ Dom γ; we have:∣∣

ψ
i
◦ γ(t + s

n
) − ψ

i
◦ γ(t)

∣∣
≤ ϱ(γ(t + s

n
), γ(t)) ≤ o(s

n
) +

∫
[t,t+s

n
]∩Dom γ

ϱ-mdγ(τ) dτ; (8.17)

dividing by s
n
and letting n ↗∞we get: ∣∣

(ψ
i
◦ γ)

′
(t)

∣∣
≤ ϱ-mdγ(t). (8.18)

Combining (8.14), (8.15), (8.16), and (8.18) we conclude that:

1

2

− ε(2 + ε) ≤
˜
N C C

ϱ
ε (8.19)

which yields a contradiction if ε is su�ciently small.
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Proof of Theorem 8.6 via Weaver derivations. We show that if K ⊂ X is compact and if f is ϱ-Lipschitz, for

µ-a.e. x ∈ K one has df (x) ∈ W
D
X
,ϱ

(x). Fix n ∈ N and choose a �nite susbset {x
k
}
k∈I

n

⊂ D
X
such that each

x ∈ K lies within d
X
-distance at most

1

n

from some x
k
. To �x the ideas, suppose that f is (C, ϱ)-Lipschitz and

de�ne f
n

: K → R by:

f
n

(x) = inf

{
f (x

k
) + Cϱ(x, x

k
) : k ∈ I

n

}
. (8.20)

The functions {f
n
}
n
are uniformly (C, ϱ)-Lipschitz and hence uniformly (C C

ϱ
, d

X
)-Lipschitz. By [42, Thm. 4.1]

the exterior derivative operator d associated to the di�entiable structure is weak* continuous. In particular,

let L

2

(µ K, T

*

X) denote the L

2

-space of sections of T

*

X | K. Note that thedual of L

2

(µ K, T

*

X) is L

2

(µ K, TX)

and that these spaces are both re�exive by �nite dimensionality of T

*

X. Then as the f
n
→ f pointwise in K, we

have that df
n
→ df weakly in L

2

(µ K, T

*

X), and Mazur’s Lemma and a standard argument give tail convex

combinations g
n
of the functions f

n
with dg

n
→ df µ K-a.e. So the proof is completed if we show that each

dg
n
is a section of W

D
X
,ϱ
, which happens if each df

n
is a section of W

D
X
,ϱ
. But for each n there are closed

subsets {C
i
}
i∈I

n

of K, such that f
n
| C

i
= f (x

i
) + Cϱ

x
i

, which gives df
n
| C

i
= Cdϱ

x
i

.

We now associate toW
ϱ
two a priori di�erent norms on TX. Roughly speaking, we maximize the seminorms

induced by sections ofW
ϱ
. Recall that if f is ϱ-Lipschitz we can de�ne the “big Lip” with respect to ϱ:

ϱ-Lipf (x) = lim sup

r↘0

sup

{∣∣
f (x) − f (y)

∣∣
r

: ϱ(x, y) ≤ r

}
, (8.21)

and that the map x 7→ ϱ-Lipf (x) is Borel.

Let Sec
1

(ϱ) denote the set of those sections ω ofW
ϱ
which are locally the di�erential of a (1, ϱ)-Lipschitz

function; i.e.ω ∈ Sec
1

(ϱ) if andonly if there are countablymanydisjoint Borel sets {V
β
}
β
andcountablymany

(1, ϱ)-Lipschitz functions {f
β
}
β
such that µ

(
X \

⋃
β

V
β

)
= 0 and ω | V

β
= df

β
| V

β
. To each ω ∈ Sec

1
(ϱ) we

associate a seminorm p
ω
on TX by letting:

p
ω

(v) = |〈ω, v〉| . (8.22)

We observe that p
ω
≤ C

ϱ
‖ · ‖

TX

and denote by ‖ · ‖
ϱ,LIP

the essential supremum (Lemma 2.33) of the collection

{‖ · ‖
ω

}
ω∈Sec

1
(ϱ)

.

Another way of obtaining seminorms on TX is to use arbitrary sections of W
ϱ
and rescale them by the

local ϱ-Lipschitz constant; note, however, that if u, v are both ϱ-Lipschitz, one can have du = dv and ϱ-Lipu ̸=

ϱ-Lipv on a set of positivemeasure.We are thus led to use a slightlymore complicated framework. Let Sec
*
(ϱ)

denote the set of countable pairs ω̃ =

{
(V

β
, f
β

)

}
where the V

β
are disjoint Borel sets with µ

(
X \

⋃
β

V
β

)
= 0,

and the f
β
are ϱ-Lipschitz functions. To each ω̃ ∈ Sec

*
(ϱ) we associate a seminorm p

ω̃
on TX by letting, for

x ∈ V
β
and v ∈ T

x
X:

p
ω̃

(v) =

0 if ϱ-Lipf
β

(x) = 0

|〈df
β

(x),v〉|
ϱ-Lipf

β
(x)

otherwise;

(8.23)

we denote by ‖ · ‖
ϱ,Lip

the essential supremum (Lemma 2.33) of the collection {‖ · ‖
ω

}
ω∈Sec

*
(ϱ)

.

Theorem 8.24. Let D
X
⊂ X be a countable dense set. Then one has:

‖ · ‖
D
X
,ϱ

= ‖ · ‖
ϱ,LIP

= ‖ · ‖
ϱ,Lip

; (8.25)

in particular, if D

′
X

⊂ X is another countable dense set:

‖ · ‖
D
X
,ϱ

= ‖ · ‖
˜
D
X
,ϱ

; (8.26)

in the sequel, we will denote the canonical norm (8.25) by ‖ · ‖
ϱ

.

