DE GRUYTER Adv. Calc. Var. 2025; 18(2): 511-554 8

Research Article

Riccardo Cristoferi and Gabriele Fissore*

Two-dimensional graph model for epitaxial
crystal growth with adatoms

https://doi.org/10.1515/acv-2024-0015
Received February 12, 2024; accepted January 11, 2025

Abstract: We consider a model to describe stable configurations in epitaxial growth of crystals in the two-
dimensional case, and in the regime of linearized elasticity. The novelty is that the model also takes into consid-
eration the adatom density on the surface of the film. These are behind the main mechanisms of crystal growth
and formation of islands (or quantum dots). The main result of the paper is the integral representation of the
relaxed energy.
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1 Introduction

The ability to grow thin films of crystal over a substrate is a technology that has applications in several areas,
from surface coating, to lithography. Practitioners developed several techniques to grow crystals over a sub-
strate. Vapor deposition techniques are among the most important and implemented: the substrate is immersed
in a vapor, and mass transfer from the latter to the former is responsible for the growth of the crystal. In order
for the crystal to growth, two conditions need to be satisfied: the vapor has to be saturated, and the substrate is
kept at a significantly lower temperature than the vapor. The former ensures attachment of vapor atoms on the
substrate, while the latter quick thermalization of deposited atoms. In particulay, this implies that the entropic
free energy is reduced after attachment.

In order to grow a crystal (namely, an ordered structure), attached atoms, called adatoms, need to have
sufficient energy to move from the landing location to a position of equilibrium. This depends on the type of
materials used in the vapor and for the substrate. Surface diffusion of adatoms is therefore the mechanism used
by thin films to growth as a crystal.

If the growth process is made in such a way that the first layers of the film arrange in the same lattice
structure of the substrate, the growth is called epitaxial. Of course, the atoms of the deposited material are
stretched or compressed, since they are not in their (sometimes, stress free) natural configuration.

The dynamic of the crystal growth process is extremely complicated, and it is influenced by many factors. In
particular, the ratio between the tendency of the adatoms to stick to the substrate and their tendency to diffuse.
Three modes of growth are defined based on this ratio: the Frank-van der Merwe growth mode, where diffusion
isstronger and thus the crystal growth layer by layer, the Volmer—Weber growth mode, where diffusion is weaker,
and therefore adatoms tend to form islands on the substrate, and an intermediate one, the Stranski—-Krastanov
growth mode, where the first monolayers of the film behave like in a Frank-van der Merwe growth mode, while
after a certain threshold, it starts forming islands. Here we consider the latter case.
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In the epitaxial Stranski—Krastanov growth mode, it is observed that, after a few monolayer of material are
deposited, the film accumulates too much elastic energy that it is no more energetically convenient for atoms of
the film to stick to the crystalline structure of the substrate. Thus, relaxation processes are employed in order
to reduce the total energy of the system. The most important ones are corrugation of the surface, and creation
of defects. These are known in the literature as stress driven rearrangement instabilities (see [22]). The former
is responsible for non-flat surfaces as well as for the appearance of islands (agglomerates of atoms, also called
quantumdots) on the surface. With the latter, instead, the film introduces singularities in its crystalline structure,
such as cracks and dislocations.

It is extremely important to be able to control this complex process in such a way to reduce impurities as
much as possible, or at least to be able to quantify them.

The physical literature on crystal growth is extremely vast. Here we limit ourselves to mention the pioneer-
ing work [24] by Spencer and Tersoff.

From the mathematical point of view, several investigation have been carried out, focusing on different
aspects of the growth process. There are both discrete models, and continuum ones. Here we focus on these
latter. In particular, the work [4] by Bonnetier and Chambolle laid the foundations for rigorous mathematical
investigations of stable equilibrium configurations of epitaxially strained elastic thin films in the linear elastic
regime. The authors considered the two-dimensional case and proved an integral representation formula for
the relaxed energy with respect to the natural topology of the problem, as well as a phase field approximation.
In [15], Fonseca, Fusco, Leoni, and Morini proved a similar result by using an independent strategy, and also
investigated the regularity of configurations locally minimizing the energy.

Questions about the stability of the flat profile were investigate by Fusco and Morini in [20] for the case
of linear elasticity, and in [3] by Bonacini in the nonlinear regime. Moreover, in [2], Bonacini considered the
same question for the case where surface energy is anisotropic, showing, surprisingly, that the flat interface is
always stable.

It was not until 2019, with the work [12] by Crismale and Friedrich that the three-dimensional case was
considered. Indeed, despite the existence of investigations for similar functionals in higher dimension (see the
work [11] by Chambolle and Solci, and [7] by Braides, Chambolle, and Solci for the study of material void) were
available, all of them considered elastic energies depending on the full gradient of the displacement. On the
other hand, it is known that physically compatible models for elasticity must depend on the symmetrized gra-
dient. The reason for such a time gap between the two and the three-dimensional case was technical: it was not
clear how to get compactness of a sequence of configurations with uniformly bounded energy. This required
the introduction of a new functional space: GSBD, the space of Generalized Functions of Bounded Deformation,
designed in the work [13] by Dal Maso in 2014 specifically to address such an issue.

What all of the above continuum models are neglecting is the role of adatoms in the creation of equilibrium
stable interfaces. The importance of considering their effect was made clear by Specer and Tersoff in [24], where
the authors highlighted that considering the effect of adatoms, and in particular of surface segregation of several
species of deposited material, will change the equilibrium configurations predicted by the model, and hopefully
provide a more accurate description of those observed in experiments.

This was made even clearer in the seminal paper [19] by Fried and Gurtin. The manuscript unified several
ad hoc investigations that focused on specific aspects on crystal growth or used specific assumptions to derive
the model. In particular, it was noted that considering adatoms will, on the one hand, add a new variable to
the problem, while, on the other hand, will make the evolution equations parabolic. Note that this is a huge
mathematical advantage, since in [16] and in [17], the authors had to add an extra term to the energy (that
nevertheless has some physical interpretation) to regularize the non-parabolic evolution equations obtained
from the model that does not take into consideration adatoms.

Following this direction of investigation, in [10], the first author, together with Caroccia and Dietrich, started
the study of a variational characterization of the evolution equations derived by Fried and Gurtin. In that paper,
the authors considered a variational model describing the equilibrium shape of a crystal, where the elastic
energy is neglected, and the crystal can grow without the graph constraint. From the energy for regular config-
urations, a natural topology was identified, and a representation formula for the relaxed energy was obtained.
The result highlighted the interplay between oscillations of crystal surfaces and changes in adatom density in
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order to lower the total energy. The result obtained in that paper was different from previous investigations by
Bouchitté (see [5]), Bouchitté and Buttazzo (see [6]), and Buttazzo and Freddi (see [8]), due to the choice of the
topology.

In a subsequent paper (see [9]), a phase field model was considered in a more general setting, to pave the
way towards the analysis of the convergence of the gradient flows.

In this paper, we continue this line of research by considering the case where the material is deposited on
a substrate, its profile can be described by a function, and the elastic energy of the film is considered, as well
as the surface energy of adatoms. The goal is to obtain a representation formula for the relaxed energy in the
natural topology of the problem. In order to develop the main ideas needed for such an investigation, this paper
focus on the two-dimensional case. The main contribution of the paper is to show how the mechanism identified
in [10] where oscillations of the profile interact with adatom concentration plays a role in the case where the
geometry of the configuration is constrained to be a graph. This might seem as an easier case than that treated
in [10], where the profile of the crystal was free to growth in any direction. Nevertheless, the graph constraint
poses several challenges that have to be tackled with the utmost care, in order to be properly overcome. Indeed,
we prove that the relaxed energy differs from that of [10] exactly on vertical cracks of the deposited layer. In
particular, we introduce a strategy to deal with oscillations and adatom concentration on vertical cracks, whose
robustness will be tested in a forthcoming paper where we will investigate a phase-field approximation of the
model and another where we will treat the three-dimensional case.

Forthcoming papers will also consider the dynamics of the model, and the situation when multiple species
of materials are deposited at the same time.

1.1 The model

In this section we introduce the model that we will study. We consider the two-dimensional case. This corre-
sponds to three-dimensional configurations that are constant in one direction. We work within the continuum
theory of epitaxial growth. The main assumptions of the model are the following:
(i) The profile of the configurations of the thin film can be described as the graph of a function;
(ii) We neglect surface stress;
(iii) The exchange of atoms between the substrate and the deposited film is negligible;
(iv) The atoms of the substrate do not change position.
The free energy of a configuration is the sum of a bulk energy and a surface energy. The former is the elastic
energy due to rearrangement of the atoms of the deposited film from a stress free configuration (atoms sitting
in their natural lattice position) to another disposition. The latter, instead, stems from the net work needed to
create an interface with a specific density of adatoms. We first prescribe the energy of regular configurations,
and will then obtain that of more irregular configurations by relaxing the former.

We model the substrate as the set {(x, y) € R? : y < 0}. We consider a portion of the deposited film in a region
(a, b) x {y > 0}. To describe the free profile of the film, let h : (a, b)) — R be a non-negative Lipschitz function.
Consider its graph

I'p ={(x,h(x)) : x € (a,b)}, (W)}

and its sub-graph (see Figure 2 on the left)
Qp = {(x,y) e R®: x € (a,b), y < h(x)}. (1.2)

The set Qp N {y > 0} represents the deposited film. We first introduce the surface energy. The adatom density
will be described by a positive function u € L1(3* L T',). The surface energy corresponding to such an adatom
density distribution will be

[ v as o,

I'n
where with x we denote a point in R%, and Y : [0, +00) — (0, +00) is a Borel function such that

inf ¥(s) > 0. (1.3)
$=0
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Note that such a requirement has the physical interpretation that no matter what the adatom density is, there
is always an amount of energy needed to construct a profile.

We now discuss the elastic energy. For each macroscopic configuration Qp, there are several arrangements
of atoms inside the thin film that produce that same profile. To each of these arrangements there is an elastic
energy associated to: this energy will depend on the displacement between the actual position of each atom and
its position in the natural crystal lattice This displacement will be described by a function v : Q, — R?, and we
assume it to be of class W2(Qp; R%). The natural crystal configuration of the crystalline substrate and that of
the deposited film are represented by a function Eg : R — R>*?, defined as

t ify >0,
Eo(y) = awe 1 )=
0 ify <0.

Here, t > 0 is a constant depending on the lattice of the substrate, and {e1, e,} is the canonical basis of R2. The
crystalline structure of the film and the substrate might be slightly different, but we assume their difference
to be very small, namely |¢| « 1. This assumption allows us to work in the framework of linearized elastic-
ity. In particular, the relevant object needed to compute the elastic energy is the symmetric gradient of the
displacement

E() = %(Vv +VTy),

where VTv is the transpose of the matrix Vv. Note that E(v) is zero if Vv is zero for any anti-symmetric matrix
(for instance, a rotation matrix).

Finally, we assume that the substrate and the film share similar elastic properties, so they are described
by the same positive definite elasticity tensor C. The elastic energy density will be given by a function

W : R**2 - R defined as ,

1 1
W(4) = 54-ClA] =5 Y Cijum@ij@nm

ij,mn=1

for a2 x 2 matrix A = (ay); j-1- The elastic energy will then be

| wEww) - By ax.

Qn

Therefore, the energy of a regular configuration that we consider is given by

F(Qp,v,u) = J W(E(v(x)) — Eo(y)) dx + J l,b(u(x))dﬂ-(l(x), (1.4)
Qp Iy

where h : (a, b) — Ris a non-negative Lipschitz function, u € L1(3(* L_T}), and v € W?(Qp; R?). In the follow-
ing, we will refer to such triples as regular admissible configurations, and we will denote it by the class A, (see
Definition 4.1).

1.2 The main result

In order to study the relaxation of the energy &, we need to first discuss what topology to use. This will determine
the types of limiting configurations to expect, and how these effect the value of the effective energy. Here we
justify the definition of the topology we use, that will be stated precisely in Definition 4.9.

We first consider the notion of convergence for the profiles of the film. This will be the same used in [15].
Here we give the heuristics for such a choice. There are several mechanisms that a film can use to release elastic
energy. Our model allows for three of these: rearrangement of atoms inside the film, corrugation of the surface,
and creation of cracks. The topology on the profile will be concerned only with the last two. How can a crack
form? There are two mechanisms: as a fracture inside the film, or when the free profile becomes vertical, like it
is depicted in Figure 1 on the top. We choose to model situations where only the latter is allowed. Note that this
forces cracks to be vertical segments touching the free profile. What we want to avoid are configurations where
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a b a b

Figure 1: Two ways that a sequence of graphs can close up: on the top by giving rise to a crack inside Qj, while on the bottom to a crack
outside Q5. We want a topology that sees the crack in the former case, but not in the latter.

cracks happen outside of the film (Figure 1 on the bottom). Thus, we need to differentiate the two situations.
The right way to do it is by considering the Hausdorff convergence of the complement of the sub-graphs (the
so-called Hausdorff-complement topology). We note that, in the latter case, the sets R? \ Qj, will converge to
the limiting configuration R? \ Qj, where there is no vertical cut (see Figure 1 on the bottom). This topology also
accommodates for corrugation of the profile.

We now consider the convergence of the displacements. Since the energy has quadratic growth in the sym-
metric gradient of the displacement, the natural topology will be the weak W2 topology. In particular, in order
to take care of the fact that the displacements are defined in different domains (the subgraphs of the profiles),
we take advantage of the fact that the complement of these latter are converging in the Hausdorff sense. Thus,
local convergence in the final domain will do the jobh.

Finally, we discuss the topology for the adatom density. In [10] the idea was to see the adatom density as
a Radon measure u concentrated on the graph describing the profile. Namely, for each u € L'(I'y), we consider

U= uH LTy,

This identification allows not only to consider concentration of measures, but it turns out to be the right way
to model adatoms in order to exploit the interplay between oscillations of the profile and change in adatom
density. Thus, for the adatom density, the weak* convergence of measures will be used.

