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Abstract: Given k ≤ 9 points (xi , yi) ∈ ℙ2 × ℙ2, we characterize rank deficiency of the k × 9 matrix Zk with rows
x⊤i ⊗ y⊤i in terms of the geometry of the point configurations {xi} and {yi}. In [3] we presented results for the
cases k ≤ 6. In this paper we deal with the remaining cases k = 7, 8 and 9. The results involve the interplay of
quadric surfaces, cubic curves and Cremona transformations.
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1 Introduction

We are interested in solving the following problem, where ⊗ denotes the Kronecker product:
Problem 1.1. Given k ≤ 9 points (xi , yi) ∈ ℙ2 × ℙ2, consider the k × 9 matrix Zk whose rows are x⊤i ⊗ y⊤i for
i = 1, . . . , k, i.e.,

Zk = [[[[
x⊤1 ⊗ y⊤1

...
x⊤k ⊗ y⊤k]]]] .

Delineate the geometry of point configurations {xi} and {yi} for which rank(Zk) < k.
Note that Problem 1.1 can be rephrased geometrically and generalized to any algebraic variety.

Problem 1.2. Given k ≤ 9 points (xi , yi) ∈ ℙ2 × ℙ2, delineate the geometry of the point configurations {xi} and{yi} for which the subspace spanned by the images of these points under the Segre embedding of ℙ2 × ℙ2 in ℙ8 has
dimension less than k − 1.

Problem 1.1 arises in the study of reconstruction problems in 3D computer vision. For background on the
problem and related work we direct the reader to Part I of this work [3] where Problem 1.1 was solved for k ≤ 6.
The results relied on the classical invariant theory of points in ℙ2 and the theory of cubic surfaces. In this paper
we complete the characterization for the remaining cases k = 7, 8, 9. Once again, the results can be phrased in
terms of classical algebraic geometry and invariants.

Semi-genericity

Throughout this paper, we will concern ourselves with point configurations that are semi-generic; a configuration
of k point pairs (xi , yi) is semi-generic if every subset of k − 1 point pairs is fully generic. That is, we say that
a property holds for a semi-generic choice of (xi , yi) ∈ (ℙ2 × ℙ2)k if there is a nonempty Zariski open set
U ⊆ (ℙ2 × ℙ2)k−1 so that the property holds whenever {(xi , yi) : i ̸= j} lies in U for all j = 1, . . . , k. Despite the
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name, semi-genericity is actually a stronger notion than usual genericity. We use this name because often the
property of interest for points in (ℙ2 × ℙ2)k is that two algebraic conditions coincide, whereas generic points
satisfy neither algebraic condition. As a small example of this usage, let us instead consider a semi-generic pair of
points x1 , x2 in the lineℝ. Consider f(x1 , x2) = x1(x2 − 1)(x1 − x2). Then f(x1 , x2) = 0 if and only if x1 = 0, x2 = 1,
or x1 = x2. For generic (x1 , x2), f(x1 , x2) ̸= 0. Semi-genericity only allows us to exclude algebraic conditions on
x1 and x2 individually. In this example, a semi-generic pair of points (x1 , x2) satisfies f(x1 , x2) = 0 if and only if
x1 = x2. This holds whenever x1 , x2 ∈ U = ℝ\{0, 1}.
Summary of results and organization of the paper

In [3] we studied Problem 1.1 algebraically by decomposing the ideal generated by the maximal minors of Zk into
its prime components and examining only those components that did not correspond to rank drop conditions for
a submatrix of Zk with at most k − 1 rows, called inherited conditions, for the rank deficiency of Zk . Through
this we obtained both algebraic conditions that completely characterized rank drop, and geometric conditions
that characterized rank drop under mild genericity assumptions. This method cannot be applied to the cases
k = 7, 8, 9 due to computational limitations. Additionally, in these cases, the novel component of rank drop has a
greater dimension than all the components of inherited conditions. Previously, for k ≤ 5 the novel component
had a strictly lower dimension than the variety of inherited conditions, and for k = 6 the novel component had
dimension equal to that of the inherited conditions variety. For this reason, we largely concern ourselves only
with the geometric characterization of rank drop for semi-generic configurations with k = 7, 8, 9, rather than an
algebraic characterization beyond the vanishing of the maximal minors of Zk .

In Section 2 we establish a number of facts about Cremona transformations, cubic curves, and projective
reconstructions that we will use throughout the paper. In Section 3 we study the problem for k = 8 and prove that
Zk is rank deficient exactly when there is a quadratic Cremona transformation f : ℙ2 󴁅󴀽 ℙ2 such that f(xi) = yi
for all i (Theorem 3.1). To do so, we establish a correspondence between three sets: lines in the nullspace of Zk ,
quadrics passing through a projective reconstruction of the input point pairs, and Cremona transformations
sending xi 󳨃→ yi (Theorem 3.16 which depends on Theorem 3.2). We refer to this as the trinity correspondence
and it is the foundation for all of our results in this paper. In Section 4 we study the problem for k = 7 and
prove that Zk is rank deficient exactly when there are cubic curves in each copy of ℙ2, passing through all seven
points, and an isomorphism between these curves that sends xi 󳨃→ yi (Theorem 4.2). We further prove that this
occurs exactly when seven particular cubic curves in each copy of ℙ2 are coincident and we provide an algebraic
characterization when this occurs (Theorem 4.11). In Section 5 we answer Problem 1.1 for k = 9, which is largely
straight-forward (Theorem 5.1). We summarize our results in Section 6 and state a geometric consequence about
reconstructions of semi-generic point pairs of size six, seven and eight.

2 Background and tools

2.1 Quadratic Cremona transformations and cubic curves

Definition 2.1. A quadratic Cremona transformation of ℙ2 is a birational automorphism f : ℙ2 󴁅󴀽 ℙ2 defined as
f(x) = (f1(x) : f2(x) : f3(x)) where f1 , f2 , f3 are homogeneous quadratic polynomials in x = (x1 , x2 , x3).

We drop theword “quadratic” from now on as all the Cremona transformations we consider will be quadratic.
Each Cremona transformation can be obtained by blowing up three points a1 , a2 , a3 in the domain (called base
points) at which the transformation is not defined, and collapsing three lines γ1 , γ2 , γ3 (called exceptional
lines) which contain pairs of base points: for distinct i, j, k, the line γi contains aj , ak . Generically, the base
points and exceptional lines of a Cremona transformation will all be distinct; when they are not all distinct,
the transformation is said to be degenerate. In this paper we will consider only non-degenerate Cremona
transformations.
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The inverse of a Cremona transformation f is also a Cremona transformation with base points b1 , b2 , b3 and
exceptional lines τ1 , τ2 , τ3 in the codomain of f . The map f sends γi 󳨃→ bi while f −1 sends τi 󳨃→ ai . For simplicity
we will often refer to both the base points in the domain and the base points in the codomain (i.e. the base points
of f −1) as the base points of f . The standard Cremona transformation is

f(x1 , x2 , x3) = (x2x3 : x1x3 : x1x2) (1)

which has base points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and exceptional lines xi = 0 for i = 1, 2, 3. This
transformation is an involution since it is its own inverse, and the base points and exceptional lines of f −1 are
again (1 : 0 : 0), (0 : 1 : 0, (0 : 0 : 1) and xi = 0 for i = 1, 2, 3. All Cremona transformations differ from the
standard one only by projective transformations as stated below.

Lemma 2.2. Let g be a Cremona transformation and let f be the standard Cremona involution. Then there are
projective transformations H1 , H2 such that g = H1 ∘ f ∘ H2.

Proof. Let a1 , a2 , a3 ∈ ℙ2 denote the base points of g. The coordinates (g1 , g2 , g3) of g form a basis for the three-
dimensional vector space of quadratics vanishing on the points a1 , a2 , a3. Another basis is h = (ℓ2ℓ3 , ℓ1ℓ3 , ℓ1ℓ2)
where ℓi ∈ ℂ[x, y, z]1 defines the line joining aj and ak for every labeling {i, j, k} = {1, 2, 3}. Therefore there is
some invertible linear transformation H1 for which g = H1h. Similarly, (ℓ1 , ℓ2 , ℓ3) is a basis for ℂ[x, y, z]1 and
so there is a linear transformation H2 for which H2(x, y, z) = (ℓ1 , ℓ2 , ℓ3). The map h is given by f ∘ H2 and so
g = H1 ∘ f ∘ H2. 2

Throughout this paper we are interested in ℙ2 × ℙ2 and we typically denote points in the first ℙ2 by x and
those in the second ℙ2 by y. The notation ℙ2x and ℙ2y will help to keep this correspondence clear.
Lemma 2.3. Let f : ℙ2x 󴁅󴀽 ℙ2y be a Cremona transformation. If f and f −1 have base points ex1 = ey1 = (1 : 0 : 0),
ex2 = ey2 = (0 : 1 : 0), ex3 = ey3 = (0 : 0 : 1) in the domain and codomain, then f has the form

f(x1 , x2 , x3) = (ax2x3 : bx1x3 : cx1x2) (2)

where a, b, c ∈ ℂ\{0}.
Proof. Suppose that f = (f1 , f2 , f3) where f1 , f2 , f3 are quadratic polynomials. Since f is undefined at the three
base points in the domain, it follows that f1 , f2 , f3 contain only the monomials x1x2 , x1x3 , x2x3. Moreover, we
know that f(x1 , x2 , 0) = (0 : 0 : 1). It follows that f1 , f2 do not contain the monomial x1x2. In examining the other
two exceptional lines, we find that f1 , f2 , f3 contain only one monomial each and that f has the desired form. 2

We note that the choice of (a, b, c) is equivalent to specifying a single point correspondence p 󳨃→ q, where
neither p nor q lie on an exceptional line. It follows that a Cremona transformation has 14 degrees of freedom:
six from the base points in the domain, six from the base points in the codomain, and two from the choice of a
single point correspondence.

Next we prove some facts about Cremona transformations and isomorphisms of cubic curves.

Definition 2.4. Let f be a Cremona transformation with base points B(f). For a curve C ⊂ ℙ2, define f(C) :=
f(C\B(f)), and for a given point p, let νp(C) be the multiplicity of the curve C at the point p.
Lemma 2.5 (See [4]). Let C ⊂ ℙ2 be a plane curve of degree n and let f be a Cremona transformation. Then

deg(f(C)) = 2n − ∑
p∈B(f)

νp(C). (3)

In particular, if C is a smooth cubic curve then f(C) is also a cubic curve if and only if the base points of f lie on C.
In this case, f −1(f(C)) = C implies that the base points of f −1 lie on f(C).

Using this, we can prove the following result.

Lemma 2.6. Let C be a smooth cubic curve and let f be a Cremona transformation with base points a1 , a2 , a3 ∈ C
in the domain and b1 , b2 , b3 in the co-domain. Then f(C) is a smooth cubic curve and ̄f : C → f(C), defined by
taking the closure of f|C\B(f), is an isomorphism.
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Proof. By Lemma 2.5, f(C) is a cubic curve. Moreover, since f −1(f(C)) = C is a cubic curve, it also follows that
b1 , b2 , b3 ∈ f(C). The fact that ̄f is an isomorphism follows from the corollary after [8, § 1.6, Theorem 2] which says
that a birational map between nonsingular projective plane curves is regular at every point, and is a one-to-one
correspondence. 2

Given a smooth cubic curve C, any automorphism g : C → C is of the form u 󳨃→ au + b with a = ±1, b ∈ C,
where addition is defined via the group law on C. Theorem 1.3 in [4] states that given a smooth cubic curve C and
an automorphism g : C → C defined by some multiplier a = ±1 and some translation b ∈ C, the automorphism g
is induced by a Cremona transformation with base points a1 , a2 , a3 if and only if a(a1 + a2 + a3) = 3b, where
again, addition is with respect to the group law on C. In particular, every automorphism of C is induced by
a two-parameter family of Cremona transformations, which we obtain by picking the first two base points
arbitrarily and then letting the third base point be determined by the equation a3 = a(3b − a1 − a2).

We can use this to prove a converse to Lemma 2.6.

Lemma 2.7. Let f : C → C󸀠 be an isomorphism of smooth cubic plane curves. Then there is a two-parameter family
of Cremona transformations f 󸀠σ : ℙ2 󴁅󴀽 ℙ2 such that f 󸀠σ |C = f . The base points of these Cremona transformations
will lie on the cubic curves.