Proof. Each pseudodistance function ϱ
x
gives rise to an element of Sec

1
(ϱ) and so ‖ · ‖

D
X
,ϱ

≤ ‖ · ‖
ϱ,LIP

; to each

ω ∈ Sec
1

(ϱ) one can associate ω̃ ∈ Sec
*
(ϱ) with p

ω
≤ p

ω̃
and so ‖ · ‖

ϱ,LIP

≤ ‖ · ‖
ϱ,Lip

. We thus just prove that:

‖ · ‖
ϱ,Lip

≤ ‖ · ‖
D
X
,ϱ

. (8.27)
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It su�ces to show that for any ω̃ =

{
(V

β
, f
β

)

}
∈ Sec

*
(ϱ) one has

p
ω̃
≤ ‖ · ‖

D
X
,ϱ

. (8.28)

Let F contain the components of the chart functions and the functions {f
β
}
β
; let C contain the characteristic

functions of the charts and the characteristic functions {χ
V
β

}
β
; let S contain d

X
and ϱ. Let V be an {f

β
}
β
-

di�erentiability set and �x β; let V

′
β

= V ∩ V
β
; by Theorem 5.3 there is a full µ-measure µ-measurable subset

W
β
⊂ V

′
β

such that, for each x ∈ W
β
the set of (F, C, S, D

X
)-generic velocity vectors contains a dense set

of directions. In particular, for each v ∈ T
x
X and ε > 0 we can �nd an (F, C, S, D

X
)-generic velocity vector

γ′(t) ∈ T
x
X with

∥∥
v − γ′(t)

∥∥
TX

≤ ε. Assume that ϱ-Lipf
β

(x) > 0; note that the derivative (f
β
◦ γ)

′
(t) exists and

is approximately continuous at t. Without loss of generality assume that (f
β
◦ γ)

′
(t) ̸= 0; then we can �nd

s
n
↘ 0 such that t + s

n
∈ Dom γ and ϱ(γ(t + s

n
), γ(t)) = r

n
> 0. We now obtain the estimate:∣∣

(f
β
◦ γ)(t + s

n
) − (f

β
◦ γ)(t)

∣∣
≤ sup

{∣∣
f
β

(y) − f
β

(x)

∣∣
r
n

: ϱ(y, x) ≤ r
n

}
ϱ(γ(t + s

n
), γ(t))

≤

(
ϱ-Lipf

β
(x) + O(1/n)

) ( ∫
[t,t+s

n
]∩Dom γ

ϱ-mdγ(τ) dτ + o(s
n

)

)
;

(8.29)

dividing by s
n
and letting n ↗∞we get, by approximate continuity of ϱ-mdγ at t:∣∣

(f
β
◦ γ)

′
(t)

∣∣
≤ ϱ-Lipf

β
(x) ϱ-mdγ(t). (8.30)

Now Theorem 4.3 implies that ϱ-mdγ(t) =

∥∥γ′(t)∥∥
D
X
,ϱ

and so:∣∣〈
df
β
, γ′(t)

〉∣∣
≤ ϱ-Lipf

β
(x)

∥∥γ′(t)∥∥
D
X
,ϱ

≤ ϱ-Lipf
β

(x) ‖v‖
D
X
,ϱ

+ εC
ϱ
ϱ-Lipf

β
(x);

(8.31)

let L denote the global Lipschitz constant of f
β
; then:∣∣〈df

β
, v〉
∣∣
≤ ϱ-Lipf

β
(x) ‖v‖

D
X
,ϱ

+ εC
ϱ
ϱ-Lipf

β
(x) + εL ‖v‖

TX

; (8.32)

so (8.28) follows by letting ε ↘ 0.

8.2 Metric Di�erentiation for Lipschitz maps

We now reformulate the results of the previous subsection for a Lipschitz map F : X → Z; throughout this

subsection ϱwill denote the pull-back pseudometric F

*

d
Z
. Putting together Theorems 8.6 and 8.24we obtain:

Theorem 8.33. Associated to the map F there is a canonical subbundleW
F
of T

*

X such that:

(1) For each g ∈ F*
(

Lip(Z)

)
(i.e. g = h ◦ F for some h ∈ Lip(Z)) the section dg lies inW

F
;

(2) For each countable dense set D
X
⊂ X the subbundle W

F
coincides with the subbundle spanned by the

sections {dϱ
x

: x ∈ D
X
}.

Suppose now that F contains the components of the chart functions of (X, µ), that C contains the characteristic

functions of the charts, and suppose also that S contains the pseudometric ϱ. The subbundle W
F
induces a

canonical seminorm ‖ · ‖
F

= ‖ · ‖
ϱ

on TX such that, for each (F, C, S)-generic velocity vector γ′(t) one has:∥∥γ′(t)∥∥
F

= lim

s→0

d
Z

(F ◦ γ(t + s), F ◦ γ(t))

|s| . (8.34)

Remark 8.35. In practice, it does not matter whether metric di�erentiation is formulated in terms of pseudo-

metrics or Lipschitz maps. In fact, consider a Lipschitz compatible pseudometric ϱ on X and associate to it

the Lipschitz map:

F : X → l

∞

(D
X

)

y 7→
{
ϱ
x
(y)

}
x∈D

X

;

(8.36)

then we get ‖ · ‖
ϱ

. = ‖ · ‖
F

andW
ϱ

= W
F
.
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We now specialize the discussion to the case in which (Z, ν) is a di�erentiability space; throughout the

remainder of this subsection we will �x choices of countable dense sets D
X
⊂ X and D

Z
⊂ Z. The case

of interest is when the measure F]µ is absolutely continuous with respect to ν. Using the Radon-Nikodym

Theoremwe can �nd a Borel subset V
0
⊂ Z such that F]µ V

0
and ν V

0
are in the samemeasure class. The

case of interest is when ν(V
0

) > 0, which we will assume throughout the remainder of this subsection.