The question we now have to address is what are the possible limiting objects that we need to consider. This
is a discussion of compactness of sequences (Rp,, Vi, Ux)k with uniformly bounded energy, namely such that

sup F(Rnp, , Vi, Uk) < +00.
keN

We start by investigating the convergence of graphs, and the others will follow. Thanks to the lower bound (1.3)
on the energy density i, the energy J is lower bounded by the length of the graph of hy. Indeed, there exists
¢ > 0 such that

sup cH(T'k) < sup J Y(ug) dH! < +00

keN keN
l"hk

which in turn is a lower bound on the total variation of hy:
b b

sup H(T,) = supj 1+ IR dx = j IhL] dx.
€N
a

kelN k a

Thus, if a mass constraint on the area of Q, or a Dirichlet boundary condition at a and b are imposed, we get
that the limiting configuration will be the sub-graph of a function h : (a, b) — [0, +0o) of bounded variation.
In particular, since we are in the one-dimensional case, such a function will have countably many jumps and
countably many cuts.
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Figure 2: A regular configuration on the left, and a possible limiting configuration on the right: cracks and jumps can appear.

Now, we consider the convergence of the displacement. Due to the choice of the topology, the limiting
displacement will be a function v € W2(Qy; R?). Note that one of the technical advantages of working in dimen-
sion two is that we can avoid having to rely on functions of bounded deformation, and use instead Sobolev
functions and the free profile to describe cracks.

Finally, let us discuss the adatom densities. Each of them is seen as the Radon measure upH L Tp,. By
imposing a mass constraint on the total amount of adatoms, we have that their total variation is bounded,
and thus they converge (up to a subsequence), to a Radon measure y. Noting that each yy is supported on
the graph I'y,,, and these latter also converge in the Hausdorff sense to the graph of the limiting profile h, the
limiting measure u will be supported on T'y.

Therefore, the class A of limiting admissible configurations we will need to consider is given by the triples
(Qn, v, u), where h € BV(a, b), v e Wh2(Qy; R?), and yu is a Radon measure supported on T';. Moreover, we
denote by T’ the cuts of h, and by T, the rest of the extended graph of h, namely regular part and jumps (see
Figure 2 on the right, and Definition 4.7 for the precise definition).

Thus, in light of the above discussion, given a sequence (R, , Vk, Ux)k < Ar, we will say that (Qp,, Vi, tk) —
(Qn, v, 1) € Aif
(i) R*\Qp — R%\ Q in the Hausdorff convergence of sets;

(i) vk — v weaklyin Wllc;f(szh; R%);
(i) ux = u weakly* in the sense of measures,
ask — oo.

The two main results of this paper provide representations of the relaxation of the functional ¥ when a mass

constraint is in force, and when it is not.

Theorem 1.1. Let (Qp, v, u) € A, and write u = uH' LTy + u LTy, where u is the singular part of u with
respect to H' L_T}. Then the relaxation of the functional F defined in (1.4), with respect to the above topology, is
given by
F(@n vt = [ WEGG) - By dx+ [ Fluee) a9 + [ (o) ot ) + 0 ()
[ & Iy
where ¥ is the convex sub-additive envelope of  (see Definition 3.11), the function y° is defined as
P(s) = min{Y(r) + Y(t) : s =1+ t},
forall s € [0, +00), and
7 c
6= tim X0 - iy YO

t—>+co t—o+co0

is the common recession coefficient of ¥ and of °.

>

Theorem 1.2. Fix M, m > 0. Denote by A,(m, M) the triples (Qp, v, u) € A, such that

J ux) A x) = m, L2 (Qnni{y =0 = M,
T
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and by A(m, M) the triples (Qn, v, u) € A such that
uTp) =m, L2 (Qnn{y=0}) =M.

Define
?(Qh,v, H) lf‘(ghxvy .u) € Ar(m) M):

+00 else.

H(Qp, v, ) = {
Then the relaxation of H in the above topology is given by

G(Qn, v, 1) if (Qn, v, ) € A(m, M),
+00 else,

F(Qn, v, 1) = {

where G(Qp, v, 1) denotes the right-hand side of the representation formula of Theorem 1.1. Namely, the mass
constraint is maintained by the relaxation procedure.

Remark 1.3. In general, it is not possible to say more on the singular part of the measure.

Remark 1.4. The more general case, where the adatom density is vector valued (corresponding to different
materials deposited on the substrate) and the surface energy is anisotropic are currently under investigation.

2 Strategy of the proof

Now, we would like to comment on the strategy to prove the main results. First of all, in Theorem 6.1 we will
prove the liminf inequality for the case of no mass constraint, and in Theorem 7.1 the limsup inequality for the
case with the mass constraint. These theorems will give both Theorem 1.1, and Theorem 1.2.

Similarly for functional considered in [15], the bulk and the surface terms of the energy do not interact
in the relaxation process. Since the former is quite standard, we will comment on how to deal with the latter.
In this lies the novelty of the paper. Our strategy relies on ideas inspired by results obtained in [10]. The main
difference with the case treated in that paper is the graph constraint. This reflects on the fact that oscillations of
the thin film profile must be in the vertical direction in order to preserve such a constraint, and that cracks can
be created only in a specific way. The former term only gives technical challenges, while the latter is responsible
for the different energy densities g and 1¢. Despite this, note that the recession coefficients for the singular part
of the measure in the two parts of the extended graph (the cuts, and the rest of the graph) agree.

Let us discuss the strategy for the liminf inequality for the surface terms. We avoid mentioning the fine
details and focus instead on the main ideas. Let (hx)xen be a sequence of Lipschitz functions such that R%\ Qn,
converge to R% \ Qp, for some function h of bounded variation. This implies that Qp, converges to Qp in L1 (see
Lemma 3.8). Let (ux)ken the be adatom densities defined on each I',, and let u = ud' LTy + u® be the limiting
measure. We need to prove that

liminf J 0 (up(x)) dH (%) > J?p'(u(x)) 43¢ (x) + j P (u(x)) AH (%) + O’ (T). @1)
Ty Ty ry

The idea is to separate the contribution that the energy on the left-hand side has on a neighborhood of each
cut of h, and on the other part of the graph of h. Despite there might be a countable number of cuts, it is just
a technicality to show that we can reduce to finitely many of them (see the beginning of the proof of Theorem 6.1).
Thus, let us assume that the final configuration described by h has finitely many cuts. Since the energy is local,
for the sake of simplicity, we will consider the case where there is one single cut. In case the measure u has
a Dirac delta at the point P (see Figure 3), we want to count its contribution to the energy as part of the energy of
the regular part of T',. For this reason, we take & > 0 and consider a rectangle R, around the cut as in Figure 3.
Now, we claim that

lim nf J (ur(x)) A (x) > j D) dH(x) + 04 (Fr \ Re), 22)

Fhk \R, fh\Rs
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T, N R

b

Figure 3: In order to get the liminf inequality, we separate the effects on a neighborhood R, of the cut, and outside of it.

and that
lim inf J Y(up(x)) dH (%) = J Y (ux)) dH (x) + Op° (T5 N Re). (2.3)
o FhknRg F;\R&‘

Given (2.2) and (2.3), we obtain the desired liminf inequality (2.1) by sending ¢ to zero.

To obtain both (2.2) and (2.3), we rely on (a localized version of) the lower semicontinuity result proved in
[10, Theorem 5] (see Theorem 3.18). In the first case, the idea is to view the graph of each hy, and the regular
and the jump part of extended graph of h as (J('-equivalent to) the reduced boundaries of the corresponding
epigraphs.

For (2.3), we instead have to consider the contributions of the surface energy from both sides of the crack.
Therefore, we reason as follows: the rectangle R, in Figure 3 is split by the vertical line passing through the
crack in two parts, one on the left and one on the right. Call them R¢, and R%, respectively. Then we consider the
sets Qp, N RE and Qp, N RL. Since R? \ Qp, — R? \ Qj, in the Hausdorff topology, they converge in L! to R, and
R, respectively. Moreover, it holds

wH L (T, NRY = pf = uf (TS N Re) + it

and
weH L (Th, NRE) = " = u" L (TS N Ry) + .

Thus, thanks to the lower semicontinuity result (see Theorem 3.18), we get that

lilzninf j P(up(x) dH(x) > j P (%)) dI(R) + Ol (TS N Re)

T, NRE I \Re

and
liminf J () A (x) > J P (%)) dHX) + Oul(TE N Ry).
T, R T¢\R,

We then show that u® + u” = u, and ué + u’, = us. Thus, by definition of ¥¢, we obtain
P(u) < P @) + P’ x)).

This gives (2.3), and, in turn, the desired liminf inequality for the surface energy.

We now discuss the strategy for the limsup inequality for the surface energy. This is more involved, and
requires several steps. The idea is to reduce to the situation where the limiting profile h is Lipschitz, and the
adatom measure y is a piecewise constant density (more precisely, it is possible to find a square grid where the
density has the same value on each of the parts of the graph inside each of these squares). In such a case, in
Proposition 7.8 we construct a sequence (R2p,, Vi, tk)k that satisfies the mass constraints such that

Jim sup J (u(x)) dH () < J'zﬁ(u(x)) 49 (x). (2.4)
k—oo _ e
F;.k I‘h
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Without loss of generality (see Lemma 3.16), we can assume i to be convex. Then ¢ and i agree on [0, so), for
some sg € (0, +oo]. In particular, if so < +oo the function Fl/? is linear on (s, +00) (see Lemma 3.16)). Thus, in
squares where u < sp, we define hy as h and uy as u. We just have to care about those squares Q where u > s.
The energy in such a square is E(u)ﬂ{l(rh N Q). The idea is to write

PH (Th N Q) = Y(rso)3"(Th N Q) = r(so)3"(Th N Q) = Y(so) [rH' (Th N Q)]

for some r > 1, where in the last step we used the fact that ¢(so) = ’1,5(30). Then, we want to obtain the quantity
rHY(Ty N Q) as the length of an oscillating profile hy in Q, and define uy as so. This ensures the validity of (2.4).
Such a construction is done in Proposition 5.5, where we prove an extension of the so-called wriggling lemma
(see [10, Lemma 4]). Namely, given a Lipschitz function f: (a, b) — [0, +c0), and a number r > 1, there exists a
sequence of graphs f, : (a, b) — [0, +co) with ' LTy, Sl Iy asn — oo, such that

3N (Ty,) = rac(Tp),

and f,(a) = fla), fa(b) = f(b), for each n € N, and satisfying other technical properties (see Proposition 5.5 for
the precise statement). What the above inequality is using is a quantitative lack of lower semicontinuity of the
perimeter. The difference with the result in [10, Lemma 4] is that only vertical oscillations are allowed. Moreover,
we also fill in details that were not fully explained in that paper. Note that in our case, there is an additional
technical difficulty to be faced: ensuring that both mass constraints are satisfied by each (Qp,, Vi, tx) will be
achieved by carefully modifying both the profile and the density. Note that modifications of the graphs have to
be done in such a way that the profile is always non-negative.

In order to reduce from a general profile (2, v, yt) € A(m, M) to the above case, we argue as follows. First
of all, by using averages, we prove that it suffices to consider the situation where the adatom measure u is
a piecewise constant function (see Proposition 7.6). Then we need to approximate a general profile h € BV(a, b)
with a sequence of Lipschitz profiles (hx)ken, and corresponding piecewise constant adatom densities (Ux)ken,
in such a way that

lim [ P @36+ [ ¥t - [ e ddm - [ e alm. e

Thy Ty Ty T

This is done in Proposition 7.7. In order to obtain the approximation of the profiles, we employ an idea by
Bonnettier and Chambolle in [4, Section 5.2], later adapted to the case of graphs in [15, Lemma 2.7]: to use the
Moreau-Yosida transform to define a Lipschitz approximation of & to the left and to the right of each cut (again,
we are reducing to the case of finitely many of them). To also approximate the cracks, we use a linear interpola-
tion. As for defining the adatom density on the graph of hx, we exploit the fact that the Hausdorff convergence
of R? \ Qp, to R?\ Qj implies that the graphs (hx)ken are converging in the Hausdorff topology to h. In par-
ticular, for k large enough, the graphs of the hy’s will be inside the same squares where the graph of h is. This
allows to define uy on the part of the graph of hy inside a square, as the value that u has inside that square.
Then the convergence of the energy required in (2.5) is ensured since the length of the graph of hy inside each
cube converges to the length of h inside the same cube.

3 Preliminaries

We here introduce the main definition and basic results that will be used throughout the paper.

3.1 Function of (pointwise) bounded variation in one dimension

We start with functions of (pointwise) bounded variation in one dimension. A comprehensive treatment of this
topic can be found in the book [23] by Leoni.
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Definition 3.1. Let h: (a,b) —» R. We say that h is a function of pointwise bounded variation in (a, b) if

Var(h) < +oo, where
k

Var(h) = sup{z [h(x;) - h(Xi—1)|}:

i=1
where the supremum is taken over all finite partitions of (a, b). In this case, we write h € BVP(a, b).

The main properties of functions of pointwise bounded variations that will be used in the paper are collected
in the following result (see [23, Theorem 2.17, Theorem 2.36]).

Theorem 3.2. Let h € BVP(a, b). Then the limits
h(x") = ylirf(l_ h(@), h(x"):= ylirg+ h(y)
exist for all x € (a, b). In particular, if we define the functions
h™(x) = min{h(x"), h(x7)}, h*(x) := max{h(x"), h(x")},

we have that there are at most countably many points x € (a, b) for which h™(x), h*(x) and h(x) do not agree.
Finally, h admits a lower semicontinuous representative.

We now connect functions of pointwise bounded variation with those of bounded variation.

Definition 3.3. Let u € L1(a, b). We say that u has bounded variation in (a, b) if there exists a Radon measure u
such that

b
Ju(p’dX:— j o du
a (a,b)
forall g € C%(a, b). In this case, we write u € BV(a, b), and we denote the measure u by Du.

The relation between functions of pointwise bounded variation and functions of bounded variation is given by
the following result (see [23, Theorem 7.3]).

Theorem 3.4. Let u € BV(a, b). Then there exists a right-continuous function h € BVP(a, b) with u(x) = h(x) for
a.e. x € (a, b) such that Var(h) = |Du|(a, b).

Finally, we recall that the subgraph of a function of bounded variation is a set of finite perimeter (see [21, Theo-
rem 14.6]), and that its reduced boundary coincides with the non-cut part of the extended graph (see [14, Theo-
rem 4.5.9 3)].

Lemma 3.5. Let h € BV(a, b). Then the epigraph Qy, has finite perimeter in (a, b) x R, and
HY(Th 8 8*Qp) =0,

where 9* Qp, is the reduced boundary of Qp,.

