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Abstract:Westudy the continuous CM-regularity of torsion-free coherent sheaves onpolarized irregular smooth
projective varieties (X,OX(1)), and its relation with the theory of generic vanishing. This continuous variant
of the Castelnuovo–Mumford regularity was introduced by Mustopa, and he raised the question whether a
continuously 1-regular such sheaf F is GV.

Here we answer the question in the affirmative for many pairs (X,OX(1)) which includes the case of any
polarized abelian variety.Moreover, for these pairs,we show that ifF is continuously k-regular for somepositive
integer k ≤ dim X, then F is a GV−(k−1) sheaf. Further, we extend the notion of continuous CM-regularity to a
real valued function on theℚ-twisted bundles on polarized abelian varieties (X,OX(1)), and we show that this
function can be extended to a continuous function on N1(X)ℝ. We also provide syzygetic consequences of our
results for Oℙ(E)(1) on ℙ(E) associated to a 0-regular bundle E on polarized abelian varieties.

In particular, we show that Oℙ(E)(1) satisfies the Np property if the base-point freeness threshold of the
class of OX(1) in N1(X) is less than 1/(p + 2). This result is obtained using a theorem in the Appendix A written
by Atsushi Ito.
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1 Introduction

Given a smooth projective variety X ⊆ ℙn , it is well-known that the geometry of the embedding is reflected
by the coherent sheaves on X with suitable positivity properties. One of the most fundamental notion of such
properties that governs the complexity of a sheaf F is given by its Castelnuovo–Mumford (CM) regularity with
respect to the pair (X,OX(1)).

In this article we study a variant of CM-regularity that was introduced by Mustopa in [29] for polarized ir-
regular varieties (X,OX(1)). It is defined as follows:F is continuously k-regular if the cohomological support loci
V i(F(k − i)) are not empty for i ≥ 1 (strictly speaking, this definition is slightly more general than that in [29] as
we are not assuming global generation ofOX(1)). The structures of these cohomological support loci are of great
importance in the study of the geometry of irregular varieties. An important notion in this topic is the notion
of generic vanishing (GV for short) introduced by Green and Lazarsfeld in the pioneering works [9] and [10].
Fundamental contributions from Hacon [15] and Pareschi–Popa [34], [35], [36] through the derived category
approach and Fourier–Mukai functors led to subsequent developments of the theory of generic vanishing.

Turning to details, a coherent sheaf F on X is said to be GV if codim V i(F) ≥ i for all i. This property is
intimately related to the positivity of F; in particular, a GV sheaf on an abelian variety is nef. In [29], Mustopa
asked the following question.
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Question 1.1 ([29, Question (∗)]). Let X be a smooth projective variety of dimension d ≥ 1 and let OX(1) be an
ample and globally generated line bundle on X. Let F be a torsion-free coherent sheaf on X. If F is continuously
1-regular for (X,OX(1)), is F a GV sheaf?

The question above was motivated by Beauville’s construction in [5] of rank 2 Ulrich bundles on abelian
surfaces (X,OX(1)). It turns out that for these bundles E, E(−1) is indeed GV. It is easy to see that the answer
to Question 1.1 is affirmative for polarized curves. It was shown in [29] that the answer to the question is also
affirmative for

∙ a large class of polarized surfaces that includes the case of any polarized abelian surface (loc. cit., TheoremB
and Corollary C),
∙ certain polarizations on Cartesian and symmetric products of curves (loc. cit., Propositions 3.1 and 3.2),
∙ some scrollar embeddings of ruled threefolds over a curve (loc. cit., Proposition 4.1).

Continuous CM-regularity for semihomogeneous bundles on abelian varieties has been studied by Küronya
and Mustopa [21] and later by Grieve [14]. In particular, Küronya and Mustopa [21] show the following: if E is a
semihomogeneous bundle on abelian variety (X,OX(1)) of dimension g as in the set-up of Question 1.1, and if
moreover c1(E) is a rational multiple of c1(OX(1)), then even more is true, namely E(1− g) is GV. In [14], Grieve
established a description of continuous CM-regularity of semihomogeneous bundles on abelian varieties. This
descriptionwas in terms of a normalized polynomial function studied in [13], and obtained via theWedderburn
decomposition of the endomorphism algebra of the abelian variety. A further study of the index and generic
vanishing theory of simple semihomogeneous bundles was also carried out in [14], building on and refining
[12] and [11].

Besides the notion of GV sheaves, a related notion in the generic vanishing theory is that of M-regularity
of coherent sheaves. A coherent sheaf F on X is said to be M-regular if codim V i(F) > i for all i > 0. In this
direction, Mustopa asked whether a continuous 0-regular torsion-free coherent sheaf on a polarized smooth
projective variety (X,OX(1)) with OX(1) globally generated is M-regular; see [29, Remark 1.6].

Following this train of thought, it is natural to propose the more general question: given a continuously
k-regular torsion-free coherent sheaf on a smooth polarized variety (X,OX(1)) with OX(1) globally generated
and 1 ≤ k ≤ dim X, is it true that codimV i(F) ≥ i − k + 1 for all i? Here we remark that the notion of generic
vanishing was generalized in [36] where Pareschi–Popa define a sheaf F to be GV−k for an integer k ≥ 0, if
codim(V i(F)) ≥ i − k for all i. In view of this, here we devote ourselves to answering the question below, which
is more general than [29, Question (∗) and Remark 1.6].

Question 1.2. Let X be a smooth projective variety of dimension d ≥ 1 and let OX(1) be an ample and globally
generated line bundle on X. Let F be a torsion-free coherent sheaf on X. Assume that F is continuously k-regular
for (X,OX(1)) for some integer k with 0 ≤ k ≤ d.

(1) If 1 ≤ k ≤ d, is F a GV−(k−1) sheaf?
(2) If k = 0, is F an M-regular sheaf?

The following is the main result of this article that answers the above question in the affirmative for many
pairs (X,OX(1)). We also note that the result below does not require the hypothesis that the polarization OX(1)
is globally generated.

Theorem A. Let (X, H) be a polarized smooth projective variety. Assume that there exist a globally generated line
bundle H1 on X and an ample line bundle H2 on Alb(X) such that H = H1 + alb∗XH2, where albX : X → Alb(X) is
the Albanese map. Let F be a torsion-free coherent sheaf on X that is continuously k-regular for (X, H) for some
integer k with 0 ≤ k ≤ dim X. Then the following statements hold.

(1) V i(F) = 0 for i ≥ k + 1.
(2) If k ̸= 0, then codim(Vk(F)) ≥ 1.

In particular, the answer to Question 1.2 is affirmative for the pair (X, H).
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Note that the above result answers Question 1.2 in the affirmative for any polarized abelian variety. More-
over, it also shows that the question has an affirmative answer in many cases that include for example the
case (a): X = Y × A where Y is a regular smooth projective variety, A is an abelian variety, and OX(1) is ample
and globally generated; and the case (b): X is a projective bundle ℙ(E) on an abelian variety A associated to an
ample and globally generated vector bundle E, and OX(1) = T + F where T is the tautological bundle, and F is
the pull-back of any ample line bundle on A. Observe also that the above theorem proves a stronger statement
than what is asked for in Question 1.2 (2) when (X, H) satisfies the hypotheses of Theorem A: it shows that con-
tinuously 0-regular sheaves are in fact IT0 (see Definition 3.3 and Corollary 5.4). We will give other variants of
Theorem A in Subsection 3.3.

The proof of Theorem A is homological in nature and relies on an inductive argument, but the crucial
ingredient of the proof is a relative set-up of continuous CM-regularity that we develop in this article.

Inspired by the recent development of the cohomological rank function by Jiang–Pareschi [20], we further
extend the notion of continuous CM-regularity to define a real-valued regularity ℚ-regl(E⟨n⟩) for ℚ-twisted
bundles E⟨n⟩ where l is an ample class in N1(X) on an abelian variety X and n ∈ N1(X)ℚ. For these, we prove
the following

Theorem B. Let X be an abelian variety of dimension g, and let E be a vector bundle on X. If l ∈ N1(X) is a
polarization, then the functionℚ-regl(E⟨−⟩) : N1(X)ℚ → ℝ sending n ∈ N1(X)ℚ toℚ-regl(E⟨n⟩) can be extended
to a continuous function ℝ-regl(E⟨−⟩) : N1(X)ℝ → ℝ.

We nowmention the immediate consequences of Theorem A for continuously k-regular torsion-free coher-
ent sheaves F on polarized abelian varieties (X,OX(1)). It follows immediately that

∙ (Corollary 5.1) if k = 1, then χ(F) ≥ 0 with equality if and only if V0(F) is a divisor,
∙ (Corollary 5.4) if k = 1 then F is nef, and if k = 0 then it is ample.

Let us denote the (usual) CM-regularity by regOX (1)(−). In Corollary 5.6 we establish the sub-additivity of
CM-regularity for polarized abelian varieties. To be more precise, for any torsion-free coherent sheaves E and
F on a polarized abelian variety (X,OX(1)) such that at least one of E and F is locally free, we show that the
following inequality holds:

regOX (1)(E ⊗ F) ≤ regOX (1)(E) + regOX (1)(F). (1.1)

We remark that it was shown earlier by Totaro [40, Theorem 3.4] that (1.1) holds for arbitrary polarized smooth
projective varieties whenOX(1) is very ample and satisfies a certain Koszul hypothesis, see also [8, Theorem 1.1]
for the case X = ℙd .

We also deduce syzygetic consequences from TheoremA for projective bundles on abelian varieties. Before
stating our result, we spend a few words on linear series on abelian varieties to set the context.

