Abstract
This study extends the definition of firms’ R&D strategies to integrate fiscal considerations related to R&D tax credits. Using French company data, we identify six types of ‘extended’ R&D strategies. We then examine the relationships of these strategies with the effective rate of R&D tax credits, defined as the ratio of total tax reliefs obtained by a firm through R&D tax credit to real R&D spending. This study contributes to a better understanding of the heterogeneity of companies’ R&D strategies.
Funding source: Idex Université Paris Cité
Award Identifier / Grant number: Emergence en Recherche 2019
The PCA components.
Components | Eigenvalue | Percentage of variance | Cumulative percentage of variance |
---|---|---|---|
Component 1 | 2.04 | 17.04 | 17.04 |
Component 2 | 1.52 | 12.70 | 29.74 |
Component 3 | 1.27 | 10.59 | 40.33 |
Component 4 | 1.26 | 10.47 | 50.80 |
Component 5 | 0.97 | 8.08 | 58.88 |
Component 6 | 0.06 | 9.02 | 66.90 |
Component 7 | 0.87 | 7.29 | 74.18 |
Component 8 | 0.83 | 6.81 | 81.09 |
Component 9 | 0.75 | 6.35 | 87.34 |
Component 10 | 0.69 | 5.75 | 93.09 |
Component 11 | 0.55 | 4.62 | 97.71 |
Component 12 | 0.27 | 2.29 | 100.00 |
-
Source: ERD 2013 (MESRI), GECIR (MESRI, DGFiP) – authors’ calculation.
Descriptive statistics (mean) for illustrative variables by cluster (Part I).
Variables | All sample | Patent management strategy (S1) | Self-contained research strategy (S2) | Optimisation strategy (S3) | Capital investment strategy (S4) | Public-oriented research strategy (S5) | Human capital-intensive strategy (S6) |
---|---|---|---|---|---|---|---|
Size class | |||||||
Big firms | 0.009 | 0.032 | 0.008 | 0.003 | 0.002 | 0.013 | 0.000 |
Intermediate size companies | 0.166 | 0.145 | 0.282 | 0.077 | 0.105 | 0.121 | 0.007 |
SMEs | 0.581 | 0.468 | 0.628 | 0.601 | 0.545 | 0.558 | 0.367 |
Micro-firms | 0.244 | 0.355 | 0.082 | 0.319 | 0.348 | 0.308 | 0.626 |
Age (in years) | |||||||
[0; 2] | 0.030 | 0.048 | 0.011 | 0.03 | 0.044 | 0.036 | 0.150 |
[2; 5] | 0.132 | 0.113 | 0.056 | 0.168 | 0.168 | 0.163 | 0.361 |
[5; 10] | 0.183 | 0.177 | 0.12 | 0.21 | 0.168 | 225 | 0.211 |
more than 10 | 0.637 | 0.613 | 0.789 | 0.579 | 0.606 | 561 | 0.272 |
n.a. | 0.018 | 0.048 | 0.024 | 0.012 | 0.015 | 0.015 | 0.007 |
Number of observations | 6976 | 62 | 2336 | 894 | 477 | 3058 | 147 |
-
Source: ERD 2013 (MESRI), GECIR (MESRI, DGFiP) – authors’ calculation.
Descriptive statistics (mean) for illustrative variables by cluster (Part 2).
Variables | All Sample | Patent management strategy (S1) | Self-contained research strategy (S2) | Optimisation strategy (S3) | Capital investment strategy (S4) | Public-oriented research strategy (S5) | Human capital-intensive strategy (S6) |
---|---|---|---|---|---|---|---|
Industrial sector | |||||||
Agriculture | 0.010 | 0.016 | 0.013 | 0.006 | 0.010 | 0.009 | 0.007 |
Manufacturing | 0.383 | 0.355 | 0.555 | 0.284 | 0.478 | 0.278 | 0.136 |
Energy and facilities | 0.006 | 0.016 | 0.004 | 0.007 | 0.019 | 0.006 | 0.000 |
Building | 0.013 | 0.016 | 0.023 | 0.012 | 0.010 | 0.007 | 0.007 |
Trade | 0.065 | 0.065 | 0.086 | 0.048 | 0.075 | 0.051 | 0.088 |
Information and communication | 0.229 | 0.145 | 0.133 | 0.368 | 0.115 | 0.280 | 0.252 |
Finance and real estate | 0.023 | 0.065 | 0.026 | 0.030 | 0.017 | 0.019 | 0.014 |
Scientific and technical activities | 0.247 | 0.306 | 0.135 | 0.216 | 0.237 | 0.330 | 0.476 |
Other | 0.024 | 0.016 | 0.024 | 0.029 | 0.038 | 0.020 | 0.020 |
Scientific field | |||||||
Scientific and technical fields | 0.192 | 0.177 | 0.102 | 0.189 | 0.205 | 0.250 | 0.422 |
Computing and information industries | 0.156 | 0.113 | 0.090 | 0.249 | 0.080 | 0.190 | 0.190 |
Publishing, audiovisual distribution | 0.076 | 0.081 | 0.045 | 0.119 | 0.038 | 0.092 | 0.082 |
Metal and machinery manufacturing | 0.110 | 0.194 | 0.160 | 0.102 | 0.145 | 0.071 | 0.034 |
Chemical industry | 0.049 | 0.000 | 0.068 | 0.027 | 0.061 | 0.039 | 0.061 |
Pharmaceutical industry | 0.035 | 0.016 | 0.039 | 0.021 | 0.013 | 0.042 | 0.000 |
Agriculture, food manufacturing | 0.057 | 0.081 | 0.087 | 0.029 | 0.069 | 0.040 | 0.340 |
Aerospace, marine and military industries | 0.017 | 0.016 | 0.015 | 0.013 | 0.008 | 0.020 | 0.007 |
Other | 0.309 | 0.323 | 0.392 | 0.251 | 0.382 | 0.258 | 0.170 |
Number of observations | 6976 | 62 | 2336 | 894 | 477 | 3058 | 147 |
-
Source: ERD 2013 (MESRI), GECIR (MESRI, DGFiP) – authors’ calculation.