Proof. Since C and C󸀠 are isomorphic, they have the sameWeierstraß form C0. There are therefore homographies
H1 , H2 ∈ PGL(3) such that H1(C) = C0 = H2(C󸀠) and therefore H−11 H2(C󸀠) = C. Then H−11 H2 ∘ f : C → C is an
automorphism of C and it follows by [4, Theorem 1.3] that this is induced by some two-parameter family of
Cremona transformations gσ ; the members of this family are obtained by picking the first two base points
arbitrarily on C and then letting the third base point be determined by the equation a3 = a(3b − a1 − a2). Then
f 󸀠σ := H−12 H1 ∘ gσ is the desired family of Cremona transformations. By Lemma 2.5 the base points of each of
these Cremona transformations lie on the cubic curves. 2

2.2 Fundamental matrices and projective reconstruction

In this paper we will be concerned with pairs of linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with non-coincident centers
c1 , c2. In the context of computer vision, these arise as projective cameras which are linear projections fromℙ3(ℝ) 󴁅󴀽 ℙ2(ℝ), represented by (unique) matrices A1 , A2 ∈ ℙ(ℝ3×4) of rank three, such that πi(p) ∼ Aip for
all world points p ∈ ℙ3(ℝ). The notation ∼ indicates equality in projective space. The centers ci are the unique
points inℙ3(ℝ) such that Aici = 0 for i = 1, 2. The projections we consider in this paper are slightly more general
in that they work overℂ; they are represented by rank three matrices Ai ∈ ℙ(ℂ3×4) and send p ∈ ℙ3 to Aip ∈ ℙ2.

In the vision setting, the image formation equations Aip = λiπi(p) with i = 1, 2 and some λi ∈ ℝ imply that
for all p ∈ ℙ3(ℝ) one has

0 = det[A1 π1(p) 0
A2 0 π2(p)] = π2(p)⊤Fπ1(p) (4)

for a unique matrix F ∈ ℙ(ℝ3×3) of rank two, determined by (A1 , A2); see [6, Chapter 9.2]. This matrix F is called
the fundamental matrix of the cameras/projections (A1 , A2) / (π1 , π2). It defines the bilinear form BF(x, y) = y⊤Fx
such that BF(π1(p), π2(p)) = π2(p)⊤Fπ1(p) = 0 for all p ∈ ℙ3(ℝ). The entries of F are certain 4 × 4 minors of the
6 × 4 matrix obtained by stacking A1 on top of A2. The points ex := π1(c2) and ey := π2(c1) are called the epipoles
of F. It is well-known, see [6, Chapter 9.2], that ex and ey are the unique points in ℙ2 such that Fex = 0 = (ey)⊤F.
Conversely, for every rank-two matrix F ∈ ℙ(ℝ3×3) there exists, up to projective transformation, a unique pair of
cameras (A1 , A2) / linear projections π1 , π2 : ℙ3(ℝ) 󴁅󴀽 ℙ2(ℝ) with fundamental matrix F, see [6, Theorem 9.10].
All of these facts extend verbatim over ℂ, and we call a rank two matrix F ∈ ℙ(ℂ3×3) a fundamental matrix of(π1 , π2) if it satisfies (4).

Equation (4) is a constraint on the images of a world point in two cameras. Going the other way, given k point
pairs (xi , yi) ∈ ℙ2(ℝ)×ℙ2(ℝ), one can ask if they admit a projective reconstruction, namely a pair of real cameras
A1 , A2 and real world points p1 , . . . , pk such that A1pi ∼ xi and A2pi ∼ yi for i = 1, . . . , k. A necessary condition
for a reconstruction is the existence of a rank-two matrix F ∈ ℙ(ℝ3×3) such that y⊤i Fxi = 0 for i = 1, . . . , k, called



Connelly et al., The geometry of rank drop in a class of face-splitting matrix products: Part II  399

a fundamental matrix of the point pairs (xi , yi)ki=1. Note that vec(F) lies in the nullspace of Zk = (x⊤i ⊗ y⊤i )ki=1.
The necessary and sufficient conditions for the existence of a projective reconstruction of (xi , yi)ki=1 are (1) the
existence of a fundamental matrix F and (2) for each i, either Fxi = 0 and y⊤i F = 0, or neither xi nor yi lie in the
right and left nullspaces of F; see [7]. In this paper, we extend the above definition to ℂ and call any rank-two
matrix F ∈ ℙ(ℂ3×3) that lies in the nullspace of Zk a fundamental matrix of the point pairs (xi , yi)ki=1.
3 The case k = 8
In this section we characterize the rank deficiency of Z = Z8 = (x⊤i ⊗ y⊤i )8i=1 when the point pairs (xi , yi) are
semi-generic. When k is fixed we often write Z instead of Zk .

Theorem 3.1. For eight semi-generic point pairs (xi , yi)8i=1, the matrix Z drops rank if and only if there exists a
Cremona transformation f : ℙ2x 󴁅󴀽 ℙ2y such that f(xi) = yi for all i.
Proof of the if-direction. Suppose that we have a Cremona transformation f : ℙ2x 󴁅󴀽 ℙ2y such that f(xi) = yi for
i = 1, . . . , 8. After homographies we can assume that f is the basic quadratic involution mapping (x1 , x2 , x3) to(x2x3 , x1x3 , x1x2). Then

Z =
[[[[[[[[[[[[[[[

x11x12x13 x211x13 x211x12 x212x13 x11x12x13 x11x212 x12x213 x11x213 x11x12x13
x21x22x23 x221x23 x221x22 x222x23 x21x22x23 x21x222 x22x223 x21x223 x21x22x23
x31x32x33 x231x33 x231x32 x232x33 x31x32x33 x31x232 x32x233 x31x233 x31x32x33
x41x42x43 x241x43 x241x42 x242x43 x41x42x43 x41x242 x42x243 x41x243 x41x42x43
x51x52x53 x251x53 x251x52 x252x53 x51x52x53 x51x252 x52x253 x51x253 x51x52x53
x61x62x63 x261x63 x261x62 x262x63 x61x62x63 x61x262 x62x263 x61x263 x61x62x63
x71x72x73 x271x73 x271x72 x272x73 x71x72x73 x71x272 x72x273 x71x273 x71x72x73
x81x82x83 x281x83 x281x82 x282x83 x81x82x83 x81x282 x82x283 x81x283 x81x82x83

]]]]]]]]]]]]]]]
(5)

which one can see is rank deficient because its first, fifth and ninth columns are the same. 2

In order to prove the only-if direction of Theorem 3.1, we develop a number of tools in § 3.1. The proof of
Theorem 3.1 will then be completed in Subsection 3.2.

3.1 The trinity of lines, quadrics and Cremona transformations

In order to establish the trinity correspondence, we need to introduce some genericity conditions for our main
objects of interest. We say that a line ℓ ⊂ ℙ(ℂ3×3) is generic if it contains exactly three rank-two matrices. These
lines are generic in the usual sense, since almost all lines in ℙ(ℂ3×3) intersect the degree-three determinantal
varietyD := {X ∈ ℙ(ℂ3×3) : det(X) = 0} in three distinct points. Furthermore, given a pair of linear projections
π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with distinct centers c1 , c2 we say that a smooth quadric Q through c1 , c2 is permissible if it
does not contain the line c1c2 connecting the two centers.

Theorem 3.2 (Trinity correspondence). Consider the following three sets:

(1) L: the set of all generic lines ℓ in ℙ(ℂ3×3),
(2) Q: the set (up to projective equivalence) of pairs of linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with non-coincident

centers c1 , c2, along with a permissible quadric Q ⊂ ℙ3 through c1 , c2,
(3) C: the set of (non-degenerate) Cremona transformations from ℙ2 󴁅󴀽 ℙ2.
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Then there is a 1 : 1 correspondence between L and C, a 1 : 3 correspondence between L and Q, and a 3 : 1
correspondence between Q and C, such that the diagram (6) commutes:

Q

L C

3 : 11 : 3 (6)

A similar theorem holds for lines which pass through exactly two rank-two matrices; however, we do not
prove it here.

We first show that for fixed linear projections π1 , π2 with centers c1 ̸= c2 ∈ ℙ3, there is a bijection between
the quadrics that contain c1 , c2 and lines in ℙ(ℂ3×3) through the fundamental matrix F of (π1 , π2). This result is
well-known in the context of computer vision (see [1], [5]), but we write an independent proof below.

Lemma 3.3. Fix a pair of linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with non-coincident centers c1 , c2 and let F be its
fundamental matrix. There is a 1 : 1 correspondence between the quadrics Q ⊂ ℙ3 through c1 , c2 and the linesℓ ⊂ ℙ(ℂ3×3) through F.
Proof. Applying projective transformations, we can assume that c1 = (1 : 0 : 0 : 0), c2 = (0 : 1 : 0 : 0),
π1(u1 : u2 : u3 : u4) = (u2 : u3 : u4) and π2(u1 : u2 : u3 : u4) = (u1 : u3 : u4). If F = (Fij) is the fundamental
matrix of (π1 , π2), then for all u ∈ ℙ3 we have

0 = π2(u)⊤Fπ1(u) = ⟨F, π2(u)π1(u)⊤⟩ = ⟨(F11 F12 F13
F21 F22 F23
F31 F32 F33

) ,(u1u2 u1u3 u1u4
u2u3 u23 u3u4
u2u4 u3u4 u24

)⟩. (7)

Since the entries in position (2, 3) and (3, 2) of π2(u)π1(u)⊤ are the same, F is a scalar multiple of
(0 0 0
0 0 1
0 −1 0

)
and BF(x, y) = x3y2 − x2y3. In particular, there exists some p ∈ ℙ3 with π1(p) = x and π2(p) = y if and only if
x3y2 = x2y3.

Consider the image of φ : ℙ3 󴁅󴀽 ℙ(ℂ3×3) where φ(u) = π2(u)π1(u)⊤. By (7), φ(ℙ3) is contained in the
hyperplane F⊥ ⊂ ℙ(ℂ3×3). Any matrix in ℙ(ℂ3×3) can be written as sF + M for some scalar s and M ∈ F⊥.
Therefore, ⟨sF + M, π2(u)π1(u)⊤⟩ = π2(u)⊤Mπ1(u) (8)

since π2(u)⊤Fπ1(u) = 0, and any linear function on the image of φ can be identified with its image in F⊥. On the
other hand, a line ℓ in ℙ(ℂ3×3) through F is of the form {sF + tM : (s : t) ∈ ℙ1}, where M ∈ F⊥. Therefore, lines
through F are in bijection with linear functions on φ(ℙ3), up to scaling.

The monomials u1u2 , u1u3 , u1u4 , u2u3 , u2u4 , u23 , u3u4 , u
2
4 form a basis for the 7-dimensional vector space of

homogeneous quadratic polynomials that vanish on c1 , c2. Thus any quadratic polynomial in ℂ[u1 , u2 , u3 , u4]2
vanishing at c1 and c2 can be written as ⟨M, π2(u)π1(u)⊤⟩ for a unique matrix M ∈ F⊥. This gives a linear
isomorphism between linear functions on the image of φ, up to global scaling (which have been identified with
lines through F), and quadrics passing though c1 and c2. 2

Corollary 3.4. Let π1 , π2 : ℙ3 󴁅󴀽 ℙ2 be two linear projections with centers c1 ̸= c2 and fundamental matrix F. LetℓF be a line in ℙ(ℂ3×3) through F. The correspondence ℓF 󳨃→ Q, where Q ⊂ ℙ3 is a quadric passing through c1 , c2,
is as follows. Let M ∈ ℓF be any M ̸= F. Then Q is cut out by the bilinear form

BM(π1(p), π2(p)) = π2(p)⊤Mπ1(p) = 0. (9)

The following result is well-known and can be proven by writing a comprehensive list of the equivalence
classes, under projective transformation, of quadrics through a pair of distinct points and then testing an example
from each class.
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Lemma 3.5 ([1], [5], [6, Result 22.11]). Under the 1 : 1 correspondence in Lemma 3.3, the line ℓ corresponds to a
permissible quadric Q through c1 , c2 if and only if ℓ is a generic line.

Next we prove that permissible quadrics through c1 , c2 give rise to quadratic Cremona transformations
from ℙ2 󴁅󴀽 ℙ2. Recall that all Cremona transformations we consider are assumed to be non-degenerate.
Lemma 3.6. Fix πi : ℙ3 󴁅󴀽 ℙ2 to be linear projections with non-coincident centers ci for i = 1, 2. A permissible
quadric Q through c1 , c2 defines a Cremona transformation f : ℙ2 󴁅󴀽 ℙ2 such that f(π1(p)) = π2(p) for any
point p ∈ Q. The base points of f are π1(c2) and the image under π1 of the two lines contained in Q passing
through c1. Similarly, the base points of f −1 are π2(c1) and the image under π2 of the two lines contained in Q
passing through c2.