3.2 Hausdorff convergence

We now introduce the Hausdorff metric.
Definition 3.6. Let E, F ¢ RY. We define
dg(E,F) =inf{r >0: E c Fy, F C E;},

where, for A c R¥N and r > 0, we set A, = {x +y : x € A, y € B,(0)}. Moreover, we say that a sequence of sets
(Ex)x with Ex ¢ RN Hausdorff converges to a set E C RY, and we write Ex L Eif dy(Eg, E) —» 0as k — oo.

In order for the Hausdorff distance to actually be a distance, we need to work with compact sets. This will also
give compactness of the metric space. This latter fact is known as Blaschke Theorem (see [1, Theorem 6.1]).
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Theorem 3.7 (Blaschke Theorem). The family of compact sets of RN endowed with the Hausdorff distance is
a compact metric space.

The convergence of epigraphs in the Hausdorff-complement topology we use implies their L' convergence, as
it was shown in [15, Lemma 2.5].

Lemma 3.8. Let (hx)x € BV(a, b) be a sequence of lower semicontinuous functions such that

sup [Dhil(a, b) < +00, R*\ Qp, — R\ 4,
keN

for some open set A c R?. Then there exists h € BV(a, b) such that A = Qy, hx — h in L. Moreover, Qp, — Qn
inL.

We now relate the Hausdorff metric with the notion of Kuratowski convergence (see [1, Theorem 6.1]).

Proposition 3.9. Let (Ex)x, with E ¢ R?, and let E c R2 Then Ey - E if and only if the followings hold:
() Any cluster point of a sequence (xx)x, with xx € Ex, belongs to E.

(ii) For any x € E, there exists (xx)k, With xx € Ex, such that xx — x.

These equivalent properties are those defining the so-called Kuratowski convergence.

3.3 On the surface energy

Here we introduce all the notation and recall the result that are needed to treat the surface term.

Definition 3.10. A function ¢ : [0, +c0) — R s said to be sub-additive if

(s +0) < Y(s) + Y(t)
foranys, ¢ > 0.

Definition 3.11. Let 1 : [0, +0c0) — R. The convex sub-additive envelope of 1 is the function ¥ : [0, +c0) —» R
defined as
¥(s) = sup{f(s) : f: [0, +00) — R is convex, sub-additive and f < 1}

for all s € [0, +00).
Remark 3.12. Note that 3 is the greatest convex and sub-additive function that is no greater than .

Definition 3.13. Let ¢ : [0, +00) — R. We define the function ¢° : [0, +c0) — R as
YE(s) = min{P(r) + P(t) : s =1+ t}
for all s € [0, +00).

Remark 3.14. It is easy to see that the function ¢ is well defined. Indeed, fix s > 0. Since ¥ is defined only for
non-negative real numbers, by compactness there exist a, b > 0 with s = a + b such that

Ye(s) = P(a) + Y(b).

Moreover, note that ¢¢(0) = 2'1/7(0). This is consistent with the result obtained in [15], where they consider the
case ¥ = 1. We will prove in Lemma 5.1 that 1€ is convex and sub-additive.

We recall two results on the surface energy. The first is a combination of [10, Lemma A.11] and [9, Lemma 2.2].

Definition 3.15. Let { : R — RR. We define its convex envelope p*'* : R — R as
YV (x) = sup{p(x) : p is convex and p < ¥}

forall x € R.
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Lemma 3.16. Let ¢ : [0, +00) — (0, +00). Then
¥- g
Namely, in order to compute the convex sub-additive envelope of 1, we can assume, without loss of generality, that

Y is convex.
Moreover, assume Y to be convex. Then there exists sg € (0, +oo] such that

FI,B(S) — {l/)(s)) § < SO)
Os, $ > Sp,

for some 6 > 0.

Remark 3.17. Note that, if ¥ is differentiable at sy, then 6 = ¢’(sp). In particular, if so < +oo, it holds that J is
linear in [sg, +00).

The following result proved in [10, Theorem 3] gives a lower bound for the surface energy.

Theorem 3.18. Let E ¢ RY be a set of finite perimeter and u be a Radon measure supported on dE. Let A ¢ RV
be an open set with ((0A) = 0. Let (Ex)ken C RY be a sequence of sets of finite perimeter; and let (ux)ken, With
uy € LY(QEy) be such that
(i) ExnA — EnAinLY(RN),
(i) wHIL (8*ExnA) = ul A
Then

lim inf J (ug) A3t > j D) A3t + 0us(A),

0*ExnA 8*EnA

where ¥ is as in Definition 3.11.

4 Setting

In this section we give the rigorous definitions of the objects discussed in the introduction. We start with the set
of admissible configurations.

Definition 4.1. Let Q c R?, v € WH2(Q;R?), and let u be a Radon measure in R?. We say that the triple (Q, v, u)
is an admissible regular configurations if there exists a Lipschitz function h : (a, b) — [0, +00) such that

Q=0Qn, wp=uH'LTy
for some u € L1(T). We denote by A, the family of all admissible regular configurations.

Definition 4.2. Fix m, M > 0. We denote by A,(m, M) the triples (Q, v, u) € A, such that

J ux)dHlx)=m, £L*@n{y=0})=M.
I

We now define the energy for regular configurations.

Definition 4.3. Next, we introduce the energy for regular configurations. We define ¥ : A, — R as

FQv,u) = j W(E(v(x)) — Eo(y)) dX + j P(u(x) dH (x)
Q T
for every (Q, v, u) € A;.

We now introduce the more general configurations that will be treated.

Definition 4.4. Let Q c R%, v € W'2(Q;R?), and u be a Radon measure in R?. We say that the triple (Q, v, u) is
an admisstble configurations if there exists a function h € BV(a, b) with h > 0 such that

Q= Qp, yzuﬂ{ll_rhﬂzsLFh,
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where u is the singular part of u with respect to (! _ T';. We denote by A the family of all admissible configu-
rations.

Definition 4.5. Fix m, M > 0. We denote by A(m, M) the triples (2, v, u) € A such that
uTr) =m, L*@Qn{y>0})=M.
In order to define the relaxed energy, we need to introduce some notation.

Remark 4.6. In Theorem 3.2 we introduced the functions h*. Note that

h™(x) = liminf h(y), h*(x) =limsup h(y).
y—=x yox

In particular, if x € (a, b) is a point of continuity for h, then h™(x) = h*(x) = h(x).
Definition 4.7. Let h € BV(a, b). We call
Tn={(x,y) e R*: x € (a,b), h(x) <y < h*(x)}

the extended graph of h. Moreover, we define:
o thejump part of Ty, as _
T, = {(xy) e R*: x € (a,b), h"(x) <y < K (0)};

o thecutpartof I'y as
If={x,y) e R%:x e (a,b), h(x) <y <h™(x)};

o theregular part of T, as _
I :=Tp \ (T} UTS).

Moreover, we introduce the notation _
Ty =T, Ul

Remark 4.8. Note that ‘

Tp=Tpul§ =Th UL, UT
holds for every h € BV(a, b). Moreover, when there is no room for confusion, we will drop the suffix h in the
notation above.

We now define the notion of convergence that we are going to use to study our functionals.

Definition 4.9. We say that a sequence (Qx, Vi, Ux)x € A converges to a configuration (Q, v, u) € A if the fol-
lowing three conditions are satisfied:

i) R%\Q — R%\Q in the Hausdorff convergence of sets;

(ii) vk — vweaklyin Wf(;f(sz; R%);

(i) px A u weakly* in the sense of measures,

as k — oo. We will write (Qx, vk, tx) — (R, v, 1) to denote the above convergence.

Remark 4.10. Note that, if K c Q is a compact set, then there exists kg € N such that K ¢ Q for all k > k.
Therefore, the convergence of the functions vy’s is well defined.

Now we are going to define the setting for our relaxed functional.

Definition 4.11. Let ¥ : [0, +c0) — R. We define the recession coefficients of 1 and 1° as

0 c
5= lim 2 and 6° = lim L9,
S—+00 § S—+00 S

respectively, where 1 is as in Definition 3.11 and ¢ as in Definition 3.13.

In Lemma 5.2 we will prove that & = °. The common value will be denoted by 6. We are now in a position to
introduce the candidate for the relaxed energy.
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Definition 4.12. Let G : A — [0, +00) be the functional defined as

S(Qv, 1) = j WEW(X) - Eoy)) dx + j%(u(x)) W) + j V() A3 (%) + 0p5(D),
Q F fe

where 0 is the common recession coefficient of ¢ and y¢.

5 Technical results

In this section we collect the main technical results that will be needed in the proof of the integral representation
of the relaxation.

Lemma5.1. Let ¢ : [0, +00) — RR. Then the function y° (see Definition 3.13) is convex and sub-additive.

Proof. We divide the proof into two steps.

Step 1: We prove that ¢ is sub-additive. Fix z > 0. Then, by the definition of §(z), there exist x,y > 0 with
z = x +y such that

Ye(z) = P(X) + P().
Thus, N N
Ye(2) = P00 + P(y) = P(x +Y) = P(2),

where last inequality follows from the sub-additivity of 3. Moreover,
Yoz +w) < P(2) + P(w) < P°(2) + Y(w)
for every z, w > 0.

Step 2: We prove that ()¢ is convex. Let z, w > 0 and A € [0, 1]. By definition of 1°(z), and of ¥°(w), there exist
71, Z9, W1, Wy > 0with z = 21 + z9 and w = wq + wy such that

¥e(2) = Plz0) + P(z2), Y (W) = P(w) + Y(wy).
Note that
A2+ (A=W =A(z1 +2z3) + (1 = ) (w1 + wy)
=Az1+ A -NDwq) + (Az2 + (1 - Hwy).
Thus, we get that
YAz +(1=2)z) < PAzg + (1= Dwy) + P(Azg + (1 = D)wy)
< 2P(21) + (1= NP(wi) + AP(22) + (1 = HP(w2)
= AP°(2) + (1 - Dp(w),
where, in the second step, we used the convexity of 1. O
We now prove that the recession coefficients of 1 and of 1, defined in Definition 4.11, coincide.
Lemma5.2. Let § : [0, +00) — R. Then 6 = 6°.

Proof. We first prove that 8¢ < 6. Indeed, since 1¢(s) < 2%(%), for all s > 0, we have that

o = tim Y ¢ lim %(%):5.

s—+00 S §—+00 §

We now prove that 8¢ > 0. Fix z > 0, and let x, y > 0 with z = x + y such that

¥e(2) = PO + ).
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Then we get
Ye(2) = P00 + P(y) = Y(2),

where last inequality follows from the sub-additivity of ¢. Therefore,

C I o~
o= 1im 295 im YO _3.
S—+00 S §—+00 §

This concludes the proof. O
An important result that will be used several times is the following.

Lemma 5.3. Let h € BV(a, b) be lower semicontinuous, and let € > 0. Define
P(¢) = {x € (a,b) : there exists y € I', such that h(x) <y < h™(x) — €}.
Then P(¢) is a finite set.

Proof. By [1, Corollary 3.33], it holds that

IDRI(a, b) = I1h'llL(ap) + ). [RF(X) = ()] + ID|(a, b),

xeS

where S denotes the set of points x € (a, b) such that h*(x) > h(x), and D¢h is the Cantor part of the measure Dh.
We recall that from Theorem 3.2 we have that ], is at most countable. Therefore, we obtain that

Y [ (x) = h(x)] < +c0.

xeS§

Notice that the set P(¢) corresponds to points in S where the quantity h™(x) — h(x) is at least €. From the
convergence of the series above, we get the desired result. O

We now prove a result that will be needed in the limsup inequality.

Lemma5.4. Letr > 0, and let {zj}jcn be an enumeration of Z2. Define
Q =r(zj +(0,1)%).

Let h € BV(a, b), and let (hi)x be a sequence of Lipschitz functions such that R? \ Qn, L Rr? \ Qp, as k — oco. Then
there exists v € R?, and k € N such that the grid defined as

0=v+Q

satisfies:
(@) The intersection between the graph of h and the boundary of the new grid is finite, namely

H(Tn aéf < +00.
(10(Y2)
(b) We have that
HY (Tkn Q) #0 ifandonlyif H(ITNQ)+0
for every k > k.

Proof. We first prove (a). We first consider an horizontal translation. Since h € BV(a, b), it has at most a count-
able number of jumps and cuts. Therefore, there is v1 € R such that

5{0(@1‘ uT N [U (v, 0) + Qi)]) < +00.
JeN

Now we need to find a suitable vertical translation. Using the coarea formula (see [1, Theorem 3.40]), we infer
that
Per({x € (a,b) : h(x) > t}) < +00
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for almost every t € R, where Per denotes the perimeter. Since we are using the lower semicontinuous repre-
sentative of h, the sup-level set {x € (a, b) : h(x) > t} is open for all t € R, which yields that
d{x e(a,b): h(x)>t}={xe(ab): h(x) =t}
Thus, we obtain that
H({x € (a,b) : h(x) = t}) < +0
for almost every t € R. Let D ¢ R be defined as
D={t>0:H°({x e (a,b): h(x) =t}) = +o0}.
By definition, we have that |D| = 0. Let r > 0, and, for every t > 0, set
G(t)={rj+t:]jeZ}.
We now claim that
{t € (0,1r): G(t)n D + @} = 0.
First, note thatif s, t € (0, r), with s # t, we have G(t) N G(s) = 0. Now, define
Dj=Dn[rj, (r+1)jl,
Dj = Dj-rj.
By definition D; c (0, r) and |D;| = |Dj| = 0, for every j € Z. In conclusion, we notice that

{te©,):Gt)nD+0} =D
jezZ
The claim follows from the above equality.
By proving the claim, we infer the existence of v, € R such that

%O(r n [U (0, v2) + Qf)]) < +00.
jeN
In conclusion the translation v := (v, vy) is the one we were looking for.

We now prove part (b). Let v € R? be the vector found above, and let ¢/ be the translated squares. If the
graph of h is contained in a single square ¢/, then there is nothing to prove. Thus, we assume that this is not
the case.