References
Adam, J. D. 1990. “Fundamental Stocks of Knowledge and Productivity Growth.” Journal of Political Economy 98: 673–702, https://doi.org/10.1086/261702.Search in Google Scholar
Agrawal, A., C. Rosell, and T. Simcoe. 2020. “Tax Credits and Small Firm R&D Spending.” American Economic Journal: Economic Policy 12 (2): 1–21, https://doi.org/10.1257/pol.20140467.Search in Google Scholar
Beck, M., M. Junge, and U. Kaiser. 2017. Public Funding and Corporate Innovation. IZA Discussion Paper. No. 11196.10.2139/ssrn.3092520Search in Google Scholar
Becker, B. 2015. “Public R&D Policies and Private R&D Investment: A Survey of the Empirical Evidence.” Journal of Economic Surveys 29 (5): 917–42, https://doi.org/10.1111/joes.12074.Search in Google Scholar
Belderbos, R., M. Carree, B. Diederen, B. Lokshin, and R. Veugelers. 2004. “Heterogeneity in R&D Cooperation Strategies.” International Journal of Industrial Organisation 22 (8–9): 1237–63, https://doi.org/10.1016/j.ijindorg.2004.08.001.Search in Google Scholar
Biondi, Y., A. Canziani, T. Kirat, and Dir. 2007. The Firm as an Entity, Implications for Economics, Accounting and the Law, 374. London: Routledge.10.4324/9780203931110Search in Google Scholar
Bloom, N., J. Van Reenen, and H. Williams. 2019a. “A Toolkit of Policies to Promote Innovation.” The Journal of Economic Perspectives 33 (3): 163–84, https://doi.org/10.1257/jep.33.3.163.Search in Google Scholar
Bloom, N., E. Brynjolfsson, L. Foster, R. Jarmin, M. Patnaik, I. Saporta-Eksten, and J. Van Reenen. 2019b. “What Drives Differences in Management Practices?” The American Economic Review 109 (5): 1648–83, https://doi.org/10.1257/aer.20170491.Search in Google Scholar
Bodas Freitas, I., Castellacci, F., Fontana, R., Malerba, F. & Vezzulli, A. (2017). “Sectors and the Additionality Effects of R&D Tax Credits: A Cross-Country Microeconometric analysis.” Research Policy 46 (1): 57–72, https://doi.org/10.1016/j.respol.2016.10.002.Search in Google Scholar
Brown, J. R., G. Martinsen, and B. C. Petersen. 2017. “What Promotes R&D? Comparative Evidence from Around the World.” Research Policy 46 (2): 447–62.10.1016/j.respol.2016.11.010Search in Google Scholar
Castellacci, F., and C. Lie. 2015. “Do the Effects of R&D Tax Credits Vary Across Industries? A Meta-Regression Analysis.” Research Policy 44 (4): 819–32.10.1016/j.respol.2015.01.010Search in Google Scholar
Clausen, T., M. Pohjola, K. Sapprasert, and B. Verspagen. 2012. “Innovation Strategies as a Source of Persistent Innovation.” Industrial and Corporate Change 21 (3): 553–85, https://doi.org/10.1093/icc/dtr051.Search in Google Scholar
Coad, A. 2019. “Persistent Heterogeneity of R&D Intensities within Sectors: Evidence and Policy Implications.” Research Policy 48 (1): 37–50, https://doi.org/10.1016/j.respol.2018.07.018.Search in Google Scholar
Cohen, W. M., and S. Klepper. 1992. “The Anatomy of Industry R&D Intensity Distributions.” The American Economic Review 82 (4): 773–99.Search in Google Scholar
Courtioux, P., E. Deglaire, F. Métivier, and A. Rebérioux. 2021. “L’hétérogénéité des stratégies d’entreprises en matière de Crédit Impôt Recherche.” Revue de l’OFCE 175: 39–66, https://doi.org/10.3917/reof.175.0039.Search in Google Scholar
Crespi, G., D. Giuliodori, R. Giuliodori, and A. Rodriguez. 2016. “The Effectiveness of Tax Incentives for R&D in Developing Countries: The Case of Argentina.” Research Policy 45 (10): 2023–35, https://doi.org/10.1016/j.respol.2016.07.006.Search in Google Scholar
Dai, X., M. L. Verreynne, J. H. Wang, and Y. He. 2020. “The Behavioral Additionality Effects of a Tax Incentive Program on Firms’ Composition of R&D Investment.” R&D Management 50 (4): 510–21, https://doi.org/10.1111/radm.12401.Search in Google Scholar
