Home When is M0,n(ℙ1,1) a Mori dream space?
Article
Licensed
Unlicensed Requires Authentication

When is M0,n(ℙ1,1) a Mori dream space?

  • Claudio Fontanari
Published/Copyright: June 24, 2021
Become an author with De Gruyter Brill

Abstract

The moduli space M¯0,n(1,1) of n-pointed stable maps is a Mori dream space whenever the moduli space M¯0,n+3of(n+3) pointed rational curves is, and M¯0,n(1,1) is a log Fano variety for n ≤ 5.

MSC 2010: 14H10; 14E30

Funding statement: This research was partially supported by PRIN 2017 “Moduli Theory and Birational Classification" and by GNSAGA of INdAM (Italy).

  1. Communicated by: I. Coskun

References

[1] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), 405–468. MR2601039 Zbl 1210.14019Search in Google Scholar

[2] A.-M. Castravet, The Cox ring of M¯0,6. Trans. Amer. Math. Soc. 361 (2009), 3851–3878. MR2491903 Zbl 1172.14010Search in Google Scholar

[3] A.-M. Castravet, Mori dream spaces and blow-ups. In: Algebraic geometry: Salt Lake City 2015, volume 97 of Proc. Sympos. Pure Math., 143–167, Amer. Math. Soc. 2018. MR3821148Search in Google Scholar

[4] A.-M. Castravet, J. Tevelev, M¯0,n is not a Mori dream space. Duke Math. J. 164 (2015), 1641–1667. MR3352043 Zbl 1343.14013Search in Google Scholar

[5] I. Coskun, J. Harris, J. Starr, The ample cone of the Kontsevich moduli space. Canad. J. Math. 61 (2009), 109–123. MR2488451 Zbl 1206.14050Search in Google Scholar

[6] G. Farkas, The global geometry of the moduli space of curves. In: Algebraic geometry—Seattle 2005. Part 1, volume 80 of Proc. Sympos. Pure Math., 125–147, Amer. Math. Soc. 2009. MR2483934 Zbl 1169.14309Search in Google Scholar

[7] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology. In: Algebraic geometry—Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., 45–96, Amer. Math. Soc. 1997. MR1492534 Zbl 0898.14018Search in Google Scholar

[8] A. Gibney, S. Keel, I. Morrison, Towards the ample cone of M¯g,n. J. Amer. Math. Soc. 15 (2002), 273–294. MR1887636 Zbl 0993.14009Search in Google Scholar

[9] J. L. González, K. Karu, Some non-finitely generated Cox rings. Compos. Math. 152 (2016), 984–996. MR3505645 Zbl 1383.14015Search in Google Scholar

[10] B. Hassett, Y. Tschinkel, Integral points and effective cones of moduli spaces of stable maps. Duke Math. J. 120 (2003), 577–599. MR2030096 Zbl 1105.14033Search in Google Scholar

[11] J. Hausen, S. Keicher, A. Laface, On blowing up the weighted projective plane. Math. Z. 290 (2018), 1339–1358. MR3856856 Zbl 1401.14143Search in Google Scholar

[12] S. Keel, J. McKernan, Contractible extremal rays on M¯0,n. In: Handbook of moduli. Vol. II, volume 25 of Adv. Lect. Math., 115–130, Int. Press, Somerville, MA 2013. MR3184175 Zbl 1322.14050Search in Google Scholar

[13] A. Massarenti, On the biregular geometry of the Fulton-MacPherson compactification. Adv. Math. 322 (2017), 97–131. MR3720795 Zbl 1386.14105Search in Google Scholar

[14] S. Okawa, Addendum to "On images of Mori dream spaces". Manuscript 2015, www4.math.sci.osaka-u.ac.jp/∼okawa/papers/notes.pdfSearch in Google Scholar

[15] S. Okawa, On images of Mori dream spaces. Math. Ann. 364 (2016), 1315–1342. MR3466868 Zbl 1341.14007Search in Google Scholar

Received: 2019-05-31
Revised: 2019-12-09
Published Online: 2021-06-24
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2021-0019/html
Scroll to top button