It was a conjecture of Lazarsfeld that on a polarized abelian variety (X, H), tH satisfies the Np property if
t ≥ p+3. Lazarsfeld’s conjecturewas proven by Pareschi [32]. The result was further extended by Pareschi–Popa
[35] where it was shown that tH satisfies the Np property if t ≥ p + 2 and |H| contains no base-divisor. Further,
denote the ideal sheaf at the origin of X by I0 and define

r(H) := inf {c ∈ ℚ | there exists an effectiveℚ-divisor D ≡ cH such that J(X, D) = I0}

where J(X, D) is the multiplier ideal. Lazarsfeld–Pareschi–Popa proved in [24] that if r(H) < 1/(p + 2) then H
satisfies the Np property. Very recently, Jiang–Pareschi defined in [20] the base-point freeness threshold β(h)
with 0 < β(h) ≤ 1 for a polarization h ∈ N1(X) on an abelian variety X; it can be characterized as follows:
β(h) < x ⇐⇒ I0⟨xh⟩ is IT0 for x ∈ ℚ. It was shown by Caucci [6] that β(h) ≤ r(H), and further the above
results are unified to shown that H satisfies the Np property if β(h) < 1/(p + 2). The study of a more general
property Nr

p via base-point freeness threshold was carried out by Ito [17]. Sharp results on projective normality
and higher syzygies of general polarized abelian varieties were also established by Ito [18] and [19].

The following is our result on syzygies of projective bundles associated to continuously 0-regular vector
bundles on polarized abelian varieties (X, H), which is an immediate consequence of Theorem A and Theo-
rem A.1 in the Appendix A due to Atsushi Ito.
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Corollary C. Let (X, H) be a polarized abelian variety, and let E be a continuously 0-regular vector bundle for
(X, H). Then Oℙ(E)(1) satisfies the Np property if β(h) < 1/(p + 2) where h is the class of H in N1(X).

Organization of the paper. In Section 2, we recall preliminaries of (continuous) CM-regularity. In Section 3 we
first discuss the theory of generic vanishing, and thenwe proceed to prove TheoremA; at the end of this section,
we prove a few variants of TheoremA.We define theℚ CM-regularity in Section 4 and prove TheoremB. Finally,
Section 5 is devoted to the proofs of Corollaries 5.1, 5.4, 5.6 and Corollary C.

Conventions. We work over the field of complex numbers ℂ. We tacitly assume that the varieties are irregu-
lar and the morphisms are non-constant. We use the additive and multiplicative notation interchangeably for
tensor products of line bundles, and the sign “≡” is used for numerical equivalence. The rest of the notation is
standard in algebraic geometry.
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2 Continuous CM-regularity of coherent sheaves

2.1 Definition and first properties. This subsection is devoted to the definitions and basic properties of (con-
tinuous) CM-regularity. We start with the definition of a partial variant of the usual CM-regularity; cf. [22, Defi-
nition 1.8.4] and [40, Lemma 3.2].

Definition 2.1 (CM-regularity). Let X be a smooth projective variety and let H be a line bundle on X. Also, let q, k
be integers with q ≥ 0. A coherent sheaf F on X is called Cq,k for (X, H) if Hq+i(F((k − i)H)) = 0 for all integers
i ≥ 1. When H is ample, we say that F is k-regular for (X, H) for k ∈ ℤ if it is C0,k for (X, H).

The following important result in the study of partial regularity was proven by Totaro [40], and is well-
known in the set-up of the usual (i.e., non-partial) Castelnuovo–Mumford regularity.

Lemma 2.2 ([40, Lemma 3.2]). Let (X, H) be a smooth projective variety with H globally generated. Let F be a
coherent sheaf on X, and q, k be integers with q ≥ 0. If F is Cq,k for (X, H) then it is Cq,k+m for (X, H) for any
integer m ≥ 0.

When H is ample and globally generated, define the regularity of F as

regH(F) := min {m ∈ ℤ | F is m-regular for (X, H)} .

We now recall the definition of the cohomological support loci, cf. [33, Definition 1.2], that are of fundamen-
tal importance in the study of irregular varieties.

Definition 2.3 (Cohomological support loci). Let X be a smooth projective variety and let a : X → A be a mor-
phism to an abelian variety A. Let F be a coherent sheaf on X. The i-th cohomological support locus V i

a(F) with
respect to a for i ∈ ℕ is defined as

V i
a(F) := {ζ ∈ Pic0(A) | hi(F ⊗ a∗ζ) ̸= 0}.

We simply write V i(F) for V i
albX (F) where albX : X → Alb(X) is the Albanese morphism of X.
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As we discussed earlier, continuous CM-regularity is a slightly coarser measure of positivity than CM-
regularity, and was introduced by Mustopa [29]. For our purpose, we need to generalize the definition of
continuous CM-regularity, cf. [29, Definition 1.1], to a relative and partial set-up that we describe next.

Definition 2.4 (Continuous CM-regularity). Let X be a smooth projective variety and let H be a line bundle on X.
Further, let a : X → A be a morphism to an abelian variety A. Let F be a coherent sheaf on X and let q, k be
integers with q ≥ 0. The sheaf F is called C󸀠aq,k for (X, H) if V

q+i
a (F((k − i)H)) ̸= Pic0(A) for all integers i ≥ 1.

When H is ample, we say that F is continuously k-regular for (X, H) if it is C󸀠albX0,k for (X, H).

When H is ample and globally generated, we define the continuous regularity of F as

regcontH (F) := min{m ∈ ℤ | ∀i > 0 : V
i(F((m − i)H)) ̸= Pic0(Alb(X)) ≅ Pic0(X)}.

In general, we have the inequality regcontH (F) ≤ regH(F). However, strict inequalities are possible:

Example 2.5. Let H be an ample and globally generated line bundle on an abelian variety X of dimension g.
Then g = regcontH (OX) < regH(OX) = g + 1.

We will use the following fact without any further reference.

Remark 2.6. Let a : X → A be a morphism from a smooth projective variety X to an abelian variety A. Let F
be a coherent sheaf and H be a line bundle on X. It is a consequence of Definition 2.1 (respectively 2.4) that if F
is Cq,k (respectively C󸀠aq,k) for (X, H) for integers q, k ≥ 0, then it is also Cq+k,0 (respectively C

󸀠a
q+k,0).

We will see that in practice, it is often useful to work with relative continuous CM-regularity rather than
CM-regularity. The following observation (where we use semicontinuity to see that the first three equivalent
conditions imply the fourth) highlights this and shows that the former property is stable under perturbations
by elements of a∗ Pic0(A).

Observation 2.7 (See also [29, Lemma 1.2]). Let X be a smooth projective variety and let H be a line bundle on X.
Let a : X → A be a morphism to an abelian variety A, and let F be a coherent sheaf on X. Also, let q, k be integers
with q ≥ 0. The following conditions are equivalent:

(1) F is C󸀠aq,k for (X, H),

(2) F ⊗ a∗ζ is C󸀠aq,k for (X, H) for some (equivalently, for all) ζ ∈ Pic
0(A),

(3) F is C󸀠aq,k for (X, H + a
∗ζ) for some (equivalently, for all) ζ ∈ Pic0(A),

(4) F ⊗ a∗ζ is Cq,k for (X, H) for some (equivalently, for general) ζ ∈ Pic0(A).

Thus, the (partial) continuous CM-regularity is determined by the class of the line bundle H in the Néron–
Severi group Pic(X)/ Pic0(X).

2.2 Behavior of continuous CM-regularity. In this subsection, we study the behavior of continuous CM-
regularity of torsion-free coherent sheaves with respect to restriction and pull-back. We introduce the property
(Pa) that is crucial for us since it allows us to produce smooth sections in the appropriate linear series by
Bertini’s theorem.

Definition 2.8 (Property (Pa)). We say that a polarized smooth projective variety (X, H) satisfies (Pa) where a :
X → A is a morphism to an abelian variety if for all ζ ∈ Pic0(A), H + a∗ζ is globally generated.

The above property is desirable for various geometric reasons aside from the one we stated before; we
point out another such reason here. A useful notion for sheaves on irregular varieties is their continuous global
generation property that we will define in Definition 3.6. It follows from [7, Proposition 3.1] that if H satisfies
Property (PalbX ), then H is continuously globally generated.

We now make the following
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Observation 2.9. Let (X, H) be a polarized smooth projective variety and let a : X → A be a morphism to an
abelian variety. Assume that (X, H) satisfies (Pa). Then for any ζ ∈ Pic0(A) and any smooth and irreducible mem-
ber Y ∈ |H + a∗ζ|, the pair (Y, H|Y ) satisfies (Pa|Y ) where a|Y : Y → A is the restriction of a.

It is important for us to note that continuous CM-regularity satisfies better restriction properties than or-
dinary CM-regularity. We highlight this by means of an example which shows that in general, if E k-regular for
(X, H), E|Y need not be k-regular for (Y, H|Y ) if Y ∈ |H + ξ| where ξ is non-trivial in Pic0(X).