LetU
0

= F

−1

(V
0

) and suppose that g ∈ Lip(Z) is di�erentiable at z
0
with respect to the Lipschitz functions

{ψi}M
i=1

; suppose now that z
0

= F(x
0

) and that the functions {ψi ◦ F}M
i=1

are di�erentiable at x
0
with respect

to the functions {φj}N
j=1

. We then obtain the chain rule:

g ◦ F(x) − g ◦ F(x
0

) =

M∑
i=1

N∑
j=1

∂g

∂ψ
i

(z
0

)

∂(ψ

i ◦ F)

∂φ
j

(
φ

j

(x) − φ

j

(x
0

)

)
+ o

(
d
X

(x, x
0

)

)
. (8.37)

The following Corollary is a consequence of the chain rule (8.37):

Corollary 8.38. Let

{
(U

α
, φ

α
)

}
α

be an atlas for (X, µ) and

{
(V

β
, ψ

β
)

}
β

an atlas for (Z, ν). Then the subbundle

W
F
| U

0
is spanned by the sections

{
d(ψ

i

β

◦ F)

}
β,i

.

De�nition 8.39. As the measures F]µ V
0
and ν V

0
are in the same measure class, we obtain a pull-back

map:

F

*

: T

*

Z | V
0
→ T

*

X | U
0
, (8.40)

whichmaps each section dg of T

*

Z | V
0
to the section F

*

dg = d(g◦F) of T

*

X | U
0
.We de�ne the push-forward

map:

F
*

: TX | U
0
→ TZ | V

0
(8.41)

by duality; that is, for x ∈ U
0
, v ∈ T

x
X and g ∈ Lip(Z) we let:〈
F
*
(v), dg |

F(x)

〉
=

〈
v,

(
F

*

dg

)
x

〉
. (8.42)

We conclude this subsection by proving:

Theorem 8.43. Let W⊥
F

denote the annihilator of W
F
: i.e. the �bre W⊥

F

(x) consists of those vectors in T
x
X

which are annihilated by the functionals in W
F

(x). The seminorm ‖ · ‖
F

induces a norm on the quotient bundle

TX/W⊥
F

which we will still denote by ‖ · ‖
F

. Then F
*
induces an injective isometry:

F
*

:

(
TX/W⊥

F
| U

0
, ‖ · ‖

F

)
→ (TZ | V

0
, ‖ · ‖

TZ

). (8.44)

The proof of Theorem 8.43 uses the following generalization of Theorem 5.3, whose proof is omitted.

Lemma 8.45. Suppose that F contains the components of the {φ
α
}
α
and of the {ψ

β
◦ F}

β
; suppose that C con-

tains the {χ
U
α

}
α
, the {χ

V
β

}
β
and χ

U
0

; suppose that S contains ϱ. Suppose also that F′
contains the components

of the {ψ
β
}
β
and that C′

contains the {χ
V
β

} and χ
V

0

. Let

G
x
(F, C, S;F′

, S′) =

{
v ∈ T

x
X : v = γ′(t), where γ′(t) is (F, C, S)-generic and (F ◦ γ)

′
(t) is (F′

, C′
)-generic

}
;

(8.46)

then there is a full µ-measure µ-measurable subset U
1
⊂ U

0
such that, for each x ∈ U

1
, G

x
(F, C, S;F′

, S′)

contains a dense set of directions.

Proof of Theorem 8.43. We apply Lemma 8.45 and show that for each x ∈ U
1
and each v ∈ T

x
X one has:

‖v‖
F

=

∥∥
F
*
(v)

∥∥
TZ

; (8.47)
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by density of directions, we just need to show (8.47) for v = γ′(t) where γ′(t) is (F, C, S)-generic and (F ◦ γ)

′
(t)

is (F′
, C′

)-generic. By Theorem 4.3 applied in X to the pseudometric ϱ we get:∥∥γ′(t)∥∥
F

= ϱ-mdγ(t); (8.48)

note that by the de�nition of the ϱ-metric di�erential we have:

ϱ-mdγ(t) = md F ◦ γ(t); (8.49)

�nally, applying again Theorem 4.3 in Z to the metric d
Z
, we get:∥∥

F
*
γ′(t)

∥∥
TZ

=

∥∥
(F ◦ γ)

′
(t)

∥∥
TZ

= md F ◦ γ(t). (8.50)

8.3 Metric di�erentiation and blow-ups

In this subsection we generalize the results of Section 7 in the case in which one considers either a Lipschitz

compatible pseudometric ϱ on X or a Lipschitz map F : X → Z.

De�nition 8.51. Let ϱ be a Lipschitz compatible pseudometric on X and (U, ψ) be an N-dimensional di�er-

entiability chart. A blow-up of (X, µ, ψ, ϱ) at p along the scales r
n
↘ 0 is a tuple (Y , ν, φ, ϱ̃, q) such that:

(1) The tuple (Y , ν, φ, q) is a blow-up of (X, µ, ψ) at p, i.e. the tuples:(
1

r
n

X,

µ

µ

(
B(p, r

n
)

) , ψ − ψ(p)

r
n

, p

)
(8.52)

converge to (Y , ν, φ, q) in the measured Gromov-Hausdor� sense;

(2) ϱ̃ is a Lipschitz compatible pseudometric on Y and if the points y, y

′ ∈ Y are represented, respectively,

by the sequences [x
n

], [x

′
n

] ⊂ X, then:

ϱ̃(y, y

′
) = lim

n→∞

ϱ(x
n
, x

′
n

)

r
n

. (8.53)

We denote by Bw-up(X, µ, ψ, ϱ, p) the set of blow-ups of (X, µ, ψ, ϱ) at p.