Fix j € N such that

HYT N Q) +0.
We will prove that there exists k(j) € N such that

3TN Q) # 0
forall k > I_((j). LetxeI'n 6j . By the Kuratowski convergence, there exists (xx)x with xx € T'x for all k € N such
that xx — x as k — co. Since (¥ is open, there exists k(j) € N (depending also on x, but this is not a problem)
such that xx € Tx n @/ for all k > k(j). Using the fact that the graph of h is not entirely contained in the open
square @/, and that the extended graph of hy is a connected curve, we obtain that

H' TN Q) #0
as desired. Since h € BV(a, b), itisbounded, and hence contained in a finite number of squares. In the following,

we will also need to consider k; € N, the maximum of the l_<(]').
We now prove the opposite implication. Let j € IN be such that

HITNQ)=0.
Then, by Kuratowski convergence and the fact that ¢ is open, we infer that there exists k(j) € N such that for
all k > k(j) it holds
HY TN Q) = 0.
Again, let k, € N be the maximum of the k(j).
Setting k := max{ky, kz}, we get the desired result. O
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Finally, we prove a result about the so-called wriggling process. This was introduced in [10, Lemma 4] to exploit
the quantitative loss of lower semicontinuity of the perimeter in order to recover the relaxed energy density
from y. The difference with this latter is that, in our case, only vertical perturbations are allowed. Moreover,
we impose the oscillating profiles to stay below the given function.

Proposition 5.5. Let h: [a, f] — R be a non-negative Lipschitz function and let r > 1. Then there exists a se-
quence of non-negative Lipschitz functions (hx)x such that:

@ HNTx) = rH (T);

(i) h(a) = hi(a), and h(B) = hi(p) for every k;

(iii) h < hy for every k;

(iv) hx — h uniformly as k — oo;

V) KL Tp = rH LT ask — oo

where we used the notation I'y := Ty,, and I := T.

Proof. We divide the proof into two steps.

Step1. Fixa < p < q < B. We prove the existence of a sequence (i), of Lipschitz functions & : [p, q] — [0, +00),
that satisfies

@) HY(Tg,) = rH (D)

(ii) h(p) = &(p) and h(q) = &(q) for every k;

(iii’) h < & for every k;

(iv’) &k — huniformly on [p, q] as k — oo.

Notice that if r =1, it is enough to consider the constant sequence &x = h for each k. Thus, fix r > 1. Let
(Ax)k € (0,1) be an infinitesimal sequence such that 0 < Ax < ¢ — p for each k € N, and kAx — oo as k — oo.
For each k € N, define the function nx € C([p, q]) as

X_
Ap, X €[p,p+Ap),
k
nk(x) =41, X €[p+ Ak, q—-Akl,
X_
_A_q, X €(q-2kql.
k

For each k € IN, let tx > 0 that will be chosen later, and define the non-negative Lipschitz function & : [p, q] —
[0, +00) as

2 1
&ur=MM+(E—%mmmm0wum 5.0)

First of all, note that §x — h uniformly as k — co. Indeed, this follows from the fact that Qx — Q as k — oo in
the Hausdorff sense. Moreover, from (5.1), we get that

0<h<é&, hp) ==&p), h@Q =:EQ.

We claim that it is possible to chose tx > 0 such that }Cl(l"gk) = r3((T), for every k € N. In order to show that,
for each k € N, let fi : [0, +00) — (0, +00) be defined as

q
fi(t) = J \1+ 0xHk(x, t) dx,
P

where

2 1
Hi(x, ) = h(x) + (E - Elsin(tx)l)nk(x). (5.2)

We claim that:

(@ lim¢, 400 fi(t) = +o0 for every k € N;

(b) lime0 fi(0) = H(I).

Therefore, since fx is continuous for every k € N, and r > 1, it is possible to choose tx > 0 such that fx(tx) =
HY(T¢,) = rH}(T) for every k € N. We now prove claim (a) and (b) in two separate sub-steps.



528 —— R.(Cristoferi and G. Fissore, Graph epitaxy with adatoms DE GRUYTER

Step 1.1. We now prove claim (a). First, notice that

q q-Ax
fr(t) = J \1+ 0yHi(x, t)2dx > J V1 + 0xHy(x, t)2 dx.
p p+Axk

Now, fix k € IN and consider the set
Zi={x € (p+ Ak, q - Ax) : cos(tx) > 1}

We now prove that
inf |Z;| > 0. (5.3)
t>0

In order to do so, we first show that |Z,| > 0 for n € N. Set I := (p + A, ¢ — Ax) and consider the function
g :1— {0, 1} defined as
gx) = n{cos(y)z%}(x)’
and extend it periodically on RR. Notice that, for n € N,
8(nx) = ]l{cos(ny)z%}(x)'
By applying the Riemann-Lebesgue Lemma, we get that

1Zul = l{cos(nx) = 1} n1) = Ig(nx) dx — { g0 dx > 0 (5.4)
I I

as n — oo. Now, we use the above result to show (5.3). Let t € (n, n + 1). We have that

1
|Z¢] = H{eos(tx) = 53 n 1|

and that
J’g(tx) dx = % Jg(z) dz.
i§ g
As
g(z) = Z H{—§+2mnsys§+2mn}: (5.5)
mezZ

we can define the following families of intervals. Set
Ar={JcR:JntI+0}, Br={cR:Jctl}.

Then, by (5.5), we have
21
3t
Since ¢t € (n,n + 1) and by (5.4) and (5.6), we get that

21
HOUBy) < |Z¢| < gﬂo(ﬂt)- (5.6)

4

21 47 s Co
3(n+1) 3(n+1)’

0 _ 0 _ —
3O(Ba) = o (KO - 2) 2 Ijg(nx) dx

21
3(n+1)

|Ze| 2

where C > 0is a constant independent of n. We conclude our claim by letting n — oco.
Note that for every ¢ > 0, on Z; we have ni(x) = 1 and cos(tx) > % Thus, we get that

fr(t) = J \/1 +h'(x)? + % cos(tx)[i cos(tx) — ze] dx
Zt

t t
! 2 _ —
> J \jl + h!'(x)% + X cos(tx)[Zk 28] dx
Zt

> J \jl N % cos(tx)[%{ - ze] dx, 5.7
Zt
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where ¢ is the Lipschitz constant of h. By choosing t > 0 such that
t > 4ke,
from (5.7), and from cos(tx) > % on Z;, we obtain
() = J \/1 ' %[ﬁ - ze] dx. 5.8)

Z

Thus, from (5.3) and (5.8), we conclude that
lim fi(t) = +00.
t—+00

Step 1.2. Now we prove claim (b). Notice that

p+Ak q-2k q
Fi(0) = I \/1+(h’(x)+%k)2dx+ j 1+ 002 dx + j \j1+<h’(x)+%k>2dx. (5.9)
p P+Ak q-Ax

Since the sequence (Ay) is such that kAx — oo, and ||h' ||z~ < +oco since h is Lipschitz, it holds that

R (x) + 2 < +00.

sup sup P

keN xe[p,q]

Thus, letting k — oo in (5.9), we obtain
klim f(0) = HY(D).

This concludes the proof of (b).

Step 2 . We now prove the statement of the lemma. Fix r > 1, otherwise the statement is trivial. For k € IN, divide
the interval [a, B] into k subintervals ([a¥, ak 1), where a} = a and af, = B. Assume that |a¥, - a¥| < Z.
Thanks to Step 1, for each k € N, and each i € {1, ..., k}, there exists a function El’.( : [aé‘, aﬁl] — [0, +00) such
that

@ =h@, &) =&, &(B)=h(p)
foralli e {2,..., k} with

IEX ~ Rlleowy <

=

and such that
ﬂ-Cl(graph(Ef»‘)) =rHY(TL [a{.‘, a® 1xR)

i+1

forallie{1,...,k}andall k € N. Define hx : [a, 8] — [0, +00) as
hi(x) = & (x)

for x € [a¥, ak ;1. Note that Ry is Lipschitz, h < hy for all k € N, hy — h uniformly in k, and

k k
H'(Tx) = Y H'(graph(£) = r Y HY(TL [a', a™*'] x R) = r3" (D).
i=1 i=1
It remains to prove property (v). To do so, fix ¢ € C.(R?) and € > 0. Thanks to the uniform continuity of ¢, there
exists k € N such that for k > k the following holds: if x; € [ak, ak . ], then

27+
lo(X, hie(x)) = @(Xi, hi(x7))] < &. (5.10)

Moreover, from the fact that hy is converging uniformly to the continuous function h, up to increasing the value
of k, we can also assume that
lo(xi, hie(xi)) = o(xi, h(x))] < e. (61D
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Using (5.10), we get

i+1
k a

j o(x)dH! - 1 J px)drt = Y j [(p(x, RGO + R (02 - r(x, ROO)\L + h'(x)Z] dx
Tk T i=1 a
< l;[s (Jl (\/1 + My ()% + r\/l + h’(x)2> dx

+ J (fp(xi, hie(xi)\1 + hy ()% = ro(xi, h(xi) 1+ h’(X)Z) dX]

<e J<\/1+h;((x)2+r\/1+h’(x)z)dx

i=1 5

i+1
k a

+ o(xi, h(x) Z[ J 1+ R002 -1+ hr(x)z> dx]
=1

i+1
k a

—e Y [ (Ve m0ome 1 woo?)ax (512)
i=1

P
where in the previous to last step we used (5.11), while last step follows from HY(Tk) = rHY(T). Thus, from (5.12)
we obtain

J px)dH' -1 J o(x) dH! < 2rHI(D)e.

Tk r
Thus, since ¢ is arbitrary, we get that H! LTy — rH!L_T as k — co. O

Remark 5.6. From the above proof, we can infer the following facts:

() Following (5.8),
ty [ tk Ik [ tk
1 1(y)2 _ _
rH (F)zj\j1+h(x) +2k[2k Ze]dxzyJZk[Zk 28],

Zg,

where y = infss¢ | Z¢|. This leads us to
tk )2 ( tx ) 1 o0rt,m2
— | =28 — ) < —=r*H ()~
<2k 2k) = e
If we solve for 5, we get
k<, (5.13)

where

29¢1(T)2
C:= Z(L’ + \jez + %)
u
(i) We claim that tx — +o0o as k — co. Assume by contradiction this is not the case, namely that

supty <7
k

for some 7 > 0. Thus, we have that

i 2 1
00 = W00 = 5 cos(euo0 S 00 + (3 - lsin(eco g0

oy T 2M(0)
sh(x)+k+ K

for every k. From the inequality

T 2
|hf () — ' (0] < t ’;{
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we infer that
HY(Ty) - HYD). (5.14)

From Step 1 we know that
HY(Ty) = rH"(T) > HYD) (5.15)

with r > 1 and for every k. By putting together (5.14) and (5.15) we get a contradiction.
(iii) From the expression of h), we can actually choose the sequence (Ax)x such that the sequence (hy)x is
uniformly Lipschitz. Indeed, on [a, a + Ax] we have

) tk 2
[h ()| <€+ X + K

As % is bounded and (Ax)x is chosen in such a way that kAx — +00 as k — oo, we can conclude.

6 Liminfinequality

We now present the main ideas of the proof of the liminf inequality, contained in the following theorem. One of
the issues that we take in account is the fact that our final configuration T, is the graph of a BV function which
might have a dense cut set. In particular, this is a problem since in our argument we deal with what is happening
on the left and on right of every cut in I'. This is not doable in case the cut set is dense. One possible way to go
around, is to split the energy on I'. By fixing € > 0, since h is a BV function, the cuts in I'* whose length is larger
than ¢ is necessarily finite. For those amount of cuts we do the liminf inequality by using the result contained
in [9]. Finally, for the cut part in I'“ with length smaller that &, we prove that the energy there is as small as we
want as € — 0.

Theorem 6.1. For every configuration (Q, v, u) € A and every sequence of regular configurations (Qy, Vi, Uk)k C
Ay such that (Qp, vk, Uk) — (2, Vv, u) as k — co, we have

S(Q, v, 1) < liminf F(Q, vi, Uk)-
k—oo
Proof. Fix € > 0 and consider the set
Cc={x=0y) el :h"(x)-y<e¢}

By a standard measure theory argument, it is possible to choose ¢ such that u(I' n 8C¢) = 0. As a consequence,
from Lemma 5.3, we have that I'“ \ C; consists of a finite number of vertical segments, whose projections on
the x-axes corresponds to the set (Xi)ﬁ 1~ Recalling the definition of I' (see Definition 4.7), it holds that C. is
monotonically converging to the empty set, as € — 0. Therefore, we get that

p(Ce) = 0, u(TC\ Ce) — u(re) 6.0

ase — 0.Let § = 8(¢) > 0 such that we have § < |x! - ¥/| for everyi,j=1,...,N.Aswe have a finite number of
cuts, in order to simplify the notation, we do the following construction as we had only one cut point, and then
we repeat it for each other one.

Fixie1,...,N. Since R*\ @ — R?\ @, for every cut point (x!, h(x')), there is a sequence of the form
(Xk, hie(xx))x such that (xg)x ¢ (x! = &, x' + 8) and (xx, hx(xx)) — (X!, h(x)) as k — co. Indeed, by Proposi-
tion 3.9 there is a sequence (Xx, yx)x € R? \ Qx such that (xg, yx) — (L, h(xY). By definition, we have that
hk(xx) < yk, up to a subsequence (not relabelled), we have that (xx, hx(xx)) — (xt, z!) for some z' € R. We
would like to have z! = h(x!). If we had z' > h(x!), then

lim hy(xx) < h(x') < Z,
k—oo

which contradicts our convergence above. Vice versa, if z < h(x!), then (x!, z') ¢ R? \ Q. In conclusion we have
z! = h(x') and thus (xx, hk(xx)) — (x4, h(xY)) as k — oo.
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a T — 0 T X Tp +0

b

Figure 4: The rectangles we are using for the estimate of the liminf. In particular, the set A} is the light blue, while the boundary of the
rectangle X5 is the one in purple.

Around each vertical cut, we set, for each k € IN (see Figure 4),
R = (X' = 8, x0) x (0,h~(x') —€), R} = (xp, x'+ 8) x (0, h~(x) — ¢)
and
RE = RE U RY U [{xx} x (0, ™ (x') - &)].

Thanks to the existence of the right and left limits of h at every point (see Theorem 3.2), up to further reducing &,
we can assume that
RENT = {xi} x (0, h~(x") - &).