Example 2.10. Let X be an abelian surface, and let H be an ample and globally generated line bundle. Fix a line
bundle 0 ̸= ξ ∈ Pic0(X) and observe that H + ξ is globally generated (this fact has been pointed out to me by the
referee, whom I thank). Indeed, consider the isogeny φH : X → X̂ = Pic0(X) that sends x ∈ X to t∗xH ⊗ H⊗−1
where tx : X → X is translation by x. Since φH is an isogeny, in particular surjective, there exists x ∈ X such
that H+ ξ = t∗xH whence the global generation of H+ ξ follows. Thus, H+ ξ is ample and globally generated, and
consequently there exists a smooth curve Y ∈ |H + ξ|. It is evident that 2H + ξ is 0-regular for (X, H). However,
we claim that (2H + ξ)|Y is not 0-regular for (Y, H|Y ). To see this, observe that (H + ξ)|Y = KY by adjunction,
whence h1((H + ξ)|Y ) ̸= 0 by Serre duality.

However, for the continuous variant of CM-regularity, we have

Lemma 2.11. Let (X, H) be a polarized smooth projective variety and let a : X → A be a morphism to an abelian
variety A. Assume that (X, H) satisfies (Pa). Let F be a torsion-free coherent sheaf that is C󸀠aq,k for (X, H) where
q, k are integers with q ≥ 0. Then for any ζ ∈ Pic0(A) and any smooth and irreducible member Y ∈ |H + a∗ζ|,
there exists ζ 󸀠 ∈ Pic0(A) such that F ⊗ a∗ζ 󸀠|Y is Cq,k for (Y, H|Y ).

Proof. It is safe to assume that k = 0. Consider the following part of the long exact sequence

Hq+i(F(−iH) ⊗ a∗ζ 󸀠) → Hq+i(F(−iH)|Y ⊗ a∗ζ 󸀠) → Hq+i+1(F(−(i + 1)H − a∗ζ + a∗ζ 󸀠))

obtained from twisting the restriction sequence by general ζ 󸀠 ∈ Pic0(A) and passing to cohomology. The state-
ment now follows from semicontinuity. 2

We now recall the definition of a strongly generating morphism as presented in the introduction of [3].

Definition 2.12 (Strongly generating morphisms). Let a : X → A be a morphism from a smooth projective vari-
ety X to an abelian variety A. We call themorphism a strongly generating if the inducedmap a∗ : Â = Pic0(A) →
Pic0(X) is injective.

Inspired by [31], given a morphism a : X → A as above, we will work with the covering trick, i.e. we will
consider the following base-change diagram

X̃ X

Ã A

μ̃

ã a
μ

(2.1)

where μ : Ã → A is an isogeny of abelian varieties. It turns out that if a is strongly generating, then X̃ is
smooth and irreducible; see the proof of [2, Lemma 2.3]. This is precisely the reason why we consider strongly
generating morphisms.

Most of the time throughout the article, we will only consider the case when Ã = A and μ = nA is the
multiplication by n isogeny for an integer n ≥ 1, and in this case we denote X̃ by Xn , ã by an , and μ̃ by μn .
Moreover, in this case, if a is strongly generating then so is an .

We show that continuous CM-regularity behaves well with respect to the above covering trick.

Lemma 2.13. Let X be a smooth projective variety and let H be a line bundle on X. Also, let a : X → A be a
morphism to an abelian variety A that is strongly generating. LetF be a coherent sheaf on X that is C󸀠a0,k for (X, H).
Let μ : Ã → A be an isogeny and consider the base-change diagram (2.1). Then μ̃∗F is C󸀠ã0,k for (X̃ , H̃ := μ̃∗H).
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Proof. Without loss of generality, we may assume k = 0. For ζ ∈ Â, we have by the projection formula

H i(μ̃∗(F(−iH + a∗ζ))) = H i(F(−iH + a∗ζ)) ⊕⨁d−1
k=1 H

i(F(−iH + a∗ζ + a∗ζk))

where d := deg(μ), μ∗OÃ = OA ⊕ ⨁d−1
k=1 ζk and ζk ∈ Â for 1 ≤ k ≤ d − 1. The conclusion now follows from

semicontinuity and the commutativity of the diagram (2.1). 2

3 Continuous CM-regularity and generic vanishing

3.1 The theory of generic vanishing. Throughout this subsection, for an abelian variety A, we denote by Â the
dual abelian variety identified with Pic0(A).

3.1.1 Let X be a smooth projective variety and let albX : X → A := Alb(X) be the Albanese map. Consider
Â = Pic0(A) ≅ Pic0(X) and let P be a Poincaré line bundle on A × Â. Let P := (albX × idÂ)∗P. Let D(X) and
D(Â) be the bounded derived categories of Coh(X) and Coh(Â). In this situation, we have the following two
Fourier–Mukai transform functors

RΦP : D(X) → D(Â), RΦP(−) := RpÂ∗(p
∗
X(−) ⊗ P),

RΨP : D(Â) → D(X), RΨP(−) := RpX∗(p∗Â(−) ⊗ P).

A reference for the following definitions can be found for example in [37, Proposition/Definition 2.1 and Propo-
sition/Definition 2.7].

Definition 3.1 (Generic vanishing and M-regularity). Let X be a smooth projective variety and letF be a coherent
sheaf on X.

∙ F is called generic vanishing, abbreviated as GV, if codim(V i(F)) ≥ i for all integers i > 0. More generally,
for an integer k ≥ 0, F is called GV−k if codim(V i(F)) ≥ i − k for all integers i.
∙ F is calledMukai regular, abbreviated asM-regular, if codim(V i(F)) > i for all i > 0.

Evidently, GV = GV0. The following fundamental theorem is due to Hacon [15] and Pareschi and Popa [37].

Theorem 3.2 ([36, Theorem 3.7 and Corollary 3.11]). Let X be a smooth projective variety with dimAlb(X) = g.
Let F be a coherent sheaf on X, and let k ≥ 0 be an integer. Then the following are equivalent:

(1) F is GV−k ,
(2) codim Supp(RiΦPF) ≥ i − k for all integers i,
(3) for any sufficiently positive ample line bundle L on Â, H i(F ⊗ RΨP[g]L⊗−1) = 0 for all integers i > k.

3.1.2 Let X be an abelian variety of dimension g. We recall the notions of M–regularity and Index Theorems
with prescribed indices; cf. [34, the end of Section 1 on p. 5].

Definition 3.3 (IT sheaves). Let X be an abelian variety and let F be a coherent sheaf on X. The sheaf F is said
to satisfy the Index Theorem with index k for some k ∈ ℤ, abbreviated as ITk , if V i(F) = 0 for all i ̸= k.

It is clear that on an abelian variety X, a coherent sheaf F satisfies IT0 󳨐⇒ F is M-regular 󳨐⇒ F is GV.
Also, note that an ample line bundle on an abelian variety X satisfies IT0. In the abelian case, we denote the
Fourier–Mukai transform functors by

RŜ : D(X) → D(X̂), RS : D(X̂) → D(X).

A fundamental result ofMukai, see [27, Theorem 2.2], shows thatRŜ : D(X) → D(X̂) is an equivalence of derived
categories, and we have the following inversion formulae:

RŜ ∘ RS = (−1)∗X̂[−g] and RS ∘ RŜ = (−1)∗X[−g] (3.1)

where (−1)X̂ and (−1)X are multiplications by (−1) on X̂ and X, respectively.
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It turns out that if F on X is ITk for some k ∈ ℤ, then RŜF = RkŜF[−k] and RkŜF is a locally free sheaf. In
particular, if L is an ample line bundle on X̂, then RSL⊗−1 = RgSL⊗−1[−g].

3.1.3 A result of Pareschi–Popa on preservation of vanishing says that on an abelian variety, a tensor product
of a GV sheaf F and an IT0 sheaf G is IT0 if one of F and G is locally free; see [37, Proposition 3.1]. A variation of
their proof yields the following statement, which is more suited for our purposes.

Proposition 3.4. Let X be an abelian variety of dimension g. Let F and G be coherent sheaves on X with one of
them locally free. Assume that G is IT0 and m ≥ 0 is an integer. If one of the following holds:

(1) either V i(F) = 0 for all integers i ≥ m + 1, or
(2) F is GV−m ,

then V i(F ⊗ G) = 0 for all integers i ≥ m + 1.

Proof. The proof is identical to that of [37, Proposition 3.1]. Let ζ ∈ Pic0(X); we aim to show that the group
H i(F ⊗ G ⊗ ζ) = 0 for all i ≥ m + 1. As G ⊗ ζ is also IT0, we have that RŜ(G ⊗ ζ) = R0Ŝ(G ⊗ ζ) =: Nζ is locally free.
By Mukai’s inversion formulae (3.1), we have G ⊗ ζ = RS((−1)∗X̂Nζ )[g]. Thus, we deduce that H i(X,F ⊗ G ⊗ ζ) is
isomorphic to

H i(X,F ⊗ RS((−1)∗X̂Nζ )[g]) ≅ H i(X̂ , RŜF⊗(−1)∗X̂Nζ [g]) ≅ Hg+i(X̂ , RŜF⊗(−1)∗X̂Nζ ) (3.2)

where the first isomorphism in (3.2) is obtained by an exchange formula of Pareschi–Popa; see [36, Lemma 2.1].
To this end, consider the following spectral sequence

Ejk2 := H j(X̂ , RkŜF ⊗ (−1)∗X̂Nζ ) 󳨐⇒ H j+k(X̂ , RŜF⊗(−1)∗X̂Nζ ).

Observe that the Ejk2 term above vanishes if j+k ≥ g+m+1. Indeed, if (1) holds, then RkŜF = 0 if k ≥ m+1, and if
(2) holds, then dim Supp(RkŜF) ≤ g−k+m. Thus, Ejk∞ = 0 if j+k ≥ g+m+1, whence H j+k(X̂ , RŜF⊗(−1)∗X̂Nζ ) = 0
in the same range. 2

We include a consequence of the above proposition which we will not use anywhere in the sequel.