Theorem 8.54. Let (U, ψ) be an N-dimensional di�erentiability chart for the di�erentiability space (X, µ),

and let ϱ be a Lipschitz compatible pseudometric. Then for µ U-a.e. p, for each blow-up (Y , ν, φ, ϱ̃, q) ∈
Bw-up(X, µ, ψ, ϱ, p), and for each unit vector v

0
∈ T

p
X, the measure ν admits an Alberti representation A =

(Q,Φ) where:

(1) Q is concentrated on the set Lines(φ, v
0
, ϱ̃) of unit speed geodesic lines in Y with:

(φ ◦ γ)

′
= v

0
;

ϱ̃(γ(t), γ(s)) = ‖v
0
‖
ϱ

|t − s|;
(8.55)

(2) For each γ ∈ Lines(φ, v
0
, ϱ̃) the measure Φγ is given by:

Φγ = H 1

γ . (8.56)

Proof. The proof follows the method used to prove Theorem 7.18; we just:

(1) add in condition (Reg3) that:∣∣∣ϱ(γ(s
1

), γ(s
2

)) −

∥∥γ′(t)∥∥
ϱ

|s
1
− s

2
|
∣∣∣ ≤ ε|s1

− s
2
|; (8.57)
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(2) require in Lemma 7.48 that U consists of points at which the map x 7→ ‖ · ‖
ϱ

(x) is approximately contin-

uous.

We now discuss what happens in the case of a Lipschitz map F : X → Z. When we de�ned blow-ups of

the chart functions there was no issue with the target space becauseRN possesses a group of dilations. For a

general map F : X → Z we �rst need to use ultramits [32, Sec. 2.4] to blow-up Z; we recall here the relevant

constructions.

De�nition 8.58. Let (Z, z
0

) denote a pointed metric space and let r
n
↘ 0; we de�ne a blow-up (W , w

0
) of

(Z, z
0

) along the scales r
n
↘ 0 as an ultralimit of the sequence of pointed metric spaces

(
1

r
n

Z, z
0

)
. Speci�-

cally, we choose a nonprincipal ultra�lter ω and consider the set
˜
W of those sequences [z

n
] ⊂ Z such that:

lim sup

n→∞

d
Z

(z
n
, z

0
)

r
n

< ∞. (8.59)

We de�ne a pseudometric d
˜
W

on
˜
W by:

d
˜
W

([z
n

], [z

′
n

]) = lim

ω

d
Z

(z
n
, z

′
n

)

r
n

. (8.60)

On
˜
W we consider the equivalence relation:

[z
n

] ∼ [z

′
n

]⇐⇒ d
˜
W

([z
n

], [z

′
n

]) = 0; (8.61)

then d
˜
W

induces ametric d
W

on the quotient spaceW =
˜
W/ ∼, and the base pointw

0
is the equivalence class

of the constant sequence [z
0

]. We denote the set of blow-ups of Z at z
0
by Bw-up(Z, z

0
).

Consider now the case of a Lipschitz map F : X → Z; having �xed scales r
n
↘ 0, we construct blow-ups

(Y , q) ∈ Bw-up(X, p) and (W , w
0

) ∈ Bw-up(Z, F(p)). We then obtain a Lipschitz map G : (Y , q)→ (W , w
0

) by

blowing up the graph of F at (p, F(p)). Speci�cally, if [x
n

] ⊂ X represents the point y ∈ Y, we let G(y) be the

equivalence class of the sequence [F(x
n

)]. In general, we say that a tuple (Y , ν, φ, q;G,W , w
0

) is a blow-up
of (X, µ, ψ; F, Z) at p if: (Y , ν, φ, q) ∈ Bw-up(X, µ, ψ, p), (W

0
, w

0
) ∈ Bw-up(Z, F(p)), and G is obtained by

blowing up F : X → Z at p. We denote the set of blow-ups of (X, µ, ψ; F, Z) at p by Bw-up(X, µ, ψ, p; F, Z).

Applying Theorem 8.54 to the pseudometric F

*

d
Z
we get:

Theorem 8.62. Let (U, ψ) be an N-dimensional di�erentiability chart for the di�erentiability space (X, µ),

and let F : X → Z be a Lipschitz map. Then for µ U-a.e. p, for each blow-up (Y , ν, φ, q;G,W , w
0

) ∈
Bw-up(X, µ, ψ, p; F, Z), and for each unit vector v

0
∈ T

p
X, the measure ν admits an Alberti representation

A = (Q,Φ) where:

(1) Q is concentrated on the set Lines(φ, v
0
, G) of unit speed geodesic lines in Y with:

(φ ◦ γ)

′
= v

0
;

d
W

(G ◦ γ(t), G ◦ γ(s)) = ‖v
0
‖
F

|t − s|;
(8.63)

(2) For each γ ∈ Lines(φ, v
0
, G) the measure Φγ is given by:

Φγ = H 1

γ . (8.64)

Remark 8.65. In [14, Sec. 10] it was shown that if (X, µ) is a PI-space and if f is a real-valued Lipschitz map

de�ned on X, at µ-a.e. p, blowing-up f at p always produces a generalized linear function g; in particular, the

corresponding space Y contains through each point a geodesic line γ on which the blow-up F is a�ne, and

such that γ behaves as an integral curve of the gradient of F. Applying Theorem 8.62 to the case in which