Now we split the energy in the following way. Take any (Qx, vk, Ux)x < A, such that (Qx, vk, tx) — (2, v, 1) as
k — oco. We have

1il£ninf“ W(E(vi) - Eo(y)) dx + I W(ux) da{l]
Ly T
> limin J W(E(WY) - Eo(y)) dx + limin J $(w) 43" + limin I () A3 62)
Qr Fk\:Rg I‘kﬂﬁg

We are going to estimate each term on the right-hand side of (6.2) separately.

Step 1. Here we estimate the bulk term on the right-hand side of (6.2). Since vy — v in Wl’Z(Q; R%) as k — oo,

loc
for every compactly contained set K ¢ Q, we get

lim inf J W) - Eo(y)) dx > lim ian W(E(vK) - Eo(y)) dx
S K

> [ WEW - By ax,
K

as E(-) is linear and W(-) is convex. Since K is arbitrary, we can conclude by taking an increasing sequence
(Kj); of sets compactly contained in Q with |Q \ Kx| — 0 as k — oo. Thus, by using the Monotone Convergence
Theorem

limin J W(E(vi) - Eo(y)) dx j W(E(V) - Eo(y)) dx, 63)

Q Q

we get the liminf for the bulk term.

Step 2. For the second term on the right-hand side of (6.2), we would like to apply Theorem 3.18. Fix € > 0. By
knowing that for each k € IN we have |hx| < M, we define the open set

A% = ([a, b] x [0, M]) \ Ry
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We have that AS N Qx — AZ N Qin L' as k - oco. From Lemma 3.5, we have that
FH((9*Q N A5)AT) = 0.
By definition, we can write
ukH L (0Qk N A%) A pl A =ud' LT+ us L AL +us' L C,,
as k — oo, and, by applying Theorem 3.18, we have

limin J B(ug) AL > J P(u) AT + O (AE) + 0 J wdd, 6.4)
0 anﬂA‘; TnA¢ Ce

s
as desired.
Step 3. We now deal with the third term on the right-hand side of (6.2). Define
El=QuNR{ and Ej:=QnR}. (6.5)
Using Lemma 3.8 we obtain that
Ef — R = (x' - 8,x') x (0, i (x') - ¢),
Ef - R = (X', x"+8) x (0, ™ (x') - ¢),
as k — oo in L'. Note that, for every k large enough, both Ei # 0 and E}_+ 0. Furthermore, notice that
OEj N R® = (T N Ry) U [{xk} x (0, hie(xi))],
OE, NR" = (T N R}) U [{xx} x (0, hx(xx))].
We now define the densities
ur(x), xeTrnRE,
ub(x) = <| k

0, X € {xx} x (0, hx(xk)),

- ug(x), xelxnRY,
U (x) =
0, X € {xi} x (0, hic(x)).
We now prove that
ué = ufH L (EG N RY) = pf = fH L (TN Co) + (u)’,
(= ubH L (OEL NR) = p = g3 L (T€\ Ce) + (uh)°
for some f, g € LY(I'° \ C;) such that
f+8=urec, (6.6)
and
W)+ )® = p*, 6.7)
where (u¢)® and (u")’ are supported in I'“ \ C,. Notice that
1 (xacd x (0, huc(xi))) = e ({Xi} x (0, hie(Xx))) = 0
holds for every k € IN. By definition, we have yf; + [} = U, for every k € N. Moreover, for every set A, measur-
able with respect to yx (thus also for yi and u}), we have
B < i) = | e = Jurluon < L,
T'xnA

where L is a constant independent of A, and is given by the fact that the sequence (u)x is weakly* converging.
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The same bound for ) also holds. We have that, up to a subsequence (not relabelled), there are two Radon
measures uf and u” such that
i = ut and pp =g
as k — oo.
We claim that supp(uf) c I'¢ \ C; and supp(u”) c I’ \ C.. Indeed, take any set A such that u((T¢ \ C;) N 9A) =
0and A n I\ C¢) = 0. Then u((I'° \ C¢) N A) = 0. If we had ué((T¢ \ C¢) N A) > u((I'\ C¢) N A), we would have

KT\ C)nA) = lim (TN Ce) N A) = lim LT\ Ce) NA) = b ((T°\ C) N A),
and this implies that (T \ C¢) N A) = 0. Thus u¢ < pand if u((T¢\ C¢) N A) = 0, then also u¢((T€ \ C¢) N 4) = 0.

As the same holds for u", we conclude our claim.
Then there are f, g € LY(T°\ C) for which we can write

pl = fFHUL TN\ Co) + (ub)® and  p" = gH L (I°\ Ce) + (u")°,
with (¢)S and (u")’ are singular measures with respect to fH* L (T \ C) and g3 L (I’ \ C.) respectively. We
now prove that g = u® + u”. Notice that for every ¢ € C.(IR?),
J @ dux — J pdu
OELUAE] T\Ce
as k — oo, from the fact that py = u. On the other hand we have
j @ duk = j o d(uj + ) = j ¢ duj + j 9 i —— J gdu’ + J pdu".
OE,UAE] OELUAE], o O}, I\C, I\Ce
Since ¢ € C.(IR?) is arbitrary, we get u = u + . In particular, we obtain (6.6) and (6.7).
We now prove the convergence of the energy. Set
Sk = {xih x (0, hie(xi)) - and S = {x'} x (0, h(x")).
We notice that 3 (Sx) — F'(S) as k — oo. In particular, this implies that
lim j B(0) " = j B(0) dsc 6.8)
—00
Sk s

Now, we want to apply Theorem 3.18. Recalling Definition 6.5 of the sets Ei and E;, we obtain

ligninf J Y(ug) dHt +2 J ¥(0)dH? = lilgninf [ j Y(ug) dH + 2 j ¥(0) dﬁ{l]
% name 5 7 e Si
- ugninf[ J () dsct + I e dﬂ{l]
AELNRE OENRG
> limin J Y(uf) d3¢! + limin j p(ut) dsct
AELNRE OE;NRS
> J D A3 + 6(u8) (DR N RE)
OR‘NRS
+ J P(g) At +6(u") (AR N RY)
ORTNRS
- | Bpase v oweraeco
Ie\Ce
v [ B@at s owrae e +2 | poase
Te\Ce S
> [ wwasd s g co vz [ poad,
Te\Ce S
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where the last inequality follows from (6.6) together with the definition of €. Thus,

limint J W) At > j $E(w) A3 + OuS(TC \ Cy) 6.9)
« TR re\c,

forall € > 0.

Step 5. Using (6.2), (6.3), (6.4) and (6.9) we obtain

lim inf [ J W(E(i) - Eo(y)) dx + I (ug) dﬂ{l]

Qi Tk
> J W(EW) - Eo(y)) dx + j P(u) L + 05 (AS) + 9[ wdH" + J B (1) AF + O (T \ Cp).
Q fna: Ce re\Ce
By letting € — 0, and using (6.1), we get the desired liminf inequality. O

7 Limsup inequality
The goal of this section is to prove the limsup inequality for the mass constrained problem. We recall that the
classes A,(m, M) and A,(m, M) are given in Definitions 4.2 and 4.5 respectively.

Theorem 7.1. Let m, M > 0. Let (2, v, u) € A(m, M). Then there exists a sequence of regular configurations
(Rk, Vi, Uk)k € Ar(m, M) such that

lim sup F(Qx, Vi, Ux) < G(Q, v, 1),

k—o0

and with (Qk, vk, k) — (R, v, 1) as k — oo.

The proofis long and therefore it will be divided in several steps, each proved in a separate result. In particular,
we will need to work with a specific class of piecewise constant functions, that we introduce here.

Definition 7.2. Let h € BV(a, b) and 6§ > 0. We say that a finite family (Qf)jl‘i , of open and pairwise disjoint
rectangles is §-admissible covering for T if

(i) the side lengths of each @’ is less than &,

(ii) itholds

(iii) KT naQ/) =0forallj=1,...,N.
A simple result that will be use repeatedly without mentioning it is the following (see (a) of 5.4).
Lemma7.3. Let h € BV(a, b) and 6 > 0. Then there exists a §-admissible covering for T.

Definition 7.4. Leth € BV(a, b)and § > 0. A function u € L1(T)is called &-grid constant if there exists a §-admis-
sible covering for T, such that Ujginr = W e R, for every j=1,...,N. Moreover, we say that u € LY(I) is grid
constant if there exists § > 0 such that it is §-grid constant.

We are now in a position to explain the steps of the strategy that we will use in order to prove Theorem 7.1.

Step 1. For any configuration (, v, u) € A(m, M), we find a sequence (uy)x ¢ LY(T') where each uy is a grid
constant function, such that uy := urHILT A uask — oo, (Q,v,ux) € A(m, M) for all k € N, and

;}LTO G(Q, v, k) < 5(Q, v, 1).

This will be proved in Proposition 7.6.
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Step 2. Let (Q, v, u) € A(m, M) be such that u = u* T, and u € L1(T) is grid constant. In Proposition 7.7,
we construct a sequence (g, Vi, Ux)x < Ar(m, M), where ux = uxH* LTy and uy is grid constant, such that
(Qk, Vi, Uk) — (R, v, u) as k — oo, and

lim S(Qk, vk, ux) = S(Q, v, u).
k—o0

Step 3. For every configuration (R, v, u) € A, with each uy grid constant, in Proposition 7.8 we build a sequence
(R, Vi, Uk)k € Ar with (R, Vi, ux) — (2, v, u) as k — oo such that

lim F(Qk, Vi, uk) = G(Q, v, ).

k—00
Step 4. From Propositions 7.6, 7.7 and 7.8 and a diagonalization argument we get the limsup inequality.
Remark 7.5. Using Theorem 7.1 with Theorem 6.1, we have proved Theorem 1.1 and Theorem 1.2.

We now carry on Step 1: approximate any admissible configuration with a sequence of configurations where
the density is grid constant.

Proposition 7.6. Let (2, v, u) € A(m, M). Then there exists a sequence (uy) ¢ L*(T), with uy € L1(T') grid con-
stant, such that (Q, v, ux) — (2, v, u), as k — oo, and

klijgo 5(Q, v, w) < 5(Q, v, 1),
where iy = uRH"' L_T. Moreover, (Q, v, uix) € A(m, M).
Proof. We divide the proof into four steps.

Step 1. Given (, v, u) € A(m, M), with u = ul* LT + ¥, we would like to approximate u° with a finite num-
ber of Dirac deltas. Given k € IN, consider an %-admissible covering of . Let Q, ..., Q™* be those cubes that
intersect with I'. Foreachi =1,..., Ny, let x}'( € Qi N T. We define

mjc = 1°(Q})
and set
pr = uH LT + z M8y,
i=1
where, for every k € IN, Ny is finite. It is possible to see that ux(T') = m and pg A U as k — oo. Furthermore, the

fact that u5(T) = Zﬁi 4 mﬁ{, for every k € IN, implies that

S(Q,v, k) = 5(Q,v, 1)
for every k € IN.

Step 2. Now, consider (9, v, u) € A(m, M), with g = uH' LT + Y ¥, m'y,, with x; € T and m! > 0 as defined in
Step 1, for every i = 1,..., N. We now construct an admissible covering in order to define a suitable density

onT.For k € N, consider (Q’k)fz"l, an %-admissihle covering for I'. Consider the covering of I' given by

(LNJ1 QW}%)) u [(Qdk) \ (gmxi%))] (7.)

We notice that (UjL:"1 Q’k) \ (UY,; Q(x4, 1)) can be divided Ny rectangles whose sides does not exceed . Thus,
up to a further subdivision in rectangles, we consider (7.1) as a %-admissible covering of T. In order to
simplify the notation, we denote as Q’k any rectangle contained in (7.1). Furthermore, by reordering the rect-
angles in (7.1), we assume that for j=1,...,N, Q’k c Uﬁl Q(xi, %) and for j=N+1,...,N + Ng, we have
Qi < U @0\ (UL 00, 1.

Fix € > 0. Since

@0 Q) o ern Q)
lim ————— =+c0 and lim ——— =+0c0
k=00 (T 0 Q) k=00 31(Te N Q)
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forallj=1,...,N,thereis k € N such that, for every k > k, we have

KT NQ)—f 5T N0,
( Q.Ik)lp<“( Ql’f))—elq (7.2)
wTnQy) \HU(NQ)
and . )
HUT n S(T'n
( O.]k) zpc( H Q]k.) ) - 0‘ <E. (7.3)
wIrnQy) \H(TNQ)
We now define a density on T. For x € Q’k, we define ux : T — R as
Tno - -
”(~—Q]".) ifxeT,TnQ, +0,
HUT N Q)
Ug(x) = e Q’
n .
M0N0 ey e, I°n Q) #0.
HUTCN Q)
Note that the function uy € LY(T) is %-grid constant by definition. For each k € NN, define the measure
tx = uHLT. (7.4)

By definition, it follows directly that the mass constrained is satisfied, namely that (Q, v, ux) € A(m, M).