Corollary 3.5. Let F and G be coherent sheaves on an abelian variety X with one of them locally free. If F is GV−k
and G is GV for some integer k ≥ 0, then F ⊗ G is GV−k .

Proof. This is identical to [37, Theorem 3.2]. Let L be a sufficiently positive ample line bundle on X̂. Since G is
GV, G ⊗ RgSL⊗−1 is IT0 by Theorem 3.2. Thus, by Proposition 3.4, H i(F ⊗ G ⊗ RgSL⊗−1) = 0 for i ≥ k + 1 whence
the assertion follows from Theorem 3.2. 2

3.1.4 One of the most essential and useful tools in the study of irregular varieties is the notion of continuous
global generation that we define next; cf. [37, Definition 5.2].

Definition 3.6 (Continuous global generation). Let X be an irregular variety. A sheafF on X is continuously glob-
ally generated if for any non-empty open subset U ⊂ Pic0(X), the following sum of evaluationmaps is surjective:

⨁
ζ∈U

H0(F ⊗ ζ) ⊗ ζ∗ → F.

It was shown by Pareschi–Popa [37, Corollary 5.3] that an M-regular sheaf is continuously globally gener-
ated. Another result of them asserts that if F is a continuously globally generated sheaf and L is a continuously
globally generated line bundle on X, then F ⊗ L is globally generated; see [34, Proposition 2.12]. Thus, if H1 and
H2 are two ample line bundles on an abelian variety X, then H1 + H2 is globally generated. It has been pointed
out by the referee that alternatively, one could also use [4, Theorem 1.1] to get the above statement.

3.2 Proof of Theorem A. We now prove Theorem A stated in the introduction.

Proposition 3.7. Let (X, H) be a polarized smooth projective variety and let a : X → A be a morphism to an
abelian variety A. Assume that (X, H) satisfies (Pa) and let F be a torsion-free coherent sheaf on X that is C󸀠aq−1,0
for (X, H) for some positive integer q ≤ dim X. Then V i

a(F) = 0 for all integers i ≥ q.
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Proof. The proof is based on induction on dim X =: n and we divide the proof into two steps. The following first
step verifies the base case which is when n = 1:

Step 1. Herewe prove the statement for i = n. By hypothesis, we know thatHn(F(−(n−q+1)H)⊗a∗ζ) = 0 for
some ζ ∈ Pic0(A). Since (X, H) satisfies (Pa), for any given ζ 󸀠 ∈ Pic0(A)we can choose a smooth and irreducible
member Y ∈ (n − q + 1)H + a∗(ζ 󸀠 − ζ). Consider the restriction exact sequence

0→ F(−(n − q + 1)H) ⊗ a∗ζ) → F ⊗ a∗ζ 󸀠 → F ⊗ a∗ζ 󸀠|Y → 0.

Passing to cohomology, we obtain the desired vanishing Hn(F ⊗ a∗ζ 󸀠) = 0.
Step 2. Now we prove the statement by induction and thanks to the previous step, we assume n ≥ 2. Also,

because of Step 1, we assume that 1 ≤ q ≤ i ≤ n − 1. Let ζ ∈ Pic0(A). We want to show that H i(F ⊗ a∗ζ) = 0. Our
proof is inspired by the proof of [26, Lemma 3.3]. By Observation 2.7 there exists ζ 󸀠 ∈ Pic0(A) such that F⊗ a∗ζ 󸀠
is Cq−1,0 for (X, H). Observe that by Lemma 2.2, H i(F ⊗ a∗ζ 󸀠 ⊗ (−jH)) = 0 for all integers j ≤ i − q + 1. To this end,
consider the restriction exact sequence

0→ F ⊗ a∗ζ → F ⊗ (H + a∗ζ 󸀠) → F ⊗ (H + a∗ζ 󸀠)|Y → 0 (3.3)

where Y ∈ |H+a∗ζ 󸀠−a∗ζ| is a smooth and irreducible member (which exists by Bertini thanks to (Pa)). Passing
to the cohomology of (3.3), we deduce that it is enough to prove that the restriction map

H i−1(F ⊗ (H + a∗ζ 󸀠)) → H i−1(F ⊗ (H + a∗ζ 󸀠)|Y )

surjects since H i(F ⊗ (H + a∗ζ 󸀠)) = 0. On the other hand, choose a general smooth and irreducible member
Z ∈ |H+a∗ζ−a∗ζ 󸀠| such thatF|Z is torsion-free (such a section exists thanks again to the fact that (X, H) satisfies
property (Pa)). Then we know that H i−1(F ⊗ (H + a∗ζ 󸀠)) → H i−1(F ⊗ (H + a∗ζ 󸀠)|Y+Z) surjects by Lemma 2.2 as
H i(F ⊗ a∗ζ 󸀠(−H)) = 0. Consequently, it is enough to show that the map

H i−1(F ⊗ (H + a∗ζ 󸀠)|Y+Z) → H i−1(F ⊗ (H + a∗ζ 󸀠)|Y )

surjects. Consider the following commutative diagram with exact rows and exact left column

0

0 OX(−Y − Z) OX OY+Z 0

0 OX(−Y) OX OY 0

OZ(−Y)

0

which by the snake lemma yields the following short exact sequence:

0→ OZ(−Y) → OY+Z → OY → 0.

Twisting the above by F ⊗ (H + a∗ζ 󸀠) and passing to cohomology, we deduce that it is enough to prove the
following vanishing: H i(F ⊗ (H + a∗ζ 󸀠) ⊗ (−(H + a∗ζ 󸀠 − a∗ζ))|Z) = H i(F ⊗ a∗ζ|Z) = 0. But F|Z is torsion-free
and C󸀠a|Zq−1,0 for (Z, H|Z) by Lemma 2.11, and (Z, H|Z) satisfies (Pa|Z ) by Observation 2.9. Thus we are done by the
induction hypothesis. 2

Theorem 3.8. Let (X, H) be a polarized smooth projective variety and let a : X → A be a morphism to an abelian
variety A. Assume that (X, H) satisfies (Pa). Let F be a torsion-free coherent sheaf on X that is C󸀠aq−1,0 for (X, H)
for some positive integer q ≤ dim X. Then V q+i

a (F(−tH)) = 0 for all integers i, t with 0 ≤ t ≤ i ≤ dim X − q.



28  Raychaudhury and Ito, Continuous CM-regularity and generic vanishing

Proof. Clearly the statement holds by Proposition 3.7 if t = 0, in particular it holds if dim X =: n = 1. Consider
the restriction sequence

0→ F(−tH + a∗ζ) → F(−(t − 1)H + a∗ζ) → F(−(t − 1)H + a∗ζ)|Y ) → 0

where Y ∈ |H| is a general smooth and irreducible member such that F|Y is torsion-free. The cohomology
sequence of the above, and an easy induction on n and t finishes the proof (thanks to Lemma 2.11 and Obser-
vation 2.9). 2

Corollary 3.9. Let (X, H) be a polarized smooth projective variety and let a : X → A be a morphism to an abelian
variety A. Assume that one of the following two conditions holds:

(1) (X, H) satisfies property (Pa), or
(2) the morphism a is strongly generating, and there exists an isogeny μ : Ã → A such that (X̃ , μ̃∗H) satisfies
(Pã), where X̃, ã and μ̃ are as in (2.1).

Let F be a torsion-free coherent sheaf on X that is C󸀠a0,k for some integer k with 0 ≤ k ≤ dim X. Then

(A) V i
a(F) = 0 for all integers i ≥ k + 1,

(B) if k ̸= 0, then codim(Vk
a (F)) ≥ 1.

Proof. The assertion follows immediately from Theorem 3.8 if (1) holds. Now assume that (2) holds. The asser-
tion (B) is obvious, so it is enough to show (A), that is V i(F) = 0 for i ≥ k + 1. By Lemma 2.13, we know that μ̃∗F
is C󸀠ã0,k for (X̃ , μ̃

∗H). Also, μ̃∗F is torsion-free and coherent. Since (X̃ , μ̃∗H) satisfies (Pã), using Theorem 3.8 we
conclude that V i

ã(μ̃
∗F) = 0 for i ≥ k + 1. It follows from the projection formula that μ∗V i

a(F) ⊆ V i
ã(μ̃
∗F) for all

i where μ∗ : Pic0(A) → Pic0(A) is the induced map, whence the assertion follows. 2

We are now ready to provide the

Proof of Theorem A. This is an immediate consequence of Corollary 3.9 (2). Indeed, set a := albX , A := Alb(X),
and let nA : A → A be the multiplication by n isogeny. Then a is strongly generating. Observe that μ∗nH =
μ∗nH1 + a∗n(n∗AH2), and consequently (Xn , μ∗nH) satisfies (Pan ) for n ≥ 2. 2

3.3 A few variants. In this subsection, we prove several variants of Theorem A.

3.3.1 We use the following corollary to show that the moduli space of Gieseker-stable sheaves on abelian sur-
faces answers Question 1.2 in the affirmative.

Corollary 3.10. Let X be a smooth projective variety, and let albX : X → A := Alb(X) be the Albanese map of X.
Assume that there is an isogeny μ : Ã → A such that the following two conditions hold:

(1) X ×Alb(X) Ã ≅ Y × Ã for a regular smooth projective variety Y, and
(2) the induced map X ×Alb(X) Ã → Ã is the projection prÃ under the identification in (1).