F = f , one gets, through each point of Y, many geodesic lines on which the blow-up G is a�ne, and these

geodesic lines can be used to obtain a Fubini-like decomposition of the measure ν. Among these geodesic

lines, those where the slope of G is maximal correspond to the vector v
0
which is the derivative of f at p with

respect to the coordinate functions ψ.
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9 Examples
In this section we provide examples that illustrate how metric di�erentiation can be used to constrain the

in�nitesimal geometry of a Lipschitz map F : X → Y, where X is a di�erentiability space. We will use a

family of examples of di�erentiability spaces introduced in [20]: inverse limits of admissible inverse systems

of metric measure graphs. For these spaces we �nd that for some natural classes of target spaces, blow-ups

of arbitrary Lipschitz maps are quite degenerate.

In this section we will say that a map η : R → Z into a metric space Z is a geodesic with speed σ if

d(η(s), η(t)) = σ|s − t| for all s, t ∈ R; here we allow geodesics with speed 0, i.e. constant maps.

Theorem 9.1. Let (X
∞
, d
∞
, µ
∞

) be the inverse limit of an admissible inverse system (see below). Let A ⊂ X
∞

be a measurable subset, and F : A → Z be a Lipschitz map.

Consider the following conditions:

(a) Z is CBB space, i.e. an Alexandrov space with curvature bounded below.

(b) For every z ∈ Z and every blow-up W of Z at z (in the sense of ultralimits, see De�nition 8.58), two constant

speed geodesics γ, γ′ : R→ Wwhich coincide onanonempty open interval (a, b) ⊂ R coincide everywhere.

(c) Z is an equiregular sub-Riemannian manifold.

(d) Z is an Alexandrov space with curvature bounded above, and X
∞

satis�es the monotone bigon condition

(De�nition 9.18).

If Z satis�es one of the conditions (a)–(c), then for µ
∞
-a.e. p ∈ X

∞
, if G : Y

∞
→ W is a blow-up of F at p,

then G factors as G =
¯
G ◦ φ where φ : Y

∞
→ R is 1-Lipschitz and

¯
G : R→ W is a constant speed geodesic.

If Z satis�es (d), then for µ
∞
-a.e. p ∈ X

∞
, every blow-up G : Y

∞
→ W of F at p factors as

¯
G ◦ φ where

φ : Y
∞
→ Z

′
is 1-Lipschitz,

¯
G : Z

′ → W an isometric embedding, and Z

′
is a metric cone over a �nite set, i.e.

the union of �nitely many geodesics rays leaving a basepoint.

In fact the argument gives slightly more precise control, see (9.19) and (9.20) below. Also, the argument

can be generalized somewhat further, see Remark 9.21.

Remark 9.2. Note that when the target Z is a Banach space with the Radon-Nikodym Property the same con-

clusion as in the cases (a)–(c) follows by di�erentiating F along the Alberti representations, compare the

discussion on RNP-di�erentiability in [16].

Theorem 9.1 has the following consequence:

Corollary 9.3. Under the assumptions of Theorem 9.1, if F : A → Z is a bi-Lipschitz embedding, then there is a

1-recti�able subset A
1
⊂ A such that µ(A \ A

1
) = 0.

The proof of the corollary is given after the proof of Theorem 9.1.

De�nition 9.4 (Admissible inverse systems, [20]). We consider an inverse system of metric measure graphs:

· · ·

π
i−1←−− X

i

π
i←− X

i+1

π
i+1←−− · · · , (9.5)

where the index i can range either over Z or over N ∪ {0}: in the former case we will say that the inverse

system is signed, and in the latter case that it is unsigned. We denote the metric and measure on X
i
by d

i

and µ
i
respectively. Having �xed an integer m ≥ 2 and parameters ∆, C, θ ∈ (0,∞), we say that the inverse

system {X
i
, π

i
} is admissible if it satis�es the following axioms:

(Ad1) Each metric space (X
i
, d

i
) is a nonempty connected graph with vertices of valence ≤ ∆ and such that

each edge of X
i
is isometric to an interval of length m

−i

with respect to the path metric d
i
;

(Ad2) Let X

′
i

denote the graph obtained by subdividing each edge of X
i
into m edges of length m

−(i+1)

. Then

π
i
induces a map π

i
: (X

i+1
, d

i+1
)→ (X

′
i

, d
i
) which is open, simplicial and an isometry on every edge;

(Ad3) For each x
i
∈ X′

i

the inverse image π

−1

i

(x
i
) ⊂ X

i+1
has d

i+1
-diameter at most θ m

−(i+1)

;
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(Ad4) Each graph X
i
is equipped with a measure µ

i
which restricts to a multiple of arclength on each edge;

if e
1
, e

2
are two adjacent edges of X

i
we have:

µ
i
(e

1
)

µ
i
(e

2
)

∈ [C

−1

, C]; (9.6)

(Ad5) The measures {µ
i
} are compatible with the projections {π

i
}: π

i]µi+1
= µ

i
;

(Ad6) Let St(x, G) denote the star of a vertex x in a graph G, i.e. the union of all the edges containing x. Then,

for each vertex v

′
i

∈ X′
i

and each v
i+1
∈ π−1

i

(v

′
i

), the quantity:

µ
i+1

(
π

−1

i

(e

′
i

) ∩ St(v
i+1

, X
i+1

)

)
µ
i
(e

′
i

)

(9.7)

is the same for all edges e

′
i

∈ St(v

′
i

, X

′
i

);

