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Abstract: We consider a model to describe stable configurations in epitaxial growth of crystals in the two-
dimensional case, and in the regime of linearized elasticity. The novelty is that the model also takes into consid-
eration the adatom density on the surface of the film. These are behind the main mechanisms of crystal growth
and formation of islands (or quantum dots). The main result of the paper is the integral representation of the
relaxed energy.
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1 Introduction

The ability to grow thin films of crystal over a substrate is a technology that has applications in several areas,
from surface coating, to lithography. Practitioners developed several techniques to grow crystals over a sub-
strate. Vapor deposition techniques are among themost important and implemented: the substrate is immersed
in a vapor, and mass transfer from the latter to the former is responsible for the growth of the crystal. In order
for the crystal to growth, two conditions need to be satisfied: the vapor has to be saturated, and the substrate is
kept at a significantly lower temperature than the vapor. The former ensures attachment of vapor atoms on the
substrate, while the latter quick thermalization of deposited atoms. In particular, this implies that the entropic
free energy is reduced after attachment.

In order to grow a crystal (namely, an ordered structure), attached atoms, called adatoms, need to have
sufficient energy to move from the landing location to a position of equilibrium. This depends on the type of
materials used in the vapor and for the substrate. Surface diffusion of adatoms is therefore themechanism used
by thin films to growth as a crystal.

If the growth process is made in such a way that the first layers of the film arrange in the same lattice
structure of the substrate, the growth is called epitaxial. Of course, the atoms of the deposited material are
stretched or compressed, since they are not in their (sometimes, stress free) natural configuration.

The dynamic of the crystal growth process is extremely complicated, and it is influenced bymany factors. In
particular, the ratio between the tendency of the adatoms to stick to the substrate and their tendency to diffuse.
Threemodes of growth are defined based on this ratio: the Frank–van der Merwe growthmode, where diffusion
is stronger and thus the crystal growth layer by layer, theVolmer–Weber growthmode, where diffusion isweaker,
and therefore adatoms tend to form islands on the substrate, and an intermediate one, the Stranski–Krastanov
growthmode, where the first monolayers of the film behave like in a Frank–van derMerwe growthmode, while
after a certain threshold, it starts forming islands. Here we consider the latter case.
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In the epitaxial Stranski–Krastanov growthmode, it is observed that, after a fewmonolayer of material are
deposited, the film accumulates too much elastic energy that it is nomore energetically convenient for atoms of
the film to stick to the crystalline structure of the substrate. Thus, relaxation processes are employed in order
to reduce the total energy of the system. The most important ones are corrugation of the surface, and creation
of defects. These are known in the literature as stress driven rearrangement instabilities (see [22]). The former
is responsible for non-flat surfaces as well as for the appearance of islands (agglomerates of atoms, also called
quantumdots) on the surface.With the latter, instead, thefilm introduces singularities in its crystalline structure,
such as cracks and dislocations.

It is extremely important to be able to control this complex process in such a way to reduce impurities as
much as possible, or at least to be able to quantify them.

The physical literature on crystal growth is extremely vast. Here we limit ourselves to mention the pioneer-
ing work [24] by Spencer and Tersoff.

From the mathematical point of view, several investigation have been carried out, focusing on different
aspects of the growth process. There are both discrete models, and continuum ones. Here we focus on these
latter. In particular, the work [4] by Bonnetier and Chambolle laid the foundations for rigorous mathematical
investigations of stable equilibrium configurations of epitaxially strained elastic thin films in the linear elastic
regime. The authors considered the two-dimensional case and proved an integral representation formula for
the relaxed energy with respect to the natural topology of the problem, as well as a phase field approximation.
In [15], Fonseca, Fusco, Leoni, and Morini proved a similar result by using an independent strategy, and also
investigated the regularity of configurations locally minimizing the energy.

Questions about the stability of the flat profile were investigate by Fusco and Morini in [20] for the case
of linear elasticity, and in [3] by Bonacini in the nonlinear regime. Moreover, in [2], Bonacini considered the
same question for the case where surface energy is anisotropic, showing, surprisingly, that the flat interface is
always stable.

It was not until 2019, with the work [12] by Crismale and Friedrich that the three-dimensional case was
considered. Indeed, despite the existence of investigations for similar functionals in higher dimension (see the
work [11] by Chambolle and Solci, and [7] by Braides, Chambolle, and Solci for the study of material void) were
available, all of them considered elastic energies depending on the full gradient of the displacement. On the
other hand, it is known that physically compatible models for elasticity must depend on the symmetrized gra-
dient. The reason for such a time gap between the two and the three-dimensional case was technical: it was not
clear how to get compactness of a sequence of configurations with uniformly bounded energy. This required
the introduction of a new functional space: GSBD, the space of Generalized Functions of Bounded Deformation,
designed in the work [13] by Dal Maso in 2014 specifically to address such an issue.

What all of the above continuummodels are neglecting is the role of adatoms in the creation of equilibrium
stable interfaces. The importance of considering their effect wasmade clear by Specer and Tersoff in [24], where
the authors highlighted that considering the effect of adatoms, and in particular of surface segregation of several
species of depositedmaterial, will change the equilibrium configurations predicted by themodel, and hopefully
provide a more accurate description of those observed in experiments.

This was made even clearer in the seminal paper [19] by Fried and Gurtin. The manuscript unified several
ad hoc investigations that focused on specific aspects on crystal growth or used specific assumptions to derive
the model. In particular, it was noted that considering adatoms will, on the one hand, add a new variable to
the problem, while, on the other hand, will make the evolution equations parabolic. Note that this is a huge
mathematical advantage, since in [16] and in [17], the authors had to add an extra term to the energy (that
nevertheless has some physical interpretation) to regularize the non-parabolic evolution equations obtained
from the model that does not take into consideration adatoms.

Following this direction of investigation, in [10], the first author, togetherwith Caroccia andDietrich, started
the study of a variational characterization of the evolution equations derived by Fried and Gurtin. In that paper,
the authors considered a variational model describing the equilibrium shape of a crystal, where the elastic
energy is neglected, and the crystal can grow without the graph constraint. From the energy for regular config-
urations, a natural topology was identified, and a representation formula for the relaxed energy was obtained.
The result highlighted the interplay between oscillations of crystal surfaces and changes in adatom density in
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order to lower the total energy. The result obtained in that paper was different from previous investigations by
Bouchitté (see [5]), Bouchitté and Buttazzo (see [6]), and Buttazzo and Freddi (see [8]), due to the choice of the
topology.

In a subsequent paper (see [9]), a phase field model was considered in a more general setting, to pave the
way towards the analysis of the convergence of the gradient flows.

In this paper, we continue this line of research by considering the case where the material is deposited on
a substrate, its profile can be described by a function, and the elastic energy of the film is considered, as well
as the surface energy of adatoms. The goal is to obtain a representation formula for the relaxed energy in the
natural topology of the problem. In order to develop themain ideas needed for such an investigation, this paper
focus on the two-dimensional case. Themain contribution of the paper is to showhow themechanism identified
in [10] where oscillations of the profile interact with adatom concentration plays a role in the case where the
geometry of the configuration is constrained to be a graph. This might seem as an easier case than that treated
in [10], where the profile of the crystal was free to growth in any direction. Nevertheless, the graph constraint
poses several challenges that have to be tackled with the utmost care, in order to be properly overcome. Indeed,
we prove that the relaxed energy differs from that of [10] exactly on vertical cracks of the deposited layer. In
particular, we introduce a strategy to deal with oscillations and adatom concentration on vertical cracks, whose
robustness will be tested in a forthcoming paper where we will investigate a phase-field approximation of the
model and another where we will treat the three-dimensional case.

Forthcoming papers will also consider the dynamics of the model, and the situation when multiple species
of materials are deposited at the same time.

1.1 The model

In this section we introduce the model that we will study. We consider the two-dimensional case. This corre-
sponds to three-dimensional configurations that are constant in one direction. We work within the continuum
theory of epitaxial growth. The main assumptions of the model are the following:
(i) The profile of the configurations of the thin film can be described as the graph of a function;
(ii) We neglect surface stress;
(iii) The exchange of atoms between the substrate and the deposited film is negligible;
(iv) The atoms of the substrate do not change position.
The free energy of a configuration is the sum of a bulk energy and a surface energy. The former is the elastic
energy due to rearrangement of the atoms of the deposited film from a stress free configuration (atoms sitting
in their natural lattice position) to another disposition. The latter, instead, stems from the net work needed to
create an interface with a specific density of adatoms. We first prescribe the energy of regular configurations,
and will then obtain that of more irregular configurations by relaxing the former.

