Abstract
In this article we determine, for an infinite family of maps on the plane, the topology of the surface on which the minimal regular covering occurs. This infinite family includes all Archimedean tessellations
Received: 2013-1-29
Revised: 2013-5-16
Published Online: 2015-1-14
Published in Print: 2015-1-1
© 2015 by Walter de Gruyter Berlin/Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Frontmatter
- Bianchi surfaces whose asymptotic lines are geodesic parallels
- Results on coupled Ricci and harmonic map flows
- Mostow’s lattices and cone metrics on the sphere
- Monads for framed sheaves on Hirzebruch surfaces
- The topology of the minimal regular covers of the Archimedean tessellations
- Extremal cross-polytopes and Gaussian vectors
- Displacing (Lagrangian) submanifolds in the manifolds of full flags
- The harmonic mean measure of symmetry for convex bodies
- Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras
- The periods of the generalized Jacobian of a complex elliptic curve
Keywords for this article
Archimedean tessellation;
Loch Ness monster;
minimal regular cover
Articles in the same Issue
- Frontmatter
- Bianchi surfaces whose asymptotic lines are geodesic parallels
- Results on coupled Ricci and harmonic map flows
- Mostow’s lattices and cone metrics on the sphere
- Monads for framed sheaves on Hirzebruch surfaces
- The topology of the minimal regular covers of the Archimedean tessellations
- Extremal cross-polytopes and Gaussian vectors
- Displacing (Lagrangian) submanifolds in the manifolds of full flags
- The harmonic mean measure of symmetry for convex bodies
- Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras
- The periods of the generalized Jacobian of a complex elliptic curve