Let OX(1) is an ample and globally generated line bundle on X. Let F be a torsion-free coherent sheaf on X that is
continuously k-regular for (X,OX(1)) where 0 ≤ k ≤ dim X. Then

(A) V i(F) = 0 for i ≥ k + 1.
(B) If k ̸= 0, then codim(Vk(F)) ≥ 1.

In particular, Question 1.2 has an affirmative answer for X.

Proof. Since (B) is obvious, we only need to show (A). We have the following base-change diagram

X̃ := Y × Ã X

Ã A

μ̃

ã=prÃ a:=albX
μ

Set H = OX(1). Note that since Y is regular, ã is also the Albanese map of X̃. It is easy to verify that it is enough
to show that V i(μ̃∗(F)) = 0 for i ≥ k + 1. To this end, we apply Lemma 2.13 to deduce that μ̃∗(F) is a torsion-free
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coherent sheaf that is continuously k-regular. Now, μ̃∗(H) = H1 ⊠ H2 where H1 and H2 are ample and globally
generated line bundles on Y and Ã respectively. Consequently the assertion follows from Theorem A. 2

Example 3.11. Let A be an abelian surface and let v ∈ Hev(A,ℤ) be a primitive Mukai vector satisfying v > 0
and ⟨v, v⟩ ≥ 6 (see [41] for details). Let L be a very general ample divisor on A, and let ML(v) be the moduli
space of Gieseker-stable sheaves on A with respect to L with Mukai vector v. By the results of loc. cit., we know
that ML(v) is a smooth projective variety, and Alb(ML(v)) = A × Â. Moreover, if we set n(v) = 1

2 ⟨v, v⟩ and
a := albML(v), then we have the base-change diagram (see loc. cit. (4.10), (4.11))

KL(v) × A × Â ML(v)

A × Â A × Â

μn(v)

an(v) a

n(v)A×Â

where KL(v) is a regular smooth projective variety (it is a hyperkähler manifold deformation equivalent to a
generalized Kummer variety), and an(v) = prA×Â is the projection. Thus Question 1.2 has an affirmative answer
for X = ML(v) by the previous corollary.

We have the following example when the polarization is a sufficiently positive adjoint linear series:

Example 3.12. Let X be a smooth projective variety and let H ≡ KX + sL where s ≥ dim X + 1 and L is an ample
and globally generated line bundle on X. By Corollary 3.9 (1), the answer to Question 1.2 is affirmative for the
pair (X, H) whenever H is ample.

3.3.2 The following result is a variant of Theorem A where we assume that H1 = KX + Q for a nef line bundle
Q, but require that albX : X → Alb(X) is finite onto its image.

Theorem 3.13. Let (X, H) be a polarized smooth projective variety. Assume that the Albanese map albX : X →
Alb(X) is finite onto its image. Further assume that there exist a nef line bundle Q on X and an ample line bundle
H2 on Alb(X) such that H = KX + Q + alb∗XH2. Let F be a torsion-free coherent sheaf on X that is continuously
k-regular for (X, H) for some integer k with 0 ≤ k ≤ dim X. Then the following statements hold.

(1) V i(F) = 0 for i ≥ k + 1.
(2) If k ̸= 0, then codim(Vk(F)) ≥ 1.

In particular, the answer to Question 1.2 is affirmative for the pair (X, H).

Proof. This is also an immediate consequence of Corollary 3.9 (2). Indeed, set a := albX and A := Alb(X), and
note that μ∗nH ≡ KXn + μ∗n(Q) + a∗n(n2H2) satisfies (Pan ) for n ≫ 0. 2

3.3.3 Let (X, H) be a polarized smooth projective variety, and let F be a torsion-free coherent sheaf on X that
is continuously k-regular as in the statements of Theorems A, 3.13 and Corollary 3.9. Then in particular we have
shown that F is GV−(k−1) whence by Theorem 3.2 H i(F ⊗ RΨP[g]L⊗−1) = 0 for all i ≥ k and for any sufficiently
positive ample line bundle L on Â. We now show that in some cases the vanishing in fact holds for any ample
line bundle L on Â. First we need the following result.

Corollary 3.14. Let a : X → A be a morphism from a smooth projective variety X to an abelian variety A that is
finite onto its image. Let H be an ample line bundle on X that satisfies one of the following:

(1) (X, H) satisfies property (Pa); or
(2) a is strongly generating, and moreover H := H1 + a∗H2 where H1 is a line bundle on X and H2 is an ample

line bundle on A satisfying one of the following:
(i) H1 is globally generated; or
(ii) H1 = KX + Q for a nef line bundle Q.

Let F be a torsion-free coherent sheaf on X that is C󸀠a0,k for (X, H) for some positive integer k ≤ dim X. Then
H i(F ⊗ a∗L) = 0 for any ample line bundle L on A and for any integer i ≥ k.
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Proof. It follows from the proofs of Theorems A, 3.13 and Corollary 3.9 that F is GV−(k−1) with respect to a (this
means that codimV i

a(F) ≥ i − k + 1 for all i). Consequently, the vanishing H i(F ⊗ a∗L) = 0 for i ≥ k and any
ample line bundle L on A follows from the projection formula and Proposition 3.4. 2

The above vanishing gives the following

Corollary 3.15. Let X be a smooth projective variety and let a := albX : X → A := Alb(X) be its Albanese
morphism. Assume that a is finite onto its image and let H be an ample line bundle on X such that (X, H) satisfies
(Pa). Let F be a torsion-free coherent sheaf on X that is C󸀠a0,k for (X, H) for some positive integer k ≤ dim X. Then
H i(F ⊗ RΨP[g]L⊗−1) = 0 for all i ≥ k and for any ample line bundle L on Â where g = q(X).

Proof. Fix an ample line bundle L on Â. We recall from the proof of [36, Theorem B] that RΨP[g]L⊗−1 =
alb∗X(R0SL)∗. Denoting translations by an element y ∈ Â by ty : Â → Â, we obtain an isogeny φL : Â → A by
sending y ∈ Â to t∗y L ⊗ L⊗−1. To this end, consider the following base-change diagram:

X̂ X

Â A

φ̂

â albX
φL

(3.4)

On the other hand, [27, Proposition 3.11] shows that φ∗L(R0SL)∗ = H0(L) ⊗ L. Consequently, we deduce using
the projection formula that there is an injection

H i(F ⊗ RΨP[g]L⊗−1) = H i(F ⊗ alb∗X(R0SL)∗) 󳨅→ H i(φ̂∗(F ⊗ alb∗X(R0SL)∗) = H0(L) ⊗ H i((φ̂∗F) ⊗ â∗L).

But φ̂∗F is a torsion-free coherent sheaf that is C󸀠â0,k for (X̂ , φ̂
∗H) by Lemma 2.13. Observe that φ̂∗H satisfies (Pâ),

as the induced map Pic0(A) → Pic0(Â) is also an isogeny. Consequently, H i((φ̂∗F) ⊗ â∗L) = 0 for all integers
i ≥ k by Corollary 3.14, and the assertion follows. 2

4 Continuousℚ CM-regularity on abelian varieties

Throughout this section, X is an abelian variety of dimension g and E is a vector bundle on X.

4.1 Continuousℚ CM-regularity for vector bundles. In view of the recent development of the cohomological
rank function by Jiang–Pareschi [20] that wasmotivated by the continuous rank function introduced and studied
in [1] and [3], it is natural to extend the notion of continuous CM-regularity to an ℝ-valued regularity function
onℚ-twisted vector bundles.

Definition 4.1 (Cohomological rank function). Define higen(E) for i ∈ ℕ as the dimension of H i(E ⊗ ζ) for general
ζ ∈ Pic0(X). Given a polarization l ∈ N1(X) and x = a/b ∈ ℚ with a, b ∈ ℤ and b > 0, following [20, Defi-
nition 2.1] we define the cohomological rank function hiE(xl) = b−2gh

i
gen(b∗XE ⊗ L⊗ab) where L is a line bundle

representing l.

We note that if L is an ample line bundle, then E being continuously k-regular for (X, L) for k ∈ ℤ is
equivalent to the condition hiE((k − i)l) = 0 for all integers i ≥ 1.

Let l ∈ N1(X) be a polarization. Assume, for some y = a/b ∈ ℚwith a, b ∈ ℤ and b > 0, that hiE((y − i)l) = 0
for all integers i ≥ 1. This means that higen(b∗XE ⊗ L⊗(a−ib)b) = 0 for all integers i ≥ 1. This is equivalent to
the condition that b∗XE ⊗ L⊗ab is continuously 0-regular for (X, L⊗b

2
). We claim that hiE((

a
b +

c
d − i)l) = 0 for

all integers i ≥ 1 and c, d > 0. To see this, we need to show that higen((bd)∗XE ⊗ L⊗(ad+bc−ibd)bd) = 0 for i ≥ 1,
which is equivalent to (bd)∗XE⊗L⊗(ad+bc)bd being continuously 0-regular for (X, L⊗(bd)

2
). But the given condition

implies that (bd)∗XE⊗L⊗abd
2 is continuously 0-regular for (X, L⊗(bd)2 ), and consequently the required continuous

regularity follows by Corollary 3.14. Thus we define the following

ℚ-regl(E) := inf{y ∈ ℚ | hiE((y − i)l) = 0 for all integers i ≥ 1}.
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Example 4.2 (Continuousℚ CM-regularity for Verlinde bundles). We compute an example of ℚ-regl(E) where
X := J(C) is the Jacobian of a smooth projective curve C of genus g ≥ 1, l = sθ is the class of sΘ where Θ is a
symmetric theta-divisor on X, s ≥ 2 is an integer, and E := 𝔼r,k is a Verlinde bundle. We recall the definition
of these bundles. For a pair of positive integers (r, k), let UC(r, 0) be the moduli space of semistable bundles of
rank r and degree 0 on C, and let det : Ur := UC(r, 0) → X̂ = X be the determinant map. The Verlinde bundle
associated to (r, k) is by definition 𝔼r,k := det∗ OUr (kΘ̃) where Θ̃ is the generalized theta-characteristic of C.
For details about these bundles, we refer to [39] and [30].