Proof. Since c1 , c2 ∈ Q, the restriction of π1 (and π2) to Q is generically 1 : 1. Therefore, π1(Q) and π2(Q) are each
birational to a ℙ2. The map f will be π2 ∘ (π1|Q)−1. Let us check that this is a quadratic Cremona transformation.

As before, we can take π1(u) = (u2 : u3 : u4) and π2(u) = (u1 : u3 : u4). Then c1 = (1 : 0 : 0 : 0) is the kernel
of π1, and we are given that it lies on Q. As we saw already, these assumptions imply that Q is defined by the
vanishing of a polynomial of the form q(u) = αu1u2 + βu1 + γu2 + δ where α ∈ ℂ is a scalar, β, γ ∈ ℂ[u3 , u4] are
of degree 1, and δ ∈ ℂ[u3 , u4] is of degree 2. We can then write q as

q(u) = au1 + b (10)

where a = (αu2 + β), b = (γu2 + δ) ∈ ℂ[u2 , u3 , u4]with deg(a) = 1, deg(b) = 2. The map (π1|Q)−1 is then given by
x 󳨃→ (−b(x) : x1a(x) : x2a(x) : x3a(x)) =: (u1 : u2 : u3 : u4). (11)

To verify this, first check that π1(u) = a(x) ⋅ x where ⋅ denotes scalar multiplication. To see that u ∈ Q we compute

q(u) = u1 ⋅ a(u2 , u3 , u4) + b(u2 , u3 , u4)= u1 ⋅ a(π1(u)) + b(π1(u))= −b(x) ⋅ a(a(x) ⋅ x) + b(a(x) ⋅ x)= −b(x)a(x)a(x) + a(x)2b(x) = 0 (12)

where the last equality comes from the homogeneity of a, b with deg(a) = 1, deg(b) = 2.
Composing with π2 we have

π2 ∘ (π1|Q)−1(x) = (−b(x) : x2a(x) : x3a(x)), (13)

whose coordinates are indeed quadratic. Since f = π2 ∘ (π1|Q)−1 is defined by quadratics and generically 1 : 1, it
is a quadratic Cremona transformation.

To show that this transformation is non-degenerate, we must demonstrate that it has three unique base
points. To understand the base points of f , recall that on a smooth quadric surface there are two distinct (possibly
complex) lines passing through each point. The images of the two lines passing through c1 under the projection
π1 will each be a single point. Therefore f is not well-defined on these image points inℙ2. Similarly, f is undefined
on π1(c2) since π2(π−11 (π1(c2))) = π2(c2) = 0. Therefore these three points are exactly the base points of f in the
domain. Finally, because c1c2 ̸⊂ Q, these base points are all distinct. The base points in the codomain can be
found symmetrically. 2

Thus far we have shown that if we fix linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with centers c1 ̸= c2 in ℙ3, then
there is a bijection between permissible quadrics through c1 , c2 and generic lines through the fundamental
matrix F of (π1 , π2). Furthermore, there is a map sending each generic line through F (permissible quadric
through c1 , c2) to the Cremona transformation from ℙ2 󴁅󴀽 ℙ2 given by π2 ∘ (π1|Q)−1. These correspondences
are summarized in (14), where LF is the set of all generic lines through F and QF is the set of all permissible
quadrics through c1 , c2.

QF

LF C

(14)
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We can make the correspondence between generic lines through F and Cremona transformations even more
explicit.

Lemma 3.7. Given a generic line ℓ ⊂ ℙ(ℂ3×3), the set of points (x, y) ∈ ℙ2 × ℙ2 satisfying yTMx = 0 for all
M ∈ ℓ coincides with the closure of the graph {(x, f(x)) : x ∈ ℙ2 \ B(f)} of a unique Cremona transformation
f : ℙ2 󴁅󴀽 ℙ2. This gives a 1 : 1 correspondence between generic lines ℓ ⊂ ℙ(ℂ3×3) and Cremona transformations
f : ℙ2 󴁅󴀽 ℙ2. Moreover, when F ∈ ℓ has rank two, this Cremona transformation agrees with that induced by the
maps LF → QF → C.

Proof. Since ℓ is generic, we may assume without loss of generality that ℓ = span{F,M}where F has rank two.
This gives a pair of linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with non-coincident centers c1 , c2 with fundamental
matrix F. In the 1:1 correspondence LF ↔ QF given in Corollary 3.4, the line ℓ corresponds to the permissible
quadric Q given by the zero set of q(u) = π2(u)⊤Mπ1(u). By Lemma 3.6, the Cremona transformation f : ℙ2 󴁅󴀽 ℙ2
corresponding to q(u) in the correspondenceQF → C satisfies f(π1(p)) = π2(p) for all p ∈ Q \{c1 , c2}. Since π1(Q)
is dense in ℙ2, the graph of f and the set {(π1(p), π2(p)) : p ∈ Q\{c1 , c2}} ⊂ ℙ2 × ℙ2 are both two-dimensional,
as is their intersection. Each is the image of an irreducible variety under a rational map and so the Zariski-
closures of these two sets are equal. By construction, this is contained in the zero sets of yTFx and yTMx, as
π2(p)TFπ1(p) = 0 for all p ∈ ℙ3 and π2(p)TMπ1(p) = 0 for all p ∈ Q. Since F,M are linearly independent, the
variety {(x, y) : yTFx = yTMx = 0} in ℙ2 × ℙ2 is two-dimensional. It therefore coincides with the Zariski-closure
of the graph of f .

Conversely, suppose that f : ℙ2 󴁅󴀽 ℙ2 is a Cremona transformation. We claim that {f(x)x⊤ : x ∈ ℂ3} spans a
7-dimensional linear space V ⊂ ℂ3×3. Up to projective transformations on ℙ2x and ℙ2y , we can take f to be the
standard Cremona involution, giving

f(x)x⊤ = (x1x2x3 x21x3 x21x2
x22x3 x1x2x3 x1x22
x2x23 x1x23 x1x2x3

) . (15)

One can check explicitly that seven distinct monomials appear in this matrix and so the span of all such matrices
is 7-dimensional. Projectively, the orthogonal complement gives a line ℓ = V⊥ in ℙ(ℂ3×3). By definition, ℓ is
exactly the set of all matrices M such that y⊤Mx = 0 for all (x, y) in the graph of f . Under the assumption
that f is the standard Cremona transformation, ℓ is the span of the diagonal matrices F1 = diag(1, −1, 0) and
F2 = diag(0, 1, −1); in general ℓwill be projectively equivalent to this line. We can verify that this line contains
exactly the three rank-two matrices F1 , F2 , F1 + F2, and is therefore generic. 2

Remark 3.8. Given ℓ = span{F,M} we can solve for the coordinates of the corresponding Cremona transforma-
tion f : ℙ2 󴁅󴀽 ℙ2 as follows. Given x ∈ ℙ2, the corresponding point y = f(x) will be the left kernel of the 3 × 2
matrix (Fx Mx). The coordinates of y can be written explicitly in terms of the 2× 2 minors of this matrix, which
are quadratic in x. Note that, up to scaling, this formula for y is independent of the choice of basis {F,M} for ℓ.
Any point x ∈ ℙ2 for which (Fx Mx) has rank at most 1 will be a base point of this Cremona transformation. In
particular, if Fx = 0, then x is a base point of f . As we will see below, there are three such points when ranging
over all rank-two matrices in ℓ.

The next two results finish off the proof of the trinity correspondence (6) and the proof of Theorem 3.2.

Lemma 3.9. Let ℓ be a generic line in ℙ(ℂ3×3), i.e., ℓ contains three rank-two matrices F1 , F2 , F3.
(1) Then ℓ gives rise to three permissible quadrics Q1 , Q2 , Q3 ⊂ ℙ3, each containing the centers of a pair of

linear projections with fundamental matrices F1 , F2 , F3 respectively.
(2) The quadrics Q1 , Q2 , Q3, in conjunction with their distinguished linear projections, all induce the same

Cremona transformation f . The base points of f are ex1 , e
x
2 , e

x
3 in the domain and e

y
1 , e

y
2 , e

y
3 in the codomain,

where exi and e
y
i generate the right and left nullspaces of Fi respectively.

Proof. A generic line ℓ ⊂ ℙ(ℂ3×3) intersects the determinantal varietyD cut out by det X = 0 in three rank-two
matrices F1 , F2 , F3. Each Fi is the fundamental matrix of a pair of linear projectionsℙ3 󴁅󴀽 ℙ2 with non-coincident
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centers, and by Lemma 3.3 and Lemma 3.5 there is a unique permissible quadric Qi through these centers
corresponding to the line ℓ. By Lemma 3.7, each of these quadrics induces the same Cremona transformation
f : ℙ2 󴁅󴀽 ℙ2.

To conclude, we show that the base points of f and f −1 are ex1 , e
x
2 , e

x
3 and e

y
1 , e

y
2 , e

y
3 , respectively. We show that

ex1 , e
x
2 , e

x
3 are the base points of f and the argument for the base points of f −1 follows symmetrically. First, note

that each exi is a base point of f . This follows from Remark 3.8, since each Fi ∈ ℓ has rank two. Since the Cremona
transformation f has three base points, it only remains to show that these points are distinct. If ex1 = ex2 , then by
linearity Fex1 = 0 for all F ∈ ℓ = span{F1 , F2}. This would imply that rank(F) ≤ 2 for all F ∈ ℓ, contradicting the
genericity of the line ℓ. 2

Corollary 3.10. The correspondence Q→ C is 3 : 1.

Proof. Let Q = (Q, π1 , π2) ∈ Q be a permissible quadric along with a pair of linear projections that correspond
to f ∈ C. If F is the fundamental matrix associated to (π1 , π2), then there exists a unique generic line ℓ through F
corresponding to Q by Lemma 3.3 and Lemma 3.5. With the full trinity correspondence, this line ℓ contains three
fundamentalmatrices F1 , F2 , F3 corresponding toQ1 ,Q2 ,Q3 ∈ Q that eachproduce the Cremona transformation f .
Moreover, by Lemma 3.7 this line ℓ is the unique line in ℙ(ℂ3×3) corresponding to f . Therefore if Q󸀠 ∈ Q is such
that Q󸀠 󳨃→ f it follows that π󸀠1 , π

󸀠
2 have one of F1 , F2 , F3 as their fundamental matrix and that the quadric Q󸀠 is

produced by the line ℓ. We conclude that Q󸀠 is, up to projective equivalence, one of Q1 ,Q2 ,Q3. 2

This completes the proof of Theorem 3.2. A consequence of Theorem 6 is the following generalization of
Problem 1.2.

Theorem 3.11. Given a generic codimension-two subspace V ⊂ ℙ(ℂ3×3), the intersection of V with R1, the Segre
embedding of ℙ2 × ℙ2, is a del Pezzo surface of degree six, and can be described explicitly via the trinity correspon-
dence. Specifically, if g : ℙ2 󴁅󴀽 ℙ2 is the Cremona transformation corresponding to the line V⊥, then

V ∩ R1 = {g(x)x⊤ : x ∈ ℙ2} ∪ {xg−1(x)⊤ : x ∈ ℙ2}.
Proof. For convenience, we denote

V1 := {g(x)x⊤ : x ∈ ℙ2} ∪ {xg−1(x)⊤ : x ∈ ℙ2}.
To see that this is a degree-six del Pezzo surface, we show that V1 can be obtained as the blowup of ℙ2 in three
non-collinear points, specifically, at the base points of g: ex1 , e

x
2 , e

x
3 . Let πx : V1 󴁅󴀽 ℙ2 be the morphism defined

by πx(vu⊤) = u. Let the ℓyi be the exceptional lines of g such that g−1(ℓyi ) = exi . Then πx is 1 : 1 except on three
mutually skew lines {y(exi )⊤ : y ∈ ℓyi } which are taken to the points {exi }. Therefore V1 is the blowup of ℙ2 in
three non-collinear points and is a del Pezzo surface of degree six.

In particular, V1 must be Zariski closed and it follows by Lemma 3.7 that V ∩ R1 = V1. 2

3.2 Back to the proof of Theorem 3.1

Before we can adapt the trinity correspondence to the reconstruction of point pairs, we need to address a certain
kind of degeneracy. Given a configuration of point pairs P = (xi , yi)ki=1 consider the matrix Z = (x⊤i ⊗ y⊤i )ki=1 and
its right nullspaceNZ .

