Abstract
We construct a new family of lattice packings for superballs in three dimensions (unit balls for the
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-1439786
Funding statement: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the first author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Point Configurations in Geometry, Physics and Computer Science” semester program. The second author was partially supported by the SFB/TRR 191 “Symplectic Structures in Geometry, Algebra and Dynamics”, funded by the DFG. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie agreement number 764759.
Acknowledgements
We thank Cristóbal Guzmán and Philippe Moustrou for helpful discussions. We thank the referee for useful suggestions and corrections.
Communicated by: M. Henk
A Source code for the proof of Theorem 4.2
We used the following program written in Sage in the proof of Theorem 4.2.
def f(p,x,y,z):
return vector([x^p+y^p+z^p-1, (x–y)^p+(z–x)^p+(y+z)^p–1, 3*(–x+y+z)^p–1])
def Df(p,x,y,z):
pm = p–1
return p*Matrix([[x^pm, y^pm, z^pm],
[(x–y)^pm–(z–x)^pm, –(x–y)^pm+(y+z)^pm, (z–x)^pm+(y+z)^pm],
[–3*(–x+y+z)^pm, 3*(–x+y+z)^pm, 3*(–x+y+z)^pm]])
def linfinitynorm(A):
return max([A.row(0).norm(1),A.row(1).norm(1),A.row(2).norm(1)])
def verify(p0,x0,y0,z0,eps,peps):
p = RIF(p0,p0+peps)
x = RIF(x0-eps,x0+eps)
y = RIF(y0-eps,y0+eps)
z = RIF(z0-eps,z0+eps)
T = Df(p0,x0,y0,z0)^(–1)
A = Df(p,x,y,z)*T – identity_matrix(3)
lhs = linfinitynorm(A)
rhs = 1 – linfinitynorm(T)*f(p,x0,y0,z0).norm(infinity)/eps
print(lhs.str(style=’brackets’)+’<’+rhs.str(style=’brackets’)+’:’+str(lhs < rhs))
B Examples of choices made in the proof of Theorem 4.2
verify(1.0, 0.333333333333, 0.166666666667, 0.5, 0.03, 0.01)
verify(1.01, 0.336543320255, 0.169227330456, 0.504294897412, 0.03, 0.01)
verify(1.02, 0.339721855623, 0.171809715243, 0.508503843298, 0.03, 0.01)
⋮
verify(1.5, 0.475292821919, 0.375983627555, 0.580059051165, 0.03, 0.01)
verify(1.51, 0.47822053429, 0.384961182567, 0.576346694842, 0.03, 0.01)
verify(1.52, 0.481163698665, 0.394556223383, 0.572012690078, 0.006, 0.001)
verify(1.521, 0.48145875646, 0.395553814361, 0.571540873724, 0.006, 0.001)
verify(1.522, 0.481753934423, 0.396558835694, 0.571061553436, 0.006, 0.001)
verify(1.523, 0.482049228267, 0.39757142775, 0.570574584849, 0.006, 0.001)
⋮
verify(1.577, 0.497880292399, 0.472696125604, 0.523437325276, 0.006, 0.001)
verify(1.578, 0.498157887988, 0.475000219764, 0.521630841401, 0.006, 0.001)
verify(1.579, 0.498433446144, 0.477421354522, 0.519705097786, 0.006, 0.001)
References
[1] U. Betke, M. Henk, Densest lattice packings of 3-polytopes. Comput. Geom. 16 (2000), 157–186. MR1765181 Zbl 1133.5230710.1016/S0925-7721(00)00007-9Search in Google Scholar
[2] H. Cohn, A. Kumar, G. Minton, Optimal simplices and codes in projective spaces. Geom. Topol. 20 (2016), 1289–1357. MR3523059 Zbl 1353.9008410.2140/gt.2016.20.1289Search in Google Scholar
[3] U. Dieter, How to calculate shortest vectors in a lattice. Math. Comp. 29 (1975), 827–833. MR0379386 Zbl 0306.1001210.1090/S0025-5718-1975-0379386-6Search in Google Scholar
[4] M. Dostert, Geometric Packings of Non-Spherical Shapes. PhD Thesis, University of Cologne, 2017. http://kups.ub.uni-koeln.de/7706/Search in Google Scholar
[5] M. Dostert, C. Guzmán, F. M. de Oliveira Filho, F. Vallentin, New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry. Discrete Comput. Geom. 58 (2017), 449–481. MR3679945 Zbl 1376.5203610.1007/s00454-017-9882-ySearch in Google Scholar
[6] P. M. Gruber, Convex and discrete geometry. Springer 2007. MR2335496 Zbl 1139.52001Search in Google Scholar
[7] P. M. Gruber, C. G. Lekkerkerker, Geometry of numbers, volume 37 of North-Holland Mathematical Library. North-Holland 1987. MR893813 Zbl 0611.1001710.1016/S0924-6509(08)70411-2Search in Google Scholar
[8] O. Hanner, On the uniform convexity of Lp and lp. Ark. Mat. 3 (1956), 239–244. MR0077087 Zbl 0071.3280110.1007/BF02589410Search in Google Scholar
[9] U. U. Haus, Gitterpackungen konvexer Körper. Diploma Thesis, Technical University of Berlin, 1999. https://www.zib.de/groetschel/students/diplomhaus.psSearch in Google Scholar
[10] Y. Jiao, F. H. Stillinger, S. Torquato, Optimal packings of superballs. Phys. Rev. E (3) 79 (2009), 041309, 12pp. MR255121310.1103/PhysRevE.79.041309Search in Google Scholar PubMed
[11] Y. Jiao, F. H. Stillinger, S. Torquato, Erratum: Optimal packings of superballs [Phys. Rev. E 79, 041309 (2009)]. Phys. Rev. E (3) 84 (2011), 069902(E).10.1103/PhysRevE.84.069902Search in Google Scholar
[12] E. Jones, E. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python. http://www.scipy.org/Search in Google Scholar
[13] H. Minkowski, Dichteste gitterförmige Lagerung kongruenter Körper. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1904 (1904), 311–355. Zbl 35.0508.02 www.digizeitschritfen.de/dms/resolveppn/?PID=GDZPPN002500132Search in Google Scholar
[14] H. Minkowski, Diophantische Approximationen. Eine Einführung in die Zahlentheorie. Leipzig: B. G. Teubner, Leipzig 1907. Zbl 38.0220.1510.1007/978-3-663-16055-7Search in Google Scholar
[15] R. Ni, A. P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra. Soft Matter8 (2012), 8826–8834.10.1039/c2sm25813gSearch in Google Scholar
[16] The Sage Development Team, SageMath, the Sage Mathematics Software System (Version 8.2), 2018. www.sagemath.orgSearch in Google Scholar
[17] C. Zong, Packing, covering and tiling in two-dimensional spaces. Expo. Math. 32 (2014), 297–364. MR3279483 Zbl 1307.5201210.1016/j.exmath.2013.12.002Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Topology of tropical moduli of weighted stable curves
- Classification of slant surfaces in 𝕊3 × ℝ
- New dense superball packings in three dimensions
- Explicit computation of some families of Hurwitz numbers, II
- An extension theorem for non-compact split embedded Riemannian symmetric spaces and an application to their universal property
- Moduli of stable sheaves supported on curves of genus three contained in a quadric surface
- Exceptional points for finitely generated Fuchsian groups of the first kind
- Tropical superelliptic curves
- Differentiability of projective transformations in dimension 2
- On pseudo-Einstein real hypersurfaces
- On the moduli spaces of singular principal bundles on stable curves
- Three-dimensional connected groups of automorphisms of toroidal circle planes
Articles in the same Issue
- Frontmatter
- Topology of tropical moduli of weighted stable curves
- Classification of slant surfaces in 𝕊3 × ℝ
- New dense superball packings in three dimensions
- Explicit computation of some families of Hurwitz numbers, II
- An extension theorem for non-compact split embedded Riemannian symmetric spaces and an application to their universal property
- Moduli of stable sheaves supported on curves of genus three contained in a quadric surface
- Exceptional points for finitely generated Fuchsian groups of the first kind
- Tropical superelliptic curves
- Differentiability of projective transformations in dimension 2
- On pseudo-Einstein real hypersurfaces
- On the moduli spaces of singular principal bundles on stable curves
- Three-dimensional connected groups of automorphisms of toroidal circle planes