Wemodel the substrate as the set {(x, y) ∈ ℝ2 : y ≤ 0}.We consider a portion of the deposited film in a region
(a, b) × {y ≥ 0}. To describe the free profile of the film, let h : (a, b) → ℝ be a non-negative Lipschitz function.
Consider its graph

Γh := {(x, h(x)) : x ∈ (a, b)}, (1.1)

and its sub-graph (see Figure 2 on the left)

Ωh := {(x, y) ∈ ℝ2 : x ∈ (a, b), y < h(x)}. (1.2)

The set Ωh ∩ {y ≥ 0} represents the deposited film. We first introduce the surface energy. The adatom density
will be described by a positive function u ∈ L1(H1 Γh). The surface energy corresponding to such an adatom
density distribution will be

∫
Γh

ψ(u(x)) dH1(x),

where with x we denote a point in ℝ2, and ψ : [0, +∞) → (0, +∞) is a Borel function such that

inf
s≥0

ψ(s) > 0. (1.3)
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Note that such a requirement has the physical interpretation that no matter what the adatom density is, there
is always an amount of energy needed to construct a profile.

We now discuss the elastic energy. For each macroscopic configuration Ωh , there are several arrangements
of atoms inside the thin film that produce that same profile. To each of these arrangements there is an elastic
energy associated to: this energy will depend on the displacement between the actual position of each atom and
its position in the natural crystal lattice This displacement will be described by a function v : Ωh → ℝ2, and we
assume it to be of class W1,2(Ωh;ℝ2). The natural crystal configuration of the crystalline substrate and that of
the deposited film are represented by a function E0 : ℝ → ℝ2×2, defined as

E0(y) :=
{
{
{

te1 ⊗ e1 if y ≥ 0,
0 if y < 0.

Here, t > 0 is a constant depending on the lattice of the substrate, and {e1 , e2} is the canonical basis of ℝ2. The
crystalline structure of the film and the substrate might be slightly different, but we assume their difference
to be very small, namely |t| ≪ 1. This assumption allows us to work in the framework of linearized elastic-
ity. In particular, the relevant object needed to compute the elastic energy is the symmetric gradient of the
displacement

E(v) := 12 (∇v + ∇
⊤v),

where ∇⊤v is the transpose of the matrix ∇v. Note that E(v) is zero if ∇v is zero for any anti-symmetric matrix
(for instance, a rotation matrix).

Finally, we assume that the substrate and the film share similar elastic properties, so they are described
by the same positive definite elasticity tensor ℂ. The elastic energy density will be given by a function
W : ℝ2×2 → ℝ defined as

W(A) := 12A ⋅ ℂ[A] =
1
2

2
∑

i,j,m,n=1
cijnmaijanm

for a 2 × 2 matrix A = (aij)2i,j=1. The elastic energy will then be

∫
Ωh

W(E(v(x)) − E0(y)) dx.

Therefore, the energy of a regular configuration that we consider is given by

F(Ωh , v, u) := ∫
Ωh

W(E(v(x)) − E0(y)) dx + ∫
Γh

ψ(u(x)) dH1(x), (1.4)

where h : (a, b) → ℝ is a non-negative Lipschitz function, u ∈ L1(H1 Γh), and v ∈ W1,2(Ωh;ℝ2). In the follow-
ing, we will refer to such triples as regular admissible configurations, and we will denote it by the classAr (see
Definition 4.1).

1.2 The main result

In order to study the relaxation of the energyF, we need to first discusswhat topology to use. Thiswill determine
the types of limiting configurations to expect, and how these effect the value of the effective energy. Here we
justify the definition of the topology we use, that will be stated precisely in Definition 4.9.

We first consider the notion of convergence for the profiles of the film. This will be the same used in [15].
Here we give the heuristics for such a choice. There are several mechanisms that a film can use to release elastic
energy. Our model allows for three of these: rearrangement of atoms inside the film, corrugation of the surface,
and creation of cracks. The topology on the profile will be concerned only with the last two. How can a crack
form? There are twomechanisms: as a fracture inside the film, or when the free profile becomes vertical, like it
is depicted in Figure 1 on the top. We choose to model situations where only the latter is allowed. Note that this
forces cracks to be vertical segments touching the free profile. What we want to avoid are configurations where
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Figure 1: Two ways that a sequence of graphs can close up: on the top by giving rise to a crack inside Ωh , while on the bottom to a crack
outside Ωh . We want a topology that sees the crack in the former case, but not in the latter.

cracks happen outside of the film (Figure 1 on the bottom). Thus, we need to differentiate the two situations.
The right way to do it is by considering the Hausdorff convergence of the complement of the sub-graphs (the
so-called Hausdorff-complement topology). We note that, in the latter case, the sets ℝ2 \ Ωhk will converge to
the limiting configurationℝ2 \ Ωh where there is no vertical cut (see Figure 1 on the bottom). This topology also
accommodates for corrugation of the profile.

We now consider the convergence of the displacements. Since the energy has quadratic growth in the sym-
metric gradient of the displacement, the natural topology will be the weakW1,2 topology. In particular, in order
to take care of the fact that the displacements are defined in different domains (the subgraphs of the profiles),
we take advantage of the fact that the complement of these latter are converging in the Hausdorff sense. Thus,
local convergence in the final domain will do the job.

Finally, we discuss the topology for the adatom density. In [10] the idea was to see the adatom density as
a Radon measure μ concentrated on the graph describing the profile. Namely, for each u ∈ L1(Γh), we consider

μ := uH1 Γh .

This identification allows not only to consider concentration of measures, but it turns out to be the right way
to model adatoms in order to exploit the interplay between oscillations of the profile and change in adatom
density. Thus, for the adatom density, the weak∗ convergence of measures will be used.

The question we now have to address is what are the possible limiting objects that we need to consider. This
is a discussion of compactness of sequences (Ωhk , vk , μk)k with uniformly bounded energy, namely such that

sup
k∈ℕ

F(Ωhk , vk , μk) < +∞.

We start by investigating the convergence of graphs, and the others will follow. Thanks to the lower bound (1.3)
on the energy density ψ, the energy F is lower bounded by the length of the graph of hk . Indeed, there exists
c > 0 such that

sup
k∈ℕ

cH1(Γk) ≤ sup
k∈ℕ
∫
Γhk

ψ(uk) dH1 < +∞

which in turn is a lower bound on the total variation of hk :

sup
k∈ℕ

H1(Γhk ) = sup
k∈ℕ

b

∫
a

√1 + |h󸀠k|2 dx ≥
b

∫
a

|h󸀠k| dx.

Thus, if a mass constraint on the area of Ωk , or a Dirichlet boundary condition at a and b are imposed, we get
that the limiting configuration will be the sub-graph of a function h : (a, b) → [0, +∞) of bounded variation.
In particular, since we are in the one-dimensional case, such a function will have countably many jumps and
countably many cuts.
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Figure 2: A regular configuration on the left, and a possible limiting configuration on the right: cracks and jumps can appear.

Now, we consider the convergence of the displacement. Due to the choice of the topology, the limiting
displacementwill be a function v ∈ W1,2(Ωh;ℝ2). Note that one of the technical advantages ofworking in dimen-
sion two is that we can avoid having to rely on functions of bounded deformation, and use instead Sobolev
functions and the free profile to describe cracks.

Finally, let us discuss the adatom densities. Each of them is seen as the Radon measure ukH1 Γhk . By
imposing a mass constraint on the total amount of adatoms, we have that their total variation is bounded,
and thus they converge (up to a subsequence), to a Radon measure μ. Noting that each μk is supported on
the graph Γhk , and these latter also converge in the Hausdorff sense to the graph of the limiting profile h, the
limiting measure μ will be supported on Γh .

Therefore, the classA of limiting admissible configurations we will need to consider is given by the triples
(Ωh , v, μ), where h ∈ BV(a, b), v ∈ W1,2(Ωh;ℝ2), and μ is a Radon measure supported on Γh . Moreover, we
denote by Γch the cuts of h, and by Γ̃h the rest of the extended graph of h, namely regular part and jumps (see
Figure 2 on the right, and Definition 4.7 for the precise definition).

Thus, in light of the above discussion, given a sequence (Ωhk , vk , μk)k ⊂ Ar , we will say that (Ωhk , vk , μk) →
(Ωh , v, μ) ∈ A if
(i) ℝ2 \ Ωhk

H
→ ℝ2 \ Ωh in the Hausdorff convergence of sets;

(ii) vk ⇀ v weakly inW1,2
loc (Ωh;ℝ

2);
(iii) μk

∗
⇀ μ weakly∗ in the sense of measures,

as k →∞.
The twomain results of this paper provide representations of the relaxation of the functionalFwhen amass

constraint is in force, and when it is not.

