Home A note on commutative semifield planes
Article
Licensed
Unlicensed Requires Authentication

A note on commutative semifield planes

  • Yue Zhou EMAIL logo
Published/Copyright: June 9, 2017
Become an author with De Gruyter Brill

Abstract

Let q be an odd prime power. We prove that a planar function f from 𝔽q to itself can be written as an affine Dembowski–Ostrom polynomial if and only if the projective plane derived from f is a commutative semifield plane.

MSC 2010: 12K10; 51A35; 12E10

Communicated by: G. Korchmáros


  1. Funding: Yue Zhou is partially supported by the National Natural Science Foundation of China (No. 11401579, 11531002) and the Research Project of MIUR (Italian Office for University and Research) “Strutture geometriche, Combinatoria e loro Applicazioni” 2012.

References

[1] R. S. Coulter, The classification of planar monomials over fields of prime square order. Proc. Amer. Math. Soc. 134 (2006), 3373–3378. MR2231922 Zbl 1122.1108310.1090/S0002-9939-06-08346-8Search in Google Scholar

[2] R. S. Coulter, M. Henderson, Commutative presemifields and semifields. Adv. Math. 217 (2008), 282–304. MR2365198 Zbl 1194.1200710.1016/j.aim.2007.07.007Search in Google Scholar

[3] R. S. Coulter, F. Lazebnik, On the classification of planar monomials over fields of square order. Finite Fields Appl. 18 (2012), 316–336. MR2890555 Zbl 1273.1116810.1016/j.ffa.2011.09.002Search in Google Scholar

[4] R. S. Coulter, R. W. Matthews, Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr. 10 (1997), 167–184. MR1432296 Zbl 0872.5100710.1023/A:1008292303803Search in Google Scholar

[5] P. Dembowski, T. G. Ostrom, Planes of order n with collineation groups of order n2. Math. Z. 103 (1968), 239–258. MR0226486 Zbl 0163.4240210.1007/BF01111042Search in Google Scholar

[6] P. Dembowski, F. Piper, Quasiregular collineation groups of finite projective planes. Math. Z. 99 (1967), 53–75. MR0215741 Zbl 0145.4100310.1007/BF01118689Search in Google Scholar

[7] T. Feng, On homogeneous planar functions. Finite Fields Appl. 31 (2015), 121–136. MR3280078 Zbl 1320.1111710.1016/j.ffa.2014.09.010Search in Google Scholar

[8] M. J. Ganley, E. Spence, Relative difference sets and quasiregular collineation groups. J. Combin. Theory Ser. A19 (1975), 134–153. MR0376392 Zbl 0313.50014210.1016/S0097-3165(75)80003-3Search in Google Scholar

[9] D. Ghinelli, D. Jungnickel, Finite projective planes with a large abelian group. In: Surveys in combinatorics, 2003 (Bangor), volume 307 of London Math. Soc. Lecture Note Ser., 175–237, Cambridge Univ. Press 2003. MR2011737 Zbl 1039.5100510.1017/CBO9781107359970.007Search in Google Scholar

[10] D. Gluck, A note on permutation polynomials and finite geometries. Discrete Math. 80 (1990), 97–100. MR1045927 Zbl 0699.5100810.1016/0012-365X(90)90299-WSearch in Google Scholar

[11] Y. Hiramine, A conjecture on affine planes of prime order. J. Combin. Theory Ser. A52 (1989), 44–50. MR1008158 Zbl 0696.5100410.1016/0097-3165(89)90060-5Search in Google Scholar

[12] A. Pott, K.-U. Schmidt, Y. Zhou, Semifields, relative difference sets, and bent functions. In: Algebraic curves and finite fields, volume 16 of Radon Ser. Comput. Appl. Math., 161–178, De Gruyter, Berlin 2014. MR328768710.1515/9783110317916.161Search in Google Scholar

[13] L. Rónyai, T. Szőnyi, Planar functions over finite fields. Combinatorica9 (1989), 315–320. MR1030384 Zbl 0692.0501410.1007/BF02125898Search in Google Scholar

[14] K.-U. Schmidt, Y. Zhou, Planar functions over fields of characteristic two. J. Algebraic Combin. 40 (2014), 503–526. MR3239294 Zbl 1319.5100810.1007/s10801-013-0496-zSearch in Google Scholar

[15] Y. Zhou, (2n, 2n, 2n, 1)-relative difference sets and their representations. J. Combin. Des. 21 (2013), 563–584. MR3116516 Zbl 1290.0503810.1002/jcd.21349Search in Google Scholar

Received: 2015-9-30
Revised: 2016-4-30
Published Online: 2017-6-9
Published in Print: 2018-1-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0017/html
Scroll to top button