(Ad7) If the inverse system {X
i
, π

i
} is unsigned we will assume that X

0
' [0, 1], µ

0
= L1

[0, 1] and we will

denote by φ
i
the map:

φ
i

= π
1
◦ · · · ◦ π

i−1
. (9.8)

If the inverse system {X
i
, π

i
} is signed we require the existence of open surjective maps φ

i
: X

i
→ R

which are, regardingR as a graph of edges

{
[km

−i

, (k + 1)m

−i

]

}
k∈Z

, simplicical and restrict to isometries

on every edge. Moreover, we require that the {φ
i
} are compatible with the {π

i
}:

φ
i
◦ π

i
= φ

i+1
(∀i). (9.9)

An immediate consequence of the axioms (Ad1)–(Ad7) is that the metric measure spaces (X
i
, d

i
, µ

i
) con-

verge in the measured Gromov-Hausdor� sense³ to a metric measure space (X
∞
, d
∞
, µ
∞

) which is called the
inverse limit of the admissible inverse system. If {X

i
, π

i
} is unsigned, then (X

∞
, d
∞

) is compact geodesic and

µ
∞

is a doubling probability measure; if {X
i
, π

i
} is signed, (X

∞
, d
∞

) is proper geodesic and µ
∞

is a doubling

measure. In both cases there are 1-Lipschitz maps π
∞,k

: X
∞
→ X

k
satisfying:

π
k−1
◦ π

∞,k
= π

∞,k−1

π
∞,k]

µ
∞

= µ
k
.

(9.10)

For j > k we will use the short-hand notation π
j,k

to denote the map π
k
◦ · · · ◦ π

j−1
. Moreover, the maps

φ
i

: X
i
→ R or [0, 1] pass to the limit giving a 1-Lipschitz map φ

∞
: X

∞
→ R or [0, 1] satisfying:

φ
∞

(q) = φ
i
(π
∞,i

(q)) (∀q ∈ X
∞
, ∀i ∈ Z or N ∪ {0}) (9.11)

We now de�ne a special class of paths in X
i
or X

∞
.

De�nition 9.12. Let I ⊆ R be connected and γ : I → X
i
continuous, where we allow i = ∞. We say that γ

is a monotone geodesic if φ
i
◦ γ : I → R or [0, 1] is either a strictly increasing or decreasing a�ne map. In

particular, the axioms (Ad1)–(Ad7) imply that γ is a constant speed geodesic in (X
i
, d

i
). Moreover, by axioms

(Ad2) and (Ad7), if j > i and if γ
i

: I → X
i
is a monotone geodesic, then for each q

j
∈ π−1

j,i

(
γ
i
(I)

)
, one can lift

γ
i
to obtain a monotone geodesic γ

j
: I → X

j
passing through q

j
and satisfying π

j,i
◦ γ

j
= γ

i
.

We now summarize some important consequences of the axioms (Ad1)–(Ad7).

Theorem 9.13. Let {X
i
, π

i
} be an admissible inverse system and let X

∞
denote the inverse limit; then:

(1) The metric measure space (X
∞
, d
∞
, µ
∞

) admits a (1, 1)-Poincaré inequality; in particular, it is a di�eren-

tiability space with a single di�erentiability chart (X
∞
, φ

∞
);

3 If {X
i
, π

i
} is signed we consider the convergence in the pointed sense by choosing basepoints {q

i
}
i∈Z satisfying π

i
(q
i+1

) = q
i
.
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(2) The (X
i
, µ

i
)’s and (X

∞
, µ
∞

) admit distinguished Alberti representations whose support is precisely the set

of all monotone geodesics γ : I → X
∞

where φ
∞
◦ γ = id

I
, and I = [0, 1] if {X

i
, π

i
} is unsigned, and I = R

if it is signed. These Alberti representations are compatible with projection.

The proof of Theorem 9.13 is contained in [20]; note, however, that in [20] only the case of what we call

unsigned inverse systems is discussed: the modi�cations for the case of signed inverse systems are straight-

forward. Alberti representations are not explicitlymentioned in [20], but part (2) in Theorem 9.13 follows from

the discussion in [20, Sec. 6].

Remark 9.14. In [41] it is shown that the collection of admissible inverse systems de�ned in [20] contains an

uncountable family of the form {{(X
i
, d

i
, µ

i,α
)}
i
}
α∈A, such that inverse limits {(X

∞
, d
∞
, µ
∞,α

)}
α∈A —which

are all PI spaces [20]— realize an uncountable family {µ
∞,α
}
α∈A of mutually singular measures on the same

inverse limit metric space (X
∞
, d
∞

).

Theorem 9.15. Let X
∞

be the inverse limit of an admissible inverse system {X
i
, π

i
} and let ψ = φ

∞
; if the

system is unsigned assume also that p ∈ ̸ ψ−1

({0, 1}). Then each element of Bw-up(X
∞
, µ
∞
, ψ, p) is of the form

(σY
∞
, c · ν

∞
, σ · φ, q) where:

(1) The metric measure space (Y
∞
, d
∞
, ν
∞

) is the inverse limit of a signed admissible inverse system {Y
i
, π

i
},

and φ is the function φ
∞

corresponding to Y
∞
.

(2) The parameters σ anc c satisfy:

σ ∈ [1,m]

c =

1

ν
∞

(
B
Y
∞

(q, 1/σ)

) . (9.16)

(3) The basepoint q satis�es φ(q) = 0.

(4) Furthermore, up to renormalization, the blow-up of the distinguished Alberti representation of (X
∞
, µ
∞

) is

the distinguished Alberti reprsentation on (Y
∞
, ν
∞

).