Küronya and Mustopa showed in [21, Proposition 3.2] that regcontOX (sΘ)(𝔼r,k) = ⌈g −
k
rs ⌉ if 2 ∤ gcd(r, k). We

claim thatℚ-regsθ(𝔼r,k) = g − k
rs if 2 ∤ gcd(r, k).

We show this by following their proof. First of all, by the proof of [21, Proposition 3.2] one can write 𝔼r,k =
⨁𝕎a,b ⊗ ζi for ζi ∈ X̂ where a = r/ gcd(r, k), b = k/ gcd(r, k) and𝕎a,b is semihomogeneous, i.e. for any x ∈ X
there exists ξ ∈ X̂ such that t∗x𝕎a,b = 𝕎a,b⊗ξ.We also know that rank(𝕎a,b) = ag anddet(𝕎a,b) = OX(ag−1bΘ).
Observe that we have the following equality:

ℚ-regsθ(𝔼r,k) = inf{y ∈ ℚ | ∀ i ≥ 1 : hi𝔼r,k ((y − i) sθ) = 0} = inf{y ∈ ℚ | ∀ i ≥ 1 : h
i
𝕎a,b
((y − i) sθ) = 0}

= inf { r
󸀠

s󸀠
∈ ℚ
󵄨󵄨󵄨󵄨󵄨󵄨 s
󸀠 > 0 and (s󸀠)∗X𝕎a,b ⊗ (sΘ)⊗r

󸀠s󸀠 is continuously 0-regular for (X, s󸀠2sΘ)}.

Now (s󸀠)∗X𝕎a,b⊗(sΘ)⊗r
󸀠s󸀠 is semihomogeneous and c1((s󸀠)∗X𝕎a,b⊗(sΘ)⊗r

󸀠s󸀠 ) ∈ N1(X) isℚ-proportional to s󸀠2sθ.
Thus, by [21, Proposition 2.8],ℚ-regsθ(𝔼r,k) ≤ r󸀠

s󸀠 if and only if (s
󸀠)∗X𝕎a,b ⊗Θ⊗r

󸀠s󸀠s(−gs󸀠2sΘ) is nef, which in turn
holds if and only if ag−1(s󸀠2b + a(r󸀠s󸀠s − gs󸀠2s)) ≥ 0 by [21, Proposition 2.7]. A simple computation shows that
ag−1(s󸀠2b + a(r󸀠s󸀠s − gs󸀠2s)) ≥ 0 ⇐⇒ r󸀠

s󸀠 ≥ g −
k
rs .

4.2 Continuousℚ CM-regularity forℚ-twisted bundles. Given a class n ∈ Pic(X)/ Pic0(X) =: N1(X), following
[23, Chapter 6] we define the ℚ-twisted bundle E⟨xn⟩ for x ∈ ℚ as the equivalence class of pairs (E, xn) with
respect to the equivalence relation generated by declaring (E ⊗ M⊗e , yn) ∼ (E, em + xn) where M ∈ Pic(X),
m is its class in N1(X), e ∈ ℤ and y ∈ ℚ. Now, given a polarization l ∈ N1(X), we define the continuous ℚ
CM-regularity of E⟨xn⟩ as follows:

ℚ-regl(E⟨xn⟩) := ℚ-regb2 l(b∗XE ⊗ N
⊗ab)

where x = a/b, a, b ∈ ℤ and b > 0. It is a formal verification that this quantity is well-defined.We only show that
it does not depend on the representation of the ℚ-twist. The fact that it does not depend on its representation
as aℚ-twisted bundle under the equivalence described above can also be easily checked.

Let a
b n1 =

c
d n2 ∈ N

1(X)ℚ with a, b, c, d ∈ ℤ, b, d > 0. Set n󸀠 := adn1 = bcn2 ∈ N1(X). Then we have

hib∗XE⊗N⊗ab
1
((r/s − i)b2l) = 0∀ i ≥ 1 ⇐⇒ higen((bs)∗XE ⊗ N

⊗s2ab
1 ⊗ L⊗(r−is)b2s) = 0∀ i ≥ 1 ⇐⇒

higen((bsd)∗XE ⊗ N
⊗d2s2ab
1 ⊗ L⊗(r−is)b2d2s) = 0∀ i ≥ 1 ⇐⇒ higen((bsd)∗XE ⊗ N

󸀠⊗bds2 ⊗ L⊗(r−is)b2d2s) = 0∀ i ≥ 1.

Similar computations as above show that hid∗XE⊗N⊗cd
2
((r/s − i)d2l) = 0 for all i ≥ 1 is equivalent to

higen((sd)∗XE ⊗ N
⊗s2cd
2 ⊗ L⊗(r−is)d2s) = 0∀ i ≥ 1 ⇐⇒ higen((bsd)∗XE ⊗ N

⊗b2s2cd
2 ⊗ L⊗(r−is)b2d2s) = 0∀ i ≥ 1

which is equivalent to the condition higen((bsd)∗XE ⊗ N󸀠⊗bds
2
⊗ L⊗(r−is)b2d2s) = 0 for all i ≥ 1.

4.3 Generic vanishing forℚ-twisted bundles. Wemention an immediate corollary of TheoremA. In [20], Jiang
and Pareschi extended the definitions of GV, M-regular and IT0 sheaves to the ℚ-twisted cases. In particular,
according to their definitions, for an ample class l ∈ N1(X), a ℚ-twisted vector bundle E⟨xl⟩ for x = a

b with
b > 0 is GV, M-regular, or IT0 if so is b∗XE ⊗ L⊗ab .

Corollary 4.3. Let X be an abelian variety. Let l, l󸀠 ∈ N1(X) be ample classes and let E be a vector bundle on X.
If ℚ-regl(E⟨xl󸀠⟩) < 1 then E⟨xl󸀠⟩ is IT0, and if ℚ-regl(E⟨xl󸀠⟩) = 1 then E⟨xl󸀠⟩ is GV.

Proof. Let x = r
s with s > 0. First, ifℚ-regl(E⟨xl

󸀠⟩) < 1, then we can find a, b ∈ ℤ with b > 0 such that we have
ℚ-regl(E⟨xl󸀠⟩) < a

b < 1. This means that h
i
s∗XE⊗L󸀠⊗ab

(( ab − i)s
2l) = 0 for all i ≥ 1. But this means that the bundle
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(bs)∗XE ⊗ L󸀠⊗b
2rs ⊗ L⊗abs2 is continuously 0-regular for (X, L⊗b2s2 ). Consequently, by Theorem A we deduce that

(bs)∗XE⊗ L󸀠⊗b
2rs ⊗ ((abs2 − b2s2)L) is GV, whence by preservation of vanishing we conclude that (bs)∗XE⊗ L󸀠⊗b

2rs

is IT0. Thus s∗XE ⊗ L󸀠⊗rs is IT0, and the conclusion follows. Finally, if ℚ-regl(E⟨xl󸀠⟩) = 1, then similarly we see
that s∗XE ⊗ L󸀠⊗rs is GV, and the conclusion follows. 2

4.4 Proof of Theorem B. The proof of Theorem B is based on the following two results.

Lemma 4.4. Let X be an abelian variety of dimension g and let E be a vector bundle on X. Let a, b ∈ ℤwith b > 0,
and set x = a/b ∈ ℚ. If n, l ∈ N1(X) with l ample, and δ = c/d ∈ ℚ with c, d ∈ ℤ, d > 0, then

ℚ-regl(E⟨xn + δl⟩) = ℚ-regl(E⟨xn⟩) − δ.

Proof. Let r, s ∈ ℤ with s > 0. It is enough to show the following equivalence:

hi
(bd)∗XE⊗N⊗abd2⊗L⊗b2cd

((r/s − i)b2d2l) = 0∀ i ≥ 1 ⇐⇒ hib∗XE⊗N⊗ab ((r/s + c/d − i)b2l) = 0∀ i ≥ 1. (4.1)

But the left hand side of (4.1) is equivalent to the following condition:

higen((bds)∗XE ⊗ N
⊗abd2s2 ⊗ L⊗b2cds2 ⊗ L⊗(r−is)b2d2s) = 0∀ i ≥ 1. (4.2)

And the right hand side of (4.1) is equivalent to higen((bds)∗XE ⊗ N⊗abd
2s2 ⊗ L⊗(rd+cs−ids)b2ds) = 0 for all i ≥ 1,

which under simplification boils down to (4.2). The proof is now complete. 2

Proposition 4.5. Let X be an abelian variety of dimension g and let E be a vector bundle on X. Let l, l󸀠 , n ∈ N1(X)
with l, l󸀠 ample. Further, let x = a/b, y = c/d ∈ ℚ with a, b, c, d ∈ ℤ, b, c, d > 0. Then

ℚ-regl(E⟨xn + yl󸀠⟩) ≤ ℚ-regl(E⟨xn⟩).