Lemma 3.12. Suppose that P = (xi , yi)ki=1 admits a generic line ℓ ⊆ NZ (passing through three rank-two matrices
F1 , F2 , F3). Then for all j = 1, 2, 3 there is no i such that y⊤i Fj = 0 = Fjxi .
Proof. Suppose, without loss of generality, y⊤1 F1 = 0 = F1x1. From the matrix F1 and the line ℓ through it we
obtain a pair of projections π1 , π2 with centers c1 , c2 and a smooth permissible quadric Q passing through them.
Then π2(c1) and π1(c2) are the left and right epipoles of F1, but since y⊤1 F1 = 0 = F1x1, it must be that y1 ∼ π2(c1)
and x1 ∼ π1(c2). On the other hand, for any point p on the line connecting c1 , c2, we have

π2(p)⊤F2π1(p) = π2(c1)F2π1(c2) = y⊤1 F2x1 = 0
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since F2 ∈ NZ . Therefore, by Corollary 3.4, p ∈ Q and thus c1c2 ⊂ Q, which is a contradiction since Q is
permissible. 2

Even though a rank-two matrix F on a generic line inNZ cannot have y⊤i F = 0 = Fxi , it might be that one of
the equations hold. We name this type of degeneracy in the following definition.

Definition 3.13. A generic line ℓ ⊆ NZ is P-degenerate if there exists a rank-two matrix F ∈ ℓ such that either
Fxi = 0 or y⊤i F = 0 for some i. We call a generic line that is not P-degenerate a P-generic line.

Any rank-two matrix F in a P-generic line will give a reconstruction c1 , c2 , p1 , . . . , pk of the point pairs P.
That is, there will be linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with centers c1 , c2 so that π⊤2 (p)Fπ1(p) = 0 for all
p ∈ ℙ3 and (xi , yi) = (π1(pi), π2(pi)) for all i = 1, . . . , k. A smooth quadric Q will contain two lines through any
of its points.

Definition 3.14. A quadric Q ⊂ ℙ3 passes degenerately through a reconstruction c1 , c2, {pi}ki=1 of P if it passes
through these k + 2 points and contains the line through a center point ci and a reconstructed point pj .
Definition 3.15. A Cremona transformation f : ℙ2 󴁅󴀽 ℙ2 maps xi 󳨃→ yi degenerately if xi is a base point of f
and yi lies on the corresponding exceptional line, or symmetrically, yi is a base point of f −1 and xi lies on the
corresponding exceptional line.

Generically, the trinity correspondence specializes to the reconstruction of point pairs in an intuitive way.

Theorem 3.16. Given a configuration of point pairs P = (xi , yi)ki=1 and the matrix Z = (x⊤i ⊗ y⊤i )ki=1, define the
following subsets of L,Q, C:

(1) LP: the set of all P-generic lines ℓ ⊆ NZ := nullspace(Z),
(2) QP: the set (up to projective equivalence) of all permissible quadrics passing non-degenerately through some

reconstruction c1 , c2 , p1 , . . . , pk of P,
(3) CP: the set of all Cremona transformations f : ℙ2 󴁅󴀽 ℙ2 mapping xi 󳨃→ yi non-degenerately for all i =

1, . . . , k.

Then there is a 1 : 1 correspondence between the elements of LP and CP , a 1 : 3 correspondence between the
elements of LP and QP , and a 3 : 1 correspondence between the elements of QP and CP as in the diagram

QP

LP CP

3 : 11 : 3 (16)

Proof. We need to show that the trinity correspondence (6) can be restricted to the sets LP ,QP , CP . We will
therefore examine each leg of this diagram.

(LP → QP) We begin by considering a P-generic line ℓ = span{F,M} ⊆ NZ . Without loss of generality, we can
take F to be one of the three fundamental matrices in ℓwith corresponding projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2 with
non-coincident centers c1 , c2 that give reconstructions p1 , . . . , pk ∈ ℙ3 of the point pairs P. By Lemma 3.3, the
line ℓ corresponds to a smooth permissible quadric Q defined by the vanishing of q(u) = π2(u)TMπ1(u). For any
point pi in the reconstruction, we have

q(pi) = π2(pi)⊤Mπ1(pi) = y⊤i Mxi = 0 (17)

since M ∈ ℓ ⊂ NZ . Therefore Q passes through the reconstruction c1 , c2 , p1 , . . . , pk . It remains to show that it
does so non-degenerately. By Lemmas 3.6 and 3.9, a reconstructed point pi lies on one of the lines through c1 (or
symmetrically through c2) if and only if there exists M ∈ ℓ such that Mxi = 0 (or symmetrically y⊤i M = 0). Sinceℓ is P-generic there is no such M, implying that the quadric passes through the reconstruction non-degenerately.
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(QP → CP) Consider a permissible quadric Q passing through a reconstruction c1 , c2 , p1 , . . . , pk of P with
linear projections π1 , π2. As in Theorem 3.2, the tuple (Q, π1 , π2) induces a Cremona transformation f := π2 ∘(π1|Q)−1. By Lemma 3.6, the base points of f are the images of the point c2 and each of the lines in Q passing
through c1. Since pi ̸= c2 and does not belong to these lines, the point xi = π1(pi) is not a base point of f .
Similarly, the base points of f −1 are the images of the point c1 and the lines in Q passing through c2 under π2, so a
symmetric argument shows that yi = π2(pi) is not a base point of f −1. Therefore f maps xi = π1(pi) to yi = π2(pi)
non-degenerately.

(CP → LP) Consider a Cremona transformation f : ℙ2 󴁅󴀽 ℙ2 such that xi 󳨃→ yi non-degenerately for all i.
As in Lemma 3.7, f corresponds to a unique line ℓ ⊂ ℙ(ℂ3×3) defined by the property that f(x)⊤Mx = 0 for all
M ∈ ℓ and x ∈ ℙ2. In particular, y⊤i Mxi = 0 for all M ∈ ℓ and i = 1, . . . , k, implying that ℓ ⊆ NZ . By assumption,
no point xi is a base point of f and no point yi is a base point of f −1. By Lemma 3.9, it then follows that Mxi ̸= 0
and y⊤i M ̸= 0 for all M ∈ ℓ. Therefore ℓ is not P-degenerate. 2

Remark 3.17. The assumptions of non-degeneracy can be removed from the 1:1 correspondence between generic
lines inNZ and Cremona transformations mapping xi 󳨃→ yi . Extending this to quadrics is more subtle, as some
rank-two matrices F ∈ ℓ ⊂ NZ may not give full reconstructions of the point pairs P.

Proof of the only-if direction of Theorem 3.1. For 8 semi-generic point pairs, the matrix Z = (x⊤i ⊗ y⊤i )8i=1 is rank
deficient exactly whenNZ =: ℓ is a line. This line ℓ is generic because it is also the nullspace of any submatrix
of Z of size 7 × 9 and the corresponding seven point pairs are generic. Pick a subset of seven point pairs, say(xi , yi)7i=1, from the original eight pairs. Since these seven point pairs are generic, and ℓ is also generic, we can
assume that Fxi ̸= 0 and y⊤i F ̸= 0 for any rank-two matrix F ∈ ℓ and all i = 1, . . . , 7. On the other hand, if we
pick a different set of seven point pairs, say (xi , yi)8i=2, then ℓ is also the nullspace of the corresponding Z7 and by
the same argument as before, Fxi ̸= 0 and y⊤i F ̸= 0 for any rank-two matrix F ∈ ℓ and all i = 2, . . . , 8. Therefore,ℓ is P-generic.

Since ℓ is P-generic, by Theorem 3.16, ℓ gives rise to a Cremona transformation f : ℙ2x 󴁅󴀽 ℙ2y such that
f(xi) = yi for i = 1, . . . , 8. This finishes the proof of Theorem 3.1. 2

We end this section by demonstrating the trinity correspondence for an example, beginning with a single
quadric through a reconstruction.

Example 3.18. Consider the quadric Q ⊂ ℙ3 defined by the equation x2 + y2 − z2 − w2 = 0 and the following 10
points p1 , . . . , p8 , c1 , c2 ∈ Q:

c1 = (1 : 0 : 0 : 1) c2 = (0 : 1 : 0 : 1)
p1 = (5 : 12 : 13 : 0) p2 = (13 : 0 : 5 : 12)
p3 = (12 : 5 : 13 : 0) p4 = (3 : 4 : 5 : 0)
p5 = (4 : 3 : 5 : 0) p6 = (3 : 4 : 0 : 5)
p7 = (4 : 3 : 0 : 5) p8 = (5 : 0 : 4 : 3).

The two projections (cameras) with centers c1 , c2 have matrices

A1 = [[[1 0 0 −1
0 1 0 0
0 0 1 0

]]] , A2 = [[[1 0 0 0
0 1 0 −1
0 0 1 0

]]]
and we can calculate the image points and epipoles:
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ex = (−1 : 1 : 0) ey = (1 : −1 : 0)
x1 = (5 : 12 : 13) y1 = (5 : 12 : 13)
x2 = (1 : 0 : 5) y2 = (13 : −12 : 5)
x3 = (12 : 5 : 13) y3 = (12 : 5 : 13)
x4 = (3 : 4 : 5) y4 = (3 : 4 : 5)
x5 = (4 : 3 : 5) y5 = (4 : 3 : 5)
x6 = (−2 : 4 : 0) y6 = (3 : −1 : 0)
x7 = (−1 : 3 : 0) y7 = (4 : −2 : 0)
x8 = (2 : 0 : 4) y8 = (5 : −3 : 4).

The point pairs (xi , yi) give us the matrix
Z8 =
[[[[[[[[[[[[[[[

25 60 65 60 144 156 65 156 169
13 −12 5 0 0 0 65 −60 25
144 60 156 60 25 65 156 65 169
9 12 15 12 16 20 15 20 25
16 12 20 12 9 15 20 15 25−6 2 0 12 −4 0 0 0 0−4 2 0 12 −6 0 0 0 0
10 −6 8 0 0 0 20 −12 16

]]]]]]]]]]]]]]]
which we can check is rank deficient and has nullspace spanned by the vectors

m1 = (−1, 1, 0, −1, −1, 0, 0, 0, 1), m2 = (0, 0, −1, 0, 0, −1, 1, 1, 0).
The reconstruction we started with has fundamental matrix

F = [[[ 0 0 1
0 0 1−1 −1 0

]]]
and if we take a different matrix

M = [[[−1 −1 0
1 −1 0
0 0 1

]]]
in the nullspace of Z8 we can verify that A⊤2MA1 yields the original quadric Q:

(x, y, z, w)A⊤2MA1(x, y, z, w)⊤ = (x, y, z, w) [[[[[
−1 −1 0 1
1 −1 0 1
0 0 1 0
1 1 0 −1

]]]]] (x, y, z, w)⊤ = −x2 − y2 + z2 + w2 .

The other two possible choices for fundamental matrices in the nullspace of Z8 are

F2 = [[[−1 −1 1
1 −1 1−1 −1 1

]]] and F3 = [[[−1 −1 −11 −1 −1
1 1 1

]]] ,
which have epipoles e2x = (0 : 1 : 1), e2y = (−1 : 0 : 1), e3x = (0 : −1 : 1) and e3y = (1 : 0 : 1). Moreover, we can
verify that there is a unique Cremona transformation

f(x1 , x2 , x3) = (x21 − x22 + x23 , x21 + 2x1x2 + x22 − x23 , 2x1x3)
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such that f(xi) = yi for all i. This Cremona transformation has base points exactly matching the epipoles. Finally,
we can check that each camera center lies on two real lines on the quadric Q, parameterized by (a : b) ∈ ℙ1 asℓ2x = (a : b : b : a), ℓ3x = (a : −b : b : a), ℓ2y = (−b : a : b : a), and ℓ3y = (b : a : b : a)
whose images are exactly the other two possible pairs of epipoles/base points (e2x , e2y) and (e3x , e3y).
4 The case k = 7
We now come to the case of k = 7 point pairs. In order to understand the case of seven point pairs, we first need
to understand six generic point pairs (xi , yi)6i=1. In this case, the nullspace NZ of the matrix Z = (x⊤i ⊗ y⊤i )6i=1
is projectively a plane and NZ ∩ D =: C is a cubic curve in ℙ(ℂ3×3) lying in the plane NZ . By our genericity
assumption, Cmisses all rank-one matrices inD and hence every point on C is a fundamental matrix of (xi , yi)6i=1.
Let κx and κy denote the quadratic maps that take a rank-two matrixM ∈ ℙ(ℂ3×3) to its right and left nullvectors
respectively. As a consequence of the classical theory of blowups and cubic surfaces as discussed in [3], the maps
C → κx(C) =: Cx ⊂ ℙ2x and C → κy(C) =: Cy ⊂ ℙ2y are isomorphisms when (xi , yi)6i=1 is generic; we will go into
more detail on the nature of these isomorphism in Subsection 4.2.1.

