Abstract
We introduce the notion of moving absolute geometry of a geometry with triality and show that, in the classical case where the triality is of type (Iσ) and the absolute geometry is a generalized hexagon, the moving 5 3 6 absolute geometry also gives interesting flag-transitive geometries with Buekenhout diagram for the groups G2(k) and 3D4(k), for any prime power k ≥ 2. We also classify the absolute geometries for geometries with trialities but no dualities coming from maps of Class III with automorphism group L2(q3), where q ≥ 2 is prime power. We then investigate the moving absolute geometries for these geometries, illustrating their interest in this case.
Funding statement: This research was made possible thanks to an Action de Recherche Concertée grant from the Communauté Française Wallonie-Bruxelles and the funding agency Knut and Alice Wallenberg Foundation grant numbers: KAW2020.0001, KAW2020.0007 and KAW 2020.0282.
Acknowledgements
The authors thank an anonymous referee whose comments helped to improve the paper.
References
[1] L. Abrams, J. A. Ellis-Monaghan, New dualities from old: generating geometric, Petrie, and Wilson dualities and trialities of ribbon graphs.Combin. Probab. Comput. 31(2022), 574-597. MR4439773 Zbl 1510.0504710.1017/S096354832100047XSearch in Google Scholar
[2] D. Archdeacon, M. Conder, J. Siráñ, Trinity symmetry and kaleidoscopic regular maps.Trans. Amer. Math. Soc. 366(2014), 4491-4512. MR3206467 Zbl 1300.0517810.1090/S0002-9947-2013-06079-5Search in Google Scholar
[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language.J. Symbolic Comput. 24(1997), 235-265. MR1484478 Zbl 0898.6803910.1006/jsco.1996.0125Search in Google Scholar
[4] F. Buekenhout, Diagrams for geometries and groups.J. Combin. Theory Ser. A 27(1979), 121-151. MR542524 Zbl 0419.5100310.1016/0097-3165(79)90041-4Search in Google Scholar
[5] F. Buekenhout, A. M. Cohen, Diagram geometry. Springer 2013. MR3014979 Zbl 1284.5100110.1007/978-3-642-34453-4Search in Google Scholar
[6] F. Buekenhout, E. Shult, On the foundations of polar geometry.Geom. Dedicata 3(1974), 155-170. MR350599 Zbl 0286.5000410.1007/BF00183207Search in Google Scholar
[7] E. Cartan, Le principe de dualité et la théorie des groupes simples et semi-simples.Bull. Sc. Math. 49(1925), 361-374. Zbl 51.0322.02Search in Google Scholar
[8] J. Fraser, O. Jeans, J. Siráñ, Regular self-dual and self-Petrie-dual maps of arbitrary valency.Ars Math. Contemp. 16(2019), 403-410. MR3963214 Zbl 1416.0513710.26493/1855-3974.1749.84eSearch in Google Scholar
[9] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie. Rijksuniversiteit Utrecht, Mathematisch Instituut, Utrecht 1951. Republished in Geom. Dedicata 19(1985), 7-63. MR44533 Zbl 0056.25905 MR0797151 Zbl 0573.51004Search in Google Scholar
[10] G. A. Jones, A. Poulton, Maps admitting trialities but not dualities.European J. Combin. 31(2010), 1805-1818. MR2673020 Zbl 1235.0515110.1016/j.ejc.2010.02.001Search in Google Scholar
[11] G. A. Jones, J. S. Thornton, Operations on maps, and outer automorphisms.J. Combin. Theory Ser. B 35(1983), 93-103. MR733017 Zbl 0509.5700110.1016/0095-8956(83)90065-5Search in Google Scholar
[12] D. Leemans, K. Stokes, Incidence geometries with trialities coming from maps with Wilson trialities.Innov. Incidence Geom. 20(2023), 325-340. MR4641396 Zbl 0776046210.2140/iig.2023.20.325Search in Google Scholar
[13] I. R. Porteous, Topological geometry. Cambridge Univ. Press 1981. MR606198 Zbl 0446.1500110.1017/CBO9780511623943Search in Google Scholar
[14] R. B. Richter, J. Siráñ, Y. Wang, Self-dual and self-Petrie-dual regular maps.J. Graph Theory 69(2012), 152-159. MR2864455 Zbl 1242.0507610.1002/jgt.20570Search in Google Scholar
[15] E. Study, Geometrie der Dynamen. Teubner, Leipzig 1903. Zbl 33.0691.01Search in Google Scholar
[16] E. Study, Grundlagen und Ziele der analytischen Kinematik.Sitzungsberichte Berliner math. Ges. 12(1913), 36-60. Zbl 44.0791.03 English translation by D. H. Delphenich: Foundations and goals of analytical kinematics, see http://neo-classical-physics.info/uploads/3/4/3/6/34363841/study-analytical_kinematics.pdfSearch in Google Scholar
[17] J. Tits, Sur la trialité et certains groupes qui s'en déduisent.Inst. Hautes Études Sci. Publ. Math. 2(1959), 13-60. MR1557095 Zbl 0088.3720410.1007/BF02684706Search in Google Scholar
[18] H. Van Maldeghem, Generalized polygons. Springer 1998. MR3014920 Zbl 0914.5100510.1007/978-3-0348-0271-0Search in Google Scholar
[19] S. E. Wilson, Operators over regular maps.Pacific J. Math. 81(1979), 559-568. MR547621 Zbl 0433.0502110.2140/pjm.1979.81.559Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Local quasi-isometries and tangent cones of definable germs
- On trialities and their absolute geometries
- An isomorphism between unitals and between related classical groups
- Betweenness isomorphisms in the plane — the case of a circle and points
- Compact locally homogeneous manifolds with parallel Weyl tensor
- Hamiltonian isotopies of relatively exact Lagrangians are orientation-preserving
- Equiangular lines in ℂ3
- Vanishing theorems for Mather–Jacobian multiplier ideals on a Gorenstein projective variety
- Deformations of pairs of codimension one foliations
- Arithmetic counts of tropical plane curves and their properties
- Convex Fujita numbers are not determined by the fundamental group
Articles in the same Issue
- Frontmatter
- Local quasi-isometries and tangent cones of definable germs
- On trialities and their absolute geometries
- An isomorphism between unitals and between related classical groups
- Betweenness isomorphisms in the plane — the case of a circle and points
- Compact locally homogeneous manifolds with parallel Weyl tensor
- Hamiltonian isotopies of relatively exact Lagrangians are orientation-preserving
- Equiangular lines in ℂ3
- Vanishing theorems for Mather–Jacobian multiplier ideals on a Gorenstein projective variety
- Deformations of pairs of codimension one foliations
- Arithmetic counts of tropical plane curves and their properties
- Convex Fujita numbers are not determined by the fundamental group