de Jong, J. P., and O. Marsili. 2006. “The Fruit Flies of Innovations: A Taxonomy of Innovative Small Firms.” Research Policy 35 (2): 213–29, https://doi.org/10.1016/j.respol.2005.09.007.Search in Google Scholar
Dortet-Bernadet, V., and M. Sicsic. 2017. “The Effect of R&D Subsidies and Tax Incentives on Employment: an Evaluation for Small Firms in France.” Economie et Statistiques 493: 5–22.10.24187/ecostat.2017.493s.1909Search in Google Scholar
Everitt, B.S. (1993). Clustering Analysis. London: Oxford University Press.Search in Google Scholar
García-Vega, M., and E. Huergo. 2019. “The Role of International and Domestic R&D Outsourcing for Firm Innovation.” Journal of Economic Behavior & Organization 157: 775–92, https://doi.org/10.1016/j.jebo.2018.11.009.Search in Google Scholar
Gkotsis, P., and A. Vezzani. 2019. “Heterogeneity of Technology-specific R&D Investments. Evidence from Top R&D Investors Worldwide.” In JRC Working Papers on Corporate R&D and Innovation 2018-04. Seville: Joint Research Centre.Search in Google Scholar
González, X., and C. Pazó. 2008. “Do Public Subsidies Stimulate Private R&D Spending?” Research Policy 37 (3): 371–89, https://doi.org/10.1016/j.respol.2007.10.009.Search in Google Scholar
Hall, B., and J. Van Reenen. 2000. “How Effective Are Fiscal Incentives for R&D? A Review of the Evidence.” Research Policy 29 (4–5): 449–69, https://doi.org/10.1016/s0048-7333(99)00085-2.Search in Google Scholar
Guceri, I., and L. Liu. 2019. “Effectiveness of Fiscal Incentives for R&D: Quasi-Experimental Evidence.” American Economic Journal: Economic Policy 11 (1): 266–91.10.1257/pol.20170403Search in Google Scholar
Hair, J. F., R. E. Anderson, R. L. Tatham, and W. C. Black. 1998. Multivariate Data Analysis, 5th ed. Englewood: Prentice Hall.Search in Google Scholar
Haltiwanger, J. C., J. I. Lane, and J. R. Spletzer. 2007. “Wages, Productivity, and the Dynamic Interaction of Businesses and Workers.” Labour Economics 14 (3): 575–602, https://doi.org/10.1016/j.labeco.2005.10.005.Search in Google Scholar
Henderson, B., and N. Pearson. 2011. “The Dark Side of Financial Innovation: A Case Study of the Pricing of a Retail Financial Product.” Journal of Financial Economics 100 (2011): 227–47, https://doi.org/10.1016/j.jfineco.2010.12.006.Search in Google Scholar
Ivus, O., M. Jose, and R. Sharma. 2021. “R&D Tax Credit and Innovation: Evidence from Private Firms in India.” Research Policy 50 (1): 104128, https://doi.org/10.1016/j.respol.2020.104128.Search in Google Scholar
Jaffe, A. B. 1989. “Real Effects of Academic Research.” The American Economic Review 79 (5): 957–70.Search in Google Scholar
Kaur, S., and S. Singh. 2022. “What drives lending inquisitors’ judgement & decision-making: behavioural factors analysis through Kruskal–Wallis & Fuzzy AHP.” Accounting, Economics, and Law: A Convivium 2022, https://doi.org/10.1515/ael-2022-0002.Search in Google Scholar
Kobayashi, Y. 2014. “Effect of R&D Tax Credits for SMEs in Japan: a Microeconometric Analysis Focused on Liquidity Constraints.” Small Business Economics 42 (2): 311–27, https://doi.org/10.1007/s11187-013-9477-9.Search in Google Scholar
Labeaga, J., E. Martínez-Ros, A. Sanchis, and J. Sanchis. 2021. “Does Persistence in Using R&D Tax Credits Help to Achieve Product Innovations?” Technological Forecasting and Social Change 173: 121065, https://doi.org/10.1016/j.techfore.2021.121065.Search in Google Scholar
Latour, B. 1991. “Technology Is Society Made Durable.” In A Sociology of Monsters: Essays on Power, Technology, and Domination, edited by J. Law, 103–31. London: Routledge and Kegan Paul.Search in Google Scholar