C

ℙ2x ⊃ Cx Cy ⊂ ℙ2yκyκx (18)

By the composition κy ∘ κ−1x , we get that Cx and Cy are isomorphic cubic curves. However, this isomorphism
is not particularly useful; for instance, it does not take xi 󳨃→ yi . By construction, the curves Cx and Cy consist
exactly of all possible epipoles of the fundamental matrices of (xi , yi)6i=1 in ℙ2x and ℙ2y . We therefore call Cx and
Cy the right and left epipolar curves of (xi , yi)6i=1. We will see that these cubic curves are closely tied to both rank
drop and the trinity relationship established in Theorem 3.16.

Example 4.1. Consider the following six point pairs:

x1 = (0 : 0 : 1) y1 = (0 : 0 : 1) x2 = (1 : 0 : 1) y2 = (1 : 0 : 1)
x3 = (0 : 1 : 1) y3 = (0 : 1 : 1) x4 = (1 : 1 : 1) y4 = (1 : 1 : 1)
x5 = (3 : 5 : 1) y5 = (7 : −2 : 1) x6 = (−7 : 11 : 1) y6 = (3 : 13 : 1)

Figure 1: The cubic curves Cx and Cy from Example 4.1, with xi and yi labeled.
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Figure 1 shows the curves Cx and Cy . Observe that xi ∈ Cx and yi ∈ Cy for all i = 1, . . . , 6, a fact we will prove in
Section 4.1. The curves Cx and Cy are cut out by gx(u) = 0 and gy(v) = 0 in ℙ2x and ℙ2y where
gx(u) = 447u31 + 775u21u2 + 113u1u22 + 118u32 − 4083u21u3 − 888u1u2u3 − 1521u22u3 + 3636u1u23 + 1403u2u23 ,
gy(v) = 447v31 − 136v21v2 − 12v1v22 + 118v32 − 3608v21v3 + 148v1v2v3 − 1478v22v3 + 3161v1v23 + 1360v2v23 .

In Section 4.2 we use classical invariant theory to derive the polynomials gx and gy .

Given seven point pairs (xi , yi)7i=1, denote the epipolar curves obtained by excluding the ith point pair as
C ̂ix and C ̂iy . In the event that these curves are equal for all choices of i, we denote Cx := C1̂x = ⋅ ⋅ ⋅ = C7̂x and
Cy := C1̂y = ⋅ ⋅ ⋅ = C7̂y . We will see that this equality is necessary (Theorem 4.2) and sufficient (Theorem 4.11) for
Z7 = (x⊤i ⊗ y⊤i )7i=1 to be rank deficient.

The maps κx , κy are not the only way to derive the epipolar curves Cx , Cy; it is also possible to obtain them
via the trinity correspondence (16). This will be the subject of Subsection 4.1 and will allow us to prove the
following result:

Theorem 4.2. For 7 semi-generic point pairs (xi , yi)7i=1, the matrix Z7 is rank deficient if and only if there exist
cubic curves C1 through x1 , . . . , x7 and C2 through y1 , . . . , y7 as well as an isomorphism f : C1 → C2 such that
xi 󳨃→ yi . Moreover, if this holds then C1 = Cx and C2 = Cy .

This is the first of the twomain results in this section and it is themore geometric theorem, to be proved at the
end of Subsection 4.1. In Subsection 4.2.1 we use the theory of cubic surfaces as in [3] to obtain explicit equations
for the epipolar curves. In Subsection 4.2.2 we use these explicit equations to characterize rank deficiency of Z7
using 14 algebraic equations and to prove our second main result, Theorem 4.11, which is the more algebraic
theorem. Finally, in Section 4.3 we collect some further results outside the assumption of semi-genericity.

4.1 Rank drop and cubic curves

Before addressing the cases of six generic point pairs and seven semi-generic point pairs, we establish an analogue
of Lemma 3.7 to show how general projective planes in ℙ(ℂ3×3) give rise to Cremona transformations of cubic
curves.

Lemma 4.3. Let P ⊂ ℙ(ℂ3×3) be a projective plane not containing any rank-one matrix. The set of points (x, y) ∈ℙ2 × ℙ2 satisfying yTMx = 0 for all M ∈ P coincides with the closure of the graph {(x, f(x)) : x ∈ CPx } of the
restriction of a Cremona transformation f : ℙ2 󴁅󴀽 ℙ2 to a cubic curve CPx . Moreover, there is a two-dimensional
family of Cremona transformations fℓ : ℙ2 󴁅󴀽 ℙ2, indexed by generic lines ℓ ⊂ P as in Lemma 3.7, with the same
restriction to CPx .

Proof. The curve CPx consists of the set of points x ∈ ℙ2 for which there exists an M ∈ P with Mx = 0. When
P = NZ , this is the epipolar curve Cx described above. By choosing a basis {M1 ,M2 ,M3} for P we can write any
M ∈ P as aM1 + bM2 + cM3. Given x ∈ ℙ2 there exists (a : b : c) ∈ ℙ2 with (aM1 + bM2 + cM3)x = 0 if and only
if det (M1x M2x M3x) = 0. Therefore CPx is defined by the vanishing of this determinant, which is a cubic
form in x1 , x2 , x3. Symmetrically the cubic curve CPy defined by the vanishing of the determinant of the matrix
with rows y⊤Mj coincides with Cy when P = NZ .

Let ℓ = span{M1 ,M2} ⊂ P ⊂ ℙ(ℂ3×3) be a generic line. By Lemma 3.7, there is a Cremona transformation
fℓ : ℙ2 󴁅󴀽 ℙ2 whose graph is the set of points (x, y) ∈ ℙ2 ×ℙ2 satisfying yTMx = 0 for allM ∈ ℓ. As in Remark 3.8,
the map fℓ transforms x into ker (M1x M2x). For x ∈ CPx except the three base points of fℓ, the left kernel of(M1x M2x) is also the left kernel of the rank-two 3 × 3 matrix (M1x M2x M3x), which is independent of
the choice of ℓ = span{M1 ,M2} ⊂ P.

Note that the graph {(x, fℓ(x)) : x ∈ CPx } and the set of points (x, y) ∈ ℙ2x × ℙ2y satisfying yTMx = 0 for all
M ∈ P have the same projection onto ℙ2x , namely CPx . For any x ∈ CPx , the corresponding point y is given by
fℓ(x) = ker (M1x M2x M3x). 2
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4.1.1 Six point pairs. Let (xi , yi)6i=1 be a set of six generic point pairs, Z = (xi , yi)6i=1 and let F be any choice of
fundamental matrix (i.e., a rank-two matrix on the projective planeNZ). Genericity guarantees a reconstruction
p1 , . . . , p6 , c1 , c2 ∈ ℙ3, of (xi , yi)6i=1 from F. Recall that c1 , c2 are the centers of camera projections π1 , π2 and
p1 , . . . , p6 are world points such that π1(pj) = xj and π2(pj) = yj for all j = 1, . . . , 6.

SinceNZ is a two-dimensional plane, it contains a pencil of lines through F, see (14) and (16), which corre-
sponds to a pencil of quadrics Qλ , each passing through the reconstruction. The intersection of these quadrics,
also obtainable as the intersection of any two distinct quadrics in the pencil, is a quartic space curveW ⊂ ℙ3
that must also pass through the reconstruction. Since c1 , c2 are onW , π1(W) ⊂ ℙ2x and π2(W) ⊂ ℙ2y are cubic
curves. We will see that these cubic curves are independent of the choice of F, and that they are exactly the
epipolar curves Cx and Cy . We will use this derivation to study their special properties arising from the trinity
relationship. The following lemma assumes the setup just described.

Lemma 4.4. For six generic point pairs (xi , yi)6i=1 we have the following.
(1) The cubic curves π1(W) and π2(W) are the right and left epipolar curves Cx , Cy , respectively; in particular,

they are independent of the choice of F.
(2) The points xi lie on Cx and the points yi lie on Cy for i = 1, . . . , 6.
(3) There exists a two-parameter family of Cremona transformations fℓ : ℙ2x 󴁅󴀽 ℙ2y , indexed by lines ℓ in the

projective planeNZ , such that the following holds:∙ fℓ(xi) = yi for i = 1, . . . , 6,∙ the restriction of fℓ to a map Cx → Cy is independent of ℓ, and∙ the base points of all the Cremona transformations fℓ lie in Cx , Cy .
Proof. Let F be a fundamental matrix inNZ . Since (xi , yi)6i=1 is generic, F can be any element of the cubic curve
C = NZ ∩ D, and we can use F to obtain a reconstruction consisting of world points p1 , . . . , p6 and cameras
corresponding to linear projections π1 , π2 : ℙ3 󴁅󴀽 ℙ2.

The quartic space curve W is defined by quadrics of the form q(u) = π2(u)⊤Mπ1(u) where M ∈ P ∩ F⊥.
Therefore π1(W) contains the cubic plane curve Cx defined by {x ∈ ℙ2 : ∃M ∈ NZ such that Mx = 0}. Since
c1 ∈ W , π1(W) is a cubic plane curve and so these must be equal. A symmetric argument shows that π2(W) = Cy .
SinceW contains each point pi , this also implies that xi = π1(pi) belongs to Cx and yi = π2(pi) belongs to Cy for
i = 1, . . . , 6.

By Lemma 4.3, for any generic line ℓ ⊂ NZ the restriction of the Cremona transformation fℓ : ℙ2 󴁅󴀽 ℙ2 to the
cubic Cx is independent of the choice of ℓ. By Theorem 3.16 we have fℓ(xi) = yi for all i. As in Lemma 3.9, the
base points of fℓ are the right kernels of the three rank-two matrices F1 , F2 , F3 ∈ ℓ and therefore belong to Cx .
Similarly, the base points of f −1ℓ are the left kernels of these matrices and so belong to Cy . 2

Remark 4.5. Given a rank two matrix F ∈ NZ , it may be the case that Fxi = 0 (or y⊤i F = 0) for some i. However,
even in this case we can still apply the trinity (6) to obtain a pencil of quadrics (and a pencil of Cremona
transformations), and from them the cubic curves Cx , Cy with the isomorphism between them. Therefore, even
if ℓ is such that xi is a base point of fℓ, the restriction of fℓ to a map Cx → Cy , as in Lemma 2.6, would still satisfy
xi 󳨃→ yi .

4.1.2 From six points to seven. The trinity correspondence has allowed us to prove a number of properties of
the epipolar curves corresponding to six generic point pairs. In particular, we know that there is an isomorphism
f : Cx → Cy that sends xi 󳨃→ yi for i = 1, . . . , 6 which is induced by a two-parameter family of Cremona
transformations ℙ2x 󴁅󴀽 ℙ2y . For seven generic point pairs, the following corollary holds.
Lemma 4.6. Let (xi , yi)7i=1 be seven semi-generic point pairs. Then the rank of Z = (x⊤i ⊗ y⊤i )7i=1 drops if and only if
there exist cubic curves C1, C2 through x1 , . . . , x7 and y1 , . . . , y7 respectively, as well as a two-parameter family of
Cremona transformations fℓ : ℙ2x 󴁅󴀽 ℙ2y such that f(xi) = yi for all i and the family is well-defined on the restriction
C1 → C2. Furthermore, if this holds then C1 = Cx and C2 = Cy .
Proof. (⇒) Under semi-genericity, Z is rank deficient if and only if the nullspace of Z and the nullspaces of each
of its 6 × 9 submatrices are identical. In particular, if Pi is the subset of 6 point pairs obtained by excluding the
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ith, then, using the notation from Theorem 3.16, LP1 = ⋅ ⋅ ⋅ = LP7 . Applying Lemma 4.4, we find that the pairs
of curves C ̂ix , C

̂i
y are identical for all i. Accordingly, we omit the superscripts and identify them as Cx and Cy

respectively. Similarly, the family of Cremona transformations satisfies CP1 = ⋅ ⋅ ⋅ = CP7 , and, as in Lemma 4.4,
restricting this family to the map Cx → Cy yields a well-defined isomorphism with the property xi 󳨃→ yi for all i.

