Abstract
The concept of division pairs, a non-abelian version of Jordan division pairs, is introduced and a categorical equivalence between division pairs and Moufang sets is established. This is used to explain the non-uniqueness occurring in the description of Moufang sets in terms of pairs (U, τ) initiated by De Medts and Weiss.
Keywords: Moufang set; division pair
Received: 2013-5-14
Published Online: 2015-4-3
Published in Print: 2015-4-1
© 2015 by Walter de Gruyter Berlin/Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Frontmatter
- Division algebras and transitivity of group actions on buildings
- Projections of del Pezzo surfaces and Calabi–Yau threefolds
- Almost soliton duality
- Remarks on Kähler–Ricci solitons
- Real solutions to systems of polynomial equations and parameter continuation
- Division pairs: a new approach to Moufang sets
- Very special divisors on 4-gonal real algebraic curves
- On the intersection of a Hermitian surface with an elliptic quadric
- Geometric properties of semitube domains
- Threefolds in ℙ6 of degree 12
Articles in the same Issue
- Frontmatter
- Division algebras and transitivity of group actions on buildings
- Projections of del Pezzo surfaces and Calabi–Yau threefolds
- Almost soliton duality
- Remarks on Kähler–Ricci solitons
- Real solutions to systems of polynomial equations and parameter continuation
- Division pairs: a new approach to Moufang sets
- Very special divisors on 4-gonal real algebraic curves
- On the intersection of a Hermitian surface with an elliptic quadric
- Geometric properties of semitube domains
- Threefolds in ℙ6 of degree 12