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1 Introduction

In this paper, we prove energy estimates for weak solutions to parabolic multi-phase problems of type
e — div(|VulP~2Vu + a(2)|Vul"2Vu + b(2)|Vul*2Vu) = - div([FIP~*F + a(2)|F|"*F + b(2)|F|*"%F) in Qr,

where Qr := Q x (0, T) represents a space-time cylinder with a bounded openset Q c R* forn >2,2<p < q<
§ < oo and the modulating coefficients a(-) and b(- ) are nonnegative and Hélder continuous.

Energy estimates are very important for proving the existence and regularity results for partial differen-
tial equations. We prove the energy estimates using the Lipschitz truncation method for parabolic multi-phase
problems. Here, the Lipschitz truncation is a method of redefining a given function so that it keeps its values on
a specific “good set”, while redefining it in “bad sets” using a partition of unity related to a Whitney covering
argument. Acerbi and Fusco [1, 2] have introduced the Lipschitz truncation for elliptic problems. Furthermore,
Kinnunen and Lewis [30] and Kim, Kinnunen and Sarki¢ [28] have studied related methods for the parabolic
p-Laplace system and for the parabolic double phase systems, respectively.

In this paper, we deal with a parabolic multi-phase system

us —divA(z,u,Vu) = —-divB(z,F) in Qr, D

where Carathéodory vector fields A : Q7 x RY x RN — RM" and B : Q7 x RV — RN" satisfy the following
growth conditions: for any z € Qr, v € RY and ¢ € RM", there exist two constants 0 < v < L < oo such that

VH(z,[¢]) < A(z,v,8) - §, Az, v, O] < LH(z, I€]) 12)
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and
|B(z, ©)II¢| < LH(z, |&]), (1.3)

where the function H : Q7 x Rt — R* is defined by
H(z,k) = kP + a(z)x? + b(z)K®
for z € Qr and k € R*. Furthermore, the source term F : Qr — RM" satisfies

QU H(z,|F|)dz < +oo. 1.4)

We assume that the modulating coefficients a : Qr — R* and b : Q7 — R* satisfy

0<aeC®2(Qr) forsomea e (0,1], (1.5)

<
q_p+n+2’

and

S<p+ nzfz’ 0<be Cﬁ’g(QT) for some S8 € (0, 1]. (1.6)

Here, a € C%% (Q7) means that a € L*°(Q7) and there exists a Holder constant [a]q := [a]a,%;gT > 0 such that
la(x, t1) - alx, )| < [ala(ba = xal + VIt - &2])"
for all x1, x, € Qand tq, ty € (0, 7).
Definition 1.1. A function u : Q x (0, T) — RY satisfying
ueC,T; L*(QR) n LY 0, T: wh(Q, RY))

and
” [H(z,|ul) + H(z,|Vu|)] dz < co
Qr
is a weak solution to (1.1) if
”[—u -+ Az, u,Vu) - Vol dz = ” [B(z,F)-Voldz
QT 9T
for every ¢ € C°(Qr, RY).
The parabolic multi-phase problems derive from elliptic double phase problems. The elliptic double phase

problems of type
—div(]VulP~*Vu + a(x)|Vu|9?Vu) = — div(|[F|P"2F + a(x)|F|?"%F)

was first introduced in [35-38]. These problems originate from the Lavrentiev phenomenon and the homoge-
nization of strongly anisotropic materials. According to [13, 21], the conditions

a(-) € CYQ), ae(0,1] and g <1+ % 1.7
and
ueL®Q), a(-)eC%Q), ae(0,1] and qg<p+a 1.8)

are sharp for obtaining regularity results of weak solutions. In fact, when (1.7) or (1.8) holds, the gradient of a
weak solution u is Holder continuous, see [6, 13, 14, 19]. Moreover, the Calderon-Zygmund estimates have been
discussed in [3, 15, 17]. Also, Baroni, Colombo and Mingione [5] have investigated the Harnack’s inequality. In
addition, other regularity results for elliptic double phase problems have been discussed in [8-11, 22, 23, 25, 31,
32]. The regularity results for elliptic multi-phase problems given by

m m
- div(qulp‘ZVu +y ai(x)IVulp"‘ZVu> =- div(|F|p‘2F +y ai(x)lFlpf‘2F> inQ,
i=1 i=1

withl<p<pi<---<pmand0<a;(-) e %% (Q), a; € (0, 1], have also been discussed in [4, 16, 18, 20].
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On the other hand, the regularity for parabolic double phase problems
ur — div(|VulP~2Vu + a(z)|Vu|9"2Vu) = - div(|FIP~2F + a(z)|F|*"%F) inQr

with 2 < p < qghasbeen studied recently. If (1.5) holds, the existence of weak solutions has been discussed in [12],
see also [28, 34]. The gradient higher integrability and the Calderén-Zygmund-type estimate have been studied
in [26, 27]. Moreover, the gradient higher integrability results for degenerate and singular parabolic multi-phase
problems have also been studied in [24] and [33], respectively.

In this paper, our goal is to prove the energy estimates of the weak solution to (1.1). For this, we denote
parabolic cylinders Uy (z) and Qr(zo) by

Ur,c(z0) == Br(xo) x £-(to) and Qr(zo) := Br(xo) x Ir(to) 1.9)
with

0:(t)) == (to—T,to+7) and Ir(ty) := (to — 1%, to + ). (1.10)
Our main theorem of this paper is as follows.

Theorem 1.2. Let u be a weak solution to (1.1). Then, for Ug,s,(zo) € Qr, Ry € [%,Rz) and Sy € [%, Sy), there
exists a constant c depending on n, p, q, s, v and L such that the following inequality holds:

J" U= Wy, s, z0)*

sup dx + H H(z,|Vu|)dz

N
t —S1,t0+S: 1
Slto=Sulo+S1) Bg, (Xo) Ugy s, (20)
lu- Wy | lu- Wy |*
<c H H(z,ﬂ)dz+c H wdz+c H H(z,|F|)dz.
Rz - R1 82 - Sl
Ugy,s, (o) Ury,s,(20) Ury,s, (o)

Remark 1.3. In [24], the energy estimate presented in their Lemma 3.1 is derived under the assumption that
|[Vu| € L5(Qr). Consequently, the gradient higher integrability result [24, Theorem 1.2] also relies on this assump-
tion. However, in light of the energy estimate above, [24, Theorem 1.2] can be established under the weaker
assumption specified in Definition 1.1.

Remark 1.4. We would like to mention that the existence and uniqueness results for (1.1) with Dirichlet bound-
ary condition can be obtained by closely following the proofs of [28, Theorem 2.6 and Theorem 2.7]. Therefore,
we choose not to pursue such aspects in this paper.

To prove Theorem 1.2, we will construct the Whitney decomposition by dividing into p-, (p, q)-, (p, s)- and
(p, q, s)-phases in Section 2. Furthermore, in this section, we prove the Vitali covering argument by dividing
it into a total of sixteen cases as in [24] and establish the related properties, which we summarize in Lemma
2.18. In Section 3, we define the Lipschitz truncation and establish the related properties. We then prove the
energy estimates in Section 4.

2 Whitney decomposition and covering lemmas

In this section, we construct a family of Whitney decomposition and show that the family covers the bad set
E(A)€ via a Vitali covering argument. The construction of such a decomposition is heavily used in the subsequent
sections.

2.1 Auxiliary definitions

Let zo = (o, tp) € R™! and o > 0. Parabolic cylinders with quadratic scaling in time are denoted as
Qo(20) = By x Io(to),

where B, = Bo(xo) = {y € R" : |xo - y| < o} and Io(to) = (to — 0%, to + 0%).
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Let us define the strong maximal function for f € Llloc(lR"“) as

Mf(z) = sup + Ifl dw, (VAN
zeQ
Q
where the supremum is taken over cubes Q c R™1, Asin [28], using the Hardy-Littlewood-Wiener maximal
function theorem with respect to space and time, we obtain the following lemma.

Lemma2.1. For1 < g < oo and f € L°(R™?), there exists a constant ¢ = c¢(n, o) such that

” IMfi° dz < ” I° dz.

]Rn+1 IRn+1
Without loss of generality we can assume that the modulating coefficient functions a(-) and b(-) are defined
in R™*! satisfying a(-) € C*%(R™!) and b(-) € cB-% (R™*1), see for instance [28] and [29, Theorem 2.7]. Let
f e LP(R™), f > 0, be such that

” (f? + af® + bf*) dz < oo,

]Rn+1
andletd = HT”’. By Lemma 2.1, there exists Ag > 1 + [|allzeo(rr+1y + [|D]lLeo(rr+1y Such that

” (M(fd + (af‘l)% + (bfs)g)(z))% dz < c(n,p,s) ” (f? + af? + bf*) dz < Ao.

R+ R
Let A > Ay and we define the set
E) = {z e R M(f0+ (afr + (be)%)(z) < Ag}. 2.2)
Chebyshev’s inequality implies that
Jim AJE@) < lim ” (MG + (af®)F + (be)g)(z))% dz = 0. 23)
E(A)

Now, we write K > 2 as

_ 1 d g s )@ =
K.—2+800[a]a<|Bllmjn£(M(f +(af P + (bf)7)) (z)dz)

B
” (MG + (@fD7 + b)) (@ dz)m . 24)

R+l

1

Note that for each z € E(A)€, there exists a unique 4, > 1 such that A = 2 vaz)al + b(z)A5. We then consider
a family of metrics {d;(-, - )}zeE)c given by

'max{|x1 ~ Xal, VAR A|tq - t2|} if K228 > a(z)2d and K228 > b(2)AS,

max{|x; - X, \Eq(z 4220t — tlf K < a@)2] and K2L = b(2)2s,
dz(z1,27) = 1

max{|x1 — Xy, \/gs(z, A)AF2 0t - t2|} if K*AL > a(z)A? and K224 < b(2)1S,

kmax{lxl - X3, \/gq,s(z, A)AF2 0t - t2|} if K2A% < a(z)A! and K%Y < b(2)AS

for z1 = (x1, t1), Z3 = (Xg, t2) € R™1 where the functions &q> &s, and ggq s, which are g, s, and (q, s)-growth
functions, respectively, defined as

8q(z,x) = kP + a(z)k1, (2.5)
gs(z,K) := kP + b(z)K®, (2.6)
84;s(z, k) = kP + a(2)k? + b(z)k* 2.7

for z € Q7 and k € R*. For every z € E(A)¢, we define a distance function z to E(A) as

4r, = d,(z,E(N)) = ng(fA) d;(z, w). (2.8)
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Using this distance, we construct a family of open subsets {U2}cg) defined as

Qr,2, ifK*AL > a(z)A! and K2AL > b(2)1S,
Qf . ifK*A} < a(z)A] and K*A7 > b(2)23,
Q5 if K22 > a(z)Ad and K2AY < b(2)AS,
QF, ifK*A} < a(z)A] and K*A7 < b(2)25.

Here, the intrinsic cylinders denoted as follows:

Qrz,/'lz(z) =By, (x) x Irz,)tz(t)y
Q! ,.(2) =B, xI} , (1),
Qi A (2) =By, () x I 2,0,
Q 2,(2) = Br,(X) xI Az(t)
foranyz = (x,t) e R" x (0, T), r; > 0, A; > 1, where
I (8) = (= A27Pr2, ¢4 2577r2),
2 /12

q . _ z 2 z 2
1= <t el )rz),

)lz /12
S . Z 2
I 2. (0 "< 520 g )

)lz A2
q,s . 2 z 2
IrZA ® '_< 8q.5(2, Az) ro b gq,s(Z:Az) rz).

Let f € L'(Qr) be a function, and let Q ¢ Q7 be a measurable set with finite positive measure. We define
the integral average of f over Q by

No = H fdz.
Q
If Q is one of the four intrinsic cylinders defined above, we denote it as follows:
Nzgipa = H fdz,
Qp,/\(zﬂ)
0= ff raz.
Q) ,(20)
(f)z).p = H fdz,
(ZU)
(q s)
N, = H fdz.
Q1 (20)

The integral average on a ball B,(xo) ¢ Q is denoted by
Duip®= | forodx te@D.
B,(xo)

We intend to use a Vitali-type argument to find a countable collection of points z; € E(A)€ such that the corre-
sponding subfamily satisfies some properties. From now on, we denote

Ai:)lz,‘s di("'):dz,-(‘,‘)
R q _ 4 S _ NS 4. _ A4S
Qi = Qrzi,lzi: Qi = Qrz,ﬂzi’ Qi = Qrzi,ﬂzi’ Qi = Qrzi,lzi
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and
Qi ifK*AY > a(zp)A] and K*AY = b(z)AS,

Qf ifK*AY < a(zp)A] and K*AY > b(z)AS,

U =B:xI = t (2.9)
U e it KA > a(zpAl and K2AY < b(z))AS,
QP ifK*AY < a(zy)A] and K*AY < b(z)AS.
Moreover, we denote
. > . 2 . 2 .
QUL EW) = inf - diz,w), 9= {] EN:ZUin U+ @}, 010

Ki=200K® forU;j=Q;QforQ{ and  K;=200 forU;=0Q""

2.2 Some preliminary estimates

We start with some basic estimates.

Lemma 2.2. Letz € E(A)°. Assume K2AY < a(z)A! and KA < b(z)AS. Then @ < a(z) < 2a(z) and @ <bh() <
2b(z) for any zZ € 200KQy,(z).

Proof. We claim that 2[a],(200Kr;)? < a(z) and 2[b]5(200KrZ)/3 < b(z). We will only prove the second state-
ment and the proof of the first statement is similar. On the contrary, let us assume b(z) < 2[b] (200K r,)P. Since
Q (z) c E(A)¢ and a(z)A! + b(z)A$ < A, we get

a@ad+b@s < ] (M(F s @fF + by o) dw.
Q@

Now using A = A v az)al + b(z)AS < 2[a(z)A + b(z)A$], we obtain

awAd +b@is < Af (u(r+ @0 + b Yun) aw

Qi (@)
:ﬁ:z [| (a(rt+ @t + oY) aw
! g;saz z)
(a(z)ArB+ligﬂsW ” (M(f?+ @07 + bfo)r )<W))%

or,, @

Raising the power to > +z in both of sides to the above expression, we have

B
27132 1 s n+2 K
rzﬁllzﬁ < (moq;”( )( (fd + (afq)p +(bf*) )(W)) > = 800[b]ﬁ'

Now using K2AY < b(2)A5,s < p + - +2 and the counter-assumption, we get

K22 < b(2)S < z[b]ﬁ(zooxrz)ﬁAQ’AF < EKZAQ,

which is a contradiction. This completes the proof of 2[b] ,g(ZOOKrZ)ﬁ < b(z). Now using the Holder continuity
of b(z), we get
2[b]p(200Kr,)P < b(z) < _inf  D(Z) + [b]p(200Kr)P,

7€200KQ;, (2)
and hence
[b]p(200Kr,)P < inf  b(2).
2€200KQr, (2)
It follows that

sup  b(z)< _inf b(2)+[b]ﬂ(zooz<rz)ﬁ<z inf b@)
ZEZOOKQ,Z(Z) ZGZOOKQ,Z(Z) OKQrZ

and this proves @ < b(z) < 2b(z) for any Z € 200KQ;,(z). The statement for a(-) can be proved similarly. [
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Lemma 2.3. Let z € E(A)C. Assume K*A > a(z)A} and K215 < b(z)AS. Then we have @ < b(z) < 2b(z) for any
Z € 200KQy,(z). Moreover, we have
[a]q(800KT,) AT < (K? - 1)AL. (2.11)

Proof. First, we note that Qf.z A (z) ¢ E(A)¢, and therefore

gz < ff ((rte @nF + o))" aw

s
rz,ﬂz(

R[] (o) aw

14
d

z)

rz,Az @)

Raising power ;75 in the above expression, we have

a

F?Az"% < <|B_11| ” ( (fd+(afq)1’ + (bf*)? )(w)) )"*Z < _83(0[_611](1_

QVZ,/\Z (2)
Usingq <p+ n+2,we get
[a]«(800KT,)?A] < [al4 sooxr“m 7 < [a](800KAL %0 0[_ ] < (K*-1AL.
a
Moreover, the proof of the first statement follows from the previous lemma. This completes the proof. O

Lemma2.4. Let z € E(A)°. Assume Kz/lé’ < a(z)/lg and KZ)L‘E > b(z)A;. Then we have @ < a(z) < 2a(z) for any
Z € 200KQy,(z). Furthermore, we have

[b]5(800KT,)PAS < (K2 - 1)AL. (2.12)
Proof. Since Q'rlz, 2 C E(A), we have

sum i< Af ({7t 07 o) an

s
rz.Az @

S I st o) aw

roaz (Z)

Moreover, following the previous lemma, we get
[b]5(800KT,)PAS < (K* - 1)AL.
Also, the first statement follows from Lemma 2.2. This completes the proof. O

Lemma 2.5. Let 2,7 € E(A)S. Assume K2AL > a(z)A! and K2AL < b(z)A3, and Z € 200KQ;,(z). Then we have
IJAZ <Az < KF Az.
Proof. From Lemma 2.2, we get
& < b(z) < 2b(2). 2.13)

Now, note that it is enough to prove K B 7 < )l 2. On contrary, let us assume A, < K _%Az. Then using (2.11), (2.13)
and the counter assumption, we obtain

A=2AL +a@)Af + b(2)AS
< 2 +[a]a(200KT,) A + a(z)AL + b(2)AS
<A (K- )AL + a@K P AL+ 2b(2)K 7 AS
< KA + a@K 7 A0 + b@)K' 5 A
<A ra@Al+b(@)A = A

which is a contradiction. O
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Lemma 2.6. Let z,Z € E(A)°. Assume K*AL < a(2)A] and K*AY > b(2)AS, and Z € 200KQ;,(z). Then we have
”Az <Az < Kp Az.

Proof. From Lemma 2.4, we have

Q <a(Z) <a(z) (2.14)

forany z € 200KQy,(z). We will show K 3 < Az On contrary, let us assume K 5 > Az.Then using (2.12) and (2.14),
we get
A=2 + a2+ b(2)AS

< AY + a(2)A] + [b1p(200Kr,)PAS + b(2)AS
p 2 p DL e T
<Az + (K= 1Az +2a(Z)K 7 A; + b(Z)K ¥ A3
< K220 + a()K P AL+ b@)K P A
<AV +a@Al +b(@)AS =
which gives a contradiction. This completes the proof. O

Lemma 2.7. Let z,Z € E(A)°. Assume “(Z <a(z)2a(z) and @ <b(Z) <2b(z). Then we have 2*%/15 <Az < 2%){2.
Moreover; the above inequality holds provzded that Kz)llz7 < a(z))tg and K 2/15 < b(z)A;, and z € 200KQr,(z).

Proof. Itis enough to prove the first statement The second statement of the lemma follows from Lemma 2.2.
We claim A, < 20 Az. In contrast, assume A, > 20 Az. Using the hypothesis and the counter assumption, we get

A =28 +a@Al + b > 24 + 20 L)AL + 25 T h(2)AS
p 54 5
> A +a(2)A; + b(2)A = A
which is a contradiction. O

Lemma 2.8. Let z € E(A)°. Assume that K*AL > a(z)Af and K*AY > b(z)AS. Then [a]4(50KT;)*A < (K% - 1)A}
and [b]p(50Kr,)PA$ < (K? — 1)AL.

Proof. The proof can be completed analogously to the argument presented in the proof of Lemma 2.2. O
Lemma 2.9. Let z € E(A)S. Assume that K2AL > a(z)A! and K22E > b(z)A5. If Z € 50KQr,(2), then A, < K%Az.

Proof. The proof can be completed from Lemma 2.5 and Lemma 2.6. O

2.3 Vitali covering and their properties
In this subsection, we want to choose a countable collection of intrinsic cylinders from {Ué\}zE £(nye such that

1 1
E(N)C ¢ E(JA) ?Uf and G UA GKG UA =0 forany zy, z; € E(A)°.
zZe ¢

First, we claim that {r, : z € E(A)‘} is uniformly bounded. Indeed, since, by (2.3), 0 < |[E(A)‘| < coand A > 1 +
llall oo mn+ty + 1Dl oo (rr+1y, there exist A > 1and R > 0, which are in particular independent of z € E(A)€, such that

/‘\p + ”a”Loo(IRrH-l)Aq + ||b"L00(]RYl+1)As = A (215)

and |Bg x (—A2A'R?, A2A~1R?)| = |[E(A)°|. It clear that A < A, < A for any z € E(A)¢. Hence, if r, > R for some
z € E(A)¢, then
|E(A)| = |Bg x (-A2A71R?, A2A71R?)| < |U| < |E(A)°].

This is a contradiction, and we conclude r; < R for any z € E(A)€.
Let & = {5k U2 zerw) and, for each j € N,

L. R R
g“j {6K6U 35.§<rzﬁ.—71}.
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Since r, < R for any z € E(A)¢, we obtain

7=

JjeN
Then, in the same way as [28, Subsection 3.3], we have a countable subcollection G of pairwise disjoint cylinders
in . From now on, we show that the 6K>-times the cylinders in G covers E(A)€. FiX == UA € F.Then there exists

i € N such that 611<5 UA € JF; and by the construction of G in [28] there exists a cyhndgfl(r6 K U € U] 1 §j such that
%UA n 6_11(6UA £0. (2.16)
Since WUA € F; and 6}(6 UL e 5 for somej € {1,..., i}, we obtain
r; < 2r;. (217
We claim that o1,
ks U; c Ve Ul (2.18)

Let z = (x, t) and Z = (X, ). By (2.16), (2.17) and the proof of the standard Vitali covering lemma, we obtain

- KGBrz(w c Brz 0).

Moreover, by (2.17) and the standard Vitali covering argument, we obtain that Q,,(Z) c 5Q;,(z) and hence, we
conclude
Z € 5Qy,(z) c 200KQy,(2). (2.19)

Now, we prove the inclusion in (2.18) in the time direction, by considering the sixteen cases depicted in Table 1.

wol o Q@ @, €, Q@

Q@ (1-1) (1-2) (1-3) (1-4)
Q)@ @1 22) (2-3) (2-4)
Q@ (1 (32 (3-3) (3-4)
Q@ @41 (4-2) (4-3) (4-4)

Table 1: The combinations of U2 and U%.

Case (1-1). By (2.16) and (2.17), for 7 € 61<6 I, 2,(f), we obtain
lT—t|<|t—t|+|t-t|
2 2
2-p( Tz 2-p( Tz
<22 () 4" ()

2
<B4 Aﬁ"’)( 6;?6 ) .

Lemma 2.9 and (2.19) imply

2p=2) 2-p rz 2
lt—tl< @K 7 +1)A2 (GKG)

. Tz \?
< Ok (%)

Cases (2-1), (3-1) and (4-1). Since QfMZ(Z) C Qr,2,(2), QﬁMz(Z) C Qr,2,(2) and Q (z) C Qr,2,(2), by the pre-
vious argument, we obtain the conclusion.

and hence 7 € £1I,, 5, (0).
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Case (1-2). By (2.16) and (2.17), for 7 € =1y, 4, (f), we obtain

lT—tl<|t-t+|t-t|
ga?-p(i)ii(if
2 \6Kk%) " g,(z,2,) \6K®
2 2
e ) (o)
< (822 T2\
( 2 ¥ gz, ) )\ 6K

22 22
2-p z 2 z
AT =2 < 2K = .
‘ AL+ 2 84(2,27)

z

From a(Z)A'ZZ < Kz)lg, we have

Since (1.5) implies 1% < 2, we obtain from Lemma 2.4, Lemma 2.6, (1.5) and (2.19) that

A2 K622 s A2

Z

— < < . 2.20
2200 = raonl - 8@ ) (220

Thus, we conclude
A2 r; \? A2 rz\%
Tt < (32K +1)—Z(—Z) < —Z(—Z)
I | ( gq(Z:AZ) 6K6 gq(lez) K
and hence 7 € %Igz,ﬂz(t)'
Cases (1-3), (1-4), (2-3), (3-2), (2-4) and (3-4). By Lemmas 2.4, 2.3, 2.5, 2.6 and 2.7, we obtain from the above
argument the conclusion.

Case (2-2). By (2.16) and (2.17), for 7 € we obtain

1
GKG )

lT-t|<|t—t+|t-t|
2 M (IiY, B (I

2 2 L\
= (gqf;,zaz) ’ gqé,zaz))(#) ‘

Then (2.20) implies
22 r; \2 A2 ry\2
T—t| < (16K® +1 —Z(—Z) s—z(—z)
I | ( )gq(z)AZ) 6K6 gq(Z;Az) K

1,9
and hence 7 € %I,

z

A ().
Cases (3-3) and (4-4). In the same way as the above case, we easily obtain the conclusion.

Cases (4-2) and (4-3). We obtain the conclusion for Cases (2-2) and (2-3) in the same way for Cases (2-1), (3-1)
and (4-1).
Thus, we have established a countable covering family {}{ Ui}ien of intrinsic cylinders defined as in (2.9) and

with pairwise disjoint # Ui. Now, we prove some properties of the collection {U;};en that will be summarized

in Lemma 2.18 at the end.
Lemma 2.10. We have 3r; < d;(U;, E(A)) < 4r; for every i € IN.

Proof. Since, by the definition of r; in (2.8),
di(Ui, E(N)) < di(zi, E(D)) = 4ri,
the second inequality is satisfied. Moreover, from the triangle inequality we obtain that, for any z € U;,
di(z, E(N)) > di(zi, E(A)) — di(z,z;) > 4ri —1; = 314,

Since z € U; is arbitrary, we have d;(U;, E(A)) = 3r;. O
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Next, we prove the property (v) in Lemma 2.18.
Lemma 2.11. We have (12K?)71r;j < r; < 12K?r; for every i € N andj € J. Moreover; if U = Q]‘.I’s, then r; < 12r;

Proof. It is enough to prove that
ri < 12K%r;
forj € N.If r; < rj, then clearly the conclusion is satisfied. Thus, we assume r; < r;. Then

zj € 4Qr,(2y). (2.21)

Let w € 2U; n 2U;. Since d;(z;, w) < 2r; < 2r; and dj(zj, w) < Zrj < 2rj, using Lemma 2.10 and the triangle
inequality as in [28, Lemma 3.8], we get

ri<di(w,E(A)) and dj(w, E(A)) < 6ry. (2.22)
To complete the proof, we consider 16 cases in Table 1 with z = z; and Z = z;.

Case (1-1), (2-1), (3-1), (4-1), (1-2), (1-3) and (1-4). Using Lemma 2.5, Lemma 2.6 and Lemma 2.7 and following
the proof of Case 1, Case 2 and Case 3 in [28, Lemma 3.8], we have the conclusion.

Case (2-2). We obtain from Lemma 2.6 and K ZA]’.’ > b(zj)/l]? that
8q(20, M)A, < gas(2i, M)A

< K%gq,s(zj, /Ij))tj‘z

< K™D gy(2), WA

< 4K*gq(zj, A2,
where the last inequality follows from 117 < % Therefore, we obtain

di(z,w) < 2K*dj(z,w) for any z € E(A),
and hence, by (2.22), we have the conclusion.
Case (2-3), (2-4), (3-3), (3-2) and (3-4). Proceed similarly to the proof above.
Case (4-4). Using Lemma 2.7 and following the proof of [28, Case 3 in Lemma 3.8], we have r; < 12r;.
Case (4-2) and (4-3). Note that, by Lemma 2.7,
8q(2i, M)A < 8q.s(2i, ADA?
= 84s(z) WA
< 20 g4.s(2j, A
and, similarly,
85(2i, AT < 27 gq,0(2i, M)A 2.
Thus, we obtain d;(z, w) < 2d;(z, w) and, therefore, conclude r; < 12r;. O
By this lemma, we get
201,(z)) < 200KQy, (z) 223

for all j € J. Using this, we summarize Lemma 2.5, Lemma 2.6, Lemma 2.7 and Lemma 2.9.
Lemma 2.12. Foranyiec Nandj € J, we haveK_ﬁzlj <A< K%Aj. Moreover, if U; = Q?’S, then 2"%)9- <A< Z%Aj.
We show from the previous two lemmas that the measures of the neighboring cylinders are comparable.

Lemma 2.13. There exists ¢ depending on n and K such that

Uil
sup — < C.
ieN Uj|
jeda
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Proof. We divide it into sixteen cases as in Lemma 2.11.

Case (1-1), (1-2), (1-3) and (1-4). We obtain from I; c I, ;,, Lemma 2.11 and Lemma 2.12 that

Ap-2) 9_
|U;| 1Qil 2|B1|r?+2A?_p (12K2)n+2r](1+2K pp /1? 14
< <" _

J 2\n+3
— < = < < (12K%)
Uil — 19l n+2)2-p n+2 2P
J Q) 2|B1|r] )l] T A]

forallie Nandj € J.
Case (2-2), (2-4), (3-3), (3-4) and (4-4). We conclude in a similar way from Lemma 2.11 and Lemma 2.12.
Case (2-1). We get from a(z;)A! < KZA’;, b(z)A] < Kz)lf, Lemma 2.11 and Lemma 2.12 that

Uil 1Qil 2Bl 23gq(zj, A))  1PAg(2), Ay)

LT S S
4
_ Q2KY™KP AT} e 4)  3(12K%) o gg(2), )
N A]?r]f”z/lf A2l 4 Ab
2(12K2)M3K2A
<5 ( )q 5 < c(nK)
A +a(zpA] + b(z)A;

forallie Nandj €J.
Case (3-1), (4-1), (3-2), (2-3), (4-2), (4-3). Similarly, we obtain the conclusion. O

Now, we establish the inclusion property of U; and Uj for any i € N and j € J.
Lemma 2.14. Leti € N be such that U; = Q;. We have %Uj c 50K2Q; for everyj € J.
Proof. Since 2B;n £B; + 0 and rj < 12K%r;, we clearly obtain 2 B; ¢ 50KB;. It remains to prove the inclusion

in the time direction. As I; ¢ Ir, 2, (), for7 e %Ij, we have from Lemma 2.11 and Lemma 2.12 that

2 2
2-p 2 2-p 2
o-tl <le-glelg - ol <227 P (2r) +A( %)
< 2(K77 A1) P (24Kr)? + 7P 2r)? < AP (50K%r))?
and hence 2U; ¢ 50K2Q;. O
Lemma 2.15. Let i € N be such that either U; = Q? or U; = Q} holds. Then %Uj c 100K3U; for every j € J.

Proof. We may assume that U; = QY. Since 2B; n 2B; # 0 and rj < 12K?r;, clearly, we obtain 2B; c 50KB;. It
remains to prove the inclusion in the time direction. Since I; ¢ I, 3,(¢j), it is enough to check only when Uj = Q;.
For 7 € 21, ;.(tj), we have

(2 \? 22\
IT—til <|7- ¢t +|tj - til SZA]? p(—r]-> + L ( ) .

K gq(zi:/li) K '
Since KZA]’.’ > a(zj))tj‘.’,Kz)l]’.’ > b(z]-)/l]‘? and Lemma 2.11 and Lemma 2.12 give rj < 12K?r; and A; < K%Ai,we obtain
2 A 2 A2
2-p( 2 j 2 j 2
T T B ;
i \g"’ P40 P \K' P 324 s T
Aj +)lj +Aj /1]. + a(z])/lj +b(z])/1].

K A2 Py

<12 (12K%r)* < ——L—(48K°ry)>.
A+ a@z)A + b(zpAS YT ge(zi ) :
Thus, we have
|7 —t;| < 2'1—?(481@;3-)2 + At 2r)? < At (100K°r;)?
T gq(zi, Ay) 8q(zi, A1) " 8q(zi, Ay ’

and hence 2U; ¢ 100K>U;. O
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Lemma 2.16. Let i € N be such that U; = Q?’s. Then we have %Uj C 200U; for eachj € J.

Proof. The proof can be obtained by using r; < 12r; and 277 < A; < 27 ); instead of (12K2)"1r; < r; < 12K2r;
and K™ » Aj < A; < K¥ A; in the proof of the above lemma. O

Through the above three lemmas, we obtain the condition

2

RUj CcK;U; forallie NandjeJ, (2.24)
where K; is defined in (2.10). Finally, we prove that the cardinality of J is uniformly bounded.

Lemma 2.17. There exists a constant ¢ depending only on n and K such that |J| < c for every i € IN.

Proof. Since the cylinders { Uj}jew are disjoint, we get (2.24) and Lemma 2.13 that

6K°

|200K4Ul|>|U6K6 ,l Z|6K5 ,| ;c(n,K)IUiI=c(n,K)IJI|UiI,
j€

and hence |J| < ¢(n, K). O
We summarize the above results below.

Lemma 2.18. Let K be as in (2.4) and E(A) as in (2.2). There exists a collection {zl( Uilien Of cylinders defined as

in (2.9) satisfying the following properties:

(@) E(A)C C UlelN KUl

(ii) sKG Uin 6K5 Uj=0foreveryi,j e Nwithi#j.

(i) 3r;<di(Ui, E(A)) < 4r; foreveryie IN.

(iv) 4U; c E(A)€ and5U; N E(A) # 0 for every i € IN.

W) (1221(2)‘1rj STis 12K?r;j for everyi € N, j € J.

(vi) K ?»Aj<A;<KvAjforeveryjel

(vii) There exists a constant ¢ = ¢(n, K) such that |U;| < c|Uj| for everyi € Nandj € J.

(vili) 2U; c K;U; foreveryieN,j e J.

(ix) IfU; = Q,, then there exists a constant ¢ = c([a]q, a, K) such that rf‘A:I < C/lp and r’lg Af < c/lp

® IfU;i= q then & Z‘) < a(z) < 2a(z;) for every z € 200KQy,(z;). If U; = s then b(zl < b(z) < 2b(z;) for
every z e ZOOKer.(zl) and if U; = QI°, then “Z) < a(2) < 2a(z;) and b(“ < b(2) < 2b(z;) for every z €
200KQr ().

(xi) Foranyi € N, the cardinality of J, denoted by |J|, is finite. Moreover; there exists a constant ¢ = ¢(n, K) such
that |J| < c.

2.4 Partition of unity

The following lemma demonstrates the construction of a partition of unity subordinate to Whitney decompo-
sition {% Uitien.

Lemma 2.19. There exists a partition of unity {w;}ien Subordinate to the Whitney decomposition {% Uitien with
the following properties:
() 0<wi<1 weCP(EU)foreveryieNandy; w;=10nEWN):C.
(ii) There exists a constant ¢ = c(n, K) such that |Vwjlle < cri‘lfor everyie Nandj € J.
(iii) There exists a constant ¢ = c¢(n, K) such that
_ -2 .
Y #m—ob
crigq(zi, WA if Ui = Qf,
crifgs(zi A if Ui = Q3
cryiAA? ifU; = Q? *

10:wjlloo <

foranyie Nandj e J.
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Proof. In the previous subsection, we obtain the Whitney decomposition {%Ui}iE]N. Then, for each i € N, we
choose ¥; € C°(£U;) satisfying

. 2
0<¥i<l, ¥i=1inU;, Vil < =17

< ?rl.
and
(2 _5.p-2 .
?ri 2/1? ifU; = Q;,
2
277 8alzi A i U= QY
19chilloo < 1 %
2178z AP iU = Q,
2
CURLE ifU; = Q7.
Since E(A)€ ¢ Ujen %Ui and |J| is finite for each i € N, the function
Yi(z) Yi(z)

wi(z) = =

Yjen ¥j(2) - Yjes ¥j(2)

is well-defined and satisfies

2 .2
Wi € CSO(EUi>, 0<w;<lin ?Ui, Z wi(z) = 1.
ielN

Thus, the collection {w}iew is a partition of unity subordinate to {Z Uj}ien. By Lemmas 2.1, 2.12 and 2.17, we
have |

Cr{z)lf_ if Ui = Qi;

cri?ge(zi, ADATE iU = 0,

Cri_zgs(li,Ai)/li_2 ifU; = l§’

—2 A q—2 . q,s
IV if U; = Q;

IVwjleo < cri’ and  0;wjlloo <

foranyie Nandj € J. O

3 Construction of test function via Lipschitz truncation

The main goal of this section is to construct a Lipschitz function vﬁl‘ which can be used as a test function in
the proof of energy estimate Theorem 1.2. We begin by defining v, and Vﬁ’ establishing a crucial Poincaré-type
inequality for vy. By combining this result with the properties of the Whitney decomposition, we conclude the
Lipschitz regularity of v/.

3.1 Definition of test function

Take f = yug, s, (20 (IVUl + [ = ol + |F]) € LP(R™1) and ug = (Wug, 5, (20), Where x is the characteristic function
and u, F are extended to zero outside Ug, s, (Zo).

Let 0 < hg < % be a sufficiently small number, and let n € C;°(Bg,(Xo)) and ¢ € C3°(€s,-k,(to)) be stan-
dard cutoff functions satisfying0 < n < 1,0 < { <1, =1in Bg,(Xo), { = 11in £s,(tp) and

10¢¢lloo < (3.1

3
\Y% < —) .
IVl < 5= S—

Now for 0 < h < hg, we define the truncated solution

Va(2) = [u(z) - uplan(){(t), z = (x,t) € R™, 3.2)
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as a suitable candidate for test function to be used to prove energy estimates. For z € R"™*!, we define the
Lipschitz truncation of v, as
Vh(2) = V(2) = ). (Vi(2) - v})wi(2), (3.3)
ieN
where
H vn(z)dz if%Ui C Ug,,s,(20),

Vh =) %0
0 elsewhere.
Similarly, we define
v(z) = (u(z) - un)() and vi(z) = v(z) - ) (v(2) - V)wi(2), (34)

ieN
where 5
H v(z)dz if?Ui C Ug,,s,(20),
V= %Ui

0 elsewhere.

3.2 Preliminary lemmas

In this subsection, we discuss some preparatory machinery to prove Lemma 3.5. We denote a family of param-
eters as
data = data(ns N) p) qx S, a, B: v, Ls ”a”LOO) ||b||L°°: [a]a, [b]ﬁs Rl) RZ) sls SZ! K)'

First, we recall the following lemma from [7, Lemma 8.1].
Lemma3.1. Let f € L'(Qr) and h > 0. Then there exists a constant ¢ = c(n) such that
flndz <c ][J[ fdz,
Uryry (20) [Ury.ry (20)]n
where [Ur,,r,(20)In = Ur,,r,+n(Z0).
Lemma3.2. Let 1< y < d. Then for any cylinder Q ¢ R™! such that Q n E(A) # 0, we have

H £ dz < AV (3.5)
0

Moreover, there exists a constant ¢ = c(data) such that

H frdzsch, 3.6)
4K;U;

where K;U; is defined in (2.9)-(2.10).
Proof. Letw € Q N E(A). Then by (2.1) and (2.2), we have

ny dz < ( Hfd dz)d < (M(fd)(w))% < (M(fd T (afr + (be)%)(w))% <AV
0 0

and that proves (3.5). By Lemma 2.18 (iv), we have 4K;U; n E(A) # 0 and it follows that

]f][ Frdz < Ab.

4K;U;



994 —— B.Kim et al., Parabolic Lipschitz truncation for multi-phase problems DE GRUYTER

CaseI: U; = Q;. In this case, we have Kz/lf > a(zi)/l:.l and Kzﬂf > b(z;)A;. Using this, we have
A =2+ a@z)A! + b(z)AS < @K* + DAY
Hence, we get
H frdz<Ar < 2K*+1)7A) = cA)
4K U;
and this proves (3.6) for this case.

Case II: Uj = Qf. In this case, we have Kz/lf < a(zi)/l? and Kz/lf > b(zi)Af. By Lemma 2.18 (x), we also have

@ < a(z) < 2a(z;) for every z € 200KQ;,(z;). Then we have

@t ff ¢0* az = {f @eorn? @z <2 {f @@ e 37)
4K U; 4K, U; 4K U;
By Lemma 2.18 (iv), there exists a w € 4K;U; n E(A) and we obtain
f @@rn? az < m(ar? o) < (M + @D + o HW) < A7
4K U;

Hence, from (3.7), we have

LSTE

a(zy)? H (P9 dz < ch? = (28 + azoA! + b(z)A; )
4K U;
BN 4 qy4
< C(Za(zi))ll. +K ,11.) < (30)7 (a(z)AY)?.
Since a(z;) > 0, we get
a
H (FO)? dz < cA!
4K U;
and finally, we have

y g w y
]f][f dz < pr dz) <ca,

4K, U; 4K, U;

which proves (3.6) for this case.
Case III: U; = Q;. In this case, we have Kzﬂlf > a(zi)/lf and szlf < b(z;)A;. By Lemma 2.18 (x), we also have
% < b(z) < 2b(z;) for every z € 200KQy,(z;). Then we have
ket ff ¢F az= ff weor az <2t ff et e (3.8)
4K U; 4K U; 4KU;
By Lemma 2.18 (iv), there exists a w € 4K;U; n E(A) and we obtain
f} e@r? az < m(er) o < (M + @D + W) < A7
4KU;
Hence, from (3.8), we have
da
b(z)" H (P dz < ch? = (20 + azoA! + b(z)A} )’
4KU;
d d d
< ¢(2b(z0A] + K227)" < (3¢)? (b(z)AD)? .
Since b(z;) > 0, we get
sd
ff )7 az< e

4K;U;
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and finally, we have
e

s sd
H dezs< H: fr dz) <cAl,
4KiUi 4KiUi
which proves (3.6) for this case.

Case IV: U; = Q?’S. In this case, we have Kz)tf < a(zi)/l;Z and Kz)lf < b(zl-))lf. By Lemma 2.18 (x), we also have
@ <a(z) <2a(z;) and @ < b(z) < 2b(z;) for every z € 200KQy,(z;). Now we consider two cases: either
a(zi)/l? < b(zi))lf or a(zl-)/lf > b(zi))tf. The first case corresponds to case III and the second case corresponds to
case II and we arrive at the same conclusion. O

Now we prove a parabolic Poincaré-type result.

Lemma 3.3. Let U = By, x ¢r, be any cylinder defined in (1.9) and (1.10) satisfying By, C Bg,(Xo). The the following
estimates hold:
(i) There exists a constant ¢ = c(data) such that

H vy — (i)l dz < c% H: (fp’l +a(2)f ! + b(2) 3*1) dz + c(rq +12) Hfdz. (3.9)
U ! [Uln [UTn
(i) Ifin addition €, N €s,(to)¢ # B, then there exists a constant ¢ = c(data) such that
H [vpl dz < c? H (f”‘l +a(2)f + b(z) 5‘1) dz + c(r1 +12) Hfdz. (3.10)
U ! [UTn [Uln

In addition, the above estimates hold with vy, and [U]y, replaced by v and U.

Proof. For t1,t) € €y, t1 < ty,1let {5 € Wé’oo(erz) be a piecewise linear cut-off function defined by

(0, te(-oo,t1 - 9),
1+ _(Stl’ telty-6,t],
Cs(t) =141, t e (ty,to),
1-8 it 4+ 6,
S
\0, te(ty +68,00).

Furthermore, let ¢ € C;°(B;,) be a nonnegative function satisfying

cn
foax-1 19lo < 52 1l <

By,

By taking a test function ¥ = ¢n{(s € W3’°°(U N Ug,,s,-n(Z0)) in the Steklov averaged weak formulation of (1.1),
where standard cutoff functions 1 and { are defined in Section 3.1, we obtain

ﬂ ~{u - uoln - PNA((Ls) dz = ”[—A(-,Vu) +B(-, Py - VY dz.
U U

By the definition of f, (1.2) and (1.3), we have

I= £J—[U—Uo]h'¢qfat(6dl

< jj fln - n0Cs0:L dz| + c(L)I ”[ﬂ“ +a()f T 4 by - VY dz
U U

=II + III.

First, we get from Lemma 3.1 that

< U[ﬂﬂataucpum dz < c(n, Sy, ST Hfdz
U [Uln
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and

I < c(@) || [P+ a(- )f T + b(-)f S nIVY| dz

< @) [P+ aC-)f T+ b nleVn + nVel dz

<c@) [P+ aC)f T+ bCHFS (e + )V + Vol dz

S b = b S

< c(n,L)r?rz<ﬁ + rll) ﬂ(ﬂ’-l +a(2)f " + b(2)f 1) dz.
[Uln

Note that r; < Ry, and hence

1 1 Ry 1
— <2 ,1}—.
Rz - R1 " ri maX{RZ —R1 ri

Therefore, we have
I < c(n, L, Ry, R)ri'ry :H(fp‘1 +a2)f"t + b(2)f*!) dz.
[Uln
Next, we obtain from the one-dimensional Lebesgue differentiation theorem that

lim I =
5§—0+

Jim [ - woln - gngacgs az
U

= J vpo dz — J Vpp dz

By x{t1} By, x{tz}

= |B1lr1"1(vh)p,, (t1) = (vh)p,, (t2)].

Combining the above inequalities, we conclude that

DE GRUYTER

esssup |(va@)s,, (t1) — (Va)s,, (t2)| < cry H fdz+cri'r H (P + a2)f 1 + b(2)f* 1) dz, (3.11)

ti,t €l
"2 n [UTn

where ¢ depends only on n, L, S1, S, Ry and Rs.

Now, we estimate the left-hand sides of (3.9) and (3.10). First, we prove (3.9). By the standard Poincaré

inequality, we have

ff wn - wnotdz < ff ton - wn, 1dz + ff 1o, - @0tz
U U U
< ctr ff 1voal dz + ff 10w, - wwvldz.
U U

It follows from the definition of f, Lemma 3.1 and (3.1) that

Hw\zm dz - H \IVadnnd + [t - uolnVndl dz < c(n, Ry, Ry) Hfdz.
U U

[Uln

Moreover, we obtain

H |(vr)B,, () = (Vva)ul dz = 1 |(Va)s,, (7) = (Vvi)uldT
U

!
J

f ndn, © - n, (0) do| ax

Ty erz

(3.12)

(3.13)

(314)

<2 ][ |(vi)B,, (T) = (Va@)B,, (D) dT + esssup |(vh@)s,, (t1) — (Vh@)s,, (t2)I.

t1,t€l
erz L2%try
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To estimate the first term, we use the fact that (¢) B, = 1, the standard Poincaré inequality and (3.13) to obtain

f 1o, @ - wron, @l de= | {onn, @ f oax- | vioaxar

b éry By, By, x{1}
“f f own-oms,)axar
tr,  Br {7} (3.15)
< cMlPloors ]f][ Vil dz
U

< c(n,Rl,Rg)rl de
[Uln

Combining (3.11), (3.12), (3.13), (3.14) and (3.15), we have the conclusion.
Finally, we prove (3.10). As in (3.12), we obtain

ffwutdz < ff ton - wnrm, 1z + f 100m, 1 < ery ff1ovitdz + f 100, (316)
U U éry U e,
Then we have
f1ows, 1dz < § 100, - a0, 1dt+ f (0r0)n, 1t (317)
b, ér, b

Since €, N €s,(to)¢ # 0, there exists ty € ¢y, such that 3 € £, (fo)¢. Since { = 0in &g, (t), we have

][ |(vr)s,, | dt < esssup |(Va@)s, (D) < esssup|(Va@)g, (t1) — (Va@)s,, (t2)I. (318
; teerz tl,tzéfrz
r2

Thus, combining (3.11), (3.13), (3.15), (3.16), (3.17) and (3.18), we have the conclusion. O

Next, we recall the boundary version of the Poincaré inequality from [29, Theorem 6.22].

Lemma 3.4. Let B,(xp) ¢ R" and B, c R" be balls that satisfy B, N B,(Xq)® # 0. Assume that v € WS’II(BP(X()))
with 1 < n < co. Moreover; let1 < 0 < n"T"nforl <n<nandl<a<ooforn<n<oco. Then there exists a con-
stant ¢ = c(n, n, o) such that

( ][ Ivlodx); < cr( ][ V7 dx)é.

Byr Bar

3.3 Poincaré-type inequality for the test function

In this subsection, we prove the Poincaré-type inequality for vj.

Lemma 3.5. Let K;U; be defined in (2.10). Then the following estimates hold:
() IfKiU; c Ug,s,(z0), then there exists a constant c such that

H [vh — (vi)k,u,l dz < c(data, A)r;, (3.19)
KU,
H IV = x| dz < c(data)dirs. (3.20)
K;U;

(i) IfK;U; ¢ Ug,s,(zo), then there exists a constant ¢ such that

H |lvpl dz < c(data, A)ri, (3.21)
KU
H |v|dz < c(data)A;r;. (3.22)

K;U;
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Proof. We start by proving (3.20). Note that we assume K;U; c Ug, s,(Zo), and hence we can apply Lemma 3.3
with Q = K;U;. We consider the following cases.

CaseI: U; = Q;. Using Lemma 3.3, we get
H V- Wkl dz < A2 Pry H (FP1 + a@)f T + b(2)fS 1) dz + c(ri + A2 Pr?) H fdz.
KU; K;U; KU;
Since r; < Ry and p > 2, we have
o(ri + Affpr?) ]f][ fdz < c(Ry)r; ]f][ fdz. (3.23)
K,'Ui KiUi
Plugging (3.23) in the above estimate, we get
H V- Wkl dz < A2 Pry H (F* + a@)f" + b(2)f* ) dz + cr; H fdz. (3.24)
K;U; KU; KU;
Since U; = Q;, using Kzﬂf > a(zi)/l;Z and Kz)tf > b(z;)A], we estimate

H a@)f ' + b(z)fstdz < H la(z) — a(z)|fT  dz + a(z;) H fitdz

K;U; R, J
* :H: |b(z) - b(Zi)lfs_1 dz + b(z;) Hfs—l dz
K;U; RU;
K.U; Foit

+ [b]p(Kiri)? Hfs‘l dz + K220~ Hfs—l dz.
KiUi K;U;

Using Holder’s inequality and applying (3.6), we further estimate

N
o

- -

ﬂ a)f T + b(z)f$ldz < [a]a(K,-ri)“< H 51 dz)s_ +K2A§"q( H 51 dz)s_

KiU; K;U; KiU;
+ [Dlp(Kir)P AT + KEAT A5
< [@)o(Kir) AT + [Dlp(Kir)PAS + 2K2207
< c)tli’_l,
where the last inequality follows from Lemma 2.18 (ix). Plugging the above estimate in (3.24), we obtain
H [v - (Vg | dz < c(data)A;r;.
KU
Casell: U; = Q?. Note that, in this case we have KZAI.’ < a(zi)Aq and Kz)l’.’ > b(z)A3. Using Lemma 3.3, we get
H v - (Wkuyldz < c H (f*1 + a(2)f 1! + b(2)fs 1)dz+c(rl ( /1) Hfdz
q is

K U;

gq(zl:A )

i J2

Note that J> can be estimated as previous since g4(z;, A;) > )lf.’ . Now we estimate J;. First we note that, from
Lemma 2.4 we have %) < q(z) < 2a(z') and [b]ﬁ(SOKrl-)ﬁ')ms < (K* - 1)AY. Hence we have

T < L pr 1q i " H a(z)f 1dz+ H b(z)f* 1 dz
l KiUi 'K-U, 1 KiUi
< cAiri + ([b]ﬁ(K,rl)B Hfs Ydz + K2V Hfs 1 dz) < cAiry.
l KU; KU; KiU;

The last part of the above calculation follows from Case I.
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CaseIIl: U; = Qf. Note that, in this case we have KW > a(zi))l‘.’ and Kz)t’.7 < b(zi))l?. Using Lemma 3.3, we get

HIV—(V)KIUl|dZ<C X z,ﬂ)ﬂ(fp Ly a@)ft™" + b(2)fs” 1)dz+c(rl gs( 1,/1) Hfdz

KiUi

Js Ja
The estimates of J3 and J4 are similar to Case II. We use the Holder regularity of a(z) and bounds on b(z), i.e.,
b(z < b(z) < 2b(z;), and we can arrive at the same conclusion.

CaselV: U; = Q?’s. In this case, we have Kzﬂ < a(zi))t‘-l and KZA’.] < b(z;)A;. and again using Lemma 3.3, we get

H |v_(V)KiUi|dZSCg—Zl,)t) H (fP + a(z)f + b(2)f*~ 1)dz+c(rl qs(Zz,ﬂ) Hfdz
R K;U;
Ts Js

From Lemma 2.18 (x), we have % <a(z) <2a(z;)and b(z < b(z) < 2b(z;) for every z € 200KQy,(z;). The esti-
mate of g is same as previous as )l’.’ + a(zi)/lfZ + b(z,»)As > Ap Next, we estimate J5. Then we have

q-1 s—1
]f][ a(z)f7dz + b( l))ts H b(z) dz

Adri
]5<—Hf” Ydz +
a(

i iKU
Ar 2/1r
’prld quldz+ lﬂ:f“dz
' KU; l KU; K;U;
Sdﬂb

where the last inequality follows from (3.6). This completes the proof of (3.20).

Now we prove (3.22). If K;U; ¢ Ug, s,(20), then either K;B; c Bg,(xp) and K;I; N lgz(to) + 0,0r K;B; N Bgz + 0.
In the first case, we may apply (3.10) of Lemma 3.3. Note that, since the right-hand side of (3.9) and (3.10) are the
same, the proof follows from the previous case. In the second case, we apply Lemma 3.4 withg=1and n =d
since v(-, t) € WS’”I(BR2 (x0), RY). Indeed, we have

d
H lvldz < Cri< H [vv|4 dz)

K;U; 4K;U;

1=

and using |Vv| < cf, and (3.6) we obtain
a i
< ﬂ |Vv|ddz) <c ( ]f][fddz> < ch,
4K U, 4KU;

which completes the proof of (3.22).
Next, we focus on the estimates involving Steklov averages, i.e., (3.19) and (3.21). If K;U; c Ug,s,(Z0), then
from Lemma 3.3, we get

H Vi — (Vi) dz < c ﬂ (P + a(2)f Tt + b(2)fS V) dz + (|| + 17) H fdz.

KiU; [KiUiln [KiUiln

We note that |I;]| < rf <riRy and a(z) < |alloo, b(2) < ||blloo. Moreover, we observe that for small h > 0, [K;Uilx
may intersect E(A), L.e., [K;U;]n N E(A) # 0. Using these observations and applying (3.5), we obtain

HWh‘(Vh)KiUJdZSC’"i H P dz + crilaleo H F41dz + crilbloo H f51dz
KU; [KiUiln [KiUiln [KiUiln
.

p-1 51 1
<crihv o+ cri||a||oo< H 51 dz) +crillblloA?
[K;Uiln

p-1 g1 51
< cri(A P+ |alloAP + [DllcoA P ) = c(data, A)r;.
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This completes the proof of (3.19). To prove (3.21) in the case K;B; c Bg,(xo) and KiI; n lgz + 0, we need to
estimate (3.10) which is the same as estimating (3.9). When K;B; N Bg, # 0, we may apply Lemma 3.4 to get

1
da
H:Ivhldzscri( ﬂ IVvhlddz> .

Ki U,' 4Ki Ui
Now using Lemma 3.1 and (3.5), we estimate the right-hand side of the above expression as
1 1 1
d d d 1
( |Vvh|d dz) < c( H |Vv|ddz) < c( H fd dz) < CAv?,
4K U; [4K;Uiln [4KUiln
which gives the proof of (3.21). O

Corollary 3.6. We have the following estimates on vﬁl, "'1;1 and vi,V foreveryi e Nandj e J:
@

H [v - vi|dz < c(data)A;r;, (3.25)
U
(i)
]f][ lvi - vl dz < c(data, A)ry, (3.26)
#Ui
(iif) _
[vi - V)| < c(data, A)r, (3.27)
(iv)
[Vt = V| < c(data)A;r;. (3.28)

Proof. We start by proving (i). Indeed, we obtain
H lv-vildz < ﬂ v - (Mgl dz + ﬂ (Vg — (V)21 dz
iy, iy iy,

<cff v- il dz.

KU;
If K;U; c Ug,,s,(20), then from (3.20) we get
H V- vi|dz < c H V- (ko dz < c(data)ir:.
%Ui K;U;
If K;U; ¢ Ug, s, (o), from (3.22) we have
H |v—vi|dzs2H lvldz < ¢ H vldz < cAir;.
%U;‘ %U,‘ KiUi

The proof of (ii) follows from (3.19) and (3.21) as above. Now, let us prove (iv) and the proof of (iii) is similar. First,
we assume K;U;, K;U; ¢ Ug, s,(2o). Using Lemma 2.18 (vii) and (viii), we estimate

|vl - le < |vl - (V)KiU,'| + IV] - (V)KiUil
H V- W)y, dz ]f][ V-V, dz
Ui #Uj

<cC :H: v - (V)KiUil dz < cAiry,
K;U;

+
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where the last inequality follows from (3.20). On the other hand, let K;U; ¢ Ug, s,(Zo). In this case, again using
Lemma 2.18 (vii) and (viii), we obtain

Vi -] < H lvldz + H lvldz < ¢ H: vl dz < cAiri.
%U,‘ %U]‘ KiU;

The other case K;U; ¢ Ug, s,(2o) follows from the fact that r;, r; and A;, A; are comparable. O

3.4 Bounds on Lipschitz truncation and its derivatives

In this subsection, we show that vﬁl‘, vA and their gradients are bounded.
Lemma 3.7. We have |v‘,}(z)l < c(data, A) and |v*(z)| < c(data)A; for every z € U.
Proof. Fix z € U;. Then, for each j € J, we obtain from Lemma 2.18 (viii), Lemma 3.2 and the definition of v that
V| < H |v|dzscﬂfdzsc)ti.
bu K,
Moreover, we have from Lemma 2.19 that

vA(z) = Y Vwi(2) = ) Vwj(2). (3.29)
jeN jed

Therefore, we conclude from Lemma 2.18 (xi) and Lemma 2.19 that

VA@)l < Y Vllwi@)] < Y V] < ek

jeda jeda

On the other hand, for each j € J, we get from Lemma 3.1 and Lemma 3.2 that

vil < H @)l dz < ¢ H fdz < c(data, A).

2Ui 2Uin
As in (3.29), we have ‘
vp(2) = ) Vywj(2), (3.30)
jed
and hence we have the conclusion. O
Lemma 3.8. For any z € U;, we have
IVvA(2)| < c(data, A) and |VvA(2)| < c(data)A;. (3.31)
Furthermore, we have
10,vj(2)| < c(data, A)r;’! (3.32)
and .
c(data)r;* AP if Ui = Q;,

c(data)r;? gq(zi, A)ATT i Ui = QF, 533
c(data)r;'gs(zi, ADA;" if Ui = Qf

i’

c(data)r;'AA;! ifU; = Q.
Proof. Fix z € U;. Then, by (3.29) and (3.30), we get

i@ = V(¥ Vb)) = Y vivey)

jed jed

l0:vh(2)] <

and
wh(z) = Y VVwj(2).
jed
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Note that Lemma 2.19 implies
0=v( Y 0@) =9( Y 0y2)) = ¥ Vo2
jeN jed jed
Thus, we get from Lemma 2.18 (xi), Lemma 2.19 and Corollary 3.6 that

IVvi(z)| =

YW - vfl)ij(z)l < 3V, - vi Vel < e(data, A)
jed jed
and
IVvA(2)l < Y IV - V| [Vwj| < c(data)A;.
jed
Next, by the above arguments, we get

dvi(2) = ¥ Vhdewj(2) = Y (V) - v)dcw;(2)

jed jed
and
dvh(z) = Y Vawj(z) = Y (v - v)dwj(2).
jed jea
Therefore, by Lemma 2.18 (xi), Lemma 2.19 and Corollary 3.6, we have the conclusion. O

Lemma 3.9. Let E(A) be defined as in (2.2). Then vﬁ, VA, the Lipschitz truncation defined in (3.3)—(3.4), satisfies
the following estimates:

0))
ﬂ [vi — vill8:vih] dz < c(data, A)[E(A)],
E(A)¢
(i)
” lv - vA||a,vA| dz < c(data)A|E(A)°],
E(A)¢
(iii)

H(z, V™)) + H(z, |[VV2|) < c(data)A
for almost every z € R™,

Proof. We start with proving (i):

” [vh — VA||0,vA| dz < ” Z v — v llwill8,vh] dz (3.34)
E(A)¢ E(p)c €N
< ¥ [[ wn-villoomgiaz
ieN
ie iy,
< Y 10V ez ” lvp - vi| dz. (3.35)
ieN iy
rxYi

Now using Corollary 3.6 (i) and (3.32), we can estimate the last term of the above inequality to obtain
1
[ ton-viowidz < ¢ ¥ 1wl = ¢ ¥ | 01| = ccdata, nE@
E(A)¢ 1eEN 1eEN
The proof of (ii) can be obtained similarly. To prove (iii), first let z € E(A). In this case,
VA2 + a2V (2)|? + b(2) v (2)° + VA2 + a(z)| Vv (2)|? + b(z2) Vv (2)1°
= V(@) +a@)v(2)|? + b(2)Iv(2)° +IVV(2)IP + a(2)[Vv(2)|? + b(2)IVV(2)[°
< (f? + a(2)f1 + b(2)f*) < cA.
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Now let us consider z € E(A). Then z € U; for some i € IN. Using Lemma 3.7 and Lemma 3.8, we get
VA@P + a@ @) + bR @) + VA @)P + a@)IVv @) + b))
< ¢ + a(@)A] + b(2)AS).
CaseI: U; = Q,. Using the Holder regularity of a(z) and b(z), and Lemma 2.18, (ix) we obtain
A 4 a@@A? + b@)AS < A8 + a(z)A? + [alar®A? + b(z)AS + [blrhas
< e +a(z)A! +b(z)A5) = cA.
Casell: U; = Q?. In this case, we use Lemma 2.4 to get
A 1 a@A + b2 < A0 + 2a(z)AT + b(z) A5 + [b1prP A8
< ¢+ a(z)A! + b(z)AS) = cA.
CaseIIL: U; = Qf . In this case, we use Lemma 2.3 to get
W+ a@)A] + b@2)A5 < ¥ + azp)A! +2b(z)AS + [aloriA]
< c@¥ + a(z)A] + b(z))AS) = cA.
CaselV: U; = Q?’S. In this case we use Lemma 2.2 and obtain
A+ a@A! + b(2)Af < AT + 2az)AT + 2b(29)A5 < 2A.

This completes the proof. O

3.5 Lipschitz regularity of v}

In this subsection, we show that vﬁl‘ is Lipschitz continuous with respect to the metric
e (2, w) = max{lx - yl, \A-2|t - s},

where z, w € Ug, 5,(20) with z = (x, t) and w = (y, s) and A is chosen such that A = A? + ||alcoA? + [|bllcoA®. Let
us recall the definition of Q;;(w), that is,

Qua(w) == Bi(y) x (s = A2 P12, s + A2 P2).

1

loc(R™1). Then there exist a constant ¢ = c(n) and

Lemma 3.10 (Campanato characterization). Assume thatf € L
a set E ¢ R™! with |E| = 0 such that

|f(Z) - (f)Ql,A(Z)l

i dz

If(z) - fw)] < c(n) dp (z, w) sup
>0
Qua(w)

H Mdﬂ/+c(n)(bﬂ(2,w)5up H

10
g Qu11(2)
for every z,w e R™! \ E,

Proof. Since Qa,y (z,w),2(2) € Q2d,» (z,w),2 (W), by replacing B(x, r) with Q; 4(z) and |x — y| with d;»(z, w), and tak-
ing B = 1in the proof of [29, Lemma 4.13], we obtain that

If(z) - fw)| < c(n)dw(z,w)  sup dw

0<l<4d;p (z,w)

H |f(I7V) - (j)Ql,A(W)l

l
Qua(w)

+c(n)dyw(z, w) sup
0<l<4dp (z,w)

H If(Z) - (l]‘)Qz,A(z)| &5

Qua(2)

|f(l7V) - (f)Ql,)L(W)| div

< dy(z,
<c(n)dyp(z w)slup ]f][ i

>0
Qua(w)
7Z) —
+¢(n) da (2, w) sup H &) = Noual 4
>0 l
Qu(2)

This completes the proof. O
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We remark that the above conclusion holds for every z, w € R™! by [29, Remark 4.14]. Now we are ready to
prove the Lipschitz regularity of v5.

Lemma 3.11. There exists a constant ¢, = c(data, A) such that
Vh(2) = vy(W)| < cadae (2, W)
for every z,w € R™*1,
Proof. We first note that, since A; > A from the definition of d, we have
dw(z,w) < dj(z,w) forallie N. (3.36)
Applying Lemma 3.10, we get

E Dol

VA(2) — vAW)| < c(n)de (z, w) sup H

>0 0r(w)
o 3.37)

WAEZ) = (V) oLl .

+ c(n)dy (z, w) sup H i

>0
Qu1(2)

Note that vi € L{ (R™*1). Therefore from (3.37), it is enough to show that there exists a constant ¢, = cx(data, A)
such that

dw < cp forall Q; (w) c R™1, (3.38)

H WAD) = (V) guum
l
Qra(w)

We fix the cube Q;2(w) and prove the above estimate (3.38) when 2Q; 2(w) completely lies on the bad set E(A)€,
or Q,(w) lies inside the bad set E(A)€, but 2Q; 2(w) meets the good set E(A) or both Q;2(w) and 2Q; 2(w) meets
the good set E(A).

Case1:2Q;(w) c E(N)¢. Letz € Qpa(w). Then, by Lemma 2.18 (i) there exists i € IN such that z € U;. Using (3.36),
we have
L<dw(z,E(N) < dpe(z,2i) + A (zi, E(N)) < di(z, 2i) + di(zi, E(A)).

Here, z; is the center of U;. Since U; is a ball of radius r; with respect to the metric d;(-, - ), we get from Lem-
ma 2.18 (iv) that

l <di(z,z;) + di(zi, E(N)) < i+ 5r; = 61}.
Lemma 3.8 implies the uniform estimate

|0,vi(2)| < c(data, A)r;" < c(data, A)I™ (3.39)

forall z € Qi a(w).
To prove (3.38), let z1,z2 € Q;a(w) with z; = (x1, t1) and zy = (Xg, t2). Since v’,} € C®(E(A), RY) and
Q12(w) c E(A)S, by the intermediate value theorem, (3.31) and (3.39), we have

Vi (21) = Vi (Z2)] < VR (X1, t1) = Vi (X, t1)] + [Vh (X2, t1) — Vi (X2, £2)]

<cl sup |VVA(2)| +cA*PI* sup |9:vh(2)| < c(data, A)L.
z€Q(w) z€Q(w)

Thus, we conclude

J‘][ |Vﬁ—(V?)oz,A<w>lde H H |Vﬁ(zl)—vﬁ(zz)|d

i 7o dz1 < cp(data, A).

Qua(w) Qua(w) Qua(w)
Case 2:2Q;2(w) N E(N) # 0 and Q;a(w) N E(A)¢ = @. In this case v‘}} = vy and hence
H Vi — Veuml o _ H Vi = (V) guuom)|

l )
Qua(w) Qua(w)

dw.
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We denote w = (y, §). If Bi(y) C Bg,(Xo), then I < Ry is satisfied and Lemma 3.2 and Lemma 3.3 imply that

vp — (v
H L;’)Q“(W" i < c(data, A)(A2P + A2P1 + 1) < c(data, A).
Qua(w)
On the other hand, if B;(y) ¢ Bg,(Xo), we apply Lemma 3.4 with 0 = 1 and n = d to get

H L;‘)Q“(W)ld <2 H Md <c H [Vvp| dw.

Qra(w) Qra(w) 4Q12(w)

Recalling that in this case 2Q;(w) n E(A) # 6, we conclude with Lemma 3.2 that

[Vvpldw < ¢ :"][ fdw < c(data, A).
4Q12(w) [4Q1a(W)]n

Case 3:2Q;2(w) N E(N) # @ and Q;a N E(A) #+ 0. We define the index set
2
P= {i eN:Q(w)n KUi # 0]’-

We want to show that the radii r; are bounded uniformly by l with respecttoi € P.Leti € P, w; € Q;2(w) N % Ui
and ws € 2Qu1(w) N E(A) with wy = (y1, s1) and wy = (2, S2). By Lemma 2.18 (iii) and wq € £ U;, we obtain

3r1 < di(U;, E(A)) < di(zi, wo) < di(zi, we) + di(wy, wy) < 2r; + di(wy, wa),
and hence r; < d;(w1, w). Moreover, since A < A; and wq, wy € 2Q;1(w), we get
di(wy, wp) < maX{D’l — yal, VAA st - Szl}
<Al max{[yl - yal, VAP2s1 — Sz|}
= Ardy(wy, wy) < 4AZL

Thus, we have r; < c(A)L

Note that
A A A
vh — (v v — (v
H vy = ( ?)QM(W)|dWS2 H vy (;l)QM(W)ldw
Qua(w) Qra(w)
sy H [V = vl G+ 2 H Vh ~ Vnouanl o
< -1 —aw.
Qra(w) Qra(w)

As in Case 2, we can estimate the second term on the right-hand side. To estimate the first term, we obtain from
the definition of v} and the fact that w; is supported in 2 U; that

H Vi vl o {][ | ZiepOVn—viwil
l l
Qua(w) Qua(w)

lvp = vilw;

Qui(w) [€P

1 Vv —Vi Wi
_ Z ” Vi = vyl L i,
1Qua(W)| !
Qia(WNZT;

Since w; < 1 and r; < ¢(A)l, we have

vh=vilwi _ e(n) lvp = Vil
IQu(w)llEZP ” ro s Qu(w)|l€P” 1

Qu(WNZT;
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Combining the previous inequalities with (3.25), we obtain

VB —val . c(data, A)
dw < ’ Uil.
i o 2
Qua(w)

Since r; < c(A)l, we get U; c c(data, A)Q;a(w) for every i € P. By Lemma 2.18 (ii), we have that

VA —Vvhl  _ c(data, A) 1
H i dw < 10 W] Z |@Ul| < c(data, A).
Qua(w) ’ tep

Thus, the proof is completed. O
Corollary 3.12. Let E(A) be defined in (2.2). Then vy, satisfies the estimate
H(z,|vh(2)]) + H(z,IVVi(2)]) < c(data,A) for ae z € R™.

Proof. Since vﬁl‘(z) =0 in Ug,s,(20)¢ and vﬁl‘ is Lipschitz continuous for almost every z € R, we get that
[vA(2)| < c(data, A) and |Vvi(2)| < c(data, A) for almost every z € R™*1. Then we have

VR @IP + a@)vi(2)|7 + b@)|vy (2)I° + Vv ()P + a(2)IVv(2)|7 + b(2)[Vvy ()l

< c(data, A)(1 + [lalleo + I1Dlloo)-

This completes the proof. O

3.6 Some more properties of Lipschitz truncation

In the following proposition, we collect some more properties of Lipschitz truncation.

Proposition 3.13. Let E(A) be asin (2.2), and let n, { be the cut-off functions. Then {vﬁ}bo and a function v* satisfy
the following properties:

0 vhe Wé’z(supp(();LZ(supp(r]),]RN)) N L (supp(); Wé’oo(supp(n),IRN)).

(i) v e L (supp({) + ho; Wé’“’(supp(r]), RM)).

(iii) v = vp, VA = v, YV} = Vg, VWA = Vv ae in E(A).

(iv) v‘,} — vhin L°(Q, RY) as h — 0%, taking a subsequence if necessary.

(v) Vvi — Vvhand 8,vh — 9,v* a.e. in E(A)° as h — 0%,

Proof. To show (i), we first note from Definition 1.1 and the definition of Steklov averages that
Vi € Wy (supp(Q); L2 (supp(n), RY)).

Moreover, the definition of vﬁ in (3.3) only matters for finite sum since |J| < c. Therefore, together with
Lemma 3.11, we complete the proof of (i).

The proof of (ii) is obvious from Lemma 3.9 (iii). Indeed, we have |[vA(z)| < CA% and [VvA(z)| < CA% for
all z € R™1,

The proof of (iii) follows from the definitions (3.3) and (3.4). In fact, since w;(z) = 0 for z € E(A), we have
the proof.

Since vﬁ(z) =0forze Uzcez,sz (20), using Lemma 3.11 we see that {vﬁ}bo is equicontinuous and uniformly
bounded. By the properties of Steklov averages, we already have vﬁl‘ — vh as h — 0+. Hence, by Arzela—Ascoli
theorem, we get vi — v& in L°(Q, RV). This proves (iv).

The proof of (v) follows from vﬁl — vias h — 0 and the expressions computed in Lemma 3.8. O

4 Proof of energy estimate

In this section, we prove the energy estimate in Theorem 1.2 using the Lipschitz truncation vﬁl‘.
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4.1 Proof of Theorem 1.2

We closely follow the proof of [28, Subsection 5.1]. For 7 € £s,_n(to) and sufficiently small § > 0, let

1, tE (_OO; T_S):
s(t) = 1—t_2+6, telr-6, 1,
0, te(t,top+Sy—h).

Note that, by Proposition 3.13 (D), vin${¢s(-, t) € Wé"’o(BRZ (x0), RN) for every t € €s,_p(to). Using this function
as the test function of the Steklov averaged weak formulation in (1.1), we obtain

teil= [ ddu-wdevindGdz e[| 1A V0l - VR GCs) dz

Ug, s, (20) Ury,s, (20)
- || e vors dz-m
Ury,s,(20)

Now we estimate the each term above by dividing the integral domain into E(A) and E(A)€.
Estimate of I. By integration by parts and the product rule, we obtain
I= ﬂ (~vi - VAN '8¢l — vi - v {s) dz + ﬂ —[u—uolp - vihn*Cs0,{dz =11 + 1.
Ug,.s, (20) Ug,s, (20)
First, we consider I;. Then we have

I = ” —lvrl2nS 10,05 dz + ﬂ Vh - (vn - vns10, s dz

Ur,,s, (20) Ur,,s, (20)
- ” (h—vi) - ovins s dz - ” Vi - v s dz.
Ury,s,(20) Ugy.s, (20)
Note that integration by parts implies
_ 1 _
” vh -0 T (s dz = - ” [VAI*nS10,s dz.
Ur,,s, (20) Ury,s, (20)
Since v) = vy a.e.in E(A) and vy, = vh = 01in Ug, s, (20)¢, we obtain
1 _ _ _
h= [ vl giBntagsdz [ vne on- i dz - [[ - v own G dz.
Ur,,s,(20) E(A)° E(A)*
Letting h — 0%, we obtain from the properties of Steklov averages, Proposition 3.13 (iv) and Lemma 3.9 (i) that
1
Imn= [[ - vt tegsdzs ([ vow-vintagsdz- [[ v o0tnigsdz
Uy 5, (20) E(A)¢ E(A)e

=111 + 12 + I13.
Since the Lipschitz truncation is done only in the bad set E(A)€, we get
1 _ 1 _
= [ -5 taigsdz— [ (WP - 5100 )n*tacts dz
E(D) E(M)*
Since v € L2(U Ry.S:(20), RY), we obtain from the absolute continuity, Lemma 3.9 (iii) and (2.3) that

. 1 _
Ah—»n(}ohl = J’J —Z|V|2rls 1at(8 dz.

Ug,,s, (20)
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For the same reason, we also have limy_,o, I12 = 0. Finally, Lemma 3.9 (ii) and (2.3) imply that limy_,o, I13 = 0.
Thus, we have

; 3 _ 1 2,51

i i =[] gFatodsdz
Ury,s, (20)

Now, we estimate I,. By the properties of Steklov averages and Proposition 3.13 (iv) and by dividing into the

good and bad sets, we get

lim 1, = - ” (U - p) - V0 50, dz
Ug,,s, (20)
> - ” I~ uol210,7] dz - ﬂ I~ ulVA104] dz.
Ugy s, (20)NE(R) E(A)e

Then Holder’s inequality implies
1

” lu - ugl[vM18:(] dzs( ” |U—u0|2|az(|2dl);< ” I dz)z.
E(A)¢

E(A)© Ugy,s, (Zo)NE(A)*

Since |u| € L%(Qr), the first integral vanishes as A — co. By Lemma 3.9 (iii) and (2.3), we get

lim ” VA2 dz < lim cAP[E(A)| < lim cAJE(A)] = 0.
A—oco A—oo A—oo
E(A)¢
Thus, we get
lim lim I, > - ” lu - up|?|8,{ dz,

A—00 h—0*
Ugy,s, (o)
and hence we conclude
. . _1 2,5-1 _ 2
lim lim I> 2|v| N 0¢(sdz lu —ugl“|9¢(] dz.

A—o00 h—0*
Ury,s, (20) Ur,,s, (20)

Estimate of II. As in [28], we obtain

hlirg = ” Az, Vu) - V((u - ug)n*12ys) dz + ” A(z,Vu) - VO3 {s) dz = 11y +11,.
Ur,,s, (Zo)NE(A) Ur,,s, (Zo)NE(A)©

Since the integral within the good set does not contain A, letting A — oo, we see from (1.2) and (3.1) that

lim im 1= [ Gevw vt || Ae - @-wveesd

A—o00 h—0*
Ury,s,(20) Ury,s, (20)

=¢ ” (IVul + a(2)IVul? + b(2)|Vul*)n** (*(s dz
URz,Sz(ZU)
o ] avart v a@vaet s v B g an
2~ K1

Ury,s, (20)

where ¢ = c(s, v, L). Then, Young’s inequality with conjugate (%, D), (%, q) and (5%, s), respectively, gives

¢ ” (VU™ + a2)|vu " + b(z)IVUIS‘l)—L? __L;fl 0S5 dz
Ug,,s, (Z0) 2 1
< g ” (IVul? + a(z)|Vul? + b(z)|Vul*)n* (2 (s dz
Uky.s, (20)
|u_u0|p |u—u0|q |u_u0|s
+c —+az—+bz—)dz’
” <(R2—R1)p ( )(Rz—R1)‘l ( )(Rz—Rl)s

Ur,,s, (20)
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where ¢ depends only on p, ¢, s, v and L. Hence we have

lim lim I > ; ” (Vul? + a(z)|Vul? + b(2)|Vul*)ns*1{% s dz

A—00 h—0+
Ug,y,s, (20)

lu - uolP lu - upl? lu—ugl®
| (&5 * “@ Ryt " P, 5ry)

Ugy.s, (20)

Moreover, it is easy to show limy_,, limp o+ II; = 0 by using (1.2), Young’s inequality, Lemma 3.9 (iii) and (2.3).
For detailed calculations, refer to [28]. Thus, we conclude
. . v [u — ug|
lim lim I > » H(z, Vul)n**' (¢ dz — ” H(g—) dz.
Pt el ” (@ [Vuhn™ ¢ ¢s dz - R-rR /Y

Ug,.s, (20) Ur,.s, (20)

Estimate of III. The estimate for III follows a process similar to that for II. Again, we divide into the good and
bad parts to obtain

lim 111 = ” Bz, F) - V(U - uo)n**1(2Ls) dz + ” B(z, F) - VO p*(Cs) dz = L + T,
Ug,.s, (20)NE(A) Ur,.s, (Zo)NE(A)©

Applying (1.3) and Young’s inequality, we get

R |u—uo|) ) v ” s+1 72
/}Lrgohlin&+llllsc ” (H(z, —Rz—Rl + H(z,|F]) |dz + 1 H(z,|Vul)n®*(“(s) dz

Ug,.s, (20) Ur,,s, (20)

for some ¢ = c(p, q, S, v, L). In the same reason as II,, we get limy_, o, limp,_,+ III; = 0. Thus, we conclude that

lim lim 11 < ¢ ” (H(z '“_”°|)+H(z, |F|)>d.z+£ ” Hz, Vu)n*1¢2¢s) dz.

A—00 h—0* ’ Ry — Rq
Ur,,s, (20) Ur,.s,(20)

Combining all the estimates for I, IT and III, we obtain

[ -gventodsazsy || mevunnteics az

Ur,.s, (20) Ury,s, (20)

<c ” (H(z, II;‘Z__I;;’J) U - o218 + H(z, |F|)) dz.

Ur,,s, (20)
Finally, we complete the proof by letting § — 0, recalling that 7 € €, (¢o) is arbitrary, and replacing uy with
(u)UR1,81 (z0)+ O

Acknowledgment: The authors would like to express their sincere gratitude to the anonymous referee who
provided valuable comments and suggestions on the earlier version, which have greatly improved the quality
and clarity of the manuscript.

Funding: BogiKim is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (Grant No. RS-2023-00217116). Jehan Oh is supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (Grant No. RS-2025-00555316). Abhrojyoti Sen is supported by
research grants from the Alexander von Humboldt Foundation for postdocs.

References

[1]1 E.Acerbiand N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), no. 2, 125-145.

[2] E.Acerbiand N. Fusco, An approximation lemma for W' functions, in: Material Instabilities in Continuum Mechanics (Edinburgh
1985-1986), Oxford Sci. Publ., Oxford University, New York (1988), 1-5.

[3] S.Baasandorj, S.-S. Byun and J. Oh, Calderén-Zygmund estimates for generalized double phase problems, J. Funct. Anal. 279 (2020),
no. 7, Article ID 108670.



1010 — B.Kim et al., Parabolic Lipschitz truncation for multi-phase problems DE GRUYTER

[4]

[3]
[6]

[71

[8]

[9

[10]

[11]
[12]

[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]

[37]
[38]

S. Baasandorj, S.-S. Byun and J. Oh, Gradient estimates for multi-phase problems, Calc. Var. Partial Differential Equations 60 (2021),
no. 3, Paper No. 104.

P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206-222.

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential

Equations 57 (2018), no. 2, Paper No. 62.

V. Bogelein, Very weak solutions of higher-order degenerate parabolic systems, Adv. Differential Equations 14 (2009), no. 1-2,
121-200.

S.-S. Byun and H.-S. Lee, Calderén-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal.
Appl. 501 (2021), no. 1, Article ID 124015.

S.-S. Byun and H.-S. Lee, Gradient estimates of w-minimizers to double phase variational problems with variable exponents, Q.

J. Math. 72 (2021), no. 4, 1191-1221.

S.-S. Byun and J. Oh, Global gradient estimates for non-uniformly elliptic equations, Calc. Var. Partial Differential Equations 56 (2017),
no. 2, Paper No. 46.

S.-S. Byun and J. Oh, Reqularity results for generalized double phase functionals, Anal. PDE 13 (2020), no. 5, 1269-1300.

L. Chlebicka, P. Gwiazda and A. Zatorska-Goldstein, Parabolic equation in time and space dependent anisotropic Musielak-Orlicz
spaces in absence of Lavrentiev’s phenomenon, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1431-1465.

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1,
219-273.

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443-496.
M. Colombo and G. Mingione, Calderén-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal. 270 (2016), no. 4,
1416-1478.

C. De Filippis, Optimal gradient estimates for multi-phase integrals, Math. Eng. 4 (2022), no. 5, Paper No. 043.

C. De Filippis and G. Mingione, A borderline case of Calderdn-Zygmund estimates for nonuni formly elliptic problems, St. Petersburg
Math. J. 31 (2019), no. 3, 82-115.

C. De Filippis and J. Oh, Regularity for multi-phase variational problems, J. Differential Equations 267 (2019), no. 3, 1631-1670.

L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p, q) growth, J. Differential Equations 204 (2004), no. 1,
5-55.

Y. Fang, V. D. Radulescu, C. Zhang and X. Zhang, Gradient estimates for multi-phase problems in Campanato spaces, Indiana Univ.
Math. J. 71 (2022), no. 3, 1079-1099.

L. Fonseca, J. Maly and G. Mingione, Scalar minimizers with fractal singular sets, Arch. Ration. Mech. Anal. 172 (2004), no. 2, 295-307.
P. Hastd and J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 4,
1285-1334.

P. Hasto and J. Ok, Regularity theory for non-autonomous partial differential equations without Uhlenbeck structure, Arch. Ration.
Mech. Anal. 245 (2022), no. 3, 1401-1436.

B. Kim and J. Oh, Higher integrability for weak solutions to parabolic multi-phase equations, J. Differential Equations 409 (2024),
223-298.

B. Kim and J. Oh, Regularity for double phase functionals with two modulating coefficients, /. Geom. Anal. 34 (2024), no. 5, Paper
No. 134.

W. Kim, Calderén-Zygmund type estimate for the parabolic double-phase system, preprint (2023),
https://arxiv.org/abs/2304.10615; Ann. Sc. Norm. Super. Pisa. (2024), DOI 10.2422/2036-2145.202307_017.

W. Kim, J. Kinnunen and K. Moring, Gradient higher integrability for degenerate parabolic double-phase systems, Arch. Ration. Mech.
Anal. 247 (2023), no. 5, Paper No. 79.

W. Kim, J. Kinnunen and L. Sérkid, Lipschitz truncation method for parabolic double-phase systems and applications, J. Funct.

Anal. 288 (2025), no. 3, Article ID 110738.

J. Kinnunen, J. Lehrbéck and A. Vahakangas, Maximal Function Methods for Sobolev Spaces, Math. Surveys Monogr. 257, American
Mathematical Society, Providence, 2021.

J. Kinnunen and J. L. Lewis, Very weak solutions of parabolic systems of p-Laplacian type, Ark. Mat. 40 (2002), no. 1, 105-132.

J. Ok, Regularity of w-minimizers for a class of functionals with non-standard growth, Calc. Var. Partial Differential Equations 56 (2017),
no. 2, Paper No. 48.

J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal. 194 (2020), Article ID 111408.
A. Sen, Gradient higher integrability for degenerate/ singular parabolic multi-phase problems, preprint (2024),
https://arxiv.org/abs/2406.00763v2; to appear in J. Geom. Anal.

T. Singer, Existence of weak solutions of parabolic systems with p, g-growth, Manuscripta Math. 151 (2016), no. 1-2, 87-112.

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4,
675-710, 877.

V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993),
no. 5, 435-439.

V. V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phys. 3 (1995), no. 2, 249-269.

V. V. Zhikov, On some variational problems, Russian J. Math. Phys. 5 (1997), no. 1, 105-116.


https://arxiv.org/abs/2304.10615
https://arxiv.org/abs/2406.00763v2

	Parabolic Lipschitz truncation for multi-phase problems: The degenerate case
	1 Introduction
	2 Whitney decomposition and covering lemmas
	2.1 Auxiliary definitions
	2.2 Some preliminary estimates
	2.3 Vitali covering and their properties
	2.4 Partition of unity

	3 Construction of test function via Lipschitz truncation
	3.1 Definition of test function
	3.2 Preliminary lemmas
	3.3 Poincaré-type inequality for the test function
	3.4 Bounds on Lipschitz truncation and its derivatives
	3.5 Lipschitz regularity of $v^{\Lambda}_h$
	3.6 Some more properties of Lipschitz truncation

	4 Proof of energy estimate
	4.1 Proof of Theorem 1.2