Step 3. We now prove that ux = u as k — oo. Take ¢ € C.(R?). Fix & > 0. Using the uniform continuity of ¢,
there exists k € N such that for every k > k we have that

lp(x) - p(x})| < &

for every x e Q’k where x; is the intersection point of the diagonals of Q’k First, we write

“fpduk—jfpdu < J¢dﬂk—J¢dﬂ + J@d#k—J¢dﬂl
T T T T Ie Ie
N+Ng N+Ng
<y J ¢ duy - j pdul+ Y J ¢ duy - j fpdu‘, (7.5)
= g, o), = renQ) reng),

and we estimate the two terms on the right-hand side of (7.5) separately. We have that

N+Ny N+Ny
Y j o dux - I pduf< Y J lo(x) - o(xL)] duk
A o), o, = o,
v [ 1060 - )l du + loGelIuCE 0 @) - (T Q)
fno;,
< 2me||@lleore), (7.6)

where we used the fact that y(f n Q’k) = yk(f n Q’k) foreachj=1,...,M + Ny and every k € N, by the defini-
tion of . Using similar computations, we also get that the second term on the right-hand side of (7.5) can be

estimated as
N+N, k

>

Jj=1

J @ du - J @du
reng), reng),
Finally, from (7.5), (7.6) and (7.7), we get

< 2me|glleore), (7.7)

< 4m€"(p"(30(]R2).

jfpduk—jfpdu

T T

As € > 0 is arbitrary, we can conclude that px = uask — oo.
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Step 4. We now prove the convergence of the energy. We will prove that

limsup §(R, v, tx) < S(Q, v, u).

k—o00

Since the bulk term of the energy is unchanged, we estimate the other contributions. We have that

[ B ase + [y ase
iy re
N+Ny _
=) [ | Bawowe+ | v dﬂ{l]
J=1 TnQ’;{ FCr\Q’,;
N+Nj X T j X c j
-y [%l(fn dkﬁﬁ(M) +3C(T N dk)wf(M)]
j=1 HUT N Q) HUTEN Q)
N X S(T i X s(Tc ]
=Y |H T nQ)Y wddt + ———5 )+ HU(T N Q) )y© wddt + ———K
1,5 Qlk 1 u (Tn Qlk) 1 Qlk 1 U (ren Q,k)
=) e, HUT N Q) . HITC N Q)
N+Nk . .
) [Jfl(f n 2 ][ uddct) + 3¢ n Qe ][ udﬂ{l)]
J=N TnQ’,‘( ano’;(
N X X ST j
<y [J{l(f n Q’k)iﬁ< } u dﬂf1> L30T n Q’k)E(M)
=1 ol HUT N Q)
+9{1(I~L‘noll.()lpc( :': udj{l)+9{1(FCﬂQlk)l/)C<y(r—rw']k)):|
, HUT N Q)
reng;
N+Nk . .
) [Jfl(f n QY ( ][ wasct) + 36 n Que( ][ udﬂ{l)]
=N TnQ’,'( Fme’,‘{
N X ST j
< z [ J P(w) dH + HYT n Q,k).l/;(y(li—rwak))
g HUT N Q)
v [ vwad +9{1(r0no’;{)lpf<—” (0 ¢ )]
e 3T N Q))
N+Nk _
+ Y [ j B(w) At + J v () dﬂ-fl]
=N fnQ, rengQ),
N X 1T j S(T j
=y [ J P dict + (T n Q’k)% (~F d dk)i( “ (1:“ Q]".) )
L @@y \H(TnQ
. 1/1c j s(Tc j
o [ swadseangy " % wC( w0 gy )]
o, wreny  \H(IEN QY
N+Nk _
+ Y [ I B(w) drc! + J W () d%l], (7.8)
J=N an’,'( FCnQ’,'(

where in the first inequality we used the sub-additivity of ¥ and 1, while in the previous to last step we used
Jensen’s inequality.
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By construction, we have that (7.2) and (7.3) hold. Thus, from (7.8), we obtain

N ‘ |
J-Fl/;(uk) e+ J ye () ac’ < z J’ iﬁ(u) dsc’ + ‘us(f n Qlk)(e te I Y(u) + (TN Q]k)(e + 8):|
' : = e, reng)
N+Nk _
) [ j Y(u) d" + J Ye(u) di}{l]
I rengl
N+Ny . ‘ .
= Z [ J Y(w) dd' + J Ye(w) dH + OpS (T N Q)) + ens(Tn Q’k)]
= g reng]
P(u)dH? + J ¥ (w) A + Ous(T) + eus(T). 7.9
rC

<

L —

From (7.9), since ¢ is arbitrary, we can conclude

lim sup §(RQ, v, ux) < G(Q, v, ).

k—o00
This concludes the proof. O

We proceed our analysis with the second step, which will allows us to reduce to the case of a Lipschitz profile
and a grid constant adatom density.

Proposition 7.7. Let (Q, v, u) c A(m, M) be such that u is grid constant. Then there exists a sequence
(Qk, Vi, Uik € Ar(m, M),
where iy = upd" LTy with each uy grid constant, such that
klijgo S(Qk, Vi, i) = 5(R, v, ),

and (Qk, Vk, tk) — (R, v, u), as k — oo.

Proof. The strategy of the proof is the following. In Step 1 we show that it suffices to build the required sequence
in case h has finitely many cut points. In Step 2 we build the recovery sequence. Finally, in Step 3 we show the
convergence of the energy.

Step 1. Inthis first step we are going to show that it suffices to prove the result in the case h has a finite number of
cuts. Namely, we prove that there exist sequences (Qg,, Wk, Vi)x € A(m, M) where each gy has a finite number
of cuts, and vy is grid constant, such that

hm S(ng’ Wk: Vk) = 9(9) v, .u)a
k—o0

and (Qg,, W, Vi) — (2, Vv, 1) as kK — oo.
The following construction is inspired by [15, Theorem 2.8]. For k € N, define (see Figure 5)

() = min{max{h‘(x) - % 0}, h(x)}

for every x € (a, b). It is possible to see that, for each k, the function gx is lower semicontinuous, of bounded
variation, and such that gx < h. Moreover, thanks to Lemma 5.3, we have that g, has finitely many cuts. We then
define

8r(X) = gr(X) + &, (7.10)

for each k, where

b
&k = bi—a(M - Jgk(x) dx) > 0.

a
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RREE

a
1
h—1

Figure 5: In order to reduce to a finite number of cuts, we do the following: first, we shift down by % the regular part of the graph of h
(not the cuts), getting the red graph. In this process, some parts of the graph might have gone below zero. Thus, we get the function g
by cutting them, and by adding the remaining part of the original cuts.

Set Ty := I'y,, and note that
klim HY(Ty) = H(D). (7.11)
—00

We now need, for each k € NN, to define the displacement v and the adatom density uy. For the former, by fixing
ayo < 0such that v(-, yo) € Wh2((a, b); R?), we define
v(x,y —¢€x) ify>yo+ e,
Wi(X) = 1 v(X,Yo) ifyo <y < yo + &k, (7.12)
v(x,y) ify < yo.
For k € IN'\ {0}, and x € Ty, we define

u(x,y+%> if(x,y+%>el~"andh(x)>%,
Zk(x) = { u(x,y) ifx e TC,
u(x, 0) if h(x) = 0.
For each k € IN'\ {0}, we then define the measure
Vi = (zk + M) H L T,

where
1
= ——— udﬂfl—Jz dact|.
k FHL(Ty) [ J K
T Tk

We notice that, by using (7.11),

lim ri = 0. (7.13)

k—o00
Step 1.1. Note that, by definition, the sequences (gx)x and (vi)x satisfy the mass and the density constraint as in
Theorem 1.2, and thus (Qg,, Wi, vi)x € A(m, M).

Step 1.2. We now prove that (Qg,, Wi, Vk) — (K, v, tt) as k — oo. By using the definition, it is possible to see that

R%\ Qg 2 R?\ Q,and wy — vin Wllo’CZ(Q; R?) as k — oo. In particular, we have that

HN(Tk) — HNT)

as k - oo.
We now prove that vi = u as k — oo. Take any ¢ € C.(R?) and fix € > 0. By the uniform continuity of ¢
we find § > 0 such that, if |(x, y - ,l() - (X, y)| < 6, we have

pfar1)-ote<e
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Then, for k large enough,

J(pzkd%1+1rk(pdﬂ{1—l(pud5{1sl J (p(x,y—%)udﬂ-fl+ J gou(x,O)dﬂ-fl—J‘(pudﬂ'{1

T T r Tn{n>1} Tn{h=0} T

+ + l@lleoqreyH (Ti)rk

J pudH?! - J oudH?
re fe

SS"H"Ll(f)+l j oudH! - J oudH?
I'n{h>3} Tn{h>0}

+ J oudH?

re\re

+ plleomnyH (Ti)rk.

Here we notice that T \ T}, — 0, rx — 0 and that Tnih> %} — T n{h>0}as k > co. From these considera-
tions, as ¢ is arbitrary, we infer that vy A uask — oo.

Step 1.3. Finally, we prove the convergence of the energy. First, by a standard argument, we can reduce to the
case u € L°°(T). Thus, we have

|9(Qk: Wk) Vk) - 9(9) V’ [‘l)l <

j W(EWr) - Eo(y)) dx - j W(E®) - Eo(y)) dx
Qx Q

, J’z/?(zk 1) A3 - jiﬁ(u) da¢t
\ 7

+ j W (zk + i) AL — j B (w) . (7.14)
re re

Regarding the bulk term on the right-hand side of (7.14), since wy — vin Wl’Z(Q; R?%) as k — oo, we have that

loc

klim E(wg) = E(v).

Remember that, by construction, Qx c Q. From the fact that Qx — Q in LY as k — oo, we can find k € N such
that for every k > k, we have |Q \ Q| < . Then, for k > k, we have

j W(Ewy) - Eo(y)) dx - j W(E(®) - Eo(y)) dx] < j IW(EWi) - Eoy)) - WEW) - Eo))] dx
Qi Q Qi

+ W(E(v) — Eo(y)) dx|. (7.15)

Q\Qx

Notice that the first term on the right-hand side of (7.15) is zero, whereas, by Dominated Convergence Theorem,
we can conclude that the second term is going to zero as k — oo.

We now consider the surface terms on the right-hand side of (7.14). From (7.13), we can choose k large
enough so that ry < 1. Since u € L®(T'), we have that ¢ and ¢ are uniformly continuous in [0, |u|z + 1]. Then,
for every € > 0, there is k € N such that, for every k > k,

[P +r) - Pl <e and [Ye(u+re) - Pl <e. (7.16)

For the first term, we get

’ J B2y + i) dH Iiﬁ(u) dgct| = ‘ J[i/?(u T ) - )] d%ll N ’ J B(zx + i) A, (7.17)

Tk T T In{o<h<}}
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Now we use (7.16), together with

Tn{0<h<%}—>ﬂ,
and we conclude the convergence to 0 of the surface term in (7.17), as k — co. Regarding the second surface
term on the right-hand side of (7.14), we have that

< +

‘ J WE(u + 1) A — J W (1) A3 J[l,b“(u 1) — PE(u)] A j Yoy dst|  (718)

e r e ren{h-(x)-f <y<h=(x)}

From (7.16) and since 1
Ir‘n{h (x) - E <y<h (x)}—0

for k — oo, we conclude our estimate on the cut part.
By putting together (7.15), (7.17) and (7.18) in (7.14), we get that

lim S(Qk, wi, vi) = S(Q, v, u).
k—oo

Step 2. Now, consider h € BV(a, b) with a finite number of cuts. Let (ci)lf':1 c (a, b) be the orthogonal projection
on the x-axes of the cuts. Set
g =min{lc'-d|:i#j=1,...,n} (7.19)

In order to lighten the notation, and since we are considering a function h which has a finite number of cut
points, we can work as h had a single cut and then repeating the following construction for the general case. So
let ¢ be the cut point of h.

The idea of the construction is to use a Yosida—Moreau transform far from the cut point a < ¢ < b and,
around the cut, we use an interpolation in [c¢ - e—k" c+ %"] in order to get the Hausdorff convergence to the
vertical cut. We need to apply the Yosida—Moreau transform of h with maximal slope k beforehand because
we need the mass constraint to be satisfied, as we want to use the same procedure as in (7.10), which requires
a sequence that lies below h. Moreover, since we use the Yosida—Moreau transform of h with maximal slope k
far form the cut point, thanks to [15, Lemma 2.7], we have the Hausdorff convergence to our configuration as
well as the convergence of the length of the graph.

We define, for each k € N, hi i (a, ¢) — [0, 00) as the Yosida—Moreau transform of h with maximal slope k
on (a, c) and hi : (¢, b) — [0, co) as the Yosida transform of h on (c, b). Namely,

hé(x) = inf{h(z) + kIx - z| : z € (a, O)},
h(x) = inf{h(z) + k|x - z| : z € (c, b)}.

We have that both hi and hZ are k-Lipschitz functions such that h¢ < h and hi < h. Furthermore, by [15, Lem-
ma 2.7] we have that th — Qn[(a,c)xR]and Qpr — QN [(c, b) x R] as k — oo, together with their conver-
gence of the length of their respective graph, namely

H'(Tpe) = HAT N (@, ¢) x R)),

3 (Try) — FCT N (¢, b) x R))

as k — oco. We can also extend by continuity hf; and h}_at ¢, as we have both right and left limit of h at c. We are
going to use the following notation:

£ £
Sk = [c— °,c+—0]><lR,

k k
Si = [C S_I:),C] X]R:
Si = [c,c+8—k?]><lR,

where &g is defined in (7.19). The definition of our sequence (hy)x uses the definition of hf; and hj, outside S
whereas in Sx we have a linear interpolation from the cut point (c, h(c)) and the points (¢ - E—,f hi(c - E—,f)
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and (c + %, hy(c + %¢)). We define our Lipschitz sequence as
hi(x), X €(a,c-%),
¢ ¢ ¢

- mx+q,, XEe€S;,

i) = T Ak .
mpx+q, XeS,
h}(x), xe(c+2,b),
with suitable coefficients mf;, qi, m; q; € Rsuch that we have linear interpolation from (¢ — 8—,3 hi(c - 5—,3)) and
(c+ % h;(c + %)) to the point (c, h(c)). Notice that, by definition, flk(c) = fl(c) and hy is continuous. Moreover,
thanks to Theorem 3.2, for k large enough, it holds that flk < h. Now, following the same path as in (7.10), we set

hi(X) = he(X) + ek,

where

b
Ex = bi—a<M— I flk(x) dx).

We then have that the sequence (hk)x satisfies the mass constraint, namely,
b
J hi(x)dx = M.
a

Step 2.1. For every k € N, let Qy be the sub-graph of hy. We prove that R? \ Qj % R%\ Q as k — co. We use
again the equivalence of the Hausdorff convergence with the Kuratowski convergence (see Proposition 3.9).
Take X = (X,y) € R\ Q. We first want to prove that there exists a sequence (Xk, yx)k C R?\ Qx such that
(X, Yx) — X. Then we have different cases depending on whether X € Sx or not. In case X ¢ Sk, as the sequence
(hx)k is defined as the Yosida—Moreau transform of h, away from the cut point we can use [15, Lemma 2.7] and
we have already the Hausdorff convergence desired.