Wemay now apply Theorem 8.62 to obtain the following:

Theorem 9.17. Let X
∞

be the inverse limit of an admissible inverse system {X
i
, π

i
}. Let A ⊂ X

∞
be a measur-

able subset, and F : X
∞
⊃ A → Z be Lipschitz.

Then there is a full µ
∞
-measure subset S

F
⊂ A such that, for each p ∈ S

F
and each (σY

∞
, c · ν

∞
, σ ·

φ, q;G,W , w
0

) ∈ Bw-up(X
∞
, µ
∞
, ψ, p; F, Z), one has that G maps each unit-speed monotone geodesic line

γ : R→ Y
∞

to a (possibly degenerate⁴) geodesic line in W with constant speed σ

−1

∥∥
∂
ψ
|
p

∥∥
F

.

De�nition 9.18. An admissible inverse system {(X
i
, π

i
)} satis�es the monotone bigon condition if there

is a constant D such that for every i, if y
1
, y

2
∈ X

∞
project under π

i
: X

∞
→ X

i
to the same point, there

are monotone geodesic segments γ
1
, γ

2
⊂ X

∞
of length < Dm

−i

such that y
i
∈ γ

i
, and γ

1
, γ

2
have the same

endpoints.

One may readily check that some standard examples of admissible systems, for instance Examples 1.2

and 1.4 from [19], satisfy the monotone bigon condition.

Proof of Theorem 9.1. Weapply Theorem9.17, andwill show that under each of the assumptions (a)–(d), there

is a full measure subset of points p ∈ A such that if G : Y
∞
→ W is as Theorem 9.17, then:

• If one of (a)–(c) holds then G factors as

G

φ
∞−→ R

¯
G−→ W (9.19)

4 This happens i�

∥∥
∂
ψ
|
p

∥∥
F

= 0, i.e. when G ◦ γ is constant.
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where
¯
G is a geodesic with constant speed σ

0
= σ

−1

∥∥
∂
ψ
|
p

∥∥
F

. Here we allow σ
0

= 0, in which case
¯
G and G

are constant maps.

• If (d) holds, then G factors as
¯
G ◦ π∞

−∞
where π

∞

−∞
: Y

∞
→ Y

−∞
is the projection map from the inverse limit to

the direct limit, and

¯
G : Y

−∞
→ W (9.20)

is a map whose restriction of any monotone geodesic in Y
−∞

is a geodesic in W with constant speed σ
0

=

σ

−1

∥∥
∂
ψ
|
p

∥∥
F

.

If σ
0

= 0, then the restriction of G to any monotone geodesic is constant, and since any two points in

Y
∞

may be joined by a piecewise monotone geodesic path, this implies that G is constant. Then the above

assertions are clear. Therefore we assume that σ
0
> 0.

We �rst assume that (b) holds. This also covers case (a) since (a) =⇒ (b).

Let Γ be the set of monotone geodesics γ : R → Y
∞

such that φ
∞
◦ γ = idR. We de�ne an equivalence

relation on Γ by saying that γ
1
∼ γ

2
if there is a geodesic η : R → W with constant speed σ

0
such that

G ◦ γ
i

= η ◦ φ
∞
◦ γ

i
for i = {1, 2}.

Note that if the images of γ
1
, γ

2
∈ Γ intersect in an interval, then they are equivalent by assumption (b).

By concatenating rays to formmonotone geodesics, it follows that if the images of γ
1
and γ

2
intersect even in

a single point, they are equivalent. Now suppose the images of γ
1
, γ

2
∈ Γ intersect even in a single point, i.e.

for some t
1
, t

2
∈ R, we have γ

1
(t

1
) = γ

2
(t

2
). Then t

1
= φ

∞
◦ γ

1
(t

1
) = φ

∞
◦ γ

2
(t

2
) = t

2
. Hence we may de�ne a

monotone geodesic γ
3
∈ Γ by letting γ

3
(t) = γ

1
(t) if t ≤ t

1
, and γ

3
(t) = γ

2
(t) otherwise. Now γ

3
is equivalent

to both γ
1
and γ

2
, since its image shares an interval with each of their images, due to the fact that σ

0
> 0.

Now de�ne an equivalence relation on Y
∞

by saying that y
1
, y

2
∈ Y

∞
are equivalent if some (or equivalently

every) γ
1
∈ Γ passing through y

1
is equivalent to some (or every) geodesic γ

2
∈ Γ passing through y

2
. The

cosets of this relation on Y
∞

are closed, and any path γ that is a concatenation of �nitelymany segments from

monotone geodesics lies in a single coset. Therefore there is only one coset and G factors as claimed.

Suppose (c) holds. Since the conclusion is local, we may assume without loss of generality that there is

a smooth map Ψ : Z → Rk, where k is the dimension of the horizontal space, and the derivative DΨ restricts

to an isomorphism on every horizontal space. Hence by [36], for every z ∈ Z, the blow-up of Z at z is a Carnot

groupW, and the blow-up
ˆ
Ψ : W → Rk of Ψ at z yields the horizontal coordinate forW.

We now proceed as before, except that we take p to be a point of di�erentiability of the composition

Ψ ◦ F : A → Rk. Passing to the blow-up G : Y
∞
→ W, from di�erentiability we get that

ˆ
Ψ ◦ G = α ◦ φ

∞
where

α : R→ Rk is an a�nemap. It follows that for everymonotone geodesic γ ∈ Γ, the composition G◦γ projects

under the horizontal coordinate
ˆ
Ψ : W → Rk to the same constant speed geodesic α ◦ φ

∞
◦ γ. This implies

that for every γ ∈ Γ, the composition G ◦ γ is an integral curve of the left invariant vector �eld determined by

α. In particular, if two such geodesics agree at a point, then they coincide.