Proof. Let β = β1/β2 ∈ ℚ with β1 , β2 ∈ ℤ and β2 > 0. It is enough to show that if ℚ-regl(E⟨xn⟩) < β then
ℚ-regl(E⟨xn + yl󸀠⟩) ≤ β. As before, ℚ-regl(E⟨xn⟩) < β implies that hib∗XE⊗N⊗ab ((β − i)b2l) = 0 for all i ≥ 1,

which is equivalent to (bβ2)∗XE ⊗ N⊗abβ
2
2 ⊗ L⊗β1β2b2 being continuously 0-regular for (X, L⊗(bβ2)2 ). This in turn is

equivalent to G := (bdβ2)∗XE ⊗ N⊗abd
2β22 ⊗ L⊗β1β2b2d2 being continuously 0-regular for (X, L⊗(bdβ2)2 ).

We aim to show that ℚ-regl(E⟨xn + yl󸀠⟩) ≤ β which is equivalent to showing the vanishing condition
hi
(bd)∗XE⊗N⊗abd2⊗L󸀠⊗b2cd

((β − i)b2d2l) = 0 for all i ≥ 1, which in turn is equivalent to showing that G ⊗ L󸀠⊗b2cdβ22

is continuously 0-regular for (X, L⊗(bdβ2)2 ). But this follows from Corollary 3.14. 2

Proof of Theorem B. We adapt an argument of Ito in the proof of [16, Proposition 2.9]. First we show that
ℚ-regl(E⟨−⟩) : N1(X)ℚ → ℝ is continuous. Let {ξi}i∈ℕ be a sequence in N1(X)ℚ converging to ξ ∈ N1(X)ℚ. For
any rational number δ > 0 there exists N0 ∈ ℕ such that for all i ≥ N0, ξi − ξ + δl and ξ + δl − ξi are both ample.
Thus, by Proposition 4.5 we deduce that for all i ≥ N0 we have the following inequality:

ℚ-regl(E⟨ξ + δl⟩) ≤ ℚ-regl(E⟨ξi⟩) ≤ ℚ-regl(E⟨ξ − δl⟩).

Now by Lemma 4.4, we deduce that |ℚ-regl(E⟨ξi⟩) − ℚ-regl(E⟨ξ⟩)| ≤ δ for all i ≥ N0, and that proves the
claim. To finish the proof, we need to show that given a sequence {ξi}i∈ℕ in N1(X)ℚ converging to ξ ∈ N1(X)ℝ,
the sequence {ℚ-regl(E⟨ξi⟩)}i∈ℕ converges to a real number. As before, for any rational δ > 0 there exists
N0 ∈ ℕ such that for j, k ≥ N0, ξj − ξ + δl and ξ + δl − ξk are both ample. Using Proposition 4.5, we deduce that
ℚ-regl(E⟨ξj + δl⟩) ≤ ℚ-regl(E⟨ξk − δl⟩)which by Lemma 4.4 implies that for all j, k ≥ N0 we have the inequality
ℚ-regl(E⟨ξj⟩) − δ ≤ ℚ-regl(E⟨ξk⟩) + δ. Thus we obtain

lim
j→∞
ℚ-regl(E⟨ξj⟩) − δ ≤ lim

k→∞
ℚ-regl(E⟨ξk⟩) + δ.

Now, by letting δ → 0, we see that {ℚ-regl(E⟨ξi⟩)}i∈ℕ converges to a real number. 2
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5 Applications for sheaves on abelian varieties

5.1 Three immediate consequences. We list three consequences of our generic vanishing theorems.

Corollary 5.1. Let (X, H) be a polarized smooth projective variety. Assume that there exist a globally generated
line bundle H1 on X and an ample line bundle H2 on Alb(X) such that H = H1 + alb∗XH2, where albX : X → Alb(X)
is the Albanese map. Let F be a torsion-free coherent sheaf on X that is continuously 1-regular for (X, H). Then
χ(F) ≥ 0 with equality if and only if either V0(F) = 0 or any component V0(F) is of codimension 1.

Proof. We know that F is GV from Theorem A, and moreover V i(F) = 0 for i ≥ 2. It follows from the generic
vanishing theory that χ(F) ≥ 0 with equality if and only if codim(V0(F)) ≥ 1. Now, by [36, Proposition 3.15] and
[33, Lemma 1.8], we know that a codimension q component of V0(F) is also a component of V q(F), whence the
conclusion follows. 2

Remark 5.2. For a coherent sheaf F on a smooth projective variety X of dimension d, one defines RΔF :=
RHom(F, KX). If F is GV, then RΦP(RΔF) is a sheaf concentrated in degree d, i.e. RΦP(RΔF) = RdΦP(RΔF)[−d].
The generic vanishing theory tells us that for a GV sheaf F, χ(F) is the rank of R̂ΔF and the support of R̂ΔF is
−V0(F) where R̂ΔF = RdΦP(RΔF). Thus, if X, H,F are as in Corollary 5.1, then χ(F) ≥ 0 with equality if and
only if any (non-empty) component of the support of R̂ΔF is of codimension one.

It is worth mentioning that for a GV sheaf F on an abelian variety, V0(F) ̸= 0 by [33, Lemma 1.12].

Remark 5.3. The conclusion of Corollary 5.1 also applies in the set-up of Corollaries 3.9, 3.10 and Theorem 3.13,
all with k = 1.

Corollary 5.4. Let (X, H) be a polarized abelian variety and letF be torsion-free coherent sheaf on X. Assume that
F is continuously k-regular for (X, H) for some k ∈ ℕ. Then the following statements hold.

(1) If 1 ≤ k ≤ dim X, then F is a GV−(k−1) sheaf. In particular, if k = 1, then F is nef.
(2) If k = 0, then F is an IT0 sheaf, in particular F is ample.

Proof. This follows immediately from Theorem A combined with the facts that GV sheaves on abelian varieties
are nef, see [37, Theorem 4.1], and IT0 sheaves are ample, see [7, Corollary 3.2]. 2

Remark 5.5. Let (X, H) be a polarized abelian variety and let E be a vector bundle of rank r that is continuously
0-regular for (X, H). Then for any subvariety Z ⊆ X of dimension k, we have

c1(E)k ⋅ Z = (c1(E(−H)) + rH)k ⋅ Z ≥ rkHkZ

asE(−H) is nef by the above corollary. In particular, c1(E)n ≥ rnHn where n := dim X, and for any x ∈ X we have
the Seshadri constant ϵ(det(E), x) ≥ rϵ(H, x). This refines the bound of [25, Theorem 7.2] for abelian varieties.

Corollary 5.6. Let (X, H) be a polarized abelian variety. Let F1 and F2 be torsion-free coherent sheaves on X with
one of them locally free. Assume that F1 is continuously k1-regular and F2 is continuously k2-regular for (X, H).
Then F1 ⊗ F2 is C0,k1+k2 for (X, H).

Proof. Without loss of generality, we may assume that k1 = k2 = 0. For any positive integer i ≤ dim X we
have H i(F1 ⊗ F2(−iH)) = H i((F1(−iH)) ⊗ F2). By Theorem A, we know that F1(−iH) is GV−(i−1) and F2(−H)
is GV. By the preservation of vanishing, F2 is IT0, whence by Proposition 3.4 we obtain the required vanishing
H i(F1 ⊗ F2(−iH)) = 0. 2

Remark 5.7. We remark that the proof of the above corollary also shows the following: let (X, H) be a polarized
abelian variety and let F1, F2 be torsion-free coherent sheaves on X with one of them locally free. If F1 is
continuously 0-regular for (X, H) and F2 is IT0, then F1 ⊗ F2 is 0-regular for (X, H). This can also be thought of
as a generalization of a result of Murty and Sastry, see [28, Proposition 5.4.1].

5.2 Syzygies of tautological bundles of zero-regular bundles. We start with some background on syzygies.
Let X be a smooth projective variety and let L be a very ample line bundle on X. Consider the embedding
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X ⊆ ℙr given by the complete linear series |L|where r = h0(L) − 1. One has a minimal graded free resolution of
R(X, L) := ⨁

q≥0
H0(qL) as an S := Sym∙(H0(L))module as follows:

0→ Er+1 =⨁
j
S(−ar+1,j) → Er =⨁

j
S(−ar,j) → ⋅ ⋅ ⋅ → E1 =⨁

j
S(−a1,j) → E0 =⨁

j
S(−a0,j) → R(X, L) → 0.

For a reference for the following definition, see for example [22, Definition 1.8.50].

Definition 5.8 (Projective normality and the Np property). Suppose we are in the situation as above.

∙ The embedding given by the complete linear series |L| is called projectively normal if E0 = S.
∙ We say that L satisfies the Np property if the embedding by |L| is projectively normal, and aij = i + 1 for all
i with 1 ≤ i ≤ p.

In practice, to calculate the syzygies of a projective variety one needs to calculate cohomology groups in-
volving the syzygy bundles that we define next; see for example [38, Section 3].

Definition 5.9 (Syzygy bundle). Let X be a smooth projective variety and let E be a globally generated vector
bundle on X. The syzygy bundle ME is the kernel of the map H0(E) ⊗ OX → E, i.e. we have the exact sequence

0→ ME → H0(E) ⊗ OX → E→ 0. (5.1)

The following proposition of Park will be used in the proof of Theorem A.1 and we include it here.

Proposition 5.10 ([38, Proposition 3.2]). Let X be a smooth projective variety and let E be an ample and globally

generated bundle on X. Then Oℙ(E)(1) on ℙ(E) satisfies the Np property if Hk(
i
⋀ME ⊗ E⊗j) = 0 for 0 ≤ i ≤ p + 1

and j, k ≥ 1.