Lenox, M. J., S. F. Rockart, and A. Y. Lewin. 2006. “Interdependency, Competition, and the Distribution of Firm and Industry Profits.” Management Science 52 (5): 757–72, https://doi.org/10.1287/mnsc.1050.0495.Search in Google Scholar
Marino, M., S. Lhuillery, P. Parrotta, and D. Sala. 2016. “Additionality or Crowding-Out? an Overall Evaluation of Public R&D Subsidy on Private R&D Expenditure.” Research Policy 45 (9): 1715–30, https://doi.org/10.1016/j.respol.2016.04.009.Search in Google Scholar
Martin, B. R. 2016. “R&D Policy Instruments–A Critical Review of what We Do and Don’t Know.” Industry & Innovation 23 (2): 157–76, https://doi.org/10.1080/13662716.2016.1146125.Search in Google Scholar
MESR. 2022. Le crédit d’impôt recherche CIR en 2020 (données provisoires). Ministère de l’Enseignement Supérieur et de la Recherche (MESR). https://www.enseignementsup-recherche.gouv.fr/sites/default/files/2022-10/le-cr-dit-d-imp-t-recherche-en-2020---provisoire-24595.pdf.Search in Google Scholar
Milligan, G. W., and M. C. Cooper. 1987. “Methodology Review: Clustering Methods.” Applied Psychological Measurement 11 (4): 329–54, https://doi.org/10.1177/014662168701100401.Search in Google Scholar
OECD. 2015. The Measurement of Scientific, Technological and Innovation Activities. Frascati Manual 2015. Guidelines for collecting and reporting data on research and experimental development. Paris: OECD.Search in Google Scholar
OECD. 2018. OECD Review of National R&D Tax Incentives and Estimates of R&D Tax Subsidies Rate 2017. Paris: OECD.Search in Google Scholar
Pavitt, K. 1984. “Sectoral Patterns of Technical Change: towards a Taxonomy and a Theory.” Research Policy 13 (6): 343–73, https://doi.org/10.1016/0048-7333(84)90018-0.Search in Google Scholar
Penrose, E. T. 1959. The Theory of the Growth of the Firm. New York: John Wiley.Search in Google Scholar
Romer, P. M. 1992. “Two Strategies for Economic Development: Using Ideas and Producing Ideas.” The World Bank Economic Review 6 (suppl_1): 63–91, https://doi.org/10.1093/wber/6.suppl_1.63.Search in Google Scholar
Salies, E. 2017. “Impact du Crédit d’impôt recherche. Une revue bibliographique des études sur données françaises.” Revue de l’OFCE 154: 95–130, https://doi.org/10.3917/reof.154.0095.Search in Google Scholar
Salies, E. 2021. “L’impact du CIR sur l’emploi dans la R&D du secteur privé. Une revue critique.” Revue de l’OFCE 175: 67–104, https://doi.org/10.3917/reof.175.0067.Search in Google Scholar
Schmid, T., A. K. Achleitner, M. Ampenberger, and C. Kaserer. 2014. “Family Firms and R&D Behavior–New Evidence from a Large-Scale Survey.” Research Policy 43 (1): 233–44, https://doi.org/10.1016/j.respol.2013.08.006.Search in Google Scholar
Stephan, P. E. 1996. “The Economics of Science.” Journal of Economic Literature 34 (3): 1199–235.Search in Google Scholar
Schweitzer, C. 2019. “L’enquête R&D : mesurer l’effort de R&D des entreprises au-delà du credit d’impôt recherché.” In: Les entreprises en France, 61–71. Insee: Insee référence.Search in Google Scholar
Teirlinck, P., A. Spithoven, and J. Bruneel. 2022. “R&D Employment Effects of Financial Slack Generated by R&D Tax Exemption: The Importance of Firm-level Contingencies.” R&D Management 52 (1): 38–49.10.1111/radm.12472Search in Google Scholar
Yang, C. H., C. H. Huang, and T. C. Hou. 2012. “Tax Incentives and R&D Activity: Firm-Level Evidence from Taiwan.” Research Policy 41 (9): 1578–88, https://doi.org/10.1016/j.respol.2012.04.006.Search in Google Scholar
© 2023 CONVIVIUM, association loi de 1901