Now consider the equivalence relation on Γ de�ned as before. If γ
1
, γ

2
∈ Γ agree at some t ∈ R, then by

the above discussion G ◦ γ
1

= G ◦ γ
2
, i.e. γ

1
∼ γ

2
. The rest of the argument is the same.

Now assume (d) holds. Again consider the map G : Y
∞
→ W obtained by applying metric di�erentiation

at a point p ∈ X
∞
. As above, for every γ ∈ Γ, the composition G ◦ γ is a geodesic of constant speed σ

0
. One

checks readily that Y
∞

inherits the monotone bigon condition. Pick y
1
, y

2
∈ Y

∞
, and suppose that π

j
(y

1
) =

π
j
(y

2
). By the monotone bigon condition, there exist γ

i
∈ Γ such that γ

i
passes through y

i
and the maps

γ
1
, γ

2
: R→ Y

∞
agree outside a a compact subset of R. Then G ◦ γ

1
and G ◦ γ

2
are constant speed geodesics

in a CAT(0) space, and they agree outside a compact subset of R. It follows that γ
1

= γ
2
, so in particular

G(y
1

) = G(y
2

). We have thus shown that G factors through a map G
j

: Y
j
→ W which has the property that

its restriction to any monotone geodesic in Y
j
is a geodesic inW with speed σ

0
. This implies that G factors as

¯
G ◦ π∞

−∞
, where π

∞

−∞
: Y

∞
→ Y

−∞
is the projection map to the direct limit Y

−∞
of the signed inverse system

{(Y
i
, π

i
)}, and ¯

G : Y
−∞
→ W is a map whose restriction to any monotone geodesic in Y

−∞
is a geodesic in

W with constant speed σ
0
. Finally note that as there is a uniform bound on the cardinality of the links of the

vertices of Y
j
as j → −∞, then Y

−∞
is a �nite union of geodesic rays issuing from a basepoint.
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Remark 9.21. Note that the previous argument for points (a)–(c) can be runmore generally under the assump-

tions that Gmaps monotone geodesics to constant speed geodesics inW which cannot branch, i.e. two such

geodesics must coincide if they agree on an open interval. Note that it su�ces to verify this non-branching

property for the geodesics that arise from blow-up; onemay restrict these geodesics by exploiting di�erentia-

bility of auxiliary Lipschitz functions, such as the function Ψ appearing in case (c).

Proof of Corollary 9.3. Let F : A → Z be an L-bilipschitz embedding.

We �rst assume that we are in one of the cases (a)-(c). Therefore we know that there is a measurable

subset A
1
⊂ A with µ(A \ A

1
) = 0 such that for all x ∈ A

1
, for every blow-up G : Y

∞
→ W as in (the proof

of) Theorem 9.1, we have that G = η ◦ φ
∞

where η : R → W is a geodesic with constant speed lying in the

interval [L

−1

, L]. Since G is also L-bilipschitz, we conclude that for every y
1
, y

2
∈ Y

∞
, we have

d(φ
∞

(y
1

), φ
∞

(y
2

)) ≥ L

−2

d(y
1
, y

2
) . (9.22)

This implies that for all x ∈ A
1
there is an r(x) > 0 such that

d(φ
∞

(x

′
), φ

∞
(x)) >

1

2

L

−2

d(x

′
, x) (9.23)

for all x

′ ∈ B(x, r(x)); otherwise there would be a sequence x

′
k

→ x violating (9.23), and by rescaling and

passing to a limit, we get a blow-up contradicting (9.22). Now put

S
j

= {x ∈ A
1
| r(x) > j

−1} .

Then φ
∞
|
S
j

: S
j
→ R is 2L

2

-bilipschitz on

r(x)

2

-balls, and A
1

= ∪
j
S
j
. This shows that A

1
is recti�able.

Now suppose we are in case (d).

Let

A
0

= {x ∈ A | π
j
(x) is not a vertex for any j} ⊂ A .

Note that A \ A
0
is µ-null. Then there is a full measure subset A

1
⊂ A

0
such that for every x ∈ A

1
, every

blow-up G : Y
∞
→ W of F at x has a factorization G =

¯
G ◦ π∞

−∞
as in the proof of Theorem 9.1, and reasoning

as above we get that

d(π

∞

−∞
(y

1
), π

∞

−∞
(y

2
)) ≥ L

−2

d(y
1
, y

2
) (9.24)

for all y
1
, y

2
∈ Y

∞
.

Now for x ∈ A
1
, using (9.24) anda contradiction argument,weget that for every C there is a j

x
such that for

all j ≥ j
x
, the projection π

j
: X

j+1
→ X

j
maps the ball B(π

j+1
(x), Cm

−j

) ⊂ X
j+1

bijectively onto B(π
j
(x), Cm

−j

) ⊂
X
j
. Iterating this, it follows that for all k ≥ j ≥ j

x
, the projection π

k

j

: X
k
→ X

j
maps B(π

k
(x), Cm

−k

) bijectively

onto B(π
j
(x), Cm

−k

). Since π
j
(x) is not a vertex, for large enough k we conclude that B(π

k
(x), Cm

−k

) has no

branch points, i.e. it is isometric to an interval. As C is arbitrary, this together with (9.24) implies that for every

blow-up G : Y
∞
→ W of F at x, the direct limit Y

−∞
has no branch points. Hence we are in the same situation

as cases (a)-(c), and we may complete the proof as before.
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