Next we deal the case in which x € Si. If X = cand y < h™(c), consider the sequence

.
(v = (275, 9)
m
for every k € IN. We obtain (xx, yx) — (¢, y) as kK — oo.
Incase X = cand y > h™(c) orin case X # ¢, it is enough to consider the constant sequence (xx, yx) = (¢, ),
since by definition hy < h and thus we have that (x, ) € R%\ Qy, for every k € .
We are left to check the second condition of the Kuratowski convergence. Take a sequence

(Xk, Yk)k € R*\ (Qk N Sk)

and suppose that (xx, yx) — (X, y) as k — co. We need to prove that (x, y) € R? \ Q. Since (xx, yx) € Sk and the
vertical strip S is shrinking to the vertical line ¢ x R, we must have that x = ¢ and thus the point (x, y) € R? \ Q.
In case our sequence (X, Yx)k is laying both in R2\ (Q« N Sk) and in R? \ (Qx \ Sk), as it is converging, it
is enough consider k large enough and we get that (x, yx) is only in one of the two sets. Then we can proceed
as before.
Thus, we can conclude that R? \ Qx — R?\ Q as k — co.

Step 2.2. We are going to define a density on T'x. Since u is grid constant, we can consider a family of squares
(@)jej, with J = {1,..., N}, such that on each square @/ we have

Uginr = W € R.

We now define two index sets
A ={je]: @ nSk=0}, Br:=]\A (7.20)
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In order to define what follows, we recall Lemma 5.4. The density is then defined as ux : T'x — R by
r 1 = i
FRIOOLD ’
HY(Tkn Q)
HYTC n Q)
HITkn Q@ nSh’
3TN Q)
H(TknQ NSy’
o TN N\ S

xelnQ, jeA,

a xeTknQ/ nSt, je By,
ug(x) == 4

xeranfnsi,jeBk,

xe T nQ)\ Sk, j € By,

HUTrn @)\ Sk)’
where @, b/ are such that
d+b=u (7.21)
and
ey = ¥(d) + (). (7.22)

As the size of the squares is fixed, we take k large enough such that the vertical strip Sk is contained in a single
vertical column of squares.

For each k € N, define the measure ux = urH L Tk. We have that Ui satisfies the density constraint.
Indeed,

HU(T N Q) ( . H'(TnQ)
dgt = U A i < q3(’
Ju" 2 J 3TN o) +;§k J T Qin sl
TkNQINSE,
N J y HaNQ) g J 1 @D\ S dﬁl)
TN QInS)) (@ n @)\ Sk)
TkNQ/NS}, (TkNQ\Sk

= Y WH'TnQ)+ Y (gH' (T n Q)+ b3 (T n Q) + W (T n Q) \ Sp))
jEAk jEBk
N .
=y J wdH! = m,
7:1rnof
where in the previous to last step we used (7.21).

Step 2.3. We prove that ux = u. Take any ¢ € C.(IR?). For every ¢ > 0, we can find k € N such that for every

k > k we have |p(x) — ¢(¥/)| < ¢ for all x € ¢/, where X/ denotes the center of the square ¢. From Lemma 5.4
we have

)

‘ I ou dH! - J pudH?
T r

J ou dH! - J ow dH*

A 0o Fnoi
+Z<’ J ou dH?! - J ou dH*
Br TkNQINSk TNQ/NSk

+ J ouy dH! - J o d3!
(TkNQ)\Sk (TNOH\Sk
We now compute first the sum over the indexes in A, on the right-hand side of (7.23). By summing and subtract-
ing ¢(x/) inside each of the integral, it holds that

CHYTNnoO .
Z ulm dj{l — J (pu] dj—[l
ey HH Tk N Q) _

TxkNQ TnQi

). (7.23)

<2 ) lox) - px)||w]H" (T n Q)

JeAk
<2¢ Y H'(Tn Q|
JeAk



DE GRUYTER R. Cristoferi and G. Fissore, Graph epitaxy with adatoms == 545

We now estimate the sum over By on the right-hand side of (7.23). Note that, up taking a larger k € N, we can
assume that

Y 1T 0 QN Si) - T N Q)] < de
Jj€B;

for all k > k. Bearing in mind that for every j € N it holds &/ + b/ = W/, we get

1(1c J
H (T nQ) 4t

Y puy A3 - J o d3c'| = Y gt ne)
j ; HITn @V n SE
J€Bk TxnQINSK TNQINSk j€Bk rkﬂojﬁsi (T Q k)
1(c J )
+ J M dg—(l — J (ou] dj—fl
HUTk N QI N Sh)
IxnQInS), rnQ/nSx
<2e Y WEHN TN Q)+ H (T N Q' nSy)
jEBk
+ o)W |H (T N Q) = HY(T n @ n S

< 26l poory + 4€) + 4ell@lleorey Il Loo(ry- (7.25)

In the same way, we can obtain the estimate for last two terms of the sum over By on the right-hand side
of (7.23),

J€Bk

< Cellully ) (7.26)

o d3" - j o d3!
TNQH\Sk
for some constant C > 0. In conclusion, if we put together (7.23), (7.24), (7.25), (7.26), we obtain that

(TkNQ)\Sk

<Cle,

J ouy dH! - J oudH!
I r

with C" > 0. Since ¢ is arbitrary, we get that uy = uask — oo.

Step 2.4. Arguing as in (7.12), we can define the displacement sequence (v)k, with vx € WL2(Q; R?) such that
Vk — vin Wllof(Q; R%) as k — co.

Step 2.5. It remains to prove the convergence of the energy. By using the index sets in (7.20), we have that

|9(ri Vk, uk) - 9(9, v, u)' <

j W(EWr) - Eo(y)) dx - j W(EW) - Eo(y)) dx

Q Q
+y J D) drct - j P di!
JeAk png TnQ
+ Y| Behas - [ yew)ase
jeBy TNQiNSk F”“Q’;;
+y J P(uy) A3 - J Py dl. (7.27)
JjeBxk

(TkNQ)\Sk TNQ)\Sk

We will estimate the four terms on the right-hand side of (7.27) separately. For the bulk term, we can use the

same method as in (7.15) and we conclude that

Qx

as k — oo.

j W(EWK) - Eo(y)) dx -

I W(EW) - Eo(y)) dx‘ -0 (7.28)
Q
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We now consider the first sum on the right-hand side of (7.27). We have that

y j %(u}'M)del— J D) d3t
Qo TnQi

j€i o HTkn Q)
9{1(1“0()) " N i .
—]g,k ( m)j{ TN Q) - pW)H (ran])‘
+ Y Bt Ten Q) - )3 T n Q). (7.29)
JeAk

From the fact that ¥ is continuous and since H'(T'x N ¢/) — HY(T n @¢/) as k — oo, for every ¢ > 0, thereisk € N
such that for every k > k we have

IH T n Q) - H (T n Q) <e

—( ST\ —
O

and

<E.

Then, from (7.29) we have that

~(  H(TnQ) 1
7 . S J
2 J w(”ﬂfl(fm@f))‘m | ae
JEAK Qi TnQi

<e ) HTnQ)+e ) ). (7.30)

jeAx JeAK

As ¢ is arbitrary, we can conclude our estimate.
Regarding the second sum on the right-hand side of (7.27), we use the a similar method as in (7.25). Now, for
the first two terms can be estimated as follows:

2. I J P dsct - j Yo !
JEBK ', oins, renQi
-y $<ajm
j<By HUT N QJ N SY)
. 1(1c j
+E( HUTC N Q)
HITrn Q) nS})
By using the same argument that led us to (7.30), consider ¢ > 0 as before, then, for k large enough, we have
IH Tk @ S -H(T N Q) <e,
1H TN @ NS - H(I N Q) <&,

) TN @ nsh

)Jfl(l"k nQ nSy - Y I (I n Q). (7.31)

and, by the continuity of ¥,

= i f}fl(rcﬂQ]) )_~ j
M sownonsh) V<
—( . HUT N QJ) — .
"”( 3TN Qi N Sp) )“/’(b]) .

As a consequence, from (7.31) we get

2

pahasc - | peadase
jeBk

T'xNQ/NSk renQy

<e Y (HTen@ nSp +H' Trn @ nSp))
Jj€Bk
+ Y [P(apH (T n Q0 Sp) + Y(b)H T n Q@ 1 S}) - Y@ (T n Q)|
JjeBk
=& ) HTn@ NS +e ) B@)+ W)+ Y [P(@) + PW) - @) H (T n Q) (7.32)
Jj€Bk JjeBk Jj€eBk

Now, we conclude our estimate by using (7.22) and the fact that ¢ is arbitrary.
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The third sum in the right-hand side of (7.27) can be treated in the same way as before. Consider ¢ > 0 as
above, then, for k large enough, we have

IHY(T N @)\ Sk) - H (T NnQ)l<e

and

Ul u

; . <e.
HY (T N Q) \ Sk)

o
‘~( (TN Q) \ k) )_—lﬁ(u,-)

Thus, we have

2

JjeBk

1_ ~] 1
‘/’“’:Hl((rknof)\sk)d% J v dx

(TkNQ\Sk (TNQN\Sk

<e Y HN(Tn @)\ S +¢& Y P (Ten Q) \ Sk)

Jje€Bk JjeBx

+ Y ) H (T n @)\ Sk) - p)H ([T n Q). (7.33)

JjeBk

~( HU(ENnQ)\Sw

Since ¢ is arbitrary and from the fact that H1((T'x N QY) \ Sx) — HY(T n @) as k — co, we can conclude the
last estimate.
By putting together (7.28), (7.30), (7.32) and (7.33) in (7.27), we conclude that

klim G(Qk, Vi, i) = G(2, v, u). O

Proposition 7.8. Let (R, v, u) be such that h is a non-negative Lipschitz function, v e W“2(Q; R?) and u = uH' T,
with u € LY(I) a grid constant density. Then there is a sequence (Qx, Vi, Uk)k € Ar(m, M), with uyx = urHYL Ty
and uy € L' (3" L_Ty) grid constant, such that

lim F(Q, v, k) = 5(Q, v, 1),
k—o0

and (Qp, Vk, k) — (R, v, u) as k — co.
Proof. We divide the proof into seven steps.

Step 1. Denote by ¥"* the convex envelope of ¢, namely,
YV = {p: pisconvexand p < y}.

It is well known (see, for instance, [18, Theorem 5.32 and Remark 5.33]) that for any given density w € Ll(l“g),
with g a Lipschitz function, then there is a sequence (wp); C Ll(l"g) such that w,, — win Ll(l"g) and

Jim [ woum asct = [y aset,
Fg rg

In particular, w, 1! L Tg SwHll I'¢ as k — oo. Therefore, if we prove the statement of the proposition for
Y convex we also have it for ¥ Borel. Thus, from now on, in order to enlighten the notation, we will assume ¥
to be a convex function.

Step 2. Take any configuration (Q, v, ), where h is a Lipschitz function, v € wi2(Q; R?) and u=uHtLTis
a grid constant density. Then we can consider a finite grid of open squares (Q/) jey such that

Ujginr = uj eR

0« xl<...<x®=bhsuchthatu = u' € Ron

for each j € J. By construction, there are finitely many points a = x
graph(h) n [(x', x"*") x R]

foreveryi=0,...,n (see Figure 6).



548 —— R.Cristoferiand G. Fissore, Graph epitaxy with adatoms DE GRUYTER

N

zi ! 22 git3

Figure 6: On each interval [x/, x*'], depending on whether u/ > s, or not, we will apply the wriggling process and change the density
to sg, or do not change anything.

Define the index sets
A={i=1,...,n:u'<so}, B={i=1,...,n}\A4, (7.34)

where s is given by Lemma 3.16. In such a way, we are going to apply the wriggling process for i € B. By
Lemma 5.5, for every i € B, we choose rt > 1 such that

ut = risg.
and we have, on each interval (x!, x*1), a Lipschitz sequence (fz};)k, that verifies the following properties:
@ T = rig (T n[(d, x*1) x R]), where T} := graph(h});
(i) h(d) = hi(x) and h(x*1) = R (x*1);
(i) Ryei yirty < L
(iv) R}, — Ry xio1) uniformly as k — oo;
@) HLTL = rig L (00 (xd, xP) x R) as k — oo.
Then we define the Lipschitz sequence (hi)x as

} | R ut > sg,
hkl(xi,xiﬂ) = ;
h|(Xi,Xi+1), u- < Sp.

By setting T := graph(hx), we define the density itx on T as

_ so, ul>sp
uk|(xi,xi+1)><]R = ; i
u, u <S8p.
We have that the sequence (itx)x define above satisfies the density constraint. Indeed, by considering the index
set defined in (7.34), we have

Jwad-y [ wacsy | s

Ty A £ (i xi*)xR] B Al X1)XR]

Y uH T n [, xF) xR + Y soH! (Tre 0 [(xF, x*1) x R])

icA ieB

= Y uH T A [ XY xR]) + Y sor'HU(T 0 [(xF, X x R])
icA ieB

i J ul dg?

i

=1 rA[(xd x1*1)xR]

=m,
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where in the third to last step we used the fact that
Tk 0 [, X x R]) = FHUT 0 [ X x R]) (7.35)
for everyi € B.

Step 3. Since in general h < hy, we have that M = |Q]| < |Qx|, where Qy is the sub-graph of hy, for each k € N.
In order to fix the mass constraint we set

Vk = _£ <1, (7.36)
1974
and we have that yx — 1 as k — co. Define, for each k € N,
hi = yihk.

Now the sequence (hy)x satisfies the mass constraint, indeed

b b

j hrdx = J Ykhi dx = yrlQkl = M.

a a

Now, let T := graph(hy). Since in general, for every k € N, H1(I'y) < H!(Tx), we need to adjust the density
constraint. By knowing that

J Uy dH = m,

Tk
we need to define a new sequence of density (ux)x on I'x such that, for every k € N,

J U dH* = m.
Tk
Thus we set, for each k € N,
Uy = Ik
k= 0
with .
T
ty = I (_k) <1
HY(Tk)

Notice that tx — 1 as k — co. We have that the sequence (ux)x satisfies the density constraint. Indeed,
it _
j g d3! = FEICT) = wI [T = j 3¢ = m.
k
Tk fk
Step 4. We now prove the convergence of the density, namely uxJ' LT 2 uHLT. To do so, we first prove

that @, ! LTy — uH! LT, and then we conclude by triangle inequality.
Take any ¢ € C.(IR?) and consider ¢ > 0. We can find § > 0 such that, if X, y € R? satisfy

ly - x| <6,

then
lo(y) - p(x)] < €. (7.37)
Up to refining the intervals (x', x'*1), we can assume that

. . o)
|Xl _X1+1| < —.