(⇐) For this direction, we use Theorem 3.16. In particular, the existence of such a family of Cremona
transformations implies that dim(LP) = dim(CP) = 2 as illustrated in (16). Since there is a two-dimensional
family of lines ℓ in the projective nullspace of Z, we must have rank(Z) < 7. We now need to verify that C1 = Cx
and C2 = Cy . It follows by Lemma 2.5 that the curves C1 , C2 contain all possible base points of the Cremona
transformations fℓ. Furthermore, by Lemma 3.9 the sets of all such base points in the domain and codomain is
exactly the set of all possible right and left epipoles. It follows that Cx ⊂ C1 and Cy ⊂ C2 and therefore the curves
are equal. 2

Proof of Theorem 4.2. (⇒) This direction follows from Lemma 4.6. In particular, the isomorphism is exactly that
obtained by restricting the family of Cremona transformations to the map Cx → Cy .

(⇐) Assume that such curves C1 , C2 exist, as well as the desired isomorphism C1 → C2. By Lemma 2.7
there is a two-parameter family of Cremona transformations ℙ2x 󴁅󴀽 ℙ2y whose restriction C1 → C2 yields this
isomorphism. It follows from Lemma 4.6 that Z is rank deficient and that C1 = Cx and C2 = Cy . 2

4.2 The Cremona hexahedral form of Cx and Cy

In this subsection we return to the original characterization of the cubic curves Cx and Cy as the images under
the quadratic maps κx and κy of the curve C as in (18). We will see that it is possible to derive explicit equations
for these curves using the classical theory of cubic surfaces and a special invariant-theoretic representation of
them called the Cremona hexahedral form. These ideas intersect substantially with the characterization of rank
drop of Z6 in [3]; in particular, we draw on the connection between six generic points pairs (xi , yi)6i=1 and cubic
surfaces. We begin by explicitly characterizing the curve C = NZ ∩ D as the planar section of a cubic surface; we
will then use this characterization in conjunction with material from [3] to find explicit equations for the curves
Cx and Cy .

4.2.1 Six generic point pairs again. Suppose we have six generic point pairs (xi , yi)6i=1; in particular, Z =(x⊤i ⊗ y⊤i )6i=1 has full rank. Let Z ̂j denote the 5× 9 matrix obtained by deleting the jth row of Z. ThenNZ ̂j
≅ ℙ3 and

S ̂j := NZ ̂j
∩ D is a smooth cubic surface inNZ ̂j

by the genericity assumption, and hence all points on it have rank
two. It was shown in [3] that S ̂j is the blowup of ℙ2x at ({xi}6i=1 \ {xj}) ∪ {x̄j} where x̄j is a new point that arises
from {xi}6i=1 \ {xj}, see Lemma 6.1 of [3] for its derivation and formula. Symmetrically, S ̂j is also the blowup of({yi}6i=1 \ {yj}) ∪ { ̄yj} in ℙ2y where ̄yj is a new point determined by {yi}6i=1 \ {yj}. The quadratic maps κ ̂jx : S ̂j → ℙ2x
and κ

̂j
y : S ̂j → ℙ2y are 1 : 1 except on the exceptional lines of the blowup. The curve C is given by

C = NZ ∩ D = NZ ̂j
∩ D ∩ (x⊤j ⊗ y⊤j )⊥ = S ̂j ∩ (x⊤j ⊗ y⊤j )⊥ .

Therefore, C cuts each of the exceptional lines of the blowup in one point, and therefore the restrictions of κx , κy
to C are isomorphisms.

For a set of six points u1 , . . . , u6 ∈ ℙ2, set [ijk] := det[ui uj uk] and define[(ij)(kl)(rs)] := [ijr][kls] − [ijs][klr]. (19)

This is a classical invariant of u1 , . . . , u6 under the action of PGL(3) whose vanishing expresses that the lines
uiuj , ukul and urus meet in a point; compare [2, pp. 169]. Using these invariants, Coble [2, page 170] defines the
following six scalars:
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ā = [(25)(13)(46)] + [(51)(42)(36)] + [(14)(35)(26)] + [(43)(21)(56)] + [(32)(54)(16)]
b̄ = [(53)(12)(46)] + [(14)(23)(56)] + [(25)(34)(16)] + [(31)(45)(26)] + [(42)(51)(36)]̄c = [(53)(41)(26)] + [(34)(25)(16)] + [(42)(13)(56)] + [(21)(54)(36)] + [(15)(32)(46)]
d̄ = [(45)(31)(26)] + [(53)(24)(16)] + [(41)(25)(36)] + [(32)(15)(46)] + [(21)(43)(56)]
ē = [(31)(24)(56)] + [(12)(53)(46)] + [(25)(41)(36)] + [(54)(32)(16)] + [(43)(15)(26)]̄f = [(42)(35)(16)] + [(23)(14)(56)] + [(31)(52)(46)] + [(15)(43)(26)] + [(54)(21)(36)] (20)

Coble also defines the following six cubic polynomials that vanish on u1 , . . . , u6:

a(u) = [25u][13u][46u] + [51u][42u][36u] + [14u][35u][26u] + [43u][21u][56u] + [32u][54u][16u]
b(u) = [53u][12u][46u] + [14u][23u][56u] + [25u][34u][16u] + [31u][45u][26u] + [42u][51u][36u]
c(u) = [53u][41u][26u] + [34u][25u][16u] + [42u][13u][56u] + [21u][54u][36u] + [15u][32u][46u]
d(u) = [45u][31u][26u] + [53u][24u][16u] + [41u][25u][36u] + [32u][15u][46u] + [21u][43u][56u]
e(u) = [31u][24u][56u] + [12u][53u][46u] + [25u][41u][36u] + [54u][32u][16u] + [43u][15u][26u]
f(u) = [42u][35u][16u] + [23u][14u][56u] + [31u][52u][46u] + [15u][43u][26u] + [54u][21u][36u] (21)

These cubic polynomials are covariants of u1 , . . . , u6 under the action of PGL(3).
It is a well-known result in algebraic geometry that every smooth cubic surface is the blowup of six points

in ℙ2. The blowup procedure furnishes an algorithm to find a determinantal representation of the surface.
However, these representations do not directly reflect the six points that were blown up. The Cremona hexahedral
form of a smooth cubic surface provides explicit equations for the surface in terms of the points being blown up.
It consists of the following polynomials:

z31 + z32 + z33 + z34 + z35 + z36 = 0
z1 + z2 + z3 + z4 + z5 + z6 = 0

āz1 + b̄z2 + ̄cz3 + d̄z4 + ēz5 + ̄f z6 = 0. (22)

Furthermore, the cubic surface can also be parameterized by{(a(u) : b(u) : c(u) : d(u) : e(u) : f(u)) : u ∈ ℙ2}. (23)

We will now use the above facts to obtain explicit equations (that depend on (xi , yi)6i=1) of the epipolar
curves Cx and Cy . In what follows, we index ā, . . . , ̄f and a(u), . . . , f(u) with x (respectively y) when ui = xi
(respectively ui = yi).
Definition 4.7. Given six point pairs (xi , yi)6i=1 we define the following cubic polynomials:

gx(u) := āyax(u) + b̄ybx(u) + ̄cycx(u) + d̄ydx(u) + ēyex(u) + ̄fy fx(u),
gy(v) := āxay(v) + b̄xby(v) + ̄cxcy(v) + d̄xdy(v) + ēxey(v) + ̄fx fy(v). (24)

Given seven point pairs (xi , yi)7i=1, let g ̂ix and g ̂iy denote the above cubic polynomials obtained from the point
pairs (xj , yj)j ̸=i .

The polynomials gx , gy played a prominent role in the rank drop of Z6 in [3].

Lemma 4.8. Given generic point pairs (xi , yi)6i=1, let C = NZ ∩ D, Cx = κx(C) ⊂ ℙ2x and Cy = κy(C) ⊂ ℙ2y . Also
let Sx be the blowup of ℙ2x at x1 , . . . , x6 and let Sy be the blowup of ℙ2y at y1 , . . . , y6, each expressed in Cremona
hexahedral form. Then the following hold true:

(1) The plane cubic curves Cx and Cy have defining equations gx(u) = 0 and gy(v) = 0 respectively.
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(2) The cubic curve C ≅ Sx ∩ Sy which has equations
z31 + z32 + z33 + z34 + z35 + z36 = 0
z1 + z2 + z3 + z4 + z5 + z6 = 0

āxz1 + b̄xz2 + ̄cxz3 + d̄xz4 + ēxz5 + ̄fxz6 = 0
āyz1 + b̄yz2 + ̄cyz3 + d̄yz4 + ēyz5 + ̄fyz6 = 0. (25)

(3) The cubic curve Sx ∩ Sy is the image of Cx under the blowup of ℙ2x at x1 , . . . , x6 and also the image of Cy
under the blowup of ℙ2y at y1 , . . . , y6.

Proof. We begin with the first item. By Lemma 4.4, xi ∈ Cx for all i and by Definition 4.7, gx(xi) = 0 for all i
since the cubic polynomials in (21) vanish on the xi . For fixed i = 1, . . . , 6, consider the 5 point pairs left after
excluding (xi , yi) and let (ui , vi) be the unique new point pair (cf. Lemma 6.1 in [3]) such that the configuration{(x1 , y1), . . . , (x6 , y6), (ui , vi)} \ {(xi , yi)} (26)

is rank deficient. For convenience, we assume without loss of generality that i = 6. In other words, if Z6̂ =(xi ⊗ yi)5i=1 then (u6 , v6) is the unique point pair such that S6̂ = NZ6̂ ∩ D can be obtained both by blowing up ℙ2x
in the points x1 , . . . , x5 , u6 and by blowing up ℙ2y in the points y1 , . . . , y5 , v6. It follows that the curve C ⊂ S6̂ cuts
the exceptional lines corresponding to u6 , v6 exactly once each and therefore u6 ∈ Cx and v6 ∈ Cy; it follows
symmetrically that ui ∈ Cx and vi ∈ Cy for all i = 1, . . . , 6. One can check using a computer algebra package that
gx(u6) = 0 and gy(v6) = 0 after fixing points as in Lemma 6.1 in [3]; it follows symmetrically that gx(ui) = 0 and
gy(vi) = 0 for all i. Finally, since Cx and the curve cut out by gx share 12 distinct points, they must be the same
cubic curve; similarly we can conclude that Cy is cut out by gy . This finishes the proof of the first claim.

To prove the second and third claims, recall that κx : C → Cx is an isomorphism. Let κ󸀠x : Sx → ℙ2x and
κ󸀠y : Sy → ℙ2y be the blow down morphisms. The Cremona hexahedral forms of Sx and Sy give

Sx ∩ Sy = {z ∈ Sx : āyz1 + ⋅ ⋅ ⋅ + ̄fyz6 = 0}. (27)

By (23),
Sx = {(ax(u) : bx(u) : cx(u) : dx(u) : ex(u) : fx(u)) : u ∈ ℙ2} (28)

and since Cx is cut out by gx(u) = 0, we get that
Sx ∩ Sy = {(ax(u) : . . . : fx(u)) : āyax(u) + ⋅ ⋅ ⋅ + ̄fy fx(u) = 0, u ∈ ℙ2x} = {(ax(u) : . . . : fx(u)) : u ∈ Cx}. (29)

Therefore, Sx ∩ Sy is exactly the image of Cx under the blowup of ℙ2x at x1 , . . . , x6. Restricting κx to κ󸀠x|Sx∩Sy :
Sx ∩ Sy → Cx we obtain an isomorphism, and we have Sx ∩ Sy ≅ Cx ≅ C, which proves the second claim. Finally,
we note that by a symmetric argument, Sx ∩ Sy is also exactly the image of Cy under the blowup ofℙ2y at y1 , . . . , y6
proving the third claim as well. 2

Example 4.9 (Example 4.1, continued). One can verify that the polynomials (24) define the same cubic curves as
those in Example 4.1. We then pick a specific point x7 = (0 : 1403 : 118) ∈ Cx . Using a computer algebra package,
one can compute the unique point y7 = (1802855 : 1562942 : 171287) such that Z = (xi , yi)7i=1 is rank deficient. It
is straight-forward to verify that y7 ∈ Cy . Moreover, there is a two-parameter family of Cremona transformations
fℓ such that xi 󳨃→ yi for i = 1, . . . , 6 and for all members of this family fℓ(x7) = (1802855 : 1562942 : 171287),
which lines up with Lemma 4.6. These points can be seen on the cubic curve in Figure 2.