Theorem 1.1. Let (Ωh , v, μ) ∈ A, and write μ = uH1 Γh + μs Γh , where μs is the singular part of μ with
respect toH1 Γh . Then the relaxation of the functional F defined in (1.4), with respect to the above topology, is
given by

F(Ωh , v, μ) = ∫
Ωh

W(E(v(x)) − E0(y)) dx + ∫
Γ̃h

ψ̃(u(x)) dH1(x) + ∫
Γch

ψc(u(x)) dH1(x) + θμs(Γh),

where ψ̃ is the convex sub-additive envelope of ψ (see Definition 3.11), the function ψc is defined as

ψc(s) := min{ψ̃(r) + ψ̃(t) : s = r + t},

for all s ∈ [0, +∞), and

θ := lim
t→+∞

ψ̃(t)
t
= lim
t→+∞

ψc(t)
t

,

is the common recession coefficient of ψ̃ and of ψc .

Theorem 1.2. Fix M,m > 0. Denote byAr(m,M) the triples (Ωh , v, μ) ∈ Ar such that

∫
Γh

u(x) dH1(x) = m, L2 (Ωh ∩ {y ≥ 0}) = M,
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and byA(m,M) the triples (Ωh , v, μ) ∈ A such that

μ(Γh) = m, L2 (Ωh ∩ {y ≥ 0}) = M.

Define

H(Ωh , v, μ) :=
{
{
{

F(Ωh , v, μ) if (Ωh , v, μ) ∈ Ar(m,M),
+∞ else.

Then the relaxation ofH in the above topology is given by

H(Ωh , v, μ) =
{
{
{

G(Ωh , v, μ) if (Ωh , v, μ) ∈ A(m,M),
+∞ else,

where G(Ωh , v, μ) denotes the right-hand side of the representation formula of Theorem 1.1. Namely, the mass
constraint is maintained by the relaxation procedure.

Remark 1.3. In general, it is not possible to say more on the singular part of the measure.

Remark 1.4. The more general case, where the adatom density is vector valued (corresponding to different
materials deposited on the substrate) and the surface energy is anisotropic are currently under investigation.

2 Strategy of the proof

Now, we would like to comment on the strategy to prove the main results. First of all, in Theorem 6.1 we will
prove the liminf inequality for the case of no mass constraint, and in Theorem 7.1 the limsup inequality for the
case with the mass constraint. These theorems will give both Theorem 1.1, and Theorem 1.2.

Similarly for functional considered in [15], the bulk and the surface terms of the energy do not interact
in the relaxation process. Since the former is quite standard, we will comment on how to deal with the latter.
In this lies the novelty of the paper. Our strategy relies on ideas inspired by results obtained in [10]. The main
difference with the case treated in that paper is the graph constraint. This reflects on the fact that oscillations of
the thin film profile must be in the vertical direction in order to preserve such a constraint, and that cracks can
be created only in a specific way. The former term only gives technical challenges, while the latter is responsible
for the different energy densities ψ̃ and ψc . Despite this, note that the recession coefficients for the singular part
of the measure in the two parts of the extended graph (the cuts, and the rest of the graph) agree.

Let us discuss the strategy for the liminf inequality for the surface terms. We avoid mentioning the fine
details and focus instead on the main ideas. Let (hk)k∈ℕ be a sequence of Lipschitz functions such thatℝ2 \ Ωhk
converge toℝ2 \ Ωh , for some function h of bounded variation. This implies that Ωhk converges to Ωh in L1 (see
Lemma 3.8). Let (uk)k∈ℕ the be adatom densities defined on each Γhk , and let μ = uH1 Γh + μs be the limiting
measure. We need to prove that

lim inf
k→∞
∫
Γhk

ψ(uk(x)) dH1(x) ≥ ∫
Γ̃h

ψ̃(u(x)) dH1(x) + ∫
Γch

ψc(u(x)) dH1(x) + θμs(Γh). (2.1)

The idea is to separate the contribution that the energy on the left-hand side has on a neighborhood of each
cut of h, and on the other part of the graph of h. Despite there might be a countable number of cuts, it is just
a technicality to show thatwe can reduce to finitelymany of them (see the beginning of the proof of Theorem6.1).
Thus, let us assume that the final configuration described by h has finitely many cuts. Since the energy is local,
for the sake of simplicity, we will consider the case where there is one single cut. In case the measure μ has
a Dirac delta at the point P (see Figure 3), we want to count its contribution to the energy as part of the energy of
the regular part of Γ̃h . For this reason, we take ε > 0 and consider a rectangle Rε around the cut as in Figure 3.

Now, we claim that

lim inf
k→∞

∫
Γhk \Rε

ψ(uk(x)) dH1(x) ≥ ∫
Γ̃h\Rε

ψ̃(u(x)) dH1(x) + θμs(Γ̃h \ Rε), (2.2)
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Figure 3: In order to get the liminf inequality, we separate the effects on a neighborhood Rε of the cut, and outside of it.

and that
lim inf
k→∞

∫
Γhk∩Rε

ψ(uk(x)) dH1(x) ≥ ∫
Γch\Rε

ψc(u(x)) dH1(x) + θμs(Γch ∩ Rε). (2.3)

Given (2.2) and (2.3), we obtain the desired liminf inequality (2.1) by sending ε to zero.
To obtain both (2.2) and (2.3), we rely on (a localized version of) the lower semicontinuity result proved in

[10, Theorem 5] (see Theorem 3.18). In the first case, the idea is to view the graph of each hk , and the regular
and the jump part of extended graph of h as (H1-equivalent to) the reduced boundaries of the corresponding
epigraphs.

For (2.3), we instead have to consider the contributions of the surface energy from both sides of the crack.
Therefore, we reason as follows: the rectangle Rε in Figure 3 is split by the vertical line passing through the
crack in two parts, one on the left and one on the right. Call them Rℓε , and Rrε , respectively. Then we consider the
sets Ωhk ∩ Rℓε and Ωhk ∩ Rrε . Sinceℝ2 \ Ωhk → ℝ2 \ Ωh in the Hausdorff topology, they converge in L1 to Rℓε , and
Rrε , respectively. Moreover, it holds

ukH1 (Γhk ∩ Rℓε)
∗
⇀ μℓ = uℓ (Γch ∩ Rε) + μ

ℓ
s

and
ukH1 (Γhk ∩ Rrε)

∗
⇀ μr = ur (Γch ∩ Rε) + μ

r
s .

Thus, thanks to the lower semicontinuity result (see Theorem 3.18), we get that

lim inf
k→∞

∫

Γhk∩R
ℓ
ε

ψ(uk(x)) dH1(x) ≥ ∫
Γch\Rε

ψ̃(uℓ(x)) dH1(x) + θμℓs(Γch ∩ Rε)

and
lim inf
k→∞

∫
Γhk∩R

r
ε

ψ(uk(x)) dH1(x) ≥ ∫
Γch\Rε

ψ̃(ur(x)) dH1(x) + θμrs(Γch ∩ Rε).

We then show that uℓ + ur = u, and μℓs + μrs = μs . Thus, by definition of ψc , we obtain

ψc(u(x)) ≤ ψ̃(ur(x)) + ψ̃(uℓ(x)).