We now prove Corollary C that is obtained by an immediate application of our result combined with the
theorem of Ito below (Theorem A.1).

Proof of Corollary C. Note that for any x ∈ ℚ with x < 1 we have ℚ-regh(E⟨−xh⟩) < 1 by Lemma 4.4, whence
E⟨−xh⟩ is IT0 by Corollary 4.3. Since β(h) < 1/(p + 2), we have (p + 2)β(h) < 1. Thus for 0 < ϵ ≪ 1 we have
x = 1 − ϵ ≥ (p + 2)β(h), whence the assertion follows immediately by Theorem A.1. 2

A On Syzygies of projective bundles on abelian varieties
Appendix by Atsushi Ito

In this appendix, we follow the notation in the previous sections. In particular, we work over the field ℂ of
complex numbers.

Let (X, L) be a polarized abelian variety and let l ∈ N1(X) be the class of L. In [20], Jiang and Pareschi define
the basepoint-freeness threshold β(l) ∈ (0, 1]. This invariant is quite useful to study syzygies of polarized abelian
varieties, since [20] and Caucci [6] show that L satisfies the Np property if β(l) < 1/(p + 2).

The purpose of this appendix is to prove the following theorem:

Theorem A.1. Let (X, L) be a polarized abelian variety and let E be a vector bundle on X. Let p ≥ 0 be an integer.
Assume that there exists a rational number x ≥ (p + 2)β(l) such that E ⟨−xl⟩ is M-regular. ThenOℙ(E )(1) satisfies
the Np property.

Remark A.2. In the case where E = L, L⟨−xl⟩ is M-regular if and only if x < 1; cf. [17, Example 2.1]. Hence the
existence of a rational number x as in Theorem A.1 is equivalent to β(l) < 1/(p + 2) in this case.

To prove this theorem, we use the following lemma.

Lemma A.3. Let (X, L) be a polarized abelian variety and let E be a vector bundle on X. Assume that there exists
a rational number x ≥ β(l) such that E ⟨−xl⟩ is M-regular. Then
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(1) E is IT0 and globally generated.
(2) Let ME be the syzygy bundle of E defined by (5.1). For a rational number y > 0, ME ⟨yl⟩ is IT0 if 1

x +
1
y ≤

1
β(l) .

Proof. (1) Since E ⟨−xl⟩ is M-regular and x ≥ β(l) > 0, the bundle E is IT0. The global generation of E follows
from [17, Theorem 1.2 (1)].

(2) Write y = a/b with integers a, b > 0. Then

ME ⟨yl⟩ = ME ⟨ ab l⟩ is IT0 ⇐⇒ b∗XME ⊗ L⊗ab is IT0
⇐⇒ bX∗(b∗XME ⊗ L⊗ab) = ME ⊗ bX∗(L⊗ab) is IT0 ,

where the first equivalence follows from the definition and the second one holds since the property IT0 is pre-
served by the pushforward by isogenies; cf. [17, (2.4)].

Consider the exact sequence

0→ ME ⊗ bX∗(L⊗ab) → H0(E ) ⊗ bX∗(L⊗ab) → E ⊗ bX∗(L⊗ab) → 0

obtained by tensoring bX∗(L⊗ab)with (5.1). Since L⊗ab is IT0, so is the pushforward bX∗(L⊗ab). Since E is IT0 as
well by (1), both H0(E ) ⊗ bX∗(L⊗ab) and E ⊗ bX∗(L⊗ab) are IT0. Thus H i(ME ⊗ bX∗(L⊗ab) ⊗ ζ) = 0 for any i ≥ 2
and ζ ∈ Pic0(X), and hence ME ⊗ bX∗(L⊗ab) is IT0 if and only if

H1(ME ⊗ bX∗(L⊗ab) ⊗ ζ) = 0

for any ζ ∈ Pic0(X), which is equivalent to the surjectivity of

H0(E ) ⊗ H0(bX∗(L⊗ab) ⊗ ζ) → H0(E ⊗ bX∗(L⊗ab) ⊗ ζ). (A.1)

In conclusion, (2) follows from the surjectivity of (A.1) for any ζ ∈ Pic0(X). Set F = bX∗(L⊗ab) ⊗ ζ . Recall
that y = a/b. Since

1
x
+
b
a
=
1
x
+
1
y
≤

1
β(l)

by assumption, it suffices to show that

φ∗l Φ(E ) ⊗ φ
∗
l Φ((−1)

∗
XF )⟨( 1x +

b
a )l⟩

is M-regular by [17, Proposition 4.4], where φl : X → X̂ = Pic0(X) is the isogeny induced by the polarization
l, Φ = RŜ : D(X) → D(X̂) is the Fourier–Mukai functor associated to the Poincaré line bundle on X × X̂, and
(−1)X is the multiplication map by (−1) on X. We note that Φ(E ) and Φ((−1)∗XF ) are locally free sheaves since
E and (−1)∗XF are IT0.

The rest is to check theM-regularity of φ∗l Φ(E )⊗φ
∗
l Φ((−1)

∗
XF )⟨( 1x +

b
a )l⟩, which can be shown bymodifying

the argument in the proof of [17, Proposition 4.4 (1)] as follows: The pullback of aℚ-twisted sheaf G ⟨tl⟩ by the
multiplication map nX on X for n ≥ 1 is defined as

n∗X(G ⟨tl⟩) := n
∗
XG ⟨t n∗X l⟩ = n

∗
XG ⟨n2tl⟩.

Since M-regularity is preserved by such pullbacks, cf. [17, (2.2)], it suffices to show the M-regularity of

a∗X (φ
∗
l Φ(E ) ⊗ φ

∗
l Φ((−1)

∗
XF )⟨( 1x +

b
a )l⟩) = a

∗
X (φ
∗
l Φ(E ) ⊗ φ

∗
l Φ((−1)

∗
XF )) ⟨( a

2

x + ab)l⟩. (A.2)

Recall that F = bX∗(L⊗ab) ⊗ ζ = bX∗(L⊗ab ⊗ b∗X ζ). We take ζ 󸀠 ∈ Pic0(X) such that ζ 󸀠⊗ab = b∗X ζ and set L󸀠 =
(−1)∗X(L ⊗ ζ 󸀠). Then we have

(−1)∗XF = (−1)∗XbX∗((L ⊗ ζ
󸀠)⊗ab) = bX∗((−1)∗X(L ⊗ ζ

󸀠)⊗ab) = bX∗(L󸀠⊗ab)

and hence

a∗Xφ
∗
l Φ((−1)

∗
XF ) = a∗Xφ

∗
l Φ(bX∗(L

󸀠⊗ab)) = a∗Xφ
∗
l b
∗
X̂Φ(L
󸀠⊗ab) = φ∗ablΦ(L

󸀠⊗ab) = H0(L󸀠⊗ab) ⊗ L󸀠⊗−ab .
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In fact, the second equality follows from [27, (3.4)]. The third one follows from bX̂ ∘ φl ∘ aX = φabl . The last one
follows from [27, Proposition 3.11 (1)] since the numerical class of L󸀠⊗ab is abl by L󸀠 = (−1)∗X(L ⊗ ζ 󸀠) ≡ L. Hence
it holds that

a∗X (φ
∗
l Φ(E ) ⊗ φ

∗
l Φ((−1)

∗
XF )) ⟨( a

2

x + ab)l⟩ = a
∗
Xφ
∗
l Φ(E ) ⊗ H

0(L󸀠⊗ab) ⊗ L󸀠⊗−ab⟨( a2x + ab)l⟩

= a∗Xφ
∗
l Φ(E ) ⊗ H

0(L󸀠⊗ab)⟨ a2x l⟩

= H0(L󸀠⊗ab) ⊗ a∗X (φ
∗
l Φ(E )⟨

1
x l⟩) ,

where the second equality follows from L󸀠 ≡ L. Since E ⟨−xl⟩ is M-regular, φ∗l Φ(E )⟨
1
x l⟩ is M-regular as well by

[17, Proposition 4.1]. Thus so is the pullback a∗X(φ
∗
l Φ(E )⟨

1
x l⟩) and hence we obtain the M-regularity of (A.2),

which implies (2). 2

Proof of Theorem A.1. Since x ≥ (p + 2)β(l) ≥ β(l), the bundle E is globally generated by Lemma A.3 (1).
To prove the Np property for Oℙ(E )(1), it suffices to show that Hk(M⊗iE ⊗ E ⊗j) = 0 for 0 ≤ i ≤ p + 1, j, k ≥ 1

by Proposition 5.10 since we work over ℂ, whose characteristic is zero. Hence this theorem holds if M⊗iE ⊗ E ⊗j

is IT0 for 0 ≤ i ≤ p + 1, j ≥ 1.
If i = 0, then M⊗iE ⊗ E

⊗j = E ⊗j is IT0 for j ≥ 1 since so is E by Lemma A.3 (1). If i ≥ 1, M⊗iE ⊗ E
⊗j is written as

M⊗iE ⊗ E
⊗j = (ME ⟨ xi l⟩)

⊗i
⊗ E ⟨−xl⟩ ⊗ E ⊗j−1 , (A.3)

i.e. as aℚ-twisted sheaf. For 1 ≤ i ≤ p + 1, ME ⟨ xi l⟩ is IT0 by Lemma A.3 (2) since it holds that

1
x
+
i
x
≤
p + 2
x
≤

1
β(l)

by assumption. Furthermore, E ⟨−xl⟩ is M-regular by assumption and E is IT0. Thus their tensor product (A.3)
is IT0 by [6, Proposition 3.4]. 2
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