4.2.2 Algebraic conditions for the rank deficiency of Z7. We are now ready to present our main algebraic result
for rank drop given k = 7 point pairs. We begin with a basic lemma that will connect all of our results in the
main theorem.

Lemma 4.10. Let (xi , yi)7i=1 be seven semi-generic points. Then Z = (x⊤i ⊗ y⊤i )7i=1 is rank deficient if and only if
C1̂ = ⋅ ⋅ ⋅ = C7̂ where C ̂i is the cubic curveNZ ̂i

∩ D.
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Figure 2: The cubic curves Cx and Cy , with x7 and y7 highlighted.

Proof. By semi-genericity, Z is rank deficient if and only ifNZ = NZ1̂ = ⋅ ⋅ ⋅ = NZ7̂ for each 6 × 9 submatrix Z ̂i of Z.
Since C ̂i = NZ ̂i

∩ D, the matrix Z is rank deficient if and only if C = C1̂ = ⋅ ⋅ ⋅ = C7̂. 2

The following theorem, which is the main result of this subsection, allows us to check for rank drop without
computing Cremona transformations.

Theorem 4.11. For seven semi-generic point pairs (xi , yi)7i=1, the following are equivalent:
(1) Z = (x⊤i ⊗ y⊤i )7i=1 is rank deficient.
(2) We have xi ∈ C ̂ix and yi ∈ C ̂iy for all i = 1, . . . , 7.
(3) We have g ̂ix(xi) = 0 and g ̂iy(yi) = 0 for all i = 1, . . . , 7.
(4) All seven cubic curves in ℙ2x are equal: C7̂x = ⋅ ⋅ ⋅ = C1̂x .
(5) All seven cubic curves in ℙ2y are equal: C7̂y = ⋅ ⋅ ⋅ = C1̂y .

Proof. By Lemma 4.8, (2) is equivalent to (3). We next prove that (1) implies (4) and (5). If Z is rank deficient,
then C1̂ = ⋅ ⋅ ⋅ = C7̂ by Lemma 4.10. Applying the quadratic maps κx and κy we obtain (4) and (5). To prove the
reverse direction we will show (4) implies (1); the proof that (5) implies (1) is symmetric. In particular, we will
show that C ̂ix = C ̂jx if and only if C ̂i = C ̂j . For ease of notation, we assume i = 6 and j = 7. Consider the five point
pairs (xi , yi)5i=1 and the matrix Z5 = (x⊤i ⊗ y⊤i )5i=1. Then S = NZ5 ∩ D is a cubic surface and κx : S → ℙ2x and
κy : S → ℙ2y are 1 : 1 except on the six exceptional lines in each case. Moreover, we can obtain the cubic curves
C6̂ and C7̂ by intersecting this surface with a plane. We can conclude that κx(C6̂) = κx(C7̂) only if C6̂ = C7̂. It then
follows that (4) implies (1), and symmetrically, (5) implies (1).

We now prove that (1) implies (2). Fix i ∈ {1, . . . , 7}. Then xj ∈ C ̂ix for all j ̸= i by Lemma 4.4. Moreover, since
C ̂ix = C ̂jx by hypothesis it follows that xi ∈ C ̂ix . The other equalities follow symmetrically.

Finally, we prove that (2) implies (1). Since xj ∈ C ̂ix and yj ∈ C ̂iy for j ̸= i by construction, the additional
hypothesis (2) gives that x1 , . . . , x7 ∈ ⋂7i=1 C ̂ix and y1 , . . . , y7 ∈ ⋂7i=1 C ̂iy . We fix the first five point pairs (xi , yi)5i=1
and consider the 5 × 9 matrix Z5 = (x⊤i ⊗ y⊤i )5i=1. Consider the cubic surface S = NZ5 ∩ D paired with the maps κx
and κy . The cubic curves C6̂ and C7̂ are obtained by intersecting S with a plane. By genericity, the four matrices
κ−1x (x6), κ−1x (x7), κ−1y (y6), κ−1y (y7) are all distinct. Moreover, they are all contained in

C6̂ ∩ C7̂ = (NZ6̂ ∩ D) ∩ (NZ7̂ ∩ D) = NZ ∩ D (30)

which can also be realized as the intersection of the cubic surface S with two planes. IfNZ were one-dimensional,
it would intersectD in at most three points. Since we have found 4 > 3 distinct points inNZ ∩ D,NZ must have
projective dimension ≥ 2, implying (1). 2
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4.3 Beyond semi-genericity

Given seven semi-generic point pairs (xi , yi)7i=1, we have now fully characterized the conditions under which
the matrix Z7 will be rank deficient. This characterization was given geometrically (Theorem 4.2) and then
algebraized using 14 polynomials (Theorem 4.11). We now move away from the assumptions of semi-genericity.
We will first examine how Z7 becomes rank deficient without these assumptions and, to some extent, generalize
our algebraic condition (Theorem 4.11) to this case. We will also consider configurations where (xi , yi)7i=1 are
fully generic, and therefore Z7 must have full rank; in this case, we can use the cubic curves C

̂i
x , C
̂i
y and their

associated polynomials to characterize the epipoles of the possible fundamental matrices in terms of classical
invariants.

We begin by presenting two relatively simple, but highly degenerate, conditions for the rank deficiency of Z7.
One of these conditions is that Z7 will be rank deficient if {xi} and {yi} are equal up to a change of coordinates.
Lemma 4.12. Suppose we have point pairs (xi , yi)7i=1 and an invertible projective transformation H such that
Hxi = yi for all i. Then Z = (x⊤i ⊗ y⊤i )7i=1 is rank deficient.
Proof. Since rank drop is a projective invariant, we can assume xi = yi for all i. Then the equations y⊤i Fxi =
x⊤i Fxi = 0, i = 1, . . . , 7 hold for all 3 × 3 skew-symmetric matrices F ∈ Skew3. Since Skew3 is a three-dimensional
vector space, dim(NZ) ≥ 3 and rank(Z) ≤ 9 − 3 = 6. 2

The second simple condition is that the rank of Z will drop if the points in either ℙ2 lie in a line.
Lemma 4.13. Suppose (xi , yi)7i=1 is such that either {xi} or {yi} are on a line. Then Z = (x⊤i ⊗ y⊤i )7i=1 is rank deficient.
Proof. Suppose the yi ’s are on a line. Then we may assume that yi = (mi , 0, 1) after a change of coordinates.
Then simple column operations on Z show that it is rank deficient. 2

Remark 4.14. We note that the existence of such configurations does not necessarily imply that the rank drop
variety is reducible. We suspect that these configurations are in the Zariski closure of the generic rank drop
component.

It is simple to check that in both of the above cases we have g ̂ix(xi) = 0 = g ̂iy(yi) for i = 1, . . . , 7, suggesting
a possible generalization of Theorem 4.11(3). This is possible to some extent. In particular, even without any
genericity assumptions, if Z7 is rank deficient then these 14 polynomial equations hold.

Lemma 4.15. If Z = (x⊤i ⊗ y⊤i )7i=1 is rank deficient, then g ̂ix(xi) = 0 and g ̂iy(yi) = 0 for all i.
Proof. Let I be the ideal generated by the 14 polynomials g ̂ix(xi) and g ̂iy(yi) for i = 1, . . . , 7 in the polynomial ringℂ[xij , yij : i = 1, . . . , 7, j = 1, 2, 3], treating (xi , yi)7i=1 as symbolic. If Z is the appropriate symbolic 7 × 9 matrix
then it can be verified using Macaulay2 that I is contained in the ideal generated by the maximal minors of Z. 2

However, the converse does not hold in general.We present two examples of highly degenerate configurations
where the 14 equations hold, but Z7 is not rank deficient.

Example 4.16. Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = [[[0 1 3 4 0 0 7
0 0 0 0 1 1 0
1 0 1 1 0 0 1

]]] Y = [[[0 1 4 0 9 1 0
0 0 0 1 0 0 1
1 0 1 0 1 1 0

]]] (31)

where x1 , x2 , x3 , x4 , x7 are on a line and x5 = x6. Similarly, y1 , y2 , y3 , y5 , y6 are on a line and y4 = y7. We can
verify that g ̂ix(xi) = 0 = g ̂iy(yi) for i = 1, . . . , 7 and that the matrix Z is not rank deficient. In particular, NZ is
spanned by the two singular matrices [[[0 0 −3

0 0 0
4 0 0

]]] [[[0 0 0
0 1 0
0 0 0

]]]
the latter of which has rank one.
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Example 4.17. Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = [[[1 2 5 1 2 3 7
0 0 0 0 1 2 6
1 1 1 0 1 1 1

]]] Y = [[[0 0 0 0 1 3 4
1 5 1 0 2 6 8
1 1 0 1 1 1 1

]]] (32)

where {xi}4i=1 , {yi}4i=1 and {xi}7i=5 , {yi}7i=5 are on distinct lines in each image. We can verify that g ̂ix(xi) = 0 = g ̂iy(yi)
for i = 1, . . . , 7 and that the matrix Z is not rank deficient. In particular, NZ is spanned by the two rank one
matrices [[[0 −2 0

0 1 0
0 0 0

]]] [[[−1 1 1
0 0 0
0 0 0

]]] .
While the focus of this paper has been on the conditions under which Z drops rank, the tools we have

developed have applications beyond rank drop. In particular, for a fully generic configuration of seven point
pairs we can use the cubic curves C ̂ix and C

̂i
y to find the possible epipoles of fundamental matrices. While this

has minimal practical application, it is significant in that the characterization is entirely in terms of classical
projective invariants.

Lemma 4.18. Let (xi , yi)7i=1 be generic point pairs. In particular, we assume that NZ is one-dimensional and
contains three rank-two matrices F1 , F2 , F3, two of which may be complex. Then the epipoles of these fundamental
matrices ex1 , e

x
2 , e

x
3 and e

y
1 , e

y
2 , e

y
3 can be obtained as the unique three points in the intersections⋂7i=1 C ̂ix ⊂ ℙ2x and⋂7i=1 C ̂iy ⊂ ℙ2y .

Proof. Consider the two cubic curves C7̂x and C6̂x . The intersection A6,7 = C7̂x ∩ C6̂x will contain exactly nine points.
We know that x1 , . . . , x5 ∈ A6,7. Additionally, let (u6 , v6) be the pair of rank drop points, as in Lemma 5.1 of [3],
associated to (xi , yi)5i=1. Then, by Lemma 4.15 we have u6 ∈ A6,7 as well. There should be three more points in the
intersection. Let f be the unique Cremona transformation f : ℙ2x 󴁅󴀽 ℙ2y such that xi 󳨃→ yi for i = 1, . . . , 7. This f is
contained in the two-parameter family of Cremona transformations ℙ2x 󴁅󴀽 ℙ2y such that xi 󳨃→ yi for i = 1, . . . , 6.
By Lemma 4.4 the base points of f are contained in C7̂x . By a symmetric argument these base points are also
contained in C6̂x and we can conclude that these three base points are the last three points in the intersection. By
Lemma 3.9 these base points are exactly the epipoles of the fundamental matrices, and it follows by symmetry
that e1x , e2x , e3x ∈ ⋂7i=1 C ̂ix . Clearly the points x1 , . . . , x5 , u6 are not in⋂7i=1 C ̂ix generically, and thus these three base
points are the unique points in the intersection of all seven cubic curves. Symmetrically, ey1 , e

y
2 , e

y
3 are the unique

points in⋂7i=1 C ̂iy . 2

Example 4.19. Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = [[[3 2 5 0 4 −20 −4
0 7 3 3 2 25 7
1 1 2 1 5 12 2

]]] Y = [[[ 0 −49 −15 −3 −5 5 7−1 14 25 0 10 4 4
1 9 4 1 6 2 1

]]] (33)

We can then construct the seven cubic curves C ̂ix and C
̂i
y in each ℙ2. See Figure 3. Each set of seven cubic curves

has three common intersection points. If we compute NZ we find that there are exactly three possible real
fundamental matrices. These matrices have epipoles

e1x = (0 : 0 : 1) e1y = (0 : 0 : 1)
e2x = (−2 : 3 : 1) e2y = (−3 : 4 : 1)
e3x = (4 : 3 : 4) e3y = (3 : 2 : 2) (34)

and we can see that these are exactly the three common intersection points.
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Figure 3: The cubic curves C ̂ix and C
̂i
y . The intersection points are exactly the three possible epipoles associated to the fundamental

matrices.
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5 The case k = 9
We finish by characterizing the rank deficiency of Z = (x⊤i ⊗ y⊤i )9i=1, and this time we make no assumptions on
the point pairs (xi , yi)9i=1. A simple algebraic characterization of rank drop in this case is that det(Z) = 0. This
is a single polynomial equation but as mentioned already, typically this equation does not shed much light on
the geometry of the points {xi} and {yi} that makes Z rank deficient. By the methods of invariant theory, it is
possible to write det(Z) as a polynomial in the brackets [ijk]x and [ijk]y constructed from {xi} and {yi}which
may or may not offer geometric insight. Below we provide a geometric characterization of rank drop in terms of
the two point sets in ℙ2x and ℙ2y . The result is straight-forward.

Recall that if a, b are distinct points in ℙ2, then a × b ∈ ℙ2 is the normal of the line containing a and b,
i.e., u ∈ Span{a, b} if and only if u⊤(a × b) = 0. In what follows we let ℓab denote the line spanned by a, b. Its
normal a × b = [a]×b where [a]× is the 3 × 3 skew symmetric matrix that expresses cross products with a as a
matrix-vector multiplication.

Theorem 5.1. The matrix Z = (x⊤i ⊗ y⊤i )9i=1 is rank deficient if and only if there is a projective transformation
T : ℙ2x 󴁅󴀽 ℙ2y such that y⊤i (Txi) = 0 for i = 1, . . . , 9, or equivalently, yi lies on the line with normal vector Txi for
i = 1, . . . , 9. This manifests in three possible ways depending on the rank of T:
(1) There exists a line ℓ ⊂ ℙ2x and a line ℓ󸀠 ⊂ ℙ2y such that for each i, we have xi ∈ ℓ or yi ∈ ℓ󸀠 (both may happen

for a given i).
(2) There are two points e ∈ ℙ2x and e󸀠 ∈ ℙ2y and a ℙ1-homography sending the pencil of lines through e to the

pencil of lines through e󸀠 such that ℓexi 󳨃→ ℓe󸀠yi for each i.
(3) There is some T ∈ PGL(3) such that yi lies on the line with normal vector Txi for each i.

Proof. The first statement is trivial. The matrix Z is rank deficient if and only ifNZ ⊂ ℙ8 contains at least one
point. Representing such a point by T ∈ ℙ(ℂ3×3) we have (x⊤i ⊗ y⊤i )vec(T) = y⊤i (Txi) = 0 for i = 1, . . . , 9.
(1) If rank(T) = 1, then T = uv⊤ for some u, v ∈ ℂ3. Therefore, (y⊤i u)(v⊤xi) = 0 for i = 1, . . . , 9 which is

equivalent to saying that for each i, at most one of u⊤yi or v⊤xi can be non-zero. Therefore there exist
lines ℓ (with normal v) and ℓ󸀠 (with normal u) such that for each i, we have xi ∈ ℓ or yi ∈ ℓ󸀠.

(2) Suppose that rank(T) = 2. Let e ∈ ℙ2x be the unique point in the right nullspace of T and let e󸀠 ∈ ℙ2y be the
unique point in the left nullspace of T . The pencil of all lines through e (respectively e󸀠) can be identified
with ℙ1.
Pick any line ℓ not passing through e and suppose its normal is n. Then the projective transformation
T[n]× is a ℙ1-homography that takes ℓexi → ℓe󸀠yi ; see [6, Result 9.5]. Indeed, suppose the intersection of ℓ
and ℓexi is ui . Since ui is orthogonal to both n and e × xi , we have ui ∼ n × (e × xi) = [n]×(e × xi). Since ui
lies on ℓexi , we have ui = λe + μxi for some scalars λ, μ, and since ℓ does not contain e, we obtain ui ̸= e
which implies that μ ̸= 0. Therefore

T[n]×(e × xi) = Tui = λTe + μTxi = 0 + μTxi ∼ Txi
which says that the normal of ℓexi is mapped to Txi by T[n]×. We just need to argue that Txi is the normal
of ℓe󸀠yi to finish the proof. For this check that (e󸀠)⊤Txi = 0 since (e󸀠)⊤T = 0 and y⊤i Txi = 0 by assumption.
Therefore the line spanned by e󸀠 and yi has normal Txi .

(3) If rank(T) = 3 then T is a homography (an invertible projective transformation). Then y⊤i Txi = 0 for
i = 1, . . . , 9 implies that yi lies on the line with normal Txi for each i. 2

Remark 5.2. In the proof of (2), if xi = e for some i then [e]×e = 0 and similarly, if yj = e󸀠 for some j then[e󸀠]×yj = 0. Therefore, the ℙ1-homography will not work for the indices i, j where xi = e or yj = e󸀠.
Remark 5.3. As we saw, if seven of the nine points on either side are on a line then the rank of Z9 will drop.
Condition (1) allows for the situations where s points with 3 ≤ s ≤ 6 on one side are on a line and the 9 − s
complementary y points are on a line.
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Example 5.4. (1) Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = [[[0 0 0 0 1 −1 1 1 1
1 1 1 −1 1 1 0 1 −1
0 1 2 1 0 1 1 1 −1]]] Y = [[[−1 1 0 0 1 1 1 −1 1

0 1 −1 1 0 0 0 0 0
2 1 1 1 0 1 2 1 3

]]] . (35)

One can check that all 8 × 9 submatrices of Z have rank 8. If the coordinates of ℙ2 are u1 , u2 , u3 then x1 , . . . , x4
lie on the line u1 = 0 and y5 , . . . , y9 lie on the line u2 = 0 and Z must drop rank by Condition (1). Indeed, the
unique element in the nullspace of Z is the rank-one matrix

T = [[[0 0 0
1 0 0
0 0 0

]]] . (36)

(2) Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = [[[1 0 0 1 1 1 0 1 2
0 1 0 1 1 0 1 2 1
0 0 1 1 0 1 1 1 1

]]] Y = [[[1 0 0 1 1 0 1 2 1
0 1 0 1 0 1 1 1 4
0 0 1 1 1 1 0 1 3

]]] . (37)

Again, Z and all its 8 × 9 submatrices have rank 8. The unique element inNZ is the rank-two matrix

T = [[[ 0 0 −1
0 0 1−1 1 0

]]] . (38)

The points e = e󸀠 = (1, 1, 0)⊤ are generators of the right and left nullspaces of T . Note that x5 = e and y7 = e󸀠.
Pick ℓ̄ = (1, 2, 3)⊤. Then e⊤ℓ̄ ̸= 0. Now check that [e󸀠]×Y = (T[ℓ̄]×)[e]×X. Indeed,

[e]× = [e󸀠]× = [[[ 0 0 1
0 0 −1−1 1 0

]]] , [ℓ̄]× = [[[ 0 −3 2
3 0 −1−2 1 0

]]] ,
and [e󸀠]×Y = [[[ 0 0 1 1 1 1 0 1 3

0 0 −1 −1 −1 −1 0 −1 −3−1 1 0 0 −1 1 0 −1 3

]]]∼ [[[0 0 3 3 0 3 3 3 3
0 0 −3 −3 0 −3 −3 −3 −3
3 −3 0 0 0 3 −3 −3 3

]]] = (T[ℓ̄]×)[e]×X (39)

except in the columns of X and Y where xi = e and yj = e󸀠.
Here is another example where the epipoles do not appear among the xi ’s or yj ’s. Take xi to be the columns

of the matrix X and yi to be the columns of the matrix Y with

X = [[[1 1 1 1 1 1 1 1 1
0 1 0 1 2 0 2 −1 −1
0 0 1 1 0 2 1 1 −1]]] , Y = [[[1 1 1 1 1 1 1 1 1

0 1 0 1 0 2 1 1 −2
0 0 1 1 2 1 2 −1 −1]]] . (40)

The unique element inNZ is the rank-two matrix

T = [[[ 0 2 1−1 −1 0−2 0 1

]]] . (41)
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The points e = (−1, 1, −2)⊤ and e󸀠 = (1, 2, −1)⊤ generate the right and left nullspaces of T . Pick ℓ̄ = e. Then
e⊤e ̸= 0. Now check that [e󸀠]×Y = (T[e]×)[e]×X. Indeed,

[e󸀠]×Y = [[[ 0 1 2 3 4 4 5 −1 −4−1 −1 −2 −2 −3 −2 −3 0 0−2 −1 −2 −1 −2 0 −1 −1 −4]]]∼ [[[ 0 −12 −6 −18 −24 −12 −30 6 18
6 12 6 12 18 6 18 0 0
12 12 6 6 12 0 6 6 18

]]] = (T[e]×)[e]×X. (42)

(3) Take xi to be the columns of the matrix X and yi to be the columns of the matrix Y with

X = [[[1 0 0 1 1 1 0 1 2
0 1 0 1 1 0 1 2 −3
0 0 1 1 0 1 1 1 1

]]] Y = [[[1 0 0 1 1 0 1 2 15
0 1 0 1 0 1 1 1 4
0 0 1 1 1 1 0 0 −5]]] . (43)

The unique element inNZ is the rank-three matrix

T = [[[ 0 1 −4
1 0 3−4 3 0

]]] . (44)

By construction, y⊤i Txi = 0 for i = 1, . . . , 9.
6 Conclusion

In combination with [3], we now have a complete characterization of how rank deficiency of the matrix Z =(x⊤i ⊗ y⊤i )ki=1 occurs for all values of k = 2, . . . , 9. We have also demonstrated a strong correspondence between
lines in ℙ(ℂ3×3), quadric surfaces in ℙ3, and quadratic Cremona transformations of ℙ2 under appropriate
genericity assumptions, which we have named the trinity correspondence. We conclude with a simple corollary
of our work that highlights the geometry of reconstructions of semi-generic point pairs of sizes six, seven and
eight.

Corollary 6.1. Let (xi , yi)ki=1 ⊂ ℙ2 × ℙ2 be semi-generic. Then we get the following:∙ When k = 6, Z6 is rank deficient exactly when a reconstruction p1 , . . . , p6 , c1 , c2 is a Cayley octad (eight points
in the intersection of three generic quadrics).∙ When k = 7, Z7 is rank deficient exactly when the points p1 , . . . , p7 , c1 , c2 of any reconstruction lie on a quartic
curve that arises as the intersection of two quadrics.∙ When k = 8, Z8 is rank deficient exactly when the points p1 , . . . , p8 , c1 , c2 of any reconstruction lie on a
quadric.

Proof. When k = 8, the matrix Z8 is rank deficient exactly whenNZ8 is a line. By the semi-genericity of the point
pairs, this line is P-generic and does not contain any rank-one matrices. Any reconstruction of the point pairs
corresponds to a fundamental matrix F on this line, and by Lemma 3.3 the reconstruction lies on a quadric.
Similarly, if the point pairs have a reconstruction, given by some fundamental matrix F which lies on a quadric,
then there is a corresponding line through F inNZ8 and Z8 is rank deficient.

When k = 7, Z7 is rank deficient exactly whenNZ7 is a plane. Given any reconstruction p1 , . . . , p7 , c1 , c2 of
the point pairs, let F be the corresponding fundamental matrix. By semi-genericity of the point pairs,NZ7 is a
generic plane that intersectsD in a curve C of rank-two matrices. If we take any two lines through F inNZ7 then
as in Lemma 3.3 we obtain two quadrics Q1 , Q2 whose intersection is a quartic curve through the reconstruction.
Similarly, if any reconstruction corresponding to a fundamental matrix F󸀠 lies on two distinct quadrics then
there are two distinct lines through F󸀠 inNZ7 and Z7 is rank deficient.
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For k = 6, Z6 is rank deficient if and only if NZ6 is a 3-dimensional plane. Equivalently, every rank-two
matrix F ∈ NZ6 lies on a net of lines inNZ6 , which corresponds to a net of quadrics containing the reconstruction
corresponding to F. It follows that if the reconstruction lies on a Cayley octad Q1 ∩ Q2 ∩ Q3 then Z6 is rank
deficient. For the other direction, suppose that Z6 is rank deficient. Then the reconstruction lies on a net of
quadrics Q1 ∩ Q2 ∩ Q3 and we need to show that this intersection contains exactly the 8 points {pi}6i=1 , c1 , c2. If
p󸀠 ∈ Q1∩Q2∩Q3 is any point distinct from c1 , c2, then π2(p󸀠)⊤Mπ1(p󸀠) = 0 for allM ∈ NZ6 . Due to semi-genericity,
the hypothesis of [3, Lemma 6.1] holds for any subset of 5 point pairs, and it follows that (π1(p󸀠), π2(p󸀠)) = (xi , yi)
for some i. We can conclude that p󸀠 = pi and the intersection is indeed a Cayley octad. 2
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