This gives (2.3), and, in turn, the desired liminf inequality for the surface energy.
We now discuss the strategy for the limsup inequality for the surface energy. This is more involved, and

requires several steps. The idea is to reduce to the situation where the limiting profile h is Lipschitz, and the
adatommeasure μ is a piecewise constant density (more precisely, it is possible to find a square grid where the
density has the same value on each of the parts of the graph inside each of these squares). In such a case, in
Proposition 7.8 we construct a sequence (Ωhk , vk , μk)k that satisfies the mass constraints such that

lim sup
k→∞
∫

Γ̃hk

ψ(uk(x)) dH1(x) ≤ ∫
Γ̃h

ψ̃(u(x)) dH1(x). (2.4)
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Without loss of generality (see Lemma 3.16), we can assume ψ to be convex. Then ψ and ψ̃ agree on [0, s0), for
some s0 ∈ (0, +∞]. In particular, if s0 < +∞ the function ψ̃ is linear on (s0 , +∞) (see Lemma 3.16)). Thus, in
squares where u ≤ s0, we define hk as h and uk as u. We just have to care about those squares Q where u > s0.
The energy in such a square is ψ̃(u)H1(Γh ∩ Q). The idea is to write

ψ̃(u)H1(Γh ∩ Q) = ψ̃(rs0)H1(Γh ∩ Q) = rψ̃(s0)H1(Γh ∩ Q) = ψ(s0) [rH1(Γh ∩ Q)]

for some r > 1, where in the last step we used the fact that ψ(s0) = ψ̃(s0). Then, we want to obtain the quantity
rH1(Γh ∩ Q) as the length of an oscillating profile hk in Q, and define uk as s0. This ensures the validity of (2.4).
Such a construction is done in Proposition 5.5, where we prove an extension of the so-called wriggling lemma
(see [10, Lemma 4]). Namely, given a Lipschitz function f : (a, b) → [0, +∞), and a number r > 1, there exists a
sequence of graphs fn : (a, b) → [0, +∞) withH1 Γfn

∗
⇀ rH1 Γf as n →∞, such that

H1(Γfn ) = rH1(Γf ),

and fn(a) = f(a), fn(b) = f(b), for each n ∈ ℕ, and satisfying other technical properties (see Proposition 5.5 for
the precise statement). What the above inequality is using is a quantitative lack of lower semicontinuity of the
perimeter. The differencewith the result in [10, Lemma4] is that only vertical oscillations are allowed.Moreover,
we also fill in details that were not fully explained in that paper. Note that in our case, there is an additional
technical difficulty to be faced: ensuring that both mass constraints are satisfied by each (Ωhk , vk , μk) will be
achieved by carefully modifying both the profile and the density. Note that modifications of the graphs have to
be done in such a way that the profile is always non-negative.

In order to reduce from a general profile (Ωh , v, μ) ∈ A(m,M) to the above case, we argue as follows. First
of all, by using averages, we prove that it suffices to consider the situation where the adatom measure μ is
a piecewise constant function (see Proposition 7.6). Then we need to approximate a general profile h ∈ BV(a, b)
with a sequence of Lipschitz profiles (hk)k∈ℕ, and corresponding piecewise constant adatom densities (uk)k∈ℕ,
in such a way that

lim
k→∞
∫

Γ̃hk

ψ̃(uk(x)) dH1(x) + ∫
Γchk

ψc(uk(x)) dH1(x) = ∫
Γ̃h

ψ̃(u(x)) dH1(x) + ∫
Γch

ψc(u(x)) dH1(x). (2.5)

This is done in Proposition 7.7. In order to obtain the approximation of the profiles, we employ an idea by
Bonnettier and Chambolle in [4, Section 5.2], later adapted to the case of graphs in [15, Lemma 2.7]: to use the
Moreau–Yosida transform to define a Lipschitz approximation of h to the left and to the right of each cut (again,
we are reducing to the case of finitely many of them). To also approximate the cracks, we use a linear interpola-
tion. As for defining the adatom density on the graph of hk , we exploit the fact that the Hausdorff convergence
of ℝ2 \ Ωhk to ℝ2 \ Ωh implies that the graphs (hk)k∈ℕ are converging in the Hausdorff topology to h. In par-
ticular, for k large enough, the graphs of the hk ’s will be inside the same squares where the graph of h is. This
allows to define uk on the part of the graph of hk inside a square, as the value that u has inside that square.
Then the convergence of the energy required in (2.5) is ensured since the length of the graph of hk inside each
cube converges to the length of h inside the same cube.

3 Preliminaries

We here introduce the main definition and basic results that will be used throughout the paper.

3.1 Function of (pointwise) bounded variation in one dimension

We start with functions of (pointwise) bounded variation in one dimension. A comprehensive treatment of this
topic can be found in the book [23] by Leoni.
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Definition 3.1. Let h : (a, b) → ℝ. We say that h is a function of pointwise bounded variation in (a, b) if
Var(h) < +∞, where

Var(h) := sup{
k
∑
i=1
|h(xi) − h(xi−1)|},

where the supremum is taken over all finite partitions of (a, b). In this case, we write h ∈ BVP(a, b).

The main properties of functions of pointwise bounded variations that will be used in the paper are collected
in the following result (see [23, Theorem 2.17, Theorem 2.36]).

Theorem 3.2. Let h ∈ BVP(a, b). Then the limits

h(x−) := lim
y→x− h(y), h(x+) := lim

y→x+ h(y)
exist for all x ∈ (a, b). In particular, if we define the functions

h−(x) := min{h(x+), h(x−)}, h+(x) := max{h(x+), h(x−)},

we have that there are at most countably many points x ∈ (a, b) for which h−(x), h+(x) and h(x) do not agree.
Finally, h admits a lower semicontinuous representative.

We now connect functions of pointwise bounded variation with those of bounded variation.

Definition 3.3. Let u ∈ L1(a, b). We say that u has bounded variation in (a, b) if there exists a Radon measure μ
such that

b

∫
a

uφ󸀠 dx = − ∫
(a,b)

φ dμ

for all φ ∈ C1c(a, b). In this case, we write u ∈ BV(a, b), and we denote the measure μ by Du.

The relation between functions of pointwise bounded variation and functions of bounded variation is given by
the following result (see [23, Theorem 7.3]).

Theorem 3.4. Let u ∈ BV(a, b). Then there exists a right-continuous function h ∈ BVP(a, b) with u(x) = h(x) for
a.e. x ∈ (a, b) such that Var(h) = |Du|(a, b).

Finally, we recall that the subgraph of a function of bounded variation is a set of finite perimeter (see [21, Theo-
rem 14.6]), and that its reduced boundary coincides with the non-cut part of the extended graph (see [14, Theo-
rem 4.5.9 (3)].

Lemma 3.5. Let h ∈ BV(a, b). Then the epigraph Ωh has finite perimeter in (a, b) × ℝ, and

H1(Γ̃h Δ ∂∗Ωh) = 0,

where ∂∗Ωh is the reduced boundary of Ωh .

3.2 Hausdorff convergence

We now introduce the Hausdorff metric.

Definition 3.6. Let E, F ⊂ ℝN . We define

dH(E, F) := inf{r > 0 : E ⊂ Fr , F ⊂ Er},

where, for A ⊂ ℝN and r > 0, we set Ar := {x + y : x ∈ A, y ∈ Br(0)}. Moreover, we say that a sequence of sets
(Ek)k with Ek ⊂ ℝN Hausdorff converges to a set E ⊂ ℝN , and we write Ek

H
→ E if dH(Ek , E) → 0 as k →∞.

In order for the Hausdorff distance to actually be a distance, we need to work with compact sets. This will also
give compactness of the metric space. This latter fact is known as Blaschke Theorem (see [1, Theorem 6.1]).
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Theorem 3.7 (Blaschke Theorem). The family of compact sets of ℝN endowed with the Hausdorff distance is
a compact metric space.

The convergence of epigraphs in the Hausdorff-complement topology we use implies their L1 convergence, as
it was shown in [15, Lemma 2.5].

Lemma 3.8. Let (hk)k ⊂ BV(a, b) be a sequence of lower semicontinuous functions such that

sup
k∈ℕ
|Dhk|(a, b) < +∞, ℝ2 \ Ωhk

H
→ ℝ2 \ A,

for some open set A ⊂ ℝ2. Then there exists h ∈ BV(a, b) such that A = Ωh , hk → h in L1. Moreover, Ωhk → Ωh
in L1.

We now relate the Hausdorff metric with the notion of Kuratowski convergence (see [1, Theorem 6.1]).

Proposition 3.9. Let (Ek)k , with Ek ⊂ ℝ2, and let E ⊂ ℝ2. Then Ek
H
→ E if and only if the followings hold:

(i) Any cluster point of a sequence (xk)k , with xk ∈ Ek , belongs to E.
(ii) For any x ∈ E, there exists (xk)k , with xk ∈ Ek , such that xk → x.
These equivalent properties are those defining the so-called Kuratowski convergence.

3.3 On the surface energy

Here we introduce all the notation and recall the result that are needed to treat the surface term.

Definition 3.10. A function ψ : [0, +∞) → ℝ is said to be sub-additive if

ψ(s + t) ≤ ψ(s) + ψ(t)

for any s, t ≥ 0.

Definition 3.11. Let ψ : [0, +∞) → ℝ. The convex sub-additive envelope of ψ is the function ψ̃ : [0, +∞) → ℝ
defined as

ψ̃(s) := sup{f(s) : f : [0, +∞) → ℝ is convex, sub-additive and f ≤ ψ}

for all s ∈ [0, +∞).

Remark 3.12. Note that ψ̃ is the greatest convex and sub-additive function that is no greater than ψ.

Definition 3.13. Let ψ : [0, +∞) → ℝ. We define the function ψc : [0, +∞) → ℝ as

ψc(s) := min{ψ̃(r) + ψ̃(t) : s = r + t}

for all s ∈ [0, +∞).

Remark 3.14. It is easy to see that the function ψc is well defined. Indeed, fix s ≥ 0. Since ψ is defined only for
non-negative real numbers, by compactness there exist a, b ≥ 0 with s = a + b such that

ψc(s) = ψ̃(a) + ψ̃(b).

Moreover, note that ψc(0) = 2ψ̃(0). This is consistent with the result obtained in [15], where they consider the
case ψ ≡ 1. We will prove in Lemma 5.1 that ψc is convex and sub-additive.

We recall two results on the surface energy. The first is a combination of [10, Lemma A.11] and [9, Lemma 2.2].

Definition 3.15. Let ψ : ℝ → ℝ. We define its convex envelope ψcvx : ℝ → ℝ as

ψcvx(x) := sup{ρ(x) : ρ is convex and ρ ≤ ψ}

for all x ∈ ℝ.
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Lemma 3.16. Let ψ : [0, +∞) → (0, +∞). Then

ψ̃ = ψ̃cvx .

Namely, in order to compute the convex sub-additive envelope of ψ, we can assume, without loss of generality, that
ψ is convex.

Moreover, assume ψ to be convex. Then there exists s0 ∈ (0, +∞] such that

ψ̃(s) =
{
{
{

ψ(s), s ≤ s0 ,
θs, s > s0 ,

for some θ > 0.

Remark 3.17. Note that, if ψ is differentiable at s0, then θ = ψ󸀠(s0). In particular, if s0 < +∞, it holds that ψ̃ is
linear in [s0 , +∞).

The following result proved in [10, Theorem 3] gives a lower bound for the surface energy.

Theorem 3.18. Let E ⊂ ℝN be a set of finite perimeter and μ be a Radon measure supported on ∂E. Let A ⊂ ℝN

be an open set with μ(∂A) = 0. Let (Ek)k∈ℕ ⊂ ℝN be a sequence of sets of finite perimeter, and let (uk)k∈ℕ, with
uk ∈ L1(∂Ek) be such that
(i) Ek ∩ A → E ∩ A in L1(ℝN);
(ii) ukH1 (∂∗Ek ∩ A)

∗
⇀ μ A.

Then
lim inf
k→∞

∫
∂∗Ek∩A ψ(uk) dH

1 ≥ ∫
∂∗E∩A ψ̃(u) dH

1 + θμs(A),

where ψ̃ is as in Definition 3.11.

4 Setting

In this section we give the rigorous definitions of the objects discussed in the introduction. We start with the set
of admissible configurations.

Definition 4.1. Let Ω ⊂ ℝ2, v ∈ W1,2(Ω;ℝ2), and let μ be a Radonmeasure inℝ2. We say that the triple (Ω, v, μ)
is an admissible regular configurations if there exists a Lipschitz function h : (a, b) → [0, +∞) such that

Ω = Ωh , μ = uH1 Γh

for some u ∈ L1(Γh). We denote byAr the family of all admissible regular configurations.

Definition 4.2. Fix m,M > 0. We denote byAr(m,M) the triples (Ω, v, μ) ∈ Ar such that

∫
Γh

u(x) dH1(x) = m, L2 (Ω ∩ {y ≥ 0}) = M.

We now define the energy for regular configurations.

Definition 4.3. Next, we introduce the energy for regular configurations. We define F : Ar → ℝ as

F(Ω, v, μ) := ∫
Ω

W(E(v(x)) − E0(y)) dx + ∫
Γ

ψ(u(x)) dH1(x)

for every (Ω, v, μ) ∈ Ar .

We now introduce the more general configurations that will be treated.

Definition 4.4. Let Ω ⊂ ℝ2, v ∈ W1,2(Ω;ℝ2), and μ be a Radon measure inℝ2. We say that the triple (Ω, v, μ) is
an admissible configurations if there exists a function h ∈ BV(a, b) with h ≥ 0 such that

Ω = Ωh , μ = uH1 Γh + μs Γh ,
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where μs is the singular part of μ with respect toH1 Γh . We denote byA the family of all admissible configu-
rations.

Definition 4.5. Fix m,M > 0. We denote byA(m,M) the triples (Ω, v, μ) ∈ A such that

μ(Γh) = m, L2 (Ω ∩ {y ≥ 0}) = M.

In order to define the relaxed energy, we need to introduce some notation.

Remark 4.6. In Theorem 3.2 we introduced the functions h±. Note that

h−(x) = lim inf
y→x

h(y), h+(x) = lim sup
y→x

h(y).

In particular, if x ∈ (a, b) is a point of continuity for h, then h−(x) = h+(x) = h(x).

Definition 4.7. Let h ∈ BV(a, b). We call

Γh := {(x, y) ∈ ℝ2 : x ∈ (a, b), h(x) ≤ y ≤ h+(x)}

the extended graph of h. Moreover, we define:
∙ the jump part of Γh as

Γjh := {(x, y) ∈ ℝ
2 : x ∈ (a, b), h−(x) ≤ y < h+(x)};

∙ the cut part of Γh as
Γch := {(x, y) ∈ ℝ

2 : x ∈ (a, b), h(x) ≤ y < h−(x)};

∙ the regular part of Γh as
Γrh := Γh \ (Γ

j
h ∪ Γ

c
h).

Moreover, we introduce the notation
Γ̃h := Γrh ∪ Γ

j
h .

Remark 4.8. Note that
Γh = Γ̃h ∪ Γch = Γ

r
h ∪ Γ

j
h ∪ Γ

c
h

holds for every h ∈ BV(a, b). Moreover, when there is no room for confusion, we will drop the suffix h in the
notation above.

We now define the notion of convergence that we are going to use to study our functionals.

Definition 4.9. We say that a sequence (Ωk , vk , μk)k ⊂ A converges to a configuration (Ω, v, μ) ∈ A if the fol-
lowing three conditions are satisfied:
(i) ℝ2 \ Ωk

H
→ ℝ2 \ Ω in the Hausdorff convergence of sets;

(ii) vk ⇀ v weakly inW1,2
loc (Ω;ℝ

2);
(iii) μk

∗
⇀ μ weakly∗ in the sense of measures,

as k →∞. We will write (Ωk , vk , μk) → (Ω, v, μ) to denote the above convergence.

Remark 4.10. Note that, if K ⊂ Ω is a compact set, then there exists k0 ∈ ℕ such that K ⊂ Ωk for all k ≥ k0.
Therefore, the convergence of the functions vk ’s is well defined.

Now we are going to define the setting for our relaxed functional.

Definition 4.11. Let ψ : [0, +∞) → ℝ. We define the recession coefficients of ψ̃ and ψc as

θ̃ := lim
s→+∞

ψ̃(s)
s

and θc := lim
s→+∞

ψc(s)
s

,

respectively, where ψ̃ is as in Definition 3.11 and ψc as in Definition 3.13.

In Lemma 5.2 we will prove that θ̃ = θc . The common value will be denoted by θ. We are now in a position to
introduce the candidate for the relaxed energy.
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Definition 4.12. Let G : A→ [0, +∞) be the functional defined as

G(Ω, v, μ) := ∫
Ω

W(E(v(x)) − E0(y)) dx + ∫
Γ̃

ψ̃(u(x)) dH1(x) + ∫
Γc
ψc(u(x)) dH1(x) + θμs(Γ),

where θ is the common recession coefficient of ψ̃ and ψc .

5 Technical results

In this sectionwe collect themain technical results thatwill be needed in the proof of the integral representation
of the relaxation.

Lemma 5.1. Let ψ : [0, +∞) → ℝ. Then the function ψc (see Definition 3.13) is convex and sub-additive.

Proof. We divide the proof into two steps.

Step 1: We prove that ψc is sub-additive. Fix z ≥ 0. Then, by the definition of ψc(z), there exist x, y ≥ 0 with
z = x + y such that

ψc(z) = ψ̃(x) + ψ̃(y).

Thus,
ψc(z) = ψ̃(x) + ψ̃(y) ≥ ψ̃(x + y) = ψ̃(z),

where last inequality follows from the sub-additivity of ψ̃. Moreover,

ψc(z + w) ≤ ψ̃(z) + ψ̃(w) ≤ ψc(z) + ψc(w)

for every z, w ≥ 0.

Step 2: We prove that ψc is convex. Let z, w ≥ 0 and λ ∈ [0, 1]. By definition of ψc(z), and of ψc(w), there exist
z1 , z2 , w1 , w2 ≥ 0 with z = z1 + z2 and w = w1 + w2 such that

ψc(z) = ψ̃(z1) + ψ̃(z2), ψc(w) = ψ̃(w1) + ψ̃(w2).

Note that

λz + (1 − λ)w = λ(z1 + z2) + (1 − λ)(w1 + w2)

= (λz1 + (1 − λ)w1) + (λz2 + (1 − λ)w2).

Thus, we get that

ψc(λz + (1 − λ)z) ≤ ψ̃(λz1 + (1 − λ)w1) + ψ̃(λz2 + (1 − λ)w2)

≤ λψ̃(z1) + (1 − λ)ψ̃(w1) + λψ̃(z2) + (1 − λ)ψ̃(w2)

= λψc(z) + (1 − λ)ψ̃(w),

where, in the second step, we used the convexity of ψ̃.

We now prove that the recession coefficients of ψ̃ and of ψc , defined in Definition 4.11, coincide.

Lemma 5.2. Let ψ : [0, +∞) → ℝ. Then θ̃ = θc .

Proof. We first prove that θc ≤ θ̃. Indeed, since ψc(s) ≤ 2ψ̃( s2 ), for all s ≥ 0, we have that

θc = lim
s→+∞

ψc(s)
s
≤ lim
s→+∞

2
s
ψ̃( s2) = θ̃.

We now prove that θc ≥ θ̃. Fix z ≥ 0, and let x, y ≥ 0 with z = x + y such that

ψc(z) = ψ̃(x) + ψ̃(y).
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Then we get
ψc(z) = ψ̃(x) + ψ̃(y) ≥ ψ̃(z),

where last inequality follows from the sub-additivity of ψ̃. Therefore,

θc = lim
s→+∞

ψc(s)
s
≥ lim
s→+∞

ψ̃(s)
s
= θ̃.

This concludes the proof.

An important result that will be used several times is the following.

Lemma 5.3. Let h ∈ BV(a, b) be lower semicontinuous, and let ε > 0. Define

P(ε) := {x ∈ (a, b) : there exists y ∈ Γh such that h(x) ≤ y ≤ h−(x) − ε}.

Then P(ε) is a finite set.

Proof. By [1, Corollary 3.33], it holds that

|Dh|(a, b) = ‖h󸀠‖L1(a,b) + ∑
x∈S
[h+(x) − h(x)] + |Dc|(a, b),

where S denotes the set of points x ∈ (a, b) such that h+(x) > h(x), and Dch is the Cantor part of themeasure Dh.
We recall that from Theorem 3.2 we have that Jh is at most countable. Therefore, we obtain that

∑
x∈S
[h−(x) − h(x)] < +∞.

Notice that the set P(ε) corresponds to points in S where the quantity h−(x) − h(x) is at least ε. From the
convergence of the series above, we get the desired result.

We now prove a result that will be needed in the limsup inequality.

Lemma 5.4. Let r > 0, and let {zj}j∈ℕ be an enumeration of ℤ2. Define

Qj := r(zj + (0, 1)2).

Let h ∈ BV(a, b), and let (hk)k be a sequence of Lipschitz functions such thatℝ2 \ Ωhk
H
→ ℝ2 \ Ωh , as k →∞. Then

there exists v ∈ ℝ2, and k ∈ ℕ such that the grid defined as

Q̃j := v + Qj

satisfies:
(a) The intersection between the graph of h and the boundary of the new grid is finite, namely

H0(Γ ∩ (⋃
j∈ℕ

∂Q̃j)) < +∞.

(b) We have that
H1(Γk ∩ Q̃j) ̸= 0 if and only if H1(Γ ∩ Q̃j) ̸= 0

for every k ≥ k̄.

Proof. We first prove (a). We first consider an horizontal translation. Since h ∈ BV(a, b), it has at most a count-
able number of jumps and cuts. Therefore, there is v1 ∈ ℝ such that

H0((Γj ∪ Γc) ∩ [⋃
j∈ℕ

∂((v1 , 0) + Qj)]) < +∞.

Now we need to find a suitable vertical translation. Using the coarea formula (see [1, Theorem 3.40]), we infer
that

Per({x ∈ (a, b) : h(x) > t}) < +∞
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for almost every t ∈ ℝ, where Per denotes the perimeter. Since we are using the lower semicontinuous repre-
sentative of h, the sup-level set {x ∈ (a, b) : h(x) > t} is open for all t ∈ ℝ, which yields that

∂{x ∈ (a, b) : h(x) > t} = {x ∈ (a, b) : h(x) = t}.

Thus, we obtain that
H0({x ∈ (a, b) : h(x) = t}) < +∞

for almost every t ∈ ℝ. Let D ⊂ ℝ be defined as

D := {t > 0 : H0({x ∈ (a, b) : h(x) = t}) = +∞}.

By definition, we have that |D| = 0. Let r > 0, and, for every t > 0, set

G(t) := {rj + t : j ∈ ℤ}.

We now claim that
|{t ∈ (0, r) : G(t) ∩ D ̸= 0}| = 0.

First, note that if s, t ∈ (0, r), with s ̸= t, we have G(t) ∩ G(s) = 0. Now, define

Dj := D ∩ [rj, (r + 1)j],
D̃j := Dj − rj.

By definition D̃j ⊂ (0, r) and |Dj| = |D̃j| = 0, for every j ∈ ℤ. In conclusion, we notice that

{t ∈ (0, r) : G(t) ∩ D ̸= 0} = ⋃
j∈ℤ

D̃j .

The claim follows from the above equality.
By proving the claim, we infer the existence of v2 ∈ ℝ such that

H0(Γ ∩ [⋃
j∈ℕ

∂((0, v2) + Qj)]) < +∞.

In conclusion the translation v := (v1 , v2) is the one we were looking for.
We now prove part (b). Let v ∈ ℝ2 be the vector found above, and let Q̃j be the translated squares. If the

graph of h is contained in a single square Q̃j , then there is nothing to prove. Thus, we assume that this is not
the case.

Fix j ∈ ℕ such that
H1(Γ ∩ Q̃j) ̸= 0.

We will prove that there exists k̄(j) ∈ ℕ such that

H1(Γk ∩ Q̃j) ̸= 0

for all k ≥ k̄(j). Let x ∈ Γ ∩ Q̃j . By the Kuratowski convergence, there exists (xk)k with xk ∈ Γk for all k ∈ ℕ such
that xk → x as k →∞. Since Q̃j is open, there exists k̄(j) ∈ ℕ (depending also on x, but this is not a problem)
such that xk ∈ Γk ∩ Q̃j for all k ≥ k̄(j). Using the fact that the graph of h is not entirely contained in the open
square Qj , and that the extended graph of hk is a connected curve, we obtain that

H1(Γk ∩ Q̃j) ̸= 0

as desired. Since h ∈ BV(a, b), it is bounded, and hence contained in a finite number of squares. In the following,
we will also need to consider k̄1 ∈ ℕ, the maximum of the k̄(j).

We now prove the opposite implication. Let j ∈ ℕ be such that

H1(Γ ∩ Q̃j) = 0.

Then, by Kuratowski convergence and the fact that Q̃j is open, we infer that there exists k̃(j) ∈ ℕ such that for
all k ≥ k̃(j) it holds

H1(Γk ∩ Q̃j) = 0.
Again, let k̃2 ∈ ℕ be the maximum of the k̃(j).

Setting k̄ := max{k̄1 , k̃2}, we get the desired result.
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Finally, we prove a result about the so-called wriggling process. This was introduced in [10, Lemma 4] to exploit
the quantitative loss of lower semicontinuity of the perimeter in order to recover the relaxed energy density
from ψ. The difference with this latter is that, in our case, only vertical perturbations are allowed. Moreover,
we impose the oscillating profiles to stay below the given function.

Proposition 5.5. Let h : [α, β] → ℝ be a non-negative Lipschitz function and let r ≥ 1. Then there exists a se-
quence of non-negative Lipschitz functions (hk)k such that:
(i) H1(Γk) = rH1(Γ);
(ii) h(α) = hk(α), and h(β) = hk(β) for every k;
(iii) h ≤ hk for every k;
(iv) hk → h uniformly as k →∞;
(v) H1 Γk

∗
⇀ rH1 Γ as k →∞;

where we used the notation Γk := Γhk , and Γ := Γh .

Proof. We divide the proof into two steps.

Step 1. Fix α ≤ p ≤ q ≤ β.Weprove the existence of a sequence (ξk)k of Lipschitz functions ξk : [p, q] → [0, +∞),
that satisfies
(i’) H1(Γξk ) = rH1(Γ);
(ii’) h(p) = ξk(p) and h(q) = ξk(q) for every k;
(iii’) h ≤ ξk for every k;
(iv’) ξk → h uniformly on [p, q] as k →∞.
Notice that if r = 1, it is enough to consider the constant sequence ξk = h for each k. Thus, fix r > 1. Let
(λk)k ⊂ (0, 1) be an infinitesimal sequence such that 0 < λk < q − p for each k ∈ ℕ, and kλk →∞ as k →∞.
For each k ∈ ℕ, define the function ηk ∈ C([p, q]) as

ηk(x) :=

{{{{{{
{{{{{{
{

x − p
λk

, x ∈ [p, p + λk),

1, x ∈ [p + λk , q − λk],

−
x − q
λk

, x ∈ (q − λk , q].

For each k ∈ ℕ, let tk ≥ 0 that will be chosen later, and define the non-negative Lipschitz function ξk : [p, q] →
[0, +∞) as

ξk(x) := h(x) + (
2
k
−
1
k
|sin(tkx)|)ηk(x). (5.1)

First of all, note that ξk → h uniformly as k →∞. Indeed, this follows from the fact that Ωk → Ω as k →∞ in
the Hausdorff sense. Moreover, from (5.1), we get that

0 ≤ h ≤ ξk , h(p) = ξk(p), h(q) = ξk(q).

We claim that it is possible to chose tk > 0 such thatH1(Γξk ) = rH1(Γ), for every k ∈ ℕ. In order to show that,
for each k ∈ ℕ, let fk : [0, +∞) → (0, +∞) be defined as

fk(t) :=
q

∫
p

√1 + ∂xHk(x, t)2 dx,

where
Hk(x, t) := h(x) + (

2
k
−
1
k
|sin(tx)|)ηk(x). (5.2)

We claim that:
(a) limt→+∞ fk(t) = +∞ for every k ∈ ℕ;
(b) limk→∞ fk(0) = H1(Γ).
Therefore, since fk is continuous for every k ∈ ℕ, and r > 1, it is possible to choose tk > 0 such that fk(tk) =
H1(Γξk ) = rH1(Γ) for every k ∈ ℕ. We now prove claim (a) and (b) in two separate sub-steps.
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Step 1.1. We now prove claim (a). First, notice that

fk(t) =
q

∫
p

√1 + ∂xHk(x, t)2 dx ≥
q−λk

∫
p+λk

√1 + ∂xHk(x, t)2 dx.

Now, fix k ∈ ℕ and consider the set

Zt := {x ∈ (p + λk , q − λk) : cos(tx) ≥ 1
2 }.

We now prove that
inf
t>0
|Zt| > 0. (5.3)

In order to do so, we first show that |Zn| > 0 for n ∈ ℕ. Set I := (p + λk , q − λk) and consider the function
g : I → {0, 1} defined as

g(x) := 𝟙{cos(y)≥ 12 }(x),

and extend it periodically on ℝ. Notice that, for n ∈ ℕ,

g(nx) = 𝟙{cos(ny)≥ 12 }(x).

By applying the Riemann–Lebesgue Lemma, we get that

|Zn| = |{cos(nx) ≥ 1
2 } ∩ I| = ∫

I

g(nx) dx → −∫
I

g(x) dx > 0 (5.4)

as n →∞. Now, we use the above result to show (5.3). Let t ∈ (n, n + 1). We have that

|Zt| = |{cos(tx) ≥
1
2 } ∩ I|

and that
∫
I

g(tx) dx = 1
t
∫
tI

g(z) dz.

As
g(z) = ∑

m∈ℤ
𝟙{− π3 +2mπ≤y≤ π3 +2mπ} , (5.5)

we can define the following families of intervals. Set

At := {J ⊂ ℝ : J ∩ tI ̸= 0}, Bt := {J ⊂ ℝ : J ⊂ tI}.

Then, by (5.5), we have
2π
3t H

0(Bt) ≤ |Zt| ≤
2π
3t H

0(At). (5.6)

Since t ∈ (n, n + 1) and by (5.4) and (5.6), we get that

|Zt| ≥
2π

3(n + 1)H
0(Bn) =

2π
3(n + 1) (H

0(An) − 2) ≥ ∫
I

g(nx) dx − 4π
3(n + 1) > C −

4π
3(n + 1) ,

where C > 0 is a constant independent of n. We conclude our claim by letting n →∞.
Note that for every t > 0, on Zt we have ηk(x) = 1 and cos(tx) > 1

2 . Thus, we get that

fk(t) ≥ ∫
Zt

√1 + h󸀠(x)2 + t
k
cos(tx)[ t

k
cos(tx) − 2ℓ] dx

≥ ∫
Zt

√1 + h󸀠(x)2 + t
k
cos(tx)[ t2k − 2ℓ] dx

≥ ∫
Zt

√1 + t
k
cos(tx)[ t2k − 2ℓ] dx, (5.7)
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where ℓ is the Lipschitz constant of h. By choosing t > 0 such that

t > 4kℓ,

from (5.7), and from cos(tx) > 1
2 on Zt , we obtain

fk(t) ≥ ∫
Zt

√1 + t
2k [

t
2k − 2ℓ] dx. (5.8)

Thus, from (5.3) and (5.8), we conclude that

lim
t→+∞

fk(t) = +∞.

Step 1.2. Now we prove claim (b). Notice that

fk(0) =
p+λk

∫
p

√1 + (h󸀠(x) + 2
kλk
)
2
dx +

q−λk

∫
p+λk

√1 + h󸀠(x)2 dx +
q

∫
q−λk

√1 + (h󸀠(x) + 2
kλk
)
2
dx. (5.9)

Since the sequence (λk)k is such that kλk →∞, and ‖h󸀠‖L∞ < +∞ since h is Lipschitz, it holds that

sup
k∈ℕ

sup
x∈[p,q]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
h󸀠(x) + 2

kλk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< +∞.

Thus, letting k →∞ in (5.9), we obtain
lim
k→∞

fk(0) = H1(Γ).

This concludes the proof of (b).

Step 2 . We nowprove the statement of the lemma. Fix r > 1, otherwise the statement is trivial. For k ∈ ℕ, divide
the interval [α, β] into k subintervals ([αki , α

k
i+1])

k
i=1, where α

1
k = α and α

k
k+1 = β. Assume that |α

k
i+1 − α

k
i | <

2
k .

Thanks to Step 1, for each k ∈ ℕ, and each i ∈ {1, . . . , k}, there exists a function ξki : [α
k
i , α

k
i+1] → [0, +∞) such

that
ξk1 (α) = h(α), ξki (α

k
i+1) = ξ

k
i+1(α

k
i+1), ξkk+1(β) = h(β)

for all i ∈ {2, . . . , k} with
‖ξki − h‖C0(ℝ) ≤

1
k

and such that
H1(graph(ξki )) = rH

1(Γ [αki , α
k
i+1] × ℝ)

for all i ∈ {1, . . . , k} and all k ∈ ℕ. Define hk : [α, β] → [0, +∞) as

hk(x) := ξki (x)

for x ∈ [αki , α
k
i+1]. Note that hk is Lipschitz, h ≤ hk for all k ∈ ℕ, hk → h uniformly in k, and

H1(Γk) =
k
∑
i=1

H1(graph(ξki )) = r
k
∑
i=1

H1(Γ [αi , αi+1] × ℝ) = rH1(Γ).

It remains to prove property (v). To do so, fix φ ∈ Cc(ℝ2) and ε > 0. Thanks to the uniform continuity of φ, there
exists ̄k ∈ ℕ such that for k ≥ k̄ the following holds: if xi ∈ [αki , α

k
i+1], then

|φ(x, hk(x)) − φ(xi , hk(xi))| ≤ ε. (5.10)

Moreover, from the fact that hk is converging uniformly to the continuous function h, up to increasing the value
of k̄, we can also assume that

|φ(xi , hk(xi)) − φ(xi , h(xi))| ≤ ε. (5.11)
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Using (5.10), we get

∫
Γk

φ(x) dH1 − r∫
Γ

φ(x) dH1 =
k
∑
i=1

αi+1
∫

αi

[φ(x, hk(x))√1 + h󸀠k(x)2 − rφ(x, h(x))√1 + h󸀠(x)2] dx

≤
k
∑
i=1
[ε

αi+1
∫

αi

(√1 + h󸀠k(x)2 + r√1 + h󸀠(x)2) dx

+
αi+1
∫

αi

(φ(xi , hk(xi))√1 + h󸀠k(x)2 − rφ(xi , h(xi))√1 + h󸀠(x)2) dx]

≤ ε
k
∑
i=1

αi+1
∫

αi

(√1 + h󸀠k(x)2 + r√1 + h󸀠(x)2) dx

+ φ(xi , h(xi))
k
∑
i=1
[
αi+1
∫

αi

(√1 + h󸀠k(x)2 − r√1 + h󸀠(x)2) dx]

= ε
k
∑
i=1

αi+1
∫

αi

(√1 + h󸀠k(x)2 + r√1 + h󸀠(x)2) dx, (5.12)

where in the previous to last step we used (5.11), while last step follows fromH1(Γk) = rH1(Γ). Thus, from (5.12)
we obtain

∫
Γk

φ(x) dH1 − r∫
Γ

φ(x) dH1 ≤ 2rH1(Γ)ε.

Thus, since ε is arbitrary, we get thatH1 Γk
∗
⇀ rH1 Γ as k →∞.

Remark 5.6. From the above proof, we can infer the following facts:
(i) Following (5.8),

rH1(Γ) ≥ ∫
Ztk

√1 + h󸀠(x)2 + tk2k [
tk
2k − 2ℓ] dx ≥ μ

√ tk
2k [

tk
2k − 2ℓ],

where μ := inf t≥0 |Zt|. This leads us to

(
tk
2k)

2
− 2ℓ( tk2k) ≤

1
μ2
r2H1(Γ)2 .

If we solve for t
2k , we get tk

k
≤ C, (5.13)

where

C := 2(ℓ + √ℓ2 + r
2H1(Γ)2
μ2
).

(ii) We claim that tk → +∞ as k →∞. Assume by contradiction this is not the case, namely that

sup
k
tk ≤ τ

for some τ > 0. Thus, we have that

h󸀠k(x) = h
󸀠(x) − tk

k
cos(tkx)

|sin(tkx)|
sin(tkx)

ηk(x) + (
2
k
−
1
k
|sin(tkx)|)η󸀠k(x)

≤ h󸀠(x) + τ
k
+
2η󸀠k(x)
k

for every k. From the inequality

|h󸀠k(x) − h
󸀠(x)| ≤ τ

k
+
2η󸀠k(x)
k
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we infer that
H1(Γk) → H1(Γ). (5.14)

From Step 1 we know that
H1(Γk) = rH1(Γ) > H1(Γ) (5.15)

with r > 1 and for every k. By putting together (5.14) and (5.15) we get a contradiction.
(iii) From the expression of h󸀠k , we can actually choose the sequence (λk)k such that the sequence (hk)k is

uniformly Lipschitz. Indeed, on [α, α + λk] we have

|h󸀠k(x)| ≤ ℓ +
tk
k
+

2
kλk

.

As tk
k is bounded and (λk)k is chosen in such a way that kλk → +∞ as k →∞, we can conclude.

6 Liminf inequality

We now present the main ideas of the proof of the liminf inequality, contained in the following theorem. One of
the issues that we take in account is the fact that our final configuration Γ, is the graph of a BV function which
might have a dense cut set. In particular, this is a problem since in our argumentwe deal withwhat is happening
on the left and on right of every cut in Γ. This is not doable in case the cut set is dense. One possible way to go
around, is to split the energy on Γc . By fixing ε > 0, since h is a BV function, the cuts in Γc whose length is larger
than ε is necessarily finite. For those amount of cuts we do the liminf inequality by using the result contained
in [9]. Finally, for the cut part in Γc with length smaller that ε, we prove that the energy there is as small as we
want as ε → 0.

Theorem 6.1. For every configuration (Ω, v, μ) ∈ A and every sequence of regular configurations (Ωk , vk , μk)k ⊂
Ar such that (Ωk , vk , μk) → (Ω, v, μ) as k →∞, we have

G(Ω, v, μ) ≤ lim inf
k→∞

F(Ωk , vk , μk).

Proof. Fix ε > 0 and consider the set

Cε := {x = (x, y) ∈ Γc : h−(x) − y < ε}.

By a standard measure theory argument, it is possible to choose ε such that μ(Γ ∩ ∂Cε) = 0. As a consequence,
from Lemma 5.3, we have that Γc \ Cε consists of a finite number of vertical segments, whose projections on
the x-axes corresponds to the set (xi)Ni=1. Recalling the definition of Γc (see Definition 4.7), it holds that Cε is
monotonically converging to the empty set, as ε → 0. Therefore, we get that

μ(Cε) → 0, μ(Γc \ Cε) → μ(Γc) (6.1)

as ε → 0. Let δ = δ(ε) > 0 such that we have δ < |xi − xj| for every i, j = 1, . . . , N . As we have a finite number of
cuts, in order to simplify the notation, we do the following construction as we had only one cut point, and then
we repeat it for each other one.

Fix i ∈ 1, . . . , N . Since ℝ2 \ Ωk
H
→ ℝ2 \ Ω, for every cut point (xi , h(xi)), there is a sequence of the form

(xk , hk(xk))k such that (xk)k ⊂ (xi − δ, xi + δ) and (xk , hk(xk)) → (xi , h(xi)) as k →∞. Indeed, by Proposi-
tion 3.9 there is a sequence (xk , yk)k ⊂ ℝ2 \ Ωk such that (xk , yk) → (xi , h(xi)). By definition, we have that
hk(xk) ≤ yk , up to a subsequence (not relabelled), we have that (xk , hk(xk)) → (xi , zi) for some zi ∈ ℝ. We
would like to have zi = h(xi). If we had zi > h(xi), then

lim
k→∞

hk(xk) ≤ h(xi) < zi ,

which contradicts our convergence above. Vice versa, if zi < h(xi), then (xi , zi) ∉ ℝ2 \ Ω. In conclusion we have
zi = h(xi) and thus (xk , hk(xk)) → (xi , h(xi)) as k →∞.



532  R. Cristoferi and G. Fissore, Graph epitaxy with adatoms

Figure 4: The rectangles we are using for the estimate of the liminf. In particular, the set Aεδ is the light blue, while the boundary of the
rectangle Rε

δ is the one in purple.

Around each vertical cut, we set, for each k ∈ ℕ (see Figure 4),

Rℓk := (x
i − δ, xk) × (0, h−(xi) − ε), Rrk := (xk , x

i + δ) × (0, h−(xi) − ε)

and
Rε
δ := R

ℓ
k ∪ R

r
k ∪ [{xk} × (0, h

−(xi) − ε)].

Thanks to the existence of the right and left limits of h at every point (see Theorem 3.2), up to further reducing δ,
we can assume that

Rε
δ ∩ Γ = {xk} × (0, h

−(xi) − ε).

Now we split the energy in the following way. Take any (Ωk , vk , μk)k ⊂ Ar such that (Ωk , vk , μk) → (Ω, v, μ) as
k →∞. We have

lim inf
k→∞
[∫
Ωk

W(E(vk) − E0(y)) dx + ∫
Γk

ψ(uk) dH1]

≥ lim inf
k→∞
∫
Ωk

W(E(vk) − E0(y)) dx + lim inf
k→∞
∫

Γk\Rε
δ

ψ(uk) dH1 + lim inf
k→∞

∫

Γk∩Rε
δ

ψ(uk) dH1 . (6.2)

We are going to estimate each term on the right-hand side of (6.2) separately.

Step 1. Here we estimate the bulk term on the right-hand side of (6.2). Since vk ⇀ v inW1,2
loc (Ω;ℝ

2) as k →∞,
for every compactly contained set K ⊂ Ω, we get

lim inf
k→∞
∫
Ωk

W(E(vk) − E0(y)) dx ≥ lim inf
k→∞
∫
K

W(E(vk) − E0(y)) dx

≥ ∫
K

W(E(v) − E0(y)) dx,

as E( ⋅ ) is linear and W( ⋅ ) is convex. Since K is arbitrary, we can conclude by taking an increasing sequence
(Kj)j of sets compactly contained in Ω with |Ω \ Kk| → 0 as k →∞. Thus, by using the Monotone Convergence
Theorem

lim inf
k→∞
∫
Ωk

W(E(vk) − E0(y)) dx ≥ ∫
Ω

W(E(v) − E0(y)) dx, (6.3)

we get the liminf for the bulk term.

Step 2. For the second term on the right-hand side of (6.2), we would like to apply Theorem 3.18. Fix ε > 0. By
knowing that for each k ∈ ℕ we have |hk| ≤ M, we define the open set

Aεδ := ([a, b] × [0,M]) \ R
ε
δ .
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We have that Aεδ ∩ Ωk → Aεδ ∩ Ