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Abstract: Existence and global regularity results for boundary-value problems of Robin type for harmonic and
polyharmonic functions in n-dimensional half-spaces are offered. The Robin condition on the normal derivative
on the boundary of the half-space is prescribed by a nonlinear functionN of the relevant harmonic or polyhar-
monic functions. General Orlicz-type growths for the function N are considered. For instance, functions N of
classical power type, their perturbations by logarithmic factors, and exponential functions are allowed. New
sharp boundedness properties in Orlicz spaces of some classical operators from harmonic analysis, of indepen-
dent interest, are critical for our approach.
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1 Introduction

We deal with the existence and global regularity of harmonic and polyharmonic functions in n-dimensional
half-spaces, subject to general nonlinear Robin-type boundary conditions.

The problems under consideration for harmonic functions have the form

{{
{{
{

Δu = 0 in ℝn+1+ ,

−
∂u

∂xn+1
= N(u) + f on ∂ℝn+1+ .

(1.1)

Here N : ℝ → ℝ is a locally Lipschitz continuous function, f : ℝn → ℝ is a locally integrable function, ℝn+1+
denotes the half-space of those points in ℝn+1 whose last component is positive, and n ≥ 2.

IfN = 0, then (1.1) is a classical Neumann boundary value problem treated in [3]. The case when f = 0 and
N is a power-type nonlinearity of the form

N(t) = |t|p−1t (1.2)
has also been investigated for subcritical (p < n+1

n ) and critical (p = n+1
n ) exponents, see [14, 20] and the ref-

erences therein. In general, even for N as in (1.2), the solvability of the problem (1.1) is very much dependent
on the inhomogeneous term f . Under suitable assumptions on the latter, results on the existence, uniqueness,
regularity, and qualitative properties of solutions are available in the literature [11, 12, 24].
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The punctum of the present contribution is that the function N need not have a polynomial growth. For
instance, the exponential-type behavior

N(t) ≈ etα near infinity (1.3)

for some α > 0 is included in our discussion, and was the original motivation for this work. Elliptic equations
with exponential Robin boundary conditions arise in diverse areas. In Riemannian geometry, the problem of
finding conformalmetrics in the two-dimensional half-space (and,more generally, onmanifoldswith boundary)
with constant Gauss curvature and boundary geodesic curvature is related to the solvability of problems of
the type (1.1), with N(t) = λet for some λ ∈ ℝ (see [4, 18, 25]). Certain models in mathematical physics also call
into play exponential Robin boundary conditions. They describe the corrosion and oxidation phenomena of
materials in electrochemistry [16, 22].

The problem (1.1), with
N(t) = λ tet2 ,

for some λ > 0, is prototypical and can help grasp the main features and difficulties of the general setting under
consideration. It is the Euler-Lagrange equation of the energy functional

Eλ(u) =
λ
2 ∫
ℝn+1+

|∇u|2 dx dxn+1 −
λ
2 ∫
ℝn

eu2 − 1 dx. (1.4)

This functional is well defined for n = 1, thanks to a borderline trace embedding, which ensures that the integral
overℝ2 on the right-hand side of (1.4) converges for every u ∈ W1,2(ℝ2). As a consequence, variationalmethods
apply. However, this is not guaranteed in higher dimensions, and classical directmethods of the calculus of varia-
tions fail. This drawback also surfaces when dealingwith functionsNwithmore general non-standard growths.

The approach to the problem (1.1) adopted in this paper has a non-variational nature and is based on a com-
bination of potential theoretic techniques, sharp non-standard results from the theory of Sobolev-type spaces,
and fixed-point arguments. Novel developments on these methods in the framework of Orlicz spaces are a
central step in our analysis.

Our existence result on the problem (1.1) ensures that it admits a solution u, provided that the datum f has
a sufficiently small norm in a suitable spacemodeled on the functionN. The unconventional Sobolev-type space
for the solution also depends onN and is equipped with a normwhich hinges on both the gradient of functions
in ℝn+1+ and their trace on ∂ℝn+1+ . Due to the generality of the admissible nonlinearities N, the ambient spaces
for f and u are naturally defined in terms of Orlicz norms.

Stronger integrability properties of f are shown to be reflected in a higher degree of integrability of the
gradient of u and of the trace of u on ∂ℝn+1+ . Their integrability is again described in terms of the finiteness of
Orlicz norms. This is the content of our second result about the problem (1.1).

Finally, we prove that weak differentiability of the datum f and its membership in an Orlicz–Sobolev
space on ℝn endowed with a sufficiently strong norm guarantee that u is, in fact, a classical – namely, in
C∞(ℝn+1+ ) ∩ C1(ℝn+1+ ) – solution to the problem (1.1). The latter result also requires that N be differentiable,
and the Orlicz–Sobolev space for f is also related to the growth of the derivativeN󸀠.

To give the flavor of the conclusions that can be deduced from these results, consider nonlinearitiesNwith
an exponential growth near infinity as in (1.3). Since the ambient space ℝn+1+ has infinite measure, also the
behavior ofN near zero is relevant. Assume, for instance, thatN has a polynomial decay at zero, namely,

N(t) = |t|p−1t etα , (1.5)

for some p > n󸀠 and α > 0, where n󸀠 = n
n−1 . As shown in Example 3.11, the problem (1.1) admits a weak solution

u, provided that
f ∈ L

n
p󸀠 (ℝn) ∩ Ln(log L)n−1−

n
α (ℝn)

and has a sufficiently small norm. Here, Ln(log L)n−1− nα (ℝn) denotes a Zygmund space. Under the stronger
Sobolev regularity assumption that

f ∈ W1, np󸀠 (ℝn) ∩W1Ln(log L)n−1+β(ℝn),
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for some β > 0, with a norm small enough, one has that u ∈ C∞(ℝn+1+ ) ∩ C1(ℝn+1+ ), and hence it is also a classical
solution. Observe that the intersection spaces for f agree, up to equivalent norms, with suitable Orlicz spaces
and Orlicz–Sobolev spaces.

The existence and regularity results about the problem (1.1) outlined above admit analogs for parallel
problems for polyharmonic equations. These problems read:

{{{{{{{
{{{{{{{
{

Δmu = 0 in ℝn+1+ ,
∂Δku
∂xn+1
= 0, k = 0, . . . ,m − 2, on ∂ℝn+1+ ,

(−1)m ∂Δ
m−1u

∂xn+1
= N(u) + f on ∂ℝn+1+ ,

(1.6)

for 2m < n + 1, where Δm denotes them-th order Laplace operator, obtained on iterating the Laplacianm times.
For power-type nonlinearitiesN as in (1.2), this problem can be regarded as the inhomogeneous counterpart of
the higher-order boundary conformally invariant Q-curvature problem [21]. In the range n

n−2m+1 < p < ∞, and
for broad classes of boundary data f , the solvability of the problem (1.6) follows as a special case of results of
[23]. An analysis of the problem (1.6) for non-polynomial nonlinearities N seems to be missing in the literature
and is addressed in this paper.

Of course, the same kind of problems can be considered in sufficiently regular and bounded open sets
instead of half-spaces. Methods similar to those employed in this paper are likely to apply. However, new techni-
cal issues have to be faced, since integral operators withmore complicated kernels, appearing in representation
formulas for solutions in domains, have to be dealt with. On the other hand, dealing with sets of finite measure
entails simplifications in the function space setting. A close inspection of these questions does not fall in the
scope of our work.

The paper is structured as follows. The next section is devoted to notations and the background from the
theory of Young functions and Orlicz and Orlicz–Sobolev spaces. Our main results are stated in Section 3. The
subsequent Section 4 contains technical results about Sobolev conjugates of Young functions satisfying specific
assumptions. Boundedness properties of some classical operators from harmonic analysis, in Orlicz spaces, are
established in Section 5. They are central in viewof our approach,whichmakes substantial use of representation
formulas via integral operators. The proofs of the main results about the problems (1.1) and (1.6) are collected
in Sections 6 and 7, respectively. Although the problem (1.1) is a special case of (1.6) (the condition on the second
line being absent in this case), we prefer to offer a self-contained treatment of the former. It involves simpler
notation, and readers who are just interested in second-order equations will find a proof that does not need
a detour through the higher-order case.

2 Functional background

2.1 Young functions

The class of Orlicz spaces extends that of Lebesgue spaces in that the role of powers in the definition of the
norm is played by more general Young functions. A function A : [0,∞) → [0,∞] is called a Young function if it
is convex (nontrivial), left-continuous and vanishes at 0. Any Young function takes the form

A(t) =
t

∫
0

a(τ) dτ for t ≥ 0, (2.1)

for some non-decreasing, left-continuous function a : [0,∞) → [0,∞] which is neither identically equal to 0
nor to infinity.

The function
A(t)
t is non-decreasing. (2.2)
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One has that
A(t) ≤ ta(t) ≤ A(2t) for t > 0. (2.3)

Moreover,
λA(t) ≤ A(λt) for λ ≥ 1 and t ≥ 0. (2.4)

The Young conjugate Ã of A is defined by

Ã(t) = sup{τt − A(τ) : τ ≥ 0} for t ≥ 0.

Note the representation formula

Ã(t) =
t

∫
0

a−1(τ) dτ for t ≥ 0, (2.5)

where a−1 denotes the (generalized) left-continuous inverse of the function a appearing in (2.1). One can show
that

t ≤ A−1(t)Ã−1(t) ≤ 2t for t ≥ 0, (2.6)

where A−1 and Ã−1 stand for the generalized right-continuous inverses of A and Ã, respectively.
A Young function A is said to satisfy the Δ2-condition – briefly A ∈ Δ2 – globally if there exists a constant c

such that
A(2t) ≤ cA(t) (2.7)

for t ≥ 0.
The function A is said to satisfy the ∇2-condition – briefly A ∈ ∇2 – globally if there exists a constant c > 2

such that
A(2t) ≥ cA(t) (2.8)

for t ≥ 0.
One has that

A ∈ Δ2 globally if and only if there exists p ≥ 1 such that sup
t>0

ta(t)
A(t) ≤ p (2.9)

and
A ∈ ∇2 globally if and only if there exists p > 1 such that inf

t>0

ta(t)
A(t) ≥ p. (2.10)

The Δ2-condition and the ∇2-condition are said to be satisfied near infinity or near 0 if there exists t0 > 0 such
that (2.7) or (2.8) hold for t ∈ (t0 ,∞) or for t ∈ [0, t0), respectively. Characterizations analogous to (2.9) and (2.10)
hold, with supt>0 and inf t>0 replaced by sup and inf over the corresponding interval of values of t.

Lemma 2.1. Let A be a Young function having the form (2.1) and let K > 1. Then:
(i) A ∈ Δ2 globally if and only if there exists a constant c1 such that

a(t) ≥ 1
c1
a(Kt) for t ≥ 0. (2.11)

(ii) A ∈ ∇2 globally if and only if there exists a constant c2 such that

a(t) ≤ 1K a(c2t) for t ≥ 0. (2.12)

Proof. Part (i) is well known, and easily verified, thanks to equations (2.1) and (2.3). As for part (ii), one has that
A ∈ ∇2 if and only if Ã ∈ Δ2. Thus, by the formula (2.5) and part (i), A ∈ ∇2 if and only if a−1(Kt) ≤ c2a−1(t) for
some constant c2 > 0. The latter condition is in turn equivalent to (2.12).

A Young function A is said to dominate another Young function B globally if there exists a positive constant c
such that

B(t) ≤ A(ct) (2.13)

for t ≥ 0. The function A is said to dominate B near infinity if there exists t0 ≥ 0 such that (2.13) holds for t ≥ t0.
If A and B dominate each other globally [near infinity], then they are called equivalent globally [near infinity].
Equivalence in this sense will be denoted by

A ≃ B.
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This terminology and notationwill also be adopted formerely nonnegative functions, which are not necessarily
Young functions.

The global upper and lower Matuszewska–Orlicz indices I(A) and i(A) of a (non-necessarily Young) func-
tion A, which is strictly positive and finite-valued in (0,∞), can be defined as

I(A) = lim
λ→∞

log(supt>0
A(λt)
A(t) )

log λ and i(A) = lim
λ→0+

log(supt>0
A(λt)
A(t) )

log λ . (2.14)

The indices I0(A) and i0(A) near zero are given by

I0(A) = lim
λ→∞

log(lim supt→0+
A(λt)
A(t) )

log λ and i0(A) = lim
λ→0+

log(lim supt→0+
A(λt)
A(t) )

log λ . (2.15)

The optimal n-dimensional Sobolev conjugate A n
α
, of order α ∈ (0, n), of a Young function A has a central

role in our results. It was introduced in [6] (and in [5] in an equivalent form) for α = 1 and in [10] for α ∈ ℕ; its
role in embeddings for fractional Orlicz–Sobolev spaces for non-integer α was discovered in [2].

The function A n
α
is defined as follows. Assume that

∫
0

(
t

A(t))
α
n−α

dt < ∞. (2.16)

Let HA, nα : [0,∞) → [0,∞) be the function given by

HA, nα (t) = (
t

∫
0

(
τ

A(τ))
α
n−α

dτ)
n−α
n

for t ≥ 0. (2.17)

Then the Sobolev conjugate A n
α
obeys

A n
α
(t) = A(H−1A, nα (t)) for t ≥ 0. (2.18)

In (2.16), and in similar integral conditions in what follows, we indicate just one endpoint in the integral, to
emphasize that the condition in question depends on the convergence or divergence of the integral at the
relevant endpoint, whereas it is independent of the choice of the other one in (0,∞).

Note that HA, nα , and hence A n
α
, are finite-valued provided that

∞

∫ (
t

A(t))
α
n−α

dt = ∞. (2.19)

On the other hand, if
∞

∫ (
t

A(t))
α
n−α

dt < ∞, (2.20)

then

H−1A, nα (t) = ∞ for t > (
∞

∫
0

(
τ

A(τ))
α
n−α

dτ)
n−α
n

, (2.21)

whence
A n

α
(t) = ∞ (2.22)

for the same values of t.
Finally, we associate with a Young function A the Young function A⬦ : [0,∞) → [0,∞) given by

A⬦(t) = A(t)
n+1
n for t ≥ 0. (2.23)

The Young function A⬦ arises in connection with the study of boundedness properties of the Poisson extension
operator, whose definition is recalled in Section 5 below.
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2.2 Function spaces

Let Ω be a measurable set in ℝn . The Orlicz space LA(Ω), associated with a Young function A, is the Banach
function space of those measurable functions u : Ω → ℝ which render the Luxemburg norm

‖u‖LA(Ω) = inf {λ > 0 : ∫
Ω

A( |u|λ ) dx ≤ 1} (2.24)

finite. In particular, LA(Ω) = Lp(Ω) if A(t) = tp for some p ∈ [1,∞), and LA(Ω) = L∞(Ω) if A(t) = 0 for t ∈ [0, 1]
and A(t) = ∞ for t > 1.

For some steps of our proofs,we shall need to consider the functional (2.24) associatedwith anon-decreasing
and left-continuous function A : [0,∞) → [0,∞)which is not necessarily convex. If A is a function of this kind,
then the functional ‖u‖LA(Ω) is still positively homogeneous, although it need not be a norm. The set of func-
tions u for which ‖u‖LA(Ω) < ∞will be still denoted by LA(Ω). In the rest of this section, unless otherwise stated,
capital letters A, B, etc. denote Young functions. It will be explicitly mentioned if they are allowed to be just
non-decreasing and left-continuous.

The Hölder-type inequality
∫
Ω

|uv| dx ≤ 2‖u‖LA(Ω)‖v‖LÃ(Ω) (2.25)

holds for every u ∈ LA(Ω) and v ∈ LÃ(Ω).
More generally, if A, B are non-decreasing and left-continuous functions, and C is a Young function such

that
A−1(t)B−1(t) ≤ kC−1(t) for t ≥ 0, (2.26)

for some constant k, then
‖uv‖LC(Ω) ≤ 2k‖u‖LA(Ω)‖v‖LB(Ω) (2.27)

for every u ∈ LA(Ω) and v ∈ LB(Ω). If the inequality (2.26) only holds for 0 ≤ t ≤ t0, for some t0 > 0, then the
inequality (2.27) holds under the additional assumption that ‖u‖L∞(Ω) < A−1(t0) and ‖v‖L∞(Ω) < B−1(t0). The
inequality (2.27) is stated in [19] in the case when A, B and C are Young functions and (2.26) holds, with k = 1,
for every t ≥ 0. The variants appearing here can be verified via a close inspection of the proof of [19].

If A dominates B globally, then
‖u‖LB(Ω) ≤ c‖u‖LA(Ω) (2.28)

for every u ∈ LA(Ω), where c is the same constant as in (2.13).
Assume now that Ω is an open set and let k ∈ ℕ. We set

Ck(Ω) = {u ∈ C(Ω) : u has continuous bounded derivatives up to the order k}.

Classically, Ck(Ω) is a Banach space, endowed with the norm

‖u‖Ck(Ω) =
k
∑
m=0
‖Dmu‖C(Ω) .

Here, Dmu denotes the vector of all partial derivatives of u of order m. When m = 1 we also use the simplified
notation Du for D1u. Also, D0u stands for u. The notation Ckc (Ω) is adopted for the subspace of those functions
in Ck(Ω) which are compactly supported in Ω.

The space Ck(Ω) consists of the restriction to Ω of functions in Ck(Ω󸀠) for some open set Ω󸀠 ⊃ Ω. Accordingly,
Ckc (Ω) denotes the set of functions in Ck(Ω) whose support is bounded.

The Orlicz–Sobolev spaceW1,A(Ω) is defined as

W1,A(Ω) = {u ∈ LA(Ω) : u is weakly differentiable and |Du| ∈ LA(Ω)}, (2.29)

and is a Banach space endowed with the norm

‖u‖W1,A(Ω) = ‖u‖LA(Ω) + ‖Du‖LA(Ω) . (2.30)

Here, and in what follows, we use the notation ‖Du‖LA(Ω) as a shorthand for ‖ |Du| ‖LA(Ω).
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The homogeneous Orlicz–Sobolev space V1,A(Ω) is instead defined as

V1,A(Ω) = {u : u is weakly differentiable and |Du| ∈ LA(Ω)}, (2.31)

and is equipped with the seminorm
‖u‖V1,A(Ω) = ‖Du‖LA(Ω) . (2.32)

In the casewhen LA(Ω) = Lp(Ω) for some p ∈ [1,∞), the definitions above reproduce the classical Sobolev space
W1,p(Ω) and its homogeneous counterpart V1,p(Ω).

An embedding theorem for the space V1,A(ℝn) reads as follows [5, 6]. Assume that A fulfills the condi-
tion (2.16) with α = 1 and let An be defined by (2.18) with α = 1. Then there exists a constant c = c(n) such
that

‖u‖LAn (ℝn) ≤ c‖∇u‖LA(ℝn) (2.33)

for every function u ∈ V1,A(ℝn) such that |{|u| > t}| < ∞ for every t > 0.Here, | ⋅ |denotes the Lebesguemeasure.
Hence, the inequality (2.33) holds for every u ∈ W1,A(ℝn).

In particular, if A grows so fast near infinity for the condition (2.20) to be satisfied, then, owing to (2.22),

‖u‖L∞(ℝn) ≤ c‖∇u‖LA(ℝn) (2.34)

for some constant c = c(n, A) and every function u as in (2.33). Moreover,

u ∈ C(ℝn). (2.35)

We also need to introduce Orlicz–Sobolev spaces of functions on ℝn+1+ , which decay near infinity, and whose
trace on ∂ℝn+1+ belongs to a given Orlicz space. To this purpose, we begin by setting

∘
V1,A(ℝn+1+ ) = {u|ℝn+1+

: u belongs to the closure of C∞c (ℝn+1) with respect to the seminorm in V1,A(ℝn+1)}. (2.36)

In particular, the trace Tr u ∈ L1loc(ℝ
n) overℝn of every function u ∈

∘
V1,A(ℝn+1+ ) is well defined for every Young

function A. This is a consequence of the fact that u ∈ V1,A(ℝn+1) ⊂ V1,1
loc (ℝ

n+1) and Tr u is well defined as a func-
tion in L1loc(ℝ

n) for any u ∈ V1,1
loc (ℝ

n+1). Notice that, since

∂ℝn+1+ = ℝn × {0} ≈ ℝn ,

here, and in what follows, ∂ℝn+1+ is identified with ℝn .
Given two Young functions A and B, we define the space

V1,(A,B)(ℝn+1+ ,ℝn) = {u ∈
∘
V1,A(ℝn+1+ ) : Tr u ∈ LB(ℝn)} (2.37)

endowed with the norm
‖u‖V1,(A,B)(ℝn+1+ ,ℝn) = ‖∇u‖LA(ℝn+1+ ) + ‖Tr u‖LB(ℝn) . (2.38)

Higher-order Orlicz–Sobolev spaces come into play to deal with polyharmonic problems. They require the
use of spaces defined in terms of k-th order gradients of a function u defined as

∇ku =
{
{
{

Δ k
2 u if k is even,
∇Δ k−1

2 u if k is odd.
(2.39)

Notice that ∇ku differs from Dku, as defined above. In particular, ∇ku ∈ ℝ if k is even, whereas ∇ku ∈ ℝn if k
is odd.

The homogeneous Orlicz–Sobolev space Vk,A(Ω) is defined as

Vk,A(Ω) = {u : ∇ku exists in the weak sense and |∇ku| ∈ LA(Ω)}, (2.40)

and is equipped with the seminorm
‖u‖V k,A(Ω) = ‖∇ku‖LA(Ω) . (2.41)
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In analogy with (2.36), we set
∘
Vk,A(ℝn+1+ ) = {u|ℝn+1+

: u belongs to the closure of C∞c (ℝn+1) with respect to the seminorm in Vk,A(ℝn+1)}. (2.42)

A similar argument as in thefirst-order case shows that the traceTru ∈ L1loc(ℝ
n) of every function u ∈

∘
Vk,A(ℝn+1+ )

is well defined for every k ∈ ℕ and every Young function A.
Furthermore, given two Young functions A and B, we define the space

Vk,(A,B)(ℝn+1+ ,ℝn) = {u ∈
∘
Vk,A(ℝn+1+ ) : Tr u ∈ LB(ℝn)} (2.43)

endowed with the norm
‖u‖V k,(A,B)(ℝn+1+ ,ℝn) = ‖∇

ku‖LA(ℝn+1+ ) + ‖Tr u‖LB(ℝn) . (2.44)

In what follows, when there is no ambiguity, the value of the trace Tr u of a function u defined inℝn+1+ at a point
x ∈ ℝn will simply be denoted by u(x, 0).

3 Main results

Our main results admit a unified formulation for the problems (1.6) of arbitrary orderm. Because of the impor-
tance of second-order problems and of the ease of the corresponding notation, we enucleate the pertaining
statements in Section 3.1. The higher-order case is discussed in the subsequent Section 3.2.

3.1 Harmonic functions

In order to formulate the assumptions in our main results we need to introduce some notation and definitions.
Let N : ℝ → ℝ be the function appearing in the problem (1.1). We assume that there exists a finite-valued

Young function A such that
|N(t)| ≤ A(|t|n󸀠 ) for t ∈ ℝ, (3.1)

and

|N(t) −N(s)| ≤ c|t − s|(A(|θt|
n󸀠 )
|t| +

A(|θs|n󸀠 )
|s| )

for t, s ∈ ℝ, (3.2)

for some positive constants c and θ. Here, and in similar occurrences in what follows, the function A(tn󸀠 )
t

is extended as 0 by continuity for t = 0. For simplicity of notation, we denote this function by D. Namely,
D : [0,∞) → [0,∞) is given by

D(t) =
{{
{{
{

A(tn󸀠 )
t if t > 0,

0 if t = 0.
(3.3)

Next, define the finite-valued Young function E as

E(t) =
A−1(t)

∫
0

a(s)n ds for t ≥ 0, (3.4)

where a denotes the function from equation (2.1). The conditions (2.16) and (2.19) are fulfilled with α = 1 and A
replaced with E. This is proved in Lemma 4.6, Section 4. In that lemma, the Sobolev conjugate En of E, defined
as in (2.18) with α = 1, is also shown to obey

En(t) ≃
tn󸀠

∫
0

a(s)n ds for t ≥ 0. (3.5)

Finally, let E⬦ be the Young function associated with E as in (2.23). Namely,

E⬦(t) = E(t)
n+1
n for t ≥ 0. (3.6)
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The functions E⬦ and En provide uswith the appropriate Orlicz–Sobolev-trace ambient space forweak solutions
to the problem (1.1).

Definition 3.1 (Weak solutions to (1.1)). Assume that f ∈ L1loc(ℝ
n) and the condition (3.1) is fulfilled for some

Young function A. Let E, En and E⬦ be the functions given by (3.4), (3.5), and (3.6). We say that a function
u ∈ V1,(E⬦ ,En)(ℝn+1+ ,ℝn) is a weak solution to the problem (1.1) if

∫
ℝn+1+

∇u ⋅ ∇φ dx dxn+1 − ∫
ℝn

(N(u)(x, 0) + f(x))φ(x, 0) dx = 0

for every φ ∈ C∞c (ℝn+1+ ).

Our existence result for weak solutions to the problem (1.1) reads as follows.

Theorem 3.2 (Existence of weak solutions to (1.1)). Assume thatN satisfies the assumptions (3.1) and (3.2) for some
Young function A such that

1
c a(A
−1(2t)) ≤ a(A−1(t)) ≤ 1

2a(A
−1(ct)) for t ≥ 0, (3.7)

and for some constant c > 0. Let E, En and E⬦ be the functions given by (3.4), (3.5), and (3.6). Then there exist
constants σ0 and c0 such that if

‖f‖LE(ℝn) ≤ σ0 ,

then the problem (1.1) admits a weak solution u ∈ C∞(ℝn+1+ ) ∩ V1,(E⬦ ,En)(ℝn+1+ ,ℝn) fulfilling

‖u‖V1,(E⬦ ,En )(ℝn+1+ ,ℝn) ≤ σ0c0 . (3.8)

Assume, in addition, thatN(t) > 0 for t > 0. If f > 0 a.e., then u > 0 as well.

The next theorem amounts to a Sobolev regularity result for the solution u to the problem (1.1) under a stronger
integrability assumption on the datum f . It tells us that the membership of f in an Orlicz space whose norm is
stronger, in a qualified sense, than LE(ℝn) is reflected into stronger integrability properties of the derivatives
of u.

The Orlicz ambient space for the datum f is described via a Young function F such that

∫
0

(
t

F(t))
1
n−1

dt < ∞. (3.9)

The relevant Orlicz space is associated with the Young function E ∨ F, given by

(E ∨ F)(t) = max{E(t), F(t)} for t ≥ 0.

Note that
LE∨F(ℝn) = LE(ℝn) ∩ LF(ℝn).

The Sobolev conjugate Fn of F, defined as in (2.18) with α = 1, and the function F⬦ associated with F as in (2.23),
also play a role.

Theorem 3.3 (Sobolev regularity of solutions to (1.1)). Assume that A, E and σ0 are as in Theorem 3.2. Let F be
a Young function satisfying (3.9) and such that F ∈ Δ2 ∩ ∇2 globally. Assume that there exists a constant κ such
that

F−1n (t)
F−1(t)
≤ κ E
−1
n (t)
E−1(t)

for t > 0. (3.10)

Let f ∈ LE∨F(ℝn). There exists a constant σ1 ∈ (0, σ0) such that, if ‖f‖LE(ℝn) < σ1, then the solution u to the prob-
lem (1.1) provided by Theorem 3.2 satisfies

u ∈ V1,(F⬦ ,Fn)(ℝn+1+ ,ℝn). (3.11)

Remark 3.4. If F is a Young function whose Matuszewska–Orlicz index satisfies I(F) < n, then the inequal-
ity (3.10) holds whatever E is. This is a consequence of Lemma 4.1 from Section 4.
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Our lastmain result about the problem (1.1) proposes additional assumptions on the dataN and f for the solution
discussed so far to be classical, namely, smooth in ℝn+1+ and continuously differentiable up to its boundary.

The function N is required to be differentiable, at least for small values of its argument, with a derivative
whose modulus of continuity satisfies an appropriate growth condition.

The function f is assumed to belong to an Orlicz–Sobolev space defined by some Young function M which
agrees with E for small values of its argument, and is suitably modified for large values. The function M has to
be finite-valued and obeys

{{{
{{{
{

M(t) = E(t) near 0,
∞

∫ (
t

M(t))
1
n−1

dt < ∞.
(3.12)

Observe that the second condition in (3.12) implies that the Sobolev conjugate Mn of M fulfils:

Mn(t) = ∞ for large t. (3.13)

Theorem 3.5 (Smooth solutions to (1.1)). Let A be as in Theorem 3.2, let D be the function defined by (3.3), and let
M be a Young function satisfying (3.12). Assume that:
(i) The function D admits the lower bound

D(t) ≥ ϕ(t)ψ(t) for t > 0, (3.14)

for some non-decreasing continuous functions ϕ, ψ : (0,∞) → (0,∞) such that

ϕ(εt) ≤ c0εγϕ(t) for ε ∈ (0, 1) and t ∈ (0, t0), (3.15)

for some positive constants γ, c0 and t0.
(ii) The functionN is differentiable and

|N󸀠(t) −N󸀠(s)| ≤ cϕ(θ|t − s|)(ψ(θ|t|) + ψ(θ|s|)) for t and s near 0, (3.16)

for some positive constants θ and c.
Then there exists a constant η > 0 such that, if f ∈ W1,M(ℝn) and ‖f‖W1,M (ℝn) ≤ η, then the weak solution u to the
problem (1.1) provided by Theorem 3.2 is a classical solution, in the sense that

u ∈ C∞(ℝn+1+ ) ∩ C1(ℝn+1+ ). (3.17)

Remark 3.6. Plainly, only the asymptotic behavior near zero of the functions ϕ and ψ in Theorem 3.5 is relevant.

Remark 3.7. The condition (3.15) can be equivalently formulated by requiring that the index i0(ϕ), defined as
in (2.15), satisfies

i0(ϕ) > 0. (3.18)

Remark 3.8. In analogy with the inequality (3.2), one may be tempted to simplify the assumption (3.16) as

|N󸀠(t) −N󸀠(s)| ≤ c|t − s|(D(θ|t|)
|t| +

D(θ|s|)
|s| ).

However, the latter condition is informative only when D(t)
t is non-decreasing, a property which is not fulfilled

for various important choices of the function N. By contrast, the assumption (3.16) is sufficiently general for
Theorem 3.5 to be applied in most situations of interest.

In particular, if D(t)t is non-increasing, the condition (3.16) is typically satisfied with ϕ(t) = D(t) and ψ(t) = 1
in (3.14). Notice that the assumption (3.15) then holds with γ = n󸀠 − 1. Indeed, by the convexity of A, if ε ∈ (0, 1),
then

D(t)
εn󸀠−1
=
A(tn󸀠 )
εn󸀠 ⋅ tε
≤
A(( tε )

n󸀠)
t
ε
= D( tε) for t > 0. (3.19)

Specific choices of the functions ϕ and ψ in (3.14) are described in the examples below.
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Example 3.9. Assume thatN ∈ C1(ℝ) and

N(t) =
{
{
{

|t|p0−1t for t near 0,
|t|p1−1t for |t| near∞,

(3.20)

for some p0 , p1 > n󸀠. Then the conditions (3.1) and (3.2) are fulfilled with

A(t) =
{
{
{

t
p0
n󸀠 for t near 0,
t
p1
n󸀠 for t near∞.

(3.21)

Hence, from equations (3.4) and (3.5) one infers that

E(t) ≃
{
{
{

t
n
p󸀠0 for t near 0,

t
n
p󸀠1 for t near∞,

(3.22)

E⬦(t) ≃
{{
{{
{

t
n+1
p󸀠0 for t near 0,

t
n+1
p󸀠1 for t near∞,

(3.23)

En(t) ≃
{
{
{

tn(p0−1) for t near 0,
tn(p1−1) for t near∞.

(3.24)

Moreover, if p0 ≥ 2, then the bound in (3.14) holds with

ϕ(t) ≃ t and ψ(t) ≃ tp0−2 for t near 0,

whereas, for p0 < 2, an admissible choice is

ϕ(t) ≃ tp0−1 and ψ(t) ≃ 1 for t near 0.

Example 3.10. Assume thatN ∈ C1(ℝ) and

N(t) =
{{
{{
{

|t|p0−1t(log 1
|t| )

β0
for t near 0,

|t|p1−1t(log |t|)β1 for |t| near∞,
(3.25)

for some p0 , p1 > n󸀠 and β0 , β1 ∈ ℝ. Then the conditions (3.1) and (3.2) are fulfilled with

A(t) ≃
{{{
{{{
{

t
p0
n󸀠 (log 1t )

β0
for t near 0,

t
p1
n󸀠 (log t)β1 for t near∞.

(3.26)

Hence,

E(t) ≃
{{{
{{{
{

t
n
p󸀠0 (log 1t )

nβ0
p0 for t near 0,

t
n
p󸀠1 (log t)

nβ1
p1 for t near∞,

(3.27)

E⬦(t) ≃
{{{
{{{
{

t
n+1
p󸀠0 (log 1t )

β0
p0
(n+1)

for t near 0,

t
n+1
p󸀠1 (log t)

β1
p1
(n+1) for t near∞,

(3.28)

En(t) ≃
{{
{{
{

tn(p0−1)(log 1t )
nβ0

for t near 0,

tn(p1−1)(log t)nβ1 for t near∞.
(3.29)
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As for the condition (3.14), if either p0 > 2, or p0 = 2 and β0 ≤ 0, then it holds with

ϕ(t) ≃ t and ψ(t) ≃ tp0−2(log 1t )
β0

for t near 0,

whereas, if either p0 < 2, or p0 = 2 and β0 > 0, then (3.14) is fulfilled with

ϕ(t) ≃ tp0−1(log 1t )
β0

and ψ(t) ≃ 1 for t near 0.

Example 3.11. Assume that
N(t) = |t|p−1t etα (3.30)

for some p > n󸀠 and α > 0. Then the conditions (3.1) and (3.2) are fulfilled with

A(t) ≃ t
p
n󸀠 et

α
n󸀠 . (3.31)

Therefore,

E(t) ≃
{
{
{

t
n
p󸀠 for t near 0,
tn(log t)n−1− nα for t near∞,

(3.32)

E⬦(t) ≃
{
{
{

t
n+1
p󸀠 for t near 0,

tn+1(log t)(n+1)(
1
n󸀠 −

1
α ) for t near∞,

(3.33)

En(t) ≃
{
{
{

tn(p−1) for t near 0,
etα for t near∞.

(3.34)

If p ≥ 2, then the inequality (3.14) is satisfied with

ϕ(t) ≃ t and ψ(t) ≃ tp−2 for t near 0;

if p < 2, it instead holds with
ϕ(t) ≃ tp−1 and ψ(t) ≃ 1 for t near 0.

3.2 Polyharmonic functions

The results from the previous subsection admit analogs for the polyharmonic problem (1.6) of arbitrary
order 2m, with m ∈ ℕ. Their statements make use of functions A, D and E, depending on m, and having
the same role as those introduced for m = 1.

Set
ℓ = 2m − 1, (3.35)

and letN : ℝ → ℝ be as in (1.6). We assume that there exists a finite-valued Young function A such that

|N(t)| ≤ A(|t|
n
n−ℓ ) for t ∈ ℝ, (3.36)

and

|N(t) −N(s)| ≤ c|t − s|(A(|θt|
n
n−ℓ )
|t| +

A(|θs| nn−ℓ )
|s| ) for t, s ∈ ℝ, (3.37)

for some positive constants c and θ > 0. The function D is accordingly defined as

D(t) =
{{
{{
{

A(t n
n−ℓ )
t if t > 0,

0 if t = 0,
(3.38)

and the Young function E : [0,∞) → [0,∞) as

E(t) =
A−1(t)

∫
0

a(s)
n
ℓ ds for t ≥ 0, (3.39)
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where a denotes the function appearing in (2.1). Lemma 4.6 ensures that the condition (2.16) is fulfilled with A
replaced with E, and its Sobolev conjugate E n

ℓ
, defined as in (2.18), obeys

E n
ℓ
(t) ≃

t
n
n−ℓ

∫
0

a(s)
n
ℓ ds for t ≥ 0. (3.40)

The Young function E⬦ is defined via E as in (2.23). Namely,

E⬦(t) = E(t)
n+1
n for t ≥ 0. (3.41)

Definition 3.12 (Weak solutions to (1.6)). Letm ≥ 2 and let ℓ be given by (3.35). Assume that f ∈ L1loc(ℝ
n) and that

the condition (3.36) is satisfied for someYoung functionA. Let E, E n
ℓ
and E⬦ be the functions givenby (3.39), (3.40),

and (3.41). We say that u ∈ Vℓ,(E⬦ ,E n
ℓ
)(ℝn+1+ ,ℝn) is a weak solution to the problem (1.6) if

∫
ℝn+1+

∇mu ⋅ ∇mφ dx dxn+1 − ∫
ℝn

(N(u)(x, 0) + f(x))φ(x, 0) dx = 0

for every φ ∈ C∞c (ℝn+1+ ) such that (∂xn+1Δkφ)( ⋅ , 0) = 0 for all k = 0, . . . ,m − 2.

The existence result for solutions to the problem (1.6) is the subject of the following theorem.

Theorem 3.13 (Existence of weak solutions to (1.6)). Let m ≥ 2 and let ℓ be given by (3.35). Assume that the function
N satisfies the assumptions (3.36) and (3.37) for some Young function A fulfilling (3.7). Let E, E n

ℓ
and E⬦ be the

functions given by (3.39), (3.40), and (3.41). Then there exist positive constants σ0 and c such that, if

‖f‖LE(ℝn) ≤ σ0 ,

then the problem (1.6) admits a weak solution u ∈ C∞(ℝn+1+ ) ∩ V
ℓ,(E⬦ ,E n

ℓ
)(ℝn+1+ ,ℝn) satisfying

‖u‖
V
ℓ,(E⬦ ,E n

ℓ
)
(ℝn+1+ ,ℝn)

≤ σ0c. (3.42)

Assume, in addition, thatN(t) > 0 for t > 0. If f > 0 a.e., then u > 0 as well.

The Sobolev regularity of the solution to the problem (1.6) calls into play a Young function F such that

∫
0

(
t

F(t))
ℓ
n−ℓ

dt < ∞, (3.43)

its Sobolev conjugate F n
ℓ
defined as in (2.18), and the Young function F⬦ associated with F as in (2.23).

Theorem 3.14 (Sobolev regularity of solutions to (1.6)). Let m ≥ 2 and let ℓ be given by (3.35). Assume that A, E and
σ0 are as in Theorem 3.13. Let F be a Young function satisfying (3.43) and such that F ∈ Δ2 ∩ ∇2 globally. Assume
that there exists a constant κ such that

F−1n
ℓ
(t)

F−1(t)
≤ κ

E−1n
ℓ
(t)

E−1(t)
for t > 0. (3.44)

Let f ∈ LE∨F(ℝn). Then there exists a constant σ1 ∈ (0, σ0) such that, if ‖f‖LE(ℝn) < σ1, then the solution u to the
problem (1.6) provided by Theorem 3.13 satisfies

u ∈ Vℓ,(F⬦ ,F n
ℓ
)(ℝn+1+ ,ℝn). (3.45)

We conclude by focusing on the boundary regularity of solutions to the problem (1.6). To this purpose, consider
a Young function M as in (3.12). Notice that the convergence of the integral in (3.12) implies that

∞

∫ (
t

M(t))
ℓ
n−ℓ
dt < ∞. (3.46)

Theorem 3.15 (Smooth solutions to (1.6)). Let m ≥ 2 and let ℓ be given by (3.35). Let A be as in Theorem 3.13, and
let D be the function defined by (3.38). Assume that:
(i) The function D admits the lower bound (3.14), with ϕ fulfilling the condition (3.15).
(ii) The functionN is differentiable and satisfies the condition (3.16).
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Then there exists a constant η > 0 such that, if f ∈ W1,M(ℝn) and ‖f‖W1,M (ℝn) ≤ η, then the weak solution u to the
problem (1.6) provided by Theorem 3.13 is a classical solution, in the sense that

u ∈ C∞(ℝn+1+ ) ∩ Cℓ(ℝn+1+ ). (3.47)

4 Auxiliary results on Young functions and their conjugates

This section is devoted to some specific properties of Young functions in connection with their Sobolev conju-
gates, under the assumptions imposed in our main results. Throughout the section, we assume that α ∈ (0, n).

Lemma 4.1. Let A be a finite-valued Young function fulfilling the condition (2.16) and let A n
α
be its Sobolev conju-

gate given by (2.18). Then
A−1(t)
A−1n

α
(t)
≤ t

α
n for t > 0. (4.1)

Assume, in addition, that
I(A) < n

α . (4.2)

Then there exists a constant c such that
A−1(t)
A−1n

α
(t)
≥ c t

α
n for t > 0. (4.3)

Proof. The property (2.2) implies that

HA, nα (t) = (
t

∫
0

(
τ

A(τ))
α
n−α

dτ)
n−α
n

≥ (
t

A(t))
α
n
(

t

∫
0

dτ)
n−α
n

=
t

A(t) αn
for t > 0. (4.4)

Hence,
t ≤ A(t)

α
n HA, nα (t) for t > 0,

an equivalent form of (4.1).
Next, observe that the assumption (4.2) is equivalent to the fact that for every ε > 0 there exists a constant

c such that
A(t)
t nα −ε
≤ c A(τ)

τ n
α −ε

if t ≥ τ. (4.5)

Thereby,

HA, nα (t) = (
t

∫
0

(
τ

A(τ))
α
n−α

dτ)
n−α
n

= (
t

∫
0

(
τ n
α −ε

A(τ) )
α
n−α
τ−1+

εα
n−α dτ)

n−α
n

≤ c t
1− εαn

A(t) αn
(

t

∫
0

τ−1+
εα
n−α dτ)

n−α
n

= c󸀠 t
A(t) αn

for t > 0,

(4.6)

for suitable constants c and c󸀠. Consequently,

c󸀠t ≥ A(t)
α
n HA, nα (t) for t > 0,

whence (4.3) follows.

The statement of the next lemma involves the notion of quasi non-decreasing function. This means that the
relevant function fulfills the definition of non-decreasing monotonicity, up to a multiplicative constant.

Lemma 4.2. Let A be a finite-valued Young function fulfilling the condition (2.16).
(i) Assume that A ∈ ∇2 globally. Then there exists δ > 0 such that the function

A n
α
(t)

t n
n−α +δ

is non-decreasing in (0,∞). (4.7)



A. Cianchi et al., Strongly nonlinear Robin problems  787

(ii) Assume that A ∈ ∇2 near 0, and satisfies the condition (2.20). Then there exists δ > 0 such that the function

A n
α
(t)

t n
n−α +δ

is quasi non-decreasing in (0,∞). (4.8)

Proof. Part (i). Set

t0 = (
∞

∫
0

(
t

A(t))
α
n−α

dt)
n−α
n

∈ (0,∞]. (4.9)

One has that A n
α
(t) < ∞ if t ∈ [0, t0). Moreover, if t0 < ∞, namely, if (2.20) is in force, then A n

α
(t) = ∞ for

t ∈ (t0 ,∞). Thus, it suffices to prove that, whatever t0 is,

A n
α
(t)

t n
n−α +δ

is non-decreasing in (0, t0). (4.10)

Since A ∈ ∇2, by the property (2.10) there exists ε > 0 such that

ta(t)
A(t)
≥ 1 + ε for t ∈ (0, t0), (4.11)

where a is the function appearing in the representation formula (2.1). Given δ > 0, one has that

d
dt(

A n
α
(t)

t n
n−α +δ
) > 0 for t ∈ (0, t0) (4.12)

if and only if
tA󸀠n

α
(t)

A n
α
(t) >

n
n − α + δ for t ∈ (0, t0). (4.13)

On the other hand,
tA󸀠n

α
(t)

A n
α
(t) =

ta(H−1A, nα (t))

A(H−1A, nα (t))H
󸀠
A, nα
(H−1A, nα (t))

for t ∈ (0, t0). (4.14)

We have that
HA, nα (s)a(s)
A(s)H󸀠A, nα (s)

=
n

n − α s
− α
n−α a(s)A(s)

α
n−α −1

s

∫
0

(
r

A(r))
α
n−α
dr

≥
n

n − α (1 + ε)s
− n
n−α A(s)

α
n−α

s

∫
0

(
r

A(r))
α
n−α
dr

≥
n

n − α (1 + ε) for s > 0,

(4.15)

where the first inequality holds thanks to equation (4.11), and the second one since, by (2.2),

1
s

s

∫
0

(
r

A(r))
α
n−α
dr ≥ ( s

A(s))
α
n−α

for s > 0.

Owing to equation (4.14), an application of the inequality (4.15) with s = H−1A, nα (t) yields (4.13), whence (4.12) and
(4.10) follow.

Part (ii). As noticed above, under the assumption (2.20), one has that t0 < ∞. Since we are assuming that
A ∈ ∇2 near 0, there exist constants ε and t1 such that

ta(t)
A(t) ≥ 1 + ε for t ∈ (0, t1). (4.16)

Set t2 = min{t0 , t1}. The argument offered in the proof of part (i) tells us that

A n
α
(t)

t n
n−α +δ

is increasing in (0, t2).
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If t2 = t0, then (4.7), and hence (4.8), hold, inasmuch as A n
α
(t) = ∞ for t > t0. On the other hand, if t2 = t1, then,

by the monotonicity of A n
α
,

A n
α
(t)

t n
n−α +δ
≤ (

t0
t1
)

n
n−α +δ A n

α
(t0)

t
n
n−α +δ
0

if t ∈ (t1 , t0).

Altogether, the property (4.8) follows also in this case.

Let ĤA, nα : [0,∞) → [0,∞) be a variant of the function HA, nα , defined with
t

A(t) replaced with
1
a(t) , where a is

the function appearing in (2.1). Namely,

ĤA, nα (t) = (
t

∫
0

(
1
a(τ))

α
n−α

dτ)
n−α
n

for t ≥ 0. (4.17)

Moreover, let Â n
α
be the Young function given by

Â n
α
(t) = A(Ĥ−1A, nα (t)) for t ≥ 0. (4.18)

The latter function is equivalent to the original Sobolev conjugate A n
α
. This is the content of the following lemma.

Lemma 4.3. Let A be a finite-valued Young function fulfilling the condition (2.16) and let A n
α
and Â n

α
be the func-

tions defined by (2.18) and (4.18). Then

Â n
α
(
t
2) ≤ A

n
α
(t) ≤ Â n

α
(t) for t ≥ 0. (4.19)

Proof. From the inequalities (2.3) one can deduce that

ĤA, nα (t) ≤ HA, nα (t) ≤ 2ĤA, nα (t) for t ≥ 0. (4.20)

Equation (4.19) follows from (4.20).

We still need to introduce more functions associated with the Young function A. They are the function
HA, nα : (0,∞) → [0,∞) given by

HA, nα (t) =
t

ĤA, nα (t)
for t > 0, (4.21)

and the Young function BA, nα defined as

BA, nα (t) =
t

∫
0

A(H−1A, nα (s))
s ds for t > 0. (4.22)

Moreover, let E be the function from (3.39), with ℓ = α. Namely,

E(t) =
A−1(t)

∫
0

a(s)
n
α ds for t ≥ 0. (4.23)

Then we denote by BE, nα the function obtained from E, via a process analogous to the one which produces
BA, nα from A. In particular, in (4.17), the function a(t) has to be replaced with (a(A−1(t))) nα −1, the left-continuous
derivative of E. Namely,

ĤE, nα (t) = (
t

∫
0

1
a(A−1(τ))

dτ)
n−α
n

for t ≥ 0, (4.24)

HE, nα (t) =
t

ĤE, nα (t)
for t > 0, (4.25)

BE, nα (t) =
t

∫
0

E(H−1E, nα (s))
s ds for t ≥ 0. (4.26)

Also, we set
Ê n

α
(t) = E(Ĥ−1E, nα (t)) for t ≥ 0. (4.27)
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Lemma 4.4. Let A be a finite-valued Young function satisfying (2.16) and let ĤA, nα be the function defined by
equation (4.17). Then HA, nα is non-decreasing, BA, nα is a Young function and

A(H−1A, nα (
t
2)) ≤ BA,

n
α
(t) ≤ A(H−1A, nα (t)) for t > 0. (4.28)

Proof. We start by showing that HA, nα is non-decreasing. To this end, it suffices to show that the function

t 󳨃→ t n
n−α

∫t0 (
1
a(s) )

α
n−α ds

is non-decreasing on (0,∞). This is true, since the derivative of this function times (∫t0 1/(a(s))
α
n−α ds)2 equals

t
n
n−α(

n
(n − α) t

t

∫
0

(
1
a(s))

α
n−α

ds − ( 1
a(t))

α
n−α
),

and the last expression is nonnegative thanks to the facts that n
n−α ≥ 1 and a(t) is non-decreasing.

To show that BA, nα is a Young function we need to verify that A(H−1A, nα (s))/s is non-decreasing on (0,∞).
Since HA, nα is non-decreasing, it suffices to prove that A(t)/HA, nα (t) is non-decreasing. The latter function can
be rewritten as (A(t)/t)ĤA, nα (t), which is a non-decreasing function, inasmuch as both A(t)/t and ĤA, nα (t) enjoy
this property.

Equation (4.28) is an easy consequence of the increasing monotonicity of the function A(H−1A, nα (t))/t.

Lemma 4.5. Let A be a finite-valued Young function satisfying the condition (3.7). Then the function E defined by
(4.23) is a Young function such that E ∈ Δ2 ∩ ∇2 globally.

Proof. A change of variables in the integral on the right-hand side of equation (4.23) yields the alternate formula

E(t) =
t

∫
0

(a(A−1(r)))
n
α −1 dr for t ≥ 0. (4.29)

Since both a and A−1 are non-decreasing functions, equation (4.29) ensures that E is a Young function. Further-
more, Lemma 2.1 applied with K = 2 tells us that E ∈ Δ2, and the same lemma applied with K = 2

n
α −1 tells us

that E ∈ ∇2.

Lemma 4.6. Let A be a finite-valued Young function and let E be the function defined by (4.23). Then

∫
0

(
t

E(t))
α
n−α

dt < ∞ (4.30)

and
∞

∫ (
t

E(t))
α
n−α

dt = ∞. (4.31)

Moreover, the Sobolev conjugate E n
α
of E, defined as in (2.18), fulfills

E n
α
(t) ≃

t
n
n−α

∫
0

a(s)
n
α ds for t ≥ 0. (4.32)

Proof. Equation (4.29) yields the formula

E󸀠(t) = a(A−1(t))
n
α −1 for t ≥ 0, (4.33)

for the left-continuous derivative of E. Therefore,
t

∫
0

(
1

E󸀠(τ))
α
n−α

dτ =
t

∫
0

dτ
a(A−1(τ))

=
A−1(t)

∫
0

dτ = A−1(t) for t ≥ 0. (4.34)

The properties (4.30) and (4.31) follow from (4.34), via equation (2.3) applied to E.
Finally, equation (4.32) is a consequence of (4.33) and of Lemma 4.3, applied with A replaced with E.
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Lemma 4.7. Assume that A is a finite-valued Young function and E is defined as in (4.23). Let BE, nα be the function
associated with E by (4.25). Assume that F is a Young function satisfying (3.43) with ℓ = α. If the inequality (3.44)
holds with ℓ = α, then there exists a constant c such that

B−1E, nα (t)F
−1
n
α
(t) ≤ cF−1(t) for t > 0. (4.35)

Proof. An application of Lemma 4.4, with A replaced with E, tells us that

B−1E, nα (t) ≤ 2HE, nα (E
−1(t)) = 2 E−1(t)

ĤE, nα (E
−1(t))
= 2E
−1(t)
Ê−1n

α
(t)

for t > 0. (4.36)

From Lemma 4.3, applied with A replaced with E, we infer that

Ê−1n
α
(t) ≥ c󸀠E−1n

α
(t) for t > 0,

for some positive constant c󸀠. Therefore, equation (4.36) implies that

B−1E, nα (t) ≤
2
c󸀠
E−1(t)
E−1n

α
(t)

for t > 0. (4.37)

Coupling equation (3.44) with (4.37) yields the inequality (4.35).

Lemma 4.8. Assume that A is a finite-valued Young function. Let D be defined as in (3.3), let E be defined as in (3.4),
let HE,n be defined as in (4.25)with α = 1, and let Mn be the Sobolev conjugate of a function M obeying (3.12). Then

Mn(D−1(t)) ≤ E(H
−1
E,n(t)) near 0 (4.38)

and
Mn(2D−1(t)) ≥ E(H

−1
E,n(t)) near 0. (4.39)

Proof. From equation (4.20) and the property (2.3), both applied with A replaced with E, one infers that

H−1E,n(ĤE,n(t)) ≤ t for t ≥ 0 (4.40)

and
H−1E,n(2ĤE,n(t)) ≥ t for t ≥ 0. (4.41)

Since M(t) = E(t) near 0, we have

Mn(D−1(t)) = En(D−1(t)) = E(H−1E,n(D
−1(t))) near 0. (4.42)

Equation (4.34) tells us that ĤE,n(t) = A−1(t)
n−1
n for t > 0. Therefore,

D(t) =
Ĥ−1E,n(t)

t = HE,n(Ĥ−1E,n(t)) for t > 0. (4.43)

Combining equations (4.42) and (4.43) yields

Mn(D−1(t)) = E(H−1E,n(ĤE,n(H
−1
E,n(t)))) near 0. (4.44)

Thanks to (4.40) we hence deduce that

Mn(D−1(t)) ≤ E(H
−1
E,n(t)) near 0, (4.45)

namely, (4.38). Similarly, from (4.41) one obtains that

Mn(2D−1(t)) ≥ E(H−1E,n(2ĤE,n(H
−1
E,n(t)))) ≥ E(H

−1
E,n(t)) near 0, (4.46)

namely, (4.39).
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5 Boundedness properties of integral operators in Orlicz spaces

In this section, we establish boundedness properties in Orlicz spaces of the integral operators involved in rep-
resentation formulas for the solutions to the problems (1.1) and (1.6). Some specific properties of Orlicz norms
built upon the Young functions introduced in the previous sections are also collected in the final part of the
section.

Let α ∈ (0, n). We denote by Tα the extension operator defined by

Tαh(x, xn+1) = π
n+1
2
Γ( n−α2 )
Γ( α+12 )
∫
ℝn

h(y)
(|x − y|2 + x2n+1)

n−α
2
dy for a.e. (x, xn+1) ∈ ℝn+1,

for h ∈ L1(ℝn , (1 + |x|)−(n−α)dx).
Furthermore, letH be the Poisson extension operator given by

Hf(x, xn+1) = π−
n
2 Γ(n2 ) ∫

ℝn

xn+1f(y)
(|x − y|2 + x2n+1)

n+1
2
dy for (x, xn+1) ∈ ℝn+1,

for f ∈ L1(ℝn , (1 + |x|)−(n+1)dx).
Also, recall that the classical Riesz potential Iα is given by

Iα f(x) =
Γ( n−α2 )

2απ n
2 Γ( α2 )
∫
ℝn

f(y)
|x − y|n−α dy for a.e. x ∈ ℝn ,

for f ∈ L1(ℝn , (1 + |x|)−(n−α)dx), and the Riesz transform Rj is defined, for j = 1, . . . , n, via the principal value
as a singular integral operator, by

Rj f(x) =
2
ωn
∫
ℝn

f(y)
xj − yj
|x − y|n+1

dy for a.e. x ∈ ℝn ,

for f ∈ L1(ℝn , (1 + |x|)−ndx).
The following properties of the operator Tα are proved in [23, Lemma 2.6]. In what follows, S(ℝn) stands for

the Schwartz space of those smooth functions in ℝn which, together with their derivatives of any order, decay
near infinity faster than any power.

Lemma 5.1. Let ℓ be an odd integer such that 0 < ℓ < n. Then there exist constants c1 and c2, depending on n
and ℓ, such that

{
{
{

(−1)
ℓ+3
2 ∂xn+1Δ

ℓ−1
2 Tℓh = c1Hh,

(−1)
ℓ+1
2 ∂jΔ

ℓ−1
2 Tℓh = c2RjHh = c2HRjh for j = 1, 2, . . . , n,

(5.1)

for h ∈ S(ℝn).

Thanks to this lemma, boundedness properties of any ℓ-th order derivative of Tℓ in Orlicz spaces can be deduced
from parallel properties of the Riesz transform and the Poisson extension operator. This is accomplished in the
next lemma.

Lemma 5.2. Assume that ℓ ∈ (0, n) is an odd integer. Let A be a Young function fulfilling the condition (2.16), with
α = ℓ, and such that A ∈ Δ2 ∩ ∇2 globally. Then

Tℓ : LA(ℝn) → Vℓ,(A⬦ ,An/ℓ)(ℝn+1+ ,ℝn).

Namely, there exists a constant c such that

‖∇ℓTℓh‖LA⬦ (ℝn+1+ ) + ‖Tℓh‖LAn/ℓ (ℝn) ≤ c‖h‖LA(ℝn) (5.2)

for h ∈ LA(ℝn).

The following Sobolev-type boundedness property of the Riesz potential comes into play in the proof of
Lemma 5.2.
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Lemma 5.3. Let α ∈ (0, n) and let A be a finite-valued Young function fulfilling the condition (2.16). Assume that
either A ∈ ∇2 globally, or A ∈ ∇2 near 0 and the condition (2.20) holds. Then

Iα : LA(ℝn) → LA n
α (ℝn). (5.3)

Proof. A proof of equation (5.3) makes use of [17, Theorem 7.2.1, item (ii)], whose proof is, in turn, related to
a general characterization of boundedness properties of Riesz potentials in Orlicz spaces from [8]. That theorem
enables one to deduce equation (5.3) after verifying that

inf
0<t<1

A(t)t−
n
α > 0 (5.4)

and
t

∫
0

G(s)
s1+ n

n−α
ds ≤ P

−1(ct)
t n
n−α

for t ≥ 0, (5.5)

for some constant c > 0, where P : (0,∞) → [0,∞) is the function given by

P(t) = sup
0<s≤t

A−1(s)s−
α
n for t > 0,

and G : (0,∞) → [0,∞) is the function defined as

G(t) = (
tA(H−1A, nα (t))

H−1A, nα (t)
)

n
n−α

for t > 0.

Equation (5.4) is a consequence of the fact that

lim
t→0

A(t)t−
n
α = ∞,

which follows from the assumption (2.16) and the property (2.2).
As far as the condition (5.5) is concerned, we observe that, owing to [6, Lemma 1], one has that G ≃ A n

α
.

Hence, the inequality (5.5) is equivalent to
t

∫
0

A n
α
(s)

s1+ n
n−α

ds ≤ P
−1(ct)
t n
n−α

for t ≥ 0, (5.6)

for some constant c > 0. In order to prove (5.6), note that, by Lemma 4.2, there exists δ > 0 such that the function
A n

α
(t)/t n

n−α +δ is quasi non-decreasing. Thus, there exists a constant c󸀠 such that
t

∫
0

A n
α
(s)

s n
n−α +1

ds =
t

∫
0

A n
α
(s)

s n
n−α +δ

sδ−1 ds ≤ c󸀠
A n

α
(t)

t n
n−α +δ

t

∫
0

sδ−1 ds = c
󸀠

δ
A n

α
(t)

t n
n−α

for t ≥ 0.

Thanks to the latter chain, equation (5.6) will follow if we show that there exists a positive constant c such that
A n

α
(t) ≤ P−1(ct), namely, A(H−1A, nα (t)) ≤ P

−1(ct) or, equivalently,

c HA, nα (A
−1(t)) ≥ P(t) for t ≥ 0. (5.7)

Since HA, nα (A
−1(t)) is an increasing function, equation (5.7) will be established if we prove that

cHA, nα (A
−1(t)) ≥ A−1(t)t−

α
n for t ≥ 0. (5.8)

This inequality holds as a consequence of the chain

HA, nα (t) = (
t

∫
0

(
s

A(s))
α
n−α

ds)
n−α
n

≥
1

A(t) αn
(

t

∫
0

s
α
n−α ds)

n−α
n

= (
n − α
n )

n−α
n t
A(t) αn

for t ≥ 0.

The following lemma ensures that the operator Tα is well-defined for functions in the Orlicz space LA(ℝn),
provided that A fulfils the condition (2.16).
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Lemma 5.4. Let α ∈ (0, n) and let A be a Young function fulfilling the condition (2.16). Then

LA(ℝn) → L1(ℝn , (1 + |x|)−(n−α)dx). (5.9)

Proof. By the Hölder inequality (2.25),

∫
ℝn

|h(x)|
(1 + |x|)(n−α)

dx ≤ 2‖h‖LA(ℝn)‖(1 + |x|)−(n−α)‖LÃ(ℝn) (5.10)

for h ∈ LA(ℝn). Via the very definition of Luxemburg norm, one can verify that

‖(1 + |x|)−(n−α)‖LÃ(ℝn) < ∞ if and only if ∫
0

Ã(t)
t1+ n

n−α
dt < ∞.

Equation (5.9) thus follows, since the convergence of the last integral is equivalent to the condition (2.16) – see
[9, Lemma 2.3].

Proof of Lemma 5.2. To begin with, observe that, given a function h : ℝn → ℝ, the restriction of Tℓh to ℝn
agrees with a dimensional multiple of the Riesz potential Iℓh on ℝn . Thus, owing to equation (5.3), there exists
a constant c such that

‖Tℓh‖LA nℓ (ℝn) ≤ c‖h‖LA(ℝn) (5.11)

for h ∈ LA(ℝn).
A parallel bound for the first norm on the left-hand side of the inequality (5.2) relies upon an interpolation

argument. Recall that the Poisson extension operator has the following boundedness properties:

H : L1(ℝn) → L
n+1
n ,∞(ℝn+1+ ) and H : L∞(ℝn) → L∞(ℝn+1+ ), (5.12)

see e.g. [13]. From [7, Theorem], one can hence deduce that

H : LA(ℝn) → LA⬦ (ℝn+1+ ), (5.13)

provided that there exists a constant c such that

t

∫
0

A⬦(s)
s n+1

n +1
ds ≤ c(A(t)t )

n+1
n

for t > 0.

The latter inequality reads
t

∫
0

A(s) n+1n

s n+1
n +1

ds ≤ c(A(t)t )
n+1
n

for t > 0. (5.14)

Since A ∈ ∇2, the property (2.10) ensures that the function A(t)
t1+ε is non-decreasing for some ε > 0. Therefore,

equation (5.14) follows from the following chain:

t

∫
0

A(s) n+1n

s n+1
n +1

ds =
t

∫
0

A(s) n+1n

s n+1
n +ε

sε−1 ds ≤ A(t)
n+1
n

t n+1n +ε

t

∫
0

sε−1 ds = 1ε(
A(t)
t )

n+1
n

for t > 0.

The assumption A ∈ Δ2 ∩ ∇2 classically ensures that

Rj : LA(ℝn) → LA(ℝn), (5.15)

see e.g. [15]. From Lemma 5.1 and equations (5.13) and (5.15) one deduces that

‖∇ℓTℓh‖LA⬦ (ℝn+1+ ) ≤ c(
n
∑
j=1
‖HRjh‖LA⬦ (ℝn+1+ ) + ‖Hh‖LA⬦ (ℝn+1+ )) ≤ c

󸀠‖h‖LA(ℝn) (5.16)

for some constants c and c󸀠, and for every h ∈ S(ℝn) ∩ LA(ℝn).
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It remains to show that the same inequality continues to hold for any h ∈ LA(ℝn). To this end, observe that,
given L > 0, the kernel Kℓ associated with the operator Tℓ satisfies the bounds

|∇mx Kℓ(x − y, xn+1)| ≤
c

(|x − y|2 + L2) n−ℓ2
for x, y ∈ ℝn and xn+1 ≥ L (5.17)

and
|∂mxn+1Kℓ(x − y, xn+1)| ≤

c
(|x − y|2 + L2) n−ℓ2

for x, y ∈ ℝn and xn+1 ≥ L, (5.18)

for m ∈ ℕ ∪ {0}, and some constant c = c(n, ℓ,m, L). Hence, by Lemma 5.4, if h ∈ LA(ℝn), then, fixing xn+1 > 0,

h(y)∇mKℓ(x − y, xn+1) ∈ L1(BR(0) × ℝn) (5.19)

form ∈ℕ∪ {0} and R > 0,where BR(0) denotes the ball inℝn centered at 0, with radius R, and (x, y) ∈ BR(0) ×ℝn .
From this piece of information and Fubini’s theorem, one deduces that, for every xn+1 > 0, the function
Tℓh( ⋅ , xn+1) admits weak derivatives of any order m, and

∇mTℓh(x, xn+1) = ∫
ℝn

∇mKℓ(x − y, xn+1)h(y) dy for a.e. x ∈ ℝn . (5.20)

Now, let {hk} be a sequence in S(ℝn) ∩ LA(ℝn) such that hk → h in LA(ℝn). Such a sequence exists since A ∈ Δ2.
We already know that

‖∇ℓTℓhk‖LA⬦ (ℝn+1+ ) ≤ c‖hk‖LA(ℝn) (5.21)

for some constant c. A generalization of a classical result for Lebesgue spaces ensures that there exists a sub-
sequence, still denoted by {hk}, and a nonnegative function h ∈ LA(ℝn), such that hk → h a.e. and |hk| ≤ h a.e.
inℝn . As a consequence, thanks to (5.17) and the dominated convergence theorem,∇ℓTℓhk → ∇ℓTℓh a.e. inℝn+1+ .
Since Orlicz norms enjoy the Fatou property, we have

‖∇ℓTℓh‖LA⬦ (ℝn+1+ ) ≤ lim inf
n→∞
‖∇ℓTℓhk‖LA⬦ (ℝn+1+ ) .

On the other hand,
lim
k→∞
‖hk‖LA(ℝn) = ‖h‖LA(ℝn) .

From (5.21) we hence deduce that
‖∇ℓTℓh‖LA⬦ (ℝn+1+ ) ≤ c‖h‖LA(ℝn) . (5.22)

The inequality (5.2) follows from (5.11) and (5.22).

The regularity properties of the Neumann potential operator T1 stated in the next lemma will be of use in our
proof of Theorem 3.5.

Lemma 5.5. Let M be a Young function as in (3.12), and let Mn be its Sobolev conjugate. If f ∈ W1,M(ℝn), then
T1f ∈ C1(ℝn+1+ ) ∩W1,Mn (ℝn). Moreover, there exists a constant c such that

‖T1f‖C1(ℝn+1+ )
+ ‖T1f‖W1,Mn (ℝn) ≤ c‖f‖W1,M (ℝn) (5.23)

for f ∈ W1,M(ℝn).

Proof. The definition of the function M guarantees that the assumptions of Lemma 5.3 are fulfilled with A
replaced with M. Also, thanks to (3.13), LMn (ℝn) → L∞(ℝn). Hence,

W1,M(ℝn) → LMn (ℝn) → L∞(ℝn). (5.24)

Let f ∈ W1,M(ℝn). Thanks to the bounds (5.17) and (5.18), with ℓ = 1, for the kernel of the operator T1, an analo-
gous argument as in the proof of Lemma 5.2 tells us that T1f is weakly differentiable and

∇T1f(x, xn+1) = (∇x ∫
ℝn

K(y, xn+1)f(x − y) dy, ∫
ℝn

∂xn+1K(x − y, xn+1)f(y) dy)

= ( ∫
ℝn

K(x − y, xn+1)∇ f(y) dy, ∫
ℝn

∂xn+1K(x − y, xn+1)f(y) dy)
(5.25)
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for a.e. (x, xn+1) ∈ ℝn+1+ . Hence, the following chain holds:

‖∇T1f‖L∞(ℝn+1+ ) = ‖∇xT1f‖L∞(ℝn+1+ ) + ‖∂xn+1T1f‖L∞(ℝn+1+ )

≤ c(‖I1(|∇ f|)‖L∞(ℝn) + ‖Hf‖L∞(ℝn+1+ ))

≤ c󸀠(‖∇ f‖LM (ℝn) + ‖f‖L∞(ℝn)) ≤ c󸀠󸀠‖f‖W1,M (ℝn) ,

for suitable constants c, c󸀠 , c󸀠󸀠, and for f ∈ W1,M(ℝn). Here, we used the right-most side of the chain (5.25) in the
first inequality, and Lemma 5.3, the second embedding in (5.24) and equation (5.12) in the second inequality.

Moreover,
‖T1f‖L∞(ℝn+1+ ) ≤ ‖T1|f|‖L∞(ℝn) = ‖I1|f|‖L∞(ℝn) ≤ c‖f‖LM (ℝn) ≤ c‖f‖W1,M (ℝn) ,

for a suitable constant c, and for f ∈ W1,M(ℝn). On the other hand, by (5.24),

‖T1f‖W1,Mn (ℝn) = ‖T1f‖LMn (ℝn) + ‖∇T1f‖LMn (ℝn) ≤ c‖I1f‖LMn (ℝn) + c‖I1(∇ f)‖LMn (ℝn) ≤ c󸀠‖f‖W1,M (ℝn) ,

for some constants c and c󸀠, and for f ∈ W1,M(ℝn).
We have thus shown that

‖∇T1f‖L∞(ℝn+1+ ) + ‖T1f‖W1,Mn (ℝn) ≤ c‖f‖W1,M (ℝn) ,

for some constant c and for f ∈ W1,M(ℝn).
Finally, our assumptions onM ensure, via the property (2.35), that f ∈ C(ℝn). Hence, a classical result from

potential theory tells us that T1f ∈ C∞(ℝn+1+ ) ∩ C1(ℝn+1+ ).

Lemma 5.6. Let α ∈ (0, n) and assume that A is a Young function satisfying (2.16). Let A n
α
be its Sobolev conjugate

of order α given by (2.18), and let BA, nα be the Young function defined by (4.22). Then

‖uv‖LA(ℝn) ≤ 8‖u‖LA nα (ℝn)‖v‖LBA, nα (ℝn) (5.26)

for u ∈ LA n
α (ℝn) and v ∈ LBA, nα (ℝn).

Proof. Passing to inverse functions in equation (4.28) yields

HA, nα (A
−1(t)) ≤ B−1A, nα (t) ≤ 2HA, nα (A

−1(t)) for t ≥ 0.

Consequently, by the first inequality in (4.19),
1
2A
−1
n
α
(t)B−1A, nα (t) ≤ Â

−1
n
α
(t)B−1A, nα (t) ≤ 2Â

−1
n
α
(t)HA, nα (A

−1(t)) = 2A−1(t) for t ≥ 0.

The inequality (5.26) hence follows as a special case of the inequality (2.27).

Lemma 5.7. Under the same assumptions as in Lemma 4.7, there exists a constant c such that

‖uv‖LF (ℝn) ≤ c‖u‖LF nα (ℝn)‖v‖LBE, nα (ℝn) (5.27)

for u ∈ LF n
α (ℝn) and v ∈ LBE, nα (ℝn).

Proof. Thanks to (4.35), the inequality (5.27) is a special instance of the inequality (2.27).

Lemma 5.8. Assume that α ∈ (0, n) and A is a finite-valued Young function. Let D be the function defined as
in (3.38), with ℓ replaced with α, let E be given by (3.39), and let E n

α
be the Sobolev conjugate of E defined as in

(2.18). Let BE, nα be the function defined by (4.25). Assume that θ > 0. Then

lim
ε→0+

sup
‖u‖

L
E n
α (ℝn )
≤ε
‖D(θ|u|)‖

L
BE, nα (ℝn)

= 0. (5.28)

Proof. Equation (4.43) tells us that
H−1E, nα (D(t)) = Ĥ

−1
E, nα
(t) for t > 0.

Thus, thanks to Lemma 4.4, applied with A replaced with E, one has that

BE, nα (D(t)) ≤ E(H
−1
E, nα (D(t)) = E(Ĥ

−1
E, nα
(t)) = Ê n

α
(t) for t > 0. (5.29)



796  A. Cianchi et al., Strongly nonlinear Robin problems

Now, choose ε > 0 such that 2εθ ≤ 1. By (2.4), (5.29), and equation (4.19) with A replaced with E,

∫
ℝn

BE, nα (
D(θ|u|)
(2εθ) α

n−α
) dx = ∫

ℝn∩{|u|>0}

BE, nα (
A(θ n

n−α |u| nn−α )
θ n

n−α (2ε) α
n−α |u|
) dx (5.30)

≤ ∫
ℝn∩{|u|>0}

BE, nα(
A( |u|

n
n−α

(2ε)
n
n−α
)

|u|
2ε
) dx = ∫

ℝn

BE, nα (D(
|u|
2ε )) dx

≤ ∫
ℝn

Ê n
α
(
|u|
2ε ) dx ≤ ∫

ℝn

E n
α
(
|u|
ε ) dx ≤ 1.

This tells us that, if u is such that ‖u‖
L
E n
α (ℝn)
≤ ε, then

‖D(θ|u|)‖
L
BE, nα (ℝn)

≤ (2εθ)
α
n−α . (5.31)

Hence, the inequality (5.31) follows.

6 Proofs of Theorems 3.2, 3.3, and 3.5: Harmonic functions

Our results about the second-order problem (1.1) are established in this section. As explained in Section 1,
although they are a special case of those concerning (1.6), a separate proof is offered for the readers’ conve-
nience.

Proof of Theorem 3.2. Set, for simplicity of notation,

X = V1,(E⬦ ,En)(ℝn+1+ ,ℝn).

Given a function f ∈ LE(ℝn), we define the operator L by

L u = T1(N(u) + f) (6.1)

for u : ℝn+1+ → ℝ. We claim that, if u ∈ X is a fixed point for L , then it is a weak solution to the problem (1.1).
Namely, u fulfills Definition 3.1. To verify this claim, we begin by observing that N(u) ∈ LE(ℝn). This inclusion
follows from equation (6.5) below. Also, recall that E satisfies (4.30) with α = 1. Thus, the argument from the
proof of Lemma 5.5 ensures that one can differentiate under the integral in the expression for T1(N(u) + f).
Hence, given φ ∈ C∞c (ℝn+1+ ), owing to Fubini’s theorem and an integration by parts the following chain holds:

∫
ℝn+1+

∇u ⋅ ∇φ dx dxn+1 = ∫
ℝn+1+

∇T1(N(u) + f) ⋅ ∇φ dx dxn+1

= ∫
ℝn+1+

( ∫
ℝn

∇K1(x − y, xn+1)(N(u)(y, 0) + f(y)) dy) ⋅ ∇φ(x, xn+1) dx dxn+1

= ∫
ℝn

( ∫
ℝn+1+

∇K1(x − y, xn+1) ⋅ ∇φ(x, xn+1) dx dxn+1)(N(u)(y, 0) + f(y)) dy

= ∫
ℝn

(N(u)(y, 0) + f(y))φ(y, 0) dy.

Note that the last equality holds since, for each given y ∈ ℝn , the kernel K1 is a distributional solution to the
problem

{
ΔK1(x − y, xn+1) = 0 in ℝn+1+ ,
∂xn+1K1(x − y, 0) = δy(x) on ℝn ,

where δy denotes the delta function centered at y.
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The assertion about the existence of a weak solution to the problem (1.1) will thus follow if we show that, if
‖f‖LE(ℝn) is sufficiently small, then the operator L admits a fixed point in X.

Let ε > 0 to be chosen later and let BX2ε be the closed ball in X, centered at the origin with radius 2ε. First,
we show that

L : BX2ε → BX2ε , (6.2)

provided that ε is small enough. To verify this fact, fix

u ∈ BX2ε . (6.3)

From Lemma 5.2 applied with A replaced with E, we obtain

‖L u‖X = ‖∇ T1(N(u) + f)‖LE⬦ (ℝn+1+ ) + ‖T1(N(u) + f)‖LEn (ℝn) ≤ c(‖N(u)‖LE(ℝn) + ‖f‖LE(ℝn)) (6.4)

for some constant c independent of u. Note that the assumptions of Lemma 5.2 are satisfied, with ℓ = 1 and A
replaced with E, thanks to Lemmas 4.5 and 4.6. Let BE,n be the Young function introduced in (4.22), with α = 1.
From the assumption (3.1) and the inequality (5.26), applied with A replaced with E, we obtain that

‖N(u)‖LE(ℝn) ≤ c󸀠‖u‖LEn (ℝn)‖D(|u|)‖LBE,n (ℝn) (6.5)

for some constant c󸀠 independent of u. Owing to the assumption (6.3) and Lemma 5.8, one can choose ε > 0 in
such a way that

‖D(|u|)‖LBE,n (ℝn) ≤
1

2cc󸀠 .

Therefore, if
‖f‖LE(ℝn) ≤

ε
c , (6.6)

then equation (6.4) implies that L (u) ∈ BX2ε , whence (6.2) follows.
As a next step, we show that ε can be chosen so small that the operator L is also a contraction on BX2ε . An

application of the assumption (3.2) instead of (3.1) and the same argument as above substantiate the following
chain:

‖L u −L v‖X = ‖∇ T1(N(u) −N(v))‖LE⬦ (ℝn+1+ ) + ‖T1(N(u) −N(v))‖LEn (ℝn)
≤ c‖N(u) −N(v)‖LE(ℝn)
≤ ĉ‖u − v‖LEn (ℝn)(‖D(θ|u|)‖LBE,n (ℝn) + ‖D(θ|v|)‖LBE,n (ℝn))

(6.7)

for suitable constants c and ĉ, and for u, v ∈ BX2ε . Lemma 5.8 again ensures that ε can be chosen so small that

‖D(θ|u|)‖LBE,n (ℝn) ≤
1
4ĉ

whenever ‖u‖LEn (ℝn) ≤ 2ε. Hence, equation (6.7) entails that

‖L u −L v‖X ≤
1
2 ‖u − v‖L

En (ℝn) ≤
1
2 ‖u − v‖X (6.8)

for u, v ∈ BX2ε(0).
Altogether, we have shown that if ε is small enough, then the map (6.2) is a contraction. An application of

the Banach fixed point theorem tells us that it admits a unique fixed point u.
The additional piece of information that u ∈ C∞(ℝn+1+ ) is a consequence of the fact that the kernel K1 is

smooth in ℝn+1+ and, given any L > 0 and k,m ∈ ℕ ∪ {0}, satisfies the bound

|∂kxn+1∇
m
x K1(x − y, xn+1)| ≤

c
(|x − y|2 + L2) n−12

for x, y ∈ ℝn and xn+1 ≥ L, (6.9)

for some constant c = c(n, k,m, L). One has to use a standard argument outlined in the proof of Lemma 5.2.
The inequality (3.8) is consequence of (6.6) and of the fact that u ∈ BX2ε .
It remains to prove the assertion about the sign of u. Since the solution u is a fixed point of the operatorL ,

it agrees with the limit in X of the sequence {uj} defined by

{
u1 = T1f,

uj+1 = T1(N(uj)) + u1 for j ∈ N.
(6.10)
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If f is positive a.e. and N(t) is positive for t > 0, then obviously u1 > 0. By induction, we have that uj ≥ u1 > 0
for j ∈ ℕ. Hence, u ≥ u1 > 0, since the convergence in X implies a.e. convergence, up to subsequences.

Proof of Theorem 3.3. Set, for brevity,
Z = V1,(F⬦ ,Fn)(ℝn+1+ ,ℝn). (6.11)

In order to prove that u ∈ Z, it suffices to show that the sequence {uj}, defined by (6.10), is a Cauchy sequence
in Z. Since f ∈ LE∨F(ℝn), then f ∈ LE(ℝn) and f ∈ LF(ℝn). Let ε and c be as in equation (6.6). An inspection
of the proof of Theorem 3.2 shows that the smallness of ‖uj‖LEn (ℝn) is guaranteed if ‖f‖LE(ℝn) < σ for a suitable
σ ∈ (0, εc ). In order to show that uj ∈ Z for each j ≥ 1, we argue by induction.We have that u1 ∈ Z, by Lemma 5.2,
applied with A replaced with F. Now assume that j > 1. Then

‖uj‖Z ≤ ‖u1‖Z + ‖T1(N(uj−1))‖Z ≤ ‖u1‖Z + c‖N(uj−1)‖LF (ℝn) .

By (3.1), the definition of D, the assumption (3.10) and the inequality (5.27),

‖N(uj−1)‖LF (ℝn) ≤ ‖uj−1‖LFn (ℝn)‖D(|uj−1|)‖LBE,n (ℝn) ≤ ‖uj−1‖Z‖D(|uj−1|)‖LBE,n (ℝn) .

Owing to Lemma 5.8,
‖D(|uj−1|)‖LBE,n (ℝn) < ∞,

thanks to the smallness of ‖uj−1‖LEn (ℝn). Altogether, we have that uj ∈ Z.
Next, the following chain holds for j ≥ 2:

‖uj+1 − uj‖Z = ‖T1[N(uj) −N(uj−1)]‖Z ≤ c‖N(uj) −N(uj−1)‖LF (ℝn)
≤ c󸀠‖uj − uj−1‖LFn (ℝn)(‖D(θ|uj|)‖LBE,n (ℝn) + ‖D(θ|uj−1|)‖LBE,n (ℝn))

for suitable constants c and c󸀠. Here, we used Lemma 5.2, with A replaced with F, the assumption (3.2), and
Lemma 5.7.

We claim that
‖D(θ|uj|)‖LBE,n (ℝn) ≤

1
4c󸀠 for j ∈ ℕ.

By Lemma 5.8, this claim follows since, as observed above, ‖uj‖LEn (ℝn) can be forced to be as small as we need
for j ∈ ℕ. We have thus proved that

‖uj+1 − uj‖Z ≤
1
2 ‖uj − uj−1‖L

Fn (ℝn) ≤
1
2 ‖uj − uj−1‖Z for j ≥ 2.

Hence, {uj} is a Cauchy sequence inZ converging to some function inZ. This functionmust agreewith u, whence
(3.11) follows.

Proof of Theorem 3.5. The solution under consideration to the problem (1.1) is the limit in V1,(E⬦ ,En)(ℝn+1+ ,ℝn)
of the sequence {uj} introduced in (6.10). Define the space

Y = {u ∈ C1(ℝn+1+ ) : Tr u ∈ W1,Mn (ℝn)}.

Then Y is a Banach space endowed with the norm

‖u‖Y = ‖u‖C1(ℝn+1+ )
+ ‖Tr u‖W1,Mn (ℝn) .

Our goal is to show that {uj} is a Cauchy sequence in Y, provided that ‖f‖W1,M (ℝn) is sufficiently small. It will then
follow that u ∈ Y and that (3.17) holds.

Let c0 and t0 be as in the inequality (3.15). Owing to our assumptions on M, there exists a constant c1 such
that

‖v‖L∞(ℝn) + ‖∇v‖L∞(ℝn) ≤ c1‖v‖Y (6.12)

for v ∈ Y. Fix σ > 0. Let ε > 0 be such that
ε < 1σ . (6.13)
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Assume that v is any function in Y such that
‖v‖Y ≤ ε. (6.14)

Let Q1 , Q2 : [0,∞) → [0,∞) be the functions defined as

Q1(t) = Mn(2ϕ−1(t)) and Q2 = Mn(2ψ−1(t)) for t ≥ 0.

The function Mn(t) is finite-valued for small t and admits a classical inverse. Moreover,

Q−11 (t)Q
−1
2 (t) = ϕ(

1
2M
−1
n (t))ψ(

1
2M
−1
n (t)) ≤ D(

1
2M
−1
n (t)) for t ∈ (0, t1),

for a sufficiently small t1 > 0.
By Lemma 4.8 and Lemma 4.4 applied with A replaced with M, the number t1 can be chosen so small that

D( 12M
−1
n (t)) ≤ HM,n(M−1(t)) ≤ B−1M,n(t) for t ∈ (0, t1), (6.15)

where HM,n is defined as in (4.25) and BM,n is defined as in (4.26) with E replaced with M. Hence,

Q−11 (t)Q
−1
2 (t) ≤ B

−1
M,n(t) for t ∈ (0, t1). (6.16)

Let
k > max{2, c1t0

},

where t0 is the constant from (3.15). By (3.15) and (6.14),

∫
ℝn

Q1(
ϕ( σ|v|k )
c0(εσ)γ

) dx ≤ ∫
ℝn

Q1(ϕ(
|v|
kε))

dx = ∫
ℝn

Mn(2ϕ−1(ϕ(
|v|
kε)))

dx ≤ ∫
ℝn

Mn(
|v|
ε )

dx ≤ 1. (6.17)

On the other hand,
∫
ℝn

Q2(ψ(
σ|v|
k )) dx ≤ ∫

ℝn

Q2(ψ(
|v|
kε)) dx ≤ ∫

ℝn

Mn(
|v|
ε ) dx ≤ 1. (6.18)

Hence,
‖ϕ(σ|v|/k)‖LQ1 (ℝn) ≤ c0(εσ)γ and ‖ψ(σ|v|/k)‖LQ2 (ℝn) ≤ 1. (6.19)

Notice that u1 ∈ Y since
‖u1‖Y = ‖T1f‖Y ≤ c‖f‖W1,M (ℝn)

for some constant c, where the inequality is a consequence of Lemma 5.5. This entails the smallness of ‖u1‖Y
when ‖f‖W1,M (ℝn) is small enough. We next prove by induction that the same smallness property is enjoyed
by ‖uj‖Y, uniformly in j ∈ ℕ. Assume that

‖uj‖Y ≤ ε (6.20)

for some j ∈ ℕ.
By Lemma 5.5 again,

‖uj+1‖Y = ‖T1(N(uj)) + T1f‖Y ≤ c‖N(uj)‖W1,M (ℝn) + c‖f‖W1,M (ℝn) (6.21)

for some constant c. Moreover,

‖N(uj)‖W1,M (ℝn) = ‖N(uj)‖LM (ℝn) + ‖N󸀠(uj)∇uj‖LM (ℝn) . (6.22)

Assume, in addition, that ε is such that

ε < M
−1
n (t1)
2c1

. (6.23)

Therefore,
‖N(uj)‖LM (ℝn) ≤ c‖uj‖LMn (ℝn)‖D(|uj|)‖LBM,n (ℝn) ≤ c󸀠εn

󸀠−1‖uj‖Y , (6.24)

for some constants c and c󸀠 independent of ε. Here, the first inequality follows from (3.1) and (5.26) with A
replacedwithM, whereas the second inequality is a consequence of the estimate (6.15) and of the first inequality
in (6.19) applied with σ = k and with ϕ replaced with D. Note that (6.19) holds with γ = n󸀠 − 1, c0 = 1 and t0 = ∞
in the present situation, since, thanks to (3.19), equation (3.15) holds with ϕ = D.
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Next, equation (3.2) implies that

|N󸀠(t)| ≤ cθD(θt) for a.e. t > 0, (6.25)

and for some constant c. Hence, an analogous chain as in (6.24), with (6.19) now applied with σ = kθ, yields

‖N󸀠(uj)∇uj‖LM (ℝn) ≤ c‖∇uj‖LMn (ℝn)‖D(θ|uj|)‖LBM,n (ℝn) ≤ c󸀠εn
󸀠−1‖uj‖Y , (6.26)

for some constants c and c󸀠 independent of ε. From (6.21), (6.24), and (6.26) we deduce that

‖uj+1‖Y ≤ ε, (6.27)

provided that ε is sufficiently small, and ‖f‖W1,M (ℝn) ≤ ε
2c , where c is the constant appearing in (6.21). As a con-

sequence, since the inequalities in (6.19) follow from (6.20), they hold for every j ∈ ℕ.
The next step consists of a bound for ‖uj+1 − uj‖Y for j ∈ ℕ. We begin with an estimate for the norm

‖uj+1 − uj‖LMn (ℝn). An application of Lemma 5.3, with A replaced with M, yields, via the same steps as in (6.24),

‖uj+1 − uj‖LMn (ℝn) = ‖T1(N(uj) −N(uj−1))‖LMn (ℝn)
= c‖I1(N(uj) −N(uj−1))‖LMn (ℝn)
≤ c󸀠‖N(uj) −N(uj−1)‖LM (ℝn)
≤ c󸀠󸀠‖uj − uj−1‖LMn (ℝn)(‖D(θ|uj|)‖LBM,n (ℝn) + ‖D(θ|uj−1|)‖LBM,n (ℝn))

≤ c󸀠󸀠󸀠εn󸀠−1‖uj − uj−1‖LMn (ℝn)

(6.28)

for sufficiently small ε and for suitable constants c, c󸀠 , c󸀠󸀠 , c󸀠󸀠󸀠. The smallness of ε hence ensures that

‖uj+1 − uj‖LMn (ℝn) ≤
1
2 ‖uj − uj−1‖L

Mn (ℝn)

for j ∈ ℕ, whence
‖uj+1 − uj‖LMn (ℝn) ≤ 2−j . (6.29)

An application of Lemma 5.5 tells us that

‖uj+1 − uj‖Y ≤ c‖N(uj) −N(uj−1)‖W1,M (ℝn)

= c‖N(uj) −N(uj−1)‖LM (ℝn) + c‖∇(N(uj) −N(uj−1))‖LM (ℝn) ,
(6.30)

for some constant c. From the estimates (6.28) and (6.29) one infers that

‖N(uj) −N(uj−1)‖LM (ℝn) ≤ 2−j (6.31)

for j ∈ ℕ if ε is small enough. Furthermore,

‖∇(N(uj) −N(uj−1))‖LM (ℝn) ≤ ‖∇(uj − uj−1)N󸀠(uj)‖LM (ℝn) + ‖∇uj−1(N󸀠(uj) −N󸀠(uj−1))‖LM (ℝn) . (6.32)

Thanks to (6.25) and to analogous steps as above,

‖∇(uj − uj−1)N󸀠(uj)‖LM (ℝn) ≤ c‖∇(uj − uj−1)D(θ|uj|)‖LM (ℝn)
≤ c󸀠‖∇(uj − uj−1)‖LMn (ℝn)‖D(θ|uj|)‖LBM,n (ℝn)

≤ c󸀠󸀠εn󸀠−1‖uj − uj−1‖Y

≤
1
2c
‖uj − uj−1‖Y ,

(6.33)

for some constants c, c󸀠 , c󸀠󸀠, provided that ε is sufficiently small. Here, c denotes the constant from (6.30).
Finally, the same arguments that yield (6.19), with ε = 2−j and a suitable choice of σ, and (6.29) imply that

‖ϕ(θ|uj − uj−1|)‖LQ1 (ℝn) ≤ c2−jγ , (6.34)



A. Cianchi et al., Strongly nonlinear Robin problems  801

for some constant c. From the assumption (3.16), the inequality (6.16), the inequality (2.27) in the version under
L∞-bounds for trial functions, as well as (6.34) and (6.19), we deduce that

‖∇uj−1(N󸀠(uj) −N󸀠(uj−1))‖LM (ℝn) ≤ c‖∇uj−1‖LMn (ℝn)‖N󸀠(uj) −N󸀠(uj−1)‖LBM,n (ℝn)

≤ c󸀠‖uj−1‖Y(‖ϕ(θ|uj − uj−1|)ψ(θ|uj|)‖LBM,n (ℝn)

+ ‖ϕ(θ|uj − uj−1|)ψ(θ|uj−1|)‖LBM,n (ℝn))

≤ c󸀠󸀠ε‖ϕ(θ|uj − uj−1|)‖LQ1 (ℝn)(‖ψ(θ|uj|)‖LQ2 (ℝn) + ‖ψ(θ|uj−1|)‖LQ2 (ℝn))
≤ c󸀠󸀠󸀠ε2−jγ ,

(6.35)

for suitable constants c, c󸀠 , c󸀠󸀠 , c󸀠󸀠󸀠. Altogether, we conclude that

‖uj+1 − uj‖Y ≤
1
2 ‖uj − uj−1‖Y + c2

−jγ ,

for some constant c and for j ∈ ℕ. Iterating this inequality yields

‖uj+1 − uj‖Y ≤
1
2j−1
‖u2 − u1‖Y + c2−j

j−2
∑
i=0

2(1−γ)i ≤ c󸀠(2−j + 2−jγ), (6.36)

for some constants c, c󸀠. Since γ > 0, it follows that {uj} is a Cauchy sequence in Y. The proof is complete.

7 Proofs of Theorems 3.13–3.15: Polyharmonic functions

Our approach to the higher-order problem (1.6) is similar to that exposed in the previous section. In the proofs
offered below, we shall thus mainly focus on the steps requiring major variants.

Proof of Theorem 3.13. Consider the operator L defined as

L u = Tℓ(N(u) + f) (7.1)

for u : ℝn+1+ → ℝ. A fixed point u ∈ V
ℓ,(E⬦ ,E n

ℓ
)(ℝn+1+ ,ℝn) for this map is a solution to the problem (1.6). To verify

this assertion, we need to show that

∫
ℝn+1+

∇mu ⋅ ∇mφ dx dxn+1 = ∫
ℝn

(N(u)(x, 0) + f(x))φ(x, 0) dx (7.2)

for every φ ∈ C∞c (ℝn+1+ ) such that ∂xn+1Δkφ( ⋅ , 0) = 0 for k = 0, . . . ,m − 2. Fixing y ∈ ℝn , the kernel Kℓ of the
operator Tℓ is a distributional solution to the problem

{{{
{{{
{

ΔmKℓ(x − y, xn+1) = 0 in ℝn+1+ ,
∂xn+1ΔkKℓ(x − y, 0) = 0 on ℝn , for k = 0, 1, . . . ,m − 2,

(−1)m∂xn+1Δm−1Kℓ(x − y, 0) = δy(x) on ℝn .

Hence, if φ is as above, then

∫
ℝn

Kℓ(x − y, 0)∂xn+1Δm−1φ(x, 0) − (−1)mφ(x, 0)δy(x) dx + ∫
ℝn+1+

Kℓ(x − y, xn+1)Δmφ(x, xn+1) dx dxn+1 = 0. (7.3)

An iterated integration by parts and the use of the conditions ∂xn+1Δkφ( ⋅ , 0) = 0 for k = 0, . . . ,m − 2 yield

∫
ℝn+1+

Kℓ(x − y, xn+1)Δmφ(x, xn+1) dx dxn+1 = (−1)m ∫
ℝn+1+

∇mKℓ(x − y, xn+1) ⋅ ∇mφ(x, xn+1) dx dxn+1

− ∫
ℝn

Kℓ(x − y, 0)∂xn+1 (Δm−1φ)(x, 0) dx.
(7.4)
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Coupling (7.3) with (7.4) produces

∫
ℝn+1+

∇mKℓ(x − y, xn+1) ⋅ ∇mφ(x, xn+1) dx dxn+1 = φ(y, 0).

As a consequence, thanks to equation (5.20), the following chain holds:

∫
ℝn+1+

∇mu ⋅ ∇mφ dx dxn+1 = ∫
ℝn+1+

∇mTℓ(N(u) + f) ⋅ ∇mφ dx dxn+1

= ∫
ℝn+1+

( ∫
ℝn

∇mKℓ(x − y, xn+1)(N(u)(y, 0) + f(y)) dy) ⋅ ∇mφ(x, xn+1) dx dxn+1

= ∫
ℝn

( ∫
ℝn+1+

∇mKℓ(x − y, xn+1) ⋅ ∇mφ(x, xn+1) dx dxn+1)(N(u)(y, 0) + f(y)) dy

= ∫
ℝn

(N(u)(y, 0) + f(y))φ(y, 0) dy,

namely, (7.2).
Our aim is now to show that the integral equation (7.1) admits a unique fixed point u, provided that the

norm ‖f‖LE(ℝn) is sufficiently small. Let us set, for simplicity of notation,

X = Vℓ,(E⬦ ,E n
ℓ
)(ℝn+1+ ,ℝn).

To prove that
L : BX2ε → BX2ε , (7.5)

for sufficiently small ε, one can argue as in the proof of Theorem 3.2, and obtain that

‖L u‖X ≤ c(‖u‖LE nℓ (ℝn)‖D(|u|)‖LBE, nℓ (ℝn) + ‖f‖LE(ℝn)), (7.6)

for some constant c and for u ∈ X. Thanks to Lemma 5.8, there exists ε > 0 such that

‖D(|u|)‖
L
BE, nℓ (ℝn)

≤
1
2c

whenever ‖u‖X ≤ 2ε. Thus, if ‖f‖LE(ℝn) ≤ ε/c, then equation (7.6) ensures that ‖L (u)‖X ≤ 2ε. Hence, (7.5) follows.
As for the contraction property of the operator L , one similarly finds that

‖L u −L v‖X ≤ c‖u − v‖LE nℓ (ℝn)(‖D(θ|u|)‖LBE, nℓ (ℝn) + ‖D(θ|v|)‖LBE, nℓ (ℝn)),

for some constant c and for u, v ∈ X. By Lemma 5.8 again, there exists ε > 0 such that

‖D(θ|u|)‖
L
BE, nℓ (ℝn)
+ ‖D(θ|v|)‖

L
BE, nℓ (ℝn)

≤
1
2c

provided that ‖u‖
L
E n
ℓ (ℝn)
≤ 2ε and ‖v‖

L
E n
ℓ (ℝn)
≤ 2ε. Hence,

‖L u −L v‖X ≤
1
2 ‖u − v‖L

E n
ℓ (ℝn)
≤
1
2 ‖u − v‖X

for u, v ∈ BX2ε . An application of the Banach fixed point theorem yields the existence of a unique fixed point for
the map (7.5).

Since the kernel Kℓ is smooth in ℝn+1+ and, given any L > 0 and k,m ∈ ℕ ∪ {0},

|∂kxn+1∇
m
x Kℓ(x − y, xn+1)| ≤

c
(|x − y|2 + L2) n−ℓ2

for x, y ∈ ℝn and xn+1 ≥ L, (7.7)

for some constant c = c(n, ℓ, k, m, L), the argument sketched in the proof of Lemma 5.2 ensures that u ∈
C∞(ℝn+1+ ).
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Being the fixed point of the map (7.5), the function u is the limit in X of the sequence {uj} defined as

{
u1 = Tℓf,

uj+1 = Tℓ(N(uj)) + u1 for j ∈ ℕ.
(7.8)

If f > 0 is positive a.e. and N(t) > 0 is positive for t > 0, then u1 > 0 and, by induction, uj ≥ u1 > 0 for j ∈ ℕ.
Thus, u ≥ u1 > 0, since the convergence in X implies the convergence a.e. of a subsequence of {uj}.

Proof of Theorem 3.14. The proof is analogous to that of Theorem 3.3. One has just to define the space Z as

Z = Vℓ,(F⬦ ,F n
ℓ
)(ℝn+1+ ,ℝn),

to replace the first-order gradient ∇ with the operator ∇ℓ, and the functions Fn and BE,n with F n
ℓ
and BE, nℓ .

Of course, the sequence {uj} is now defined as in (7.8). We skip the details for brevity.

Proof of Theorem 3.15. Set w = Δm−1u. Then w solves the second-order problem

{
Δw = 0 in ℝn+1+ ,

(−1)m∂xn+1w = N(u) + f on ∂ℝn+1+ .
(7.9)

IfN(u) has the same regularity as f , namely, if

N(u) ∈ W1,M(ℝn), (7.10)

then, by Lemma 5.5, w ∈ C1(ℝn+1+ ). Consequently, equation (3.47) holds by the classical elliptic regularity
theory [1]. It thus suffices to establish equation (7.10).

Consider the sequence {uj} of functions uj : ℝn → ℝ defined as

{
u1 = Iℓf,

uj+1 = Iℓ(N(uj)) + u1 for j ∈ ℕ.
(7.11)

We shall prove that {uj} is a Cauchy sequence in the Orlicz–Sobolev spaceW
1,M n

ℓ (ℝn), provided that the norm
‖f‖W1,M (ℝn) is small enough.

Thanks to (3.46), there exists a constant c2 such that

‖v‖L∞(ℝn) ≤ c2‖v‖LM n
ℓ (ℝn)

(7.12)

for v ∈ LM n
ℓ (ℝn). Fix σ > 0. Let ε > 0 be such that ε < 1

θ . Let v ∈ L
M n

ℓ (ℝn) be any function such that

‖v‖
L
M n

ℓ (ℝn)
≤ ε.

Define the functions Q1 , Q2 : [0,∞) → [0,∞) as Q1(t) = M n
ℓ
(2ϕ−1(t)) and Q2(t) = M n

ℓ
(2ψ−1(t)) for t ≥ 0.

Then
Q−11 (t)Q

−1
2 (t) = D(

1
2M
−1
n
ℓ
(t)) for t ≥ 0.

Moreover, by Lemma 4.8 and Lemma 4.4 applied with A replaced with M, there exists t1 such that

D( 12M
−1
n
ℓ
(t)) ≤ HM, nℓ (M

−1(t)) ≤ B−1M, nℓ
(t) for t ∈ (0, t1), (7.13)

where HM, nℓ is defined as in (4.25) and BM, nℓ is defined as in (4.26) with E replaced with M. Therefore,

Q−11 (t)Q
−1
2 (t) ≤ B

−1
M, nℓ
(t) for t ∈ (0, t1). (7.14)

Let
k > max{2, c2t0

},

where t0 is the constant appearing in (3.15). Analogous chains as in (6.17) and (6.18) tell us that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ϕ(σ|v|k )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩LQ1 (ℝn)
≤ c0(εσ)γ and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ψ(σ|v|k )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩LQ2 (ℝn)
≤ 1, (7.15)

where c0 is the constant from (3.15).
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In particular, if ϕ = D and ψ = 1, then the inequality (3.15) holds with γ = ℓn−ℓ . Hence, if

ε <
M−1n

ℓ
(t1)

2c2
,

then equation (7.15) combined with (7.13) implies that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
D(σ|v|k )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩LBM, nℓ (ℝn)
≤ cσ

ℓ
n−ℓ ε

ℓ
n−ℓ . (7.16)

FromLemma 5.3, appliedwith A replacedwithM, we deduce that u1 ∈ W
1,M n

ℓ (ℝn). Moreover, ‖u1‖W1,M n
ℓ (ℝn) ≤ ε

provided that ‖f‖W1,M (ℝn) is small enough.
Next, assume that

‖uj‖W1,M n
ℓ (ℝn)
≤ ε, (7.17)

for some j ∈ ℕ.
We have that

‖uj+1‖W1,M n
ℓ (ℝn)
≤ c‖N(uj)‖W1,M (ℝn) + c‖f‖W1,M (ℝn)

= c‖N(uj)‖LM (ℝn) + c‖N󸀠(uj)∇uj‖LM (ℝn) + c‖f‖W1,M (ℝn) ,
(7.18)

for some constant c. Through an appropriate choice of σ in (7.16), an analogous chain as in (6.24) tells us that
there exists a constant c such that

‖N(uj)‖LM (ℝn) ≤ cε
ℓ
n−ℓ ‖uj‖W1,M n

ℓ (ℝn)
. (7.19)

Also, similarly to (6.26),
‖N󸀠(uj)∇uj‖LM (ℝn) ≤ cε

ℓ
n−ℓ ‖uj‖W1,M n

ℓ (ℝn)
, (7.20)

for some constant c. Therefore, an induction argument ensures that ‖f‖W1,M (ℝn) can be chosen small enough for
equation (7.17) to hold for every j ∈ ℕ. Via a suitable choice of σ in (7.16), the same steps as in equation (6.28)
yield

‖uj+1 − uj‖LM n
ℓ (ℝn)
≤ c‖N(uj) −N(uj−1)‖LM (ℝn) ≤ c󸀠ε

ℓ
n−ℓ ‖uj − uj−1‖LM n

ℓ (ℝn)
, (7.21)

for suitable constants c, c󸀠, provided that ε is sufficiently small. Consequently, if ε is properly chosen, one
deduces that

‖uj+1 − uj‖LM n
ℓ (ℝn)
≤
1
2 ‖uj − uj−1‖L

M n
ℓ (ℝn)

(7.22)

for j ∈ ℕ, whence
‖uj+1 − uj‖LM n

ℓ (ℝn)
≤ 2−j . (7.23)

Now, observe that there exists a constant c3 such that

‖uj+1 − uj‖W1,M n
ℓ (ℝn)
≤ c3‖N(uj) −N(uj−1)‖W1,M (ℝn) (7.24)

≤ c3‖N(uj) −N(uj−1)‖LM (ℝn) + c3‖∇(N(uj) −N(uj−1))‖LM (ℝn) .

Equations (7.21) and (7.23) imply that

‖N(uj) −N(uj−1)‖LM (ℝn) ≤ 2−j , (7.25)

provided that ε is sufficiently small. On the other hand,

‖∇(N(uj) −N(uj−1))‖LM (ℝn) ≤ ‖N󸀠(uj)∇(uj − uj−1)‖LM (ℝn) + ‖∇uj−1(N󸀠(uj) −N󸀠(uj−1))‖LM (ℝn) . (7.26)

The same steps as in (6.33) enable one to deduce that

‖N󸀠(uj)∇(uj − uj−1)‖LM (ℝn) ≤
1
2c3
‖uj − uj−1‖W1,M n

ℓ (ℝn)
, (7.27)

for sufficiently small ε, where c3 denotes the constant from (7.24).
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It remains to estimate the second addend on the right-hand side of (7.26). Thanks to (7.15), applied with
v = uj − uj−1, and (7.23) one has that

‖ϕ(θ|uj − uj−1|)‖LQ1 (ℝn) ≤ c2−jγ , (7.28)

for some constant c. From (3.16), (7.15) and (7.28) we infer, analogously to (6.35), that

‖∇uj−1(N󸀠(uj) −N󸀠(uj−1))‖LM (ℝn) ≤ cε2−jγ . (7.29)

Combining equations (7.24), (7.25), (7.27) and (7.29) ensures that

‖uj+1 − uj‖W1,M n
ℓ (ℝn)
≤
1
2 ‖uj − uj−1‖W

1,M n
ℓ (ℝn)
+ c2−jγ ,

for some constant c. Iterating this inequality, we obtain, as in (6.36),

‖uj+1 − uj‖W1,M n
ℓ (ℝn)
≤ c(2−j + 2−jγ), (7.30)

for some constant c and for j ∈ ℕ. Since γ > 0, it follows that {uj} is a Cauchy sequence in W
1,M n

ℓ (ℝn), whose
limit u ∈ W1,M n

ℓ (ℝn). Moreover, from (7.25), (7.26), (7.27), (7.29), and (7.30) one also deduces that

‖N(uj+1) −N(uj)‖W1,M (ℝn) ≤ c(2−j + 2−jγ), (7.31)

for some constant c and for j ∈ ℕ. Hence, {N(uj)} is a Cauchy sequence in W1,M(ℝn), whose limit N(u) ful-
fills (7.10).
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