V2

Let K > 0 such that for every k € N we have hx < K and h < K. This is possible, as our sequence is uniformly
bounded by definition and h is bounded. Consider a finite partition of [0, K] given by y° = 0, y', ..., y™ = K such
that for every [ = 1,..., m we have

l I+1
- | < —.
by -y 7
Moreover, for every [, consider y! € [y!, y'*1]. Then, from (7.37), for every x € [x/, x*1] x [y, y'*1], we have

lpx) - p(x', 31| < .
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We then have
n
‘ J e dH! - J updd'|=|) J uodH' + ) J so@ A" - ) J utp dH?
Tk iGAfkn[(x",x”l)x]R] iGBfm[(x",x"*l)x]R] izofﬂ[(xi,xi*l)XR]
=y J so@ dH! - J ulp dH!
B3, i xi*)xR] TA[(X,x*)xR]
m
-yYy | solo(®) - p(x!, 3] do!
I=0ieB fkn[(xi,xi”)x(yl,yl“)]
m
Yy ‘ | wp(x) - p(xt, 3] !
1=0ieB

rﬂ[(xi,xi*l)x(yl,y”l)]
m

+ 3 Y Isop (X, FHHTi 0 [0, X x (v, yH )
1=0ieB

—ulp(x, PHFHT N[O, X x L yHH))

< esp Z Z g‘fl(fkﬂ [(Xi,Xi+1)X(yl,yl+1)]) + 8ui Z Z 9{1(1"0 [(Xi,Xi+1)X(yl,yl+1)])

[=0ich 10 i<B
m
+olleome) Z Z IS0 Ty N [, x™*1) x (yl’yl+1)])
=0 ieB

—ulH (T A [ X x Lyt
<esg Yy HU (T n [, X" x R]) + eu’ Y HU(T 0 [(xF, x7) x R))
ieB ieB
+loleome) Y 150" Tk 0 [, x*1) x R]) = u' (T 0 [, x*1) x R))).
ieB
Now, by using condition (7.35) we get

I I g A - j up d3e!| < 2efullp o), (7.38)
Tk T
where we can conclude as € was arbitrary.

In order to prove that u;J' L Ty = uHLT, we can use (7.38) together with the triangle inequality and

the following estimates. We fix ¢ and ¢ as in (7.37), so we have

b -
_ | [ (000 mi00 1+ 2002 - B, BT+ f,;((x_)z> i
b
]

J urp dH! - J e dH?

Tk

Tk

[(% - 1>ilk(p(x, GO + y2RL ()2

+ W@, hie ()1 + YEh) (02 = wep(x, hi(x)) {1 + I_I;((x)z] dx|.  (7.39)

Regarding the first term on the right-hand side of (7.39), we have that the sequence (hy)y is uniformly Lipschitz,
as stated in Remark 5.6. Then there is L > 0 such that |f_l;<| < L. Furthermore, we have that, for every k € IN,
|ux| < C, with C > 0, and we get

1
< |E - 1|C||¢||eo(]Rz) V1 +y2L2, (7.40)

Now, we estimate the remaining two terms on the right-hand side of (7.39). Let &’ > 0. There is k' € IN such that
for k > k' we have

b
1 _
’ J(E - l)ak(p(x, RGO\ + y2RL ()2 dx

lyk -1l < €.
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Since the function x — V1 + x?2 is Lipschitz we have

|\/1 FYERL(02 - 1+ R, 002 < 21kl 00 - B (0] < 2LIye — 1] < 2L¢'. (7.41)

Thus we have
b
[ Jeo 0. oL+ Y2007 = g, )1 + R 02| ax

a
b

< [ Jao0c o)L+ VR 007 - o (e, o)L+ R 007 x

a

b
+ J | k906 RGN + R 002 = 1@, RiGO) Y1 + R (0| dx. (7.42)
a
Then the first term on the right-hand side of (7.42) can be estimated by using (7.41) and we get
b
J |ﬂk¢(x, hiCO) V1 + YRy ()2 = @ (x, hi(x))\1 + flL(X)2| dx<K'¢, (7.43)
a

where K’ := 2LC(b - a)||9lco(w).-
The second term on the right-hand side of (7.42) is estimated by using the uniform continuity of ¢. Since
there is C' > 0 such that |hx| < C', for every k € N, we also have

[Ri(x) = hic(X)| = lyk = LIhe (0] < €'C'.

As a consequence, by using a similar approach as in (7.37), we get

b

j 'Hk(p(x, hic(GO)Y1 + L (02 — i@ (x, i (x))\1 + h;((x)Z' dx < K'e, (7.44)

a
where K" .= (b - a)CV1 + L2
By putting (7.43) and (7.44) in (7.41), we get that
b

J |06 iGN + yERL 0% - k06 hi00) 1 + B (02 dx < K'e’ + K. (7.45)

a

Now, by putting (7.40) and (7.45) in (7.39) we get

1
1 - 1 1ot [ 2
J ure dH" - J UuxpdH|<K'e +K e+ |E - 1|C||g0||60(1R2) 1+ ykLz. (7.46)

Tk fk

Finally, by using (7.38) and (7.46) we get

< +

J urp di! - J up d! J urp dH! - J e dH! J e dH! - J ug di’

Tk r Tk fk fk r

1
< 2elul + K'e' + K'e + lt— - 1‘C||¢||@U(Rz)\/1 Y22,
k

we can conclude since € and &’ were arbitrary and by letting k — co.

Step 5. Regarding the displacement, set

Vk(X;)’) = V(X) ka)
The definition of the vy is well posed, indeed (x, yxy) € Q if and only if y < hx(x). In particular, h < hy, hence
v(x, yry) is well defined at every point. Notice that, since hx > 0, we have that for y < 0 it holds vk = v. Thus,
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denote the bounded open set
Q" =Qn{y>0}
and note that the set
Qp ={06yy) 1 (x,y) € 7}

is also open and bounded.

We now prove that vy — v in Wllo’cz(Q; R?) as k — co. Indeed, take Qe C.(R?). Fix € > 0 and since 0 is
uniformly continuous, we have that |¢(x) — ¢(y)| < €, every time |x — y| < § for some § > 0. In particular, since
vk — 1,if kis large enough, we have

B
l(p(x, Vk) (p(X,y)l <e.
By using the above fact, we get (recalling (7.36))

Jvkgodx—prdx Jvk(pdx—quodx

R? R? Q QF

1
= ‘— J v(x,y)co(x, l) dxdy - j v(X,y)9(x,y) dxdyl
Vk Q+ yk Q+

< %U v(x,y)[w(x, %) - <p(x,y)] dxdy| + (% - 1)‘9[ v(x,y)o(x,y)dx dy

€ 1
< Sl + (5 - 1) W ol
Vi @) Vi ) @)

By letting € — 0 and k — oo, we conclude the first estimate. Here, we used the Sobolev embedding for
Wh2(Q* R?).
Now we prove the convergence of the gradient. First we note that the gradients are uniformly bounded,
namely it can be verified that
IVViliza@) < ClIVVIIL2 (0

for some positive uniform constant C > 0. Thus, we have

JVvk-V(pdx—JVv-V(pdx

JVvk-V(pdx—JVv-V(pdx
Q+

R? R? Q;
= 1 J Oxv(x y)ax(p<x l)dxdy+ J O0yv(x,y)0 (p<x l)dxdy
Ak bl bl Ak y bl y bl /1]( ’
o+ Q*

and, from similar estimates as before, together with the uniform boundedness of the gradients, we can conclude
that vk — vin WbH2(Q*; R?), as k — oo.

Step 6. It remains to prove the convergence of the energy. Set uy = uxH* L_Tx. We have

F(Qu, Vi, i) — (R, v, 1) = J W(E(vi) - Eo(y)) dx — J W(E(V) - Eo(y)) dx + J Y(uy) dH! - J'zﬁ(u) dH. (7.47)
Qk Q Tk T

Step 6.1. We now prove the convergence of the bulk term in (7.47). We have

j W(EWx) - Eo(y)) dx - j W(EW) - Eo(y)) dx

Qi Q
= J W(E(V(X; ka)) - Eo(y)) dx — J W(E(V) _ EO(y)) dx
Qx 0
1 z
= “ W(E(v(x, z)) - Eo(ﬁ» dxdz - SJ; W(E(v) - Eo(z)) dx dz
Qi

1
N <ﬁ - 1) j W(E(v) - Eo(2)) dx dz. (7.48)
Q
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By noticing that Ey(z) = Eo(%), fix ¢’ > 0 such that, if k is large enough, |Qx \ Q| < €’. In the first two terms on
the right-hand side of (7.48), we have that, for every k, Q ¢ Q, and then we can proceed as in (7.15), and we get

l [J W(E(v(x, z)) — Eo(z))dx dz — J W(E(v) — Eo(2)) dx dz] = l J W(E(v) — Eo(y)) dx dz.
Yk Yk

Qi Q Qr\Q

From here we conclude by Dominated Convergence Theorem. Notice that the second term on the right-hand
side of (7.48) is going to zero, since yx — 1 as k — co.
From here we conclude the convergence of the bulk term in (7.47).

Step 6.2. We now consider the surface terms in (7.47). Using the index sets defined in (7.34), we get

j ¢<§>d%?+z j w(%)ax?

TR0, xi*1)xR] 1B 1[0, xi*1)xR]

[pwoast = ¥

Ty icA

By using the fact that ¢ is continuous (as we are in the convexity assumption stated in Step 1) and from the fact
that, for every i € B,

%0 ! £ xt1 =7 S0\ g1 i i+l
”/)(E)ﬂ-f (T n [(x', x )xR])-rtkw(tk>:J{ (T N [(xE, X1 x R)),
we get
i ' w i i s -
,}LIQOJ W (ui) d! :giﬂ[gaw(E)%l(rn[(X’x 1)X]R])+i623”kw<t_2>%l(rm[(X’X 1) % R))

= Y PHHT N[ X xR]) + Y rp(s0)H (T 0 [, X x R])

icA ieB

= Y p)IT [ X xR]) + Y p@)HT 0 [, x ) x R))
icA ieB

:J&me?
T

This concludes the estimate for the surface term in (7.47).

Step 7. By putting all the steps together, we then conclude that
lim F(Qx, v, uk) = G(Q, v, ).
k—00

This completes the proof of Theorem 7.1. O

References

[1] L.Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Oxford
University, New York, 2000.

[2] M. Bonacini, Epitaxially strained elastic films: The case of anisotropic surface energies, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1,
167-189.

[31 M. Bonacini, Stability of equilibrium configurations for elastic films in two and three dimensions, Adv. Calc. Var. 8 (2015), no. 2,
117-153.

[4] E.Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films, SIAM J. Appl.
Math. 62 (2002), no. 4,1093-1121.

[5] G.Bouchitté, Représentation intégrale de fonctionnelles convexes sur un espace de mesures. II. Cas de I'épi-convergence, Ann. Univ.
Ferrara Sez. VII (N. S.) 33 (1987), 113-156.

[6] G.Bouchitté and G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal. 15
(1990), 679-692.

[7] A.Braides, A. Chambolle and M. Solci, A relaxation result for energies defined on pairs set-function and applications, ESAIM Control
Optim. Calc. Var. 13 (2007), no. 4, 717-734.



554 —— R Cristoferi and G. Fissore, Graph epitaxy with adatoms DE GRUYTER

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]
[24]

G. Buttazzo and L. Freddi, Functionals defined on measures and applications to non-equi-uniformly elliptic problems, Ann. Mat. Pura
Appl. (4) 159 (1991), 133-149.

M. Caroccia and R. Cristoferi, On the gamma convergence of functionals defined over pairs of measures and energy-measures,

J. Nonlinear Sci. 30 (2020), no. 4, 1723-1769.

M. Caroccia, R. Cristoferi and L. Dietrich, Equilibria configurations for epitaxial crystal growth with adatoms, Arch. Ration. Mech.
Anal. 230 (2018), no. 3, 785-838.

A. Chambolle and M. Solci, Interaction of a bulk and a surface energy with a geometrical constraint, SIAM J. Math. Anal. 39 (2007),
no. 1,77-102.

V. Crismale and M. Friedrich, Equilibrium configurations for epitaxially strained films and material voids in three-dimensional linear
elasticity, Arch. Ration. Mech. Anal. 237 (2020), no. 2, 1041-1098.

G. Dal Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1943-1997.

H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

L. Fonseca, N. Fusco, G. Leoni and M. Morini, Equilibrium configurations of epitaxially strained crystalline films: Existence and
regularity results, Arch. Ration. Mech. Anal. 186 (2007), no. 3, 477-537.

1. Fonseca, N. Fusco, G. Leoni and M. Morini, Motion of elastic thin films by anisotropic surface diffusion with curvature
regularization, Arch. Ration. Mech. Anal. 205 (2012), no. 2, 425-466.

L. Fonseca, N. Fusco, G. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl. (9) 111
(2018), 126-160.

L. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: LP Spaces, Springer Monogr. Math., Springer, New York, 2007.
E. Fried and M. E. Gurtin, A unified treatment of evolving interfaces accounting for small deformations and atomic transport with
emphasis on grain-boundaries and epitaxy, Adv. Appl. Mech. 40 (2004), 1-177.

N. Fusco and M. Morini, Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and
qualitative properties of solutions, Arch. Ration. Mech. Anal. 203 (2012), no. 1, 247-327.

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80, Birkhduser, Basel, 1984.

M. A. Grinfeld, The stress driven instability in elastic crystals: Mathematical models and physical manifestations, J. Nonlinear Sci. 3
(1993), no. 1, 35-83.

G. Leoni, A First Course in Fractional Sobolev Spaces, Grad. Stud. Math. 229, American Mathematical Society, Providence, 2023.

B. Spencer and J. Tersoff, Equilibrium shapes and properties of epitaxially strained islands, Phys. Rev. Lett. 79 (1997), 4858-4861.



	Two-dimensional graph model for epitaxial crystal growth with adatoms
	1 Introduction
	1.1 The model
	1.2 The main result

	2 Strategy of the proof
	3 Preliminaries
	3.1 Function of (pointwise) bounded variation in one dimension
	3.2 Hausdorff convergence
	3.3 On the surface energy

	4 Setting
	5 Technical results
	6 Liminf inequality
	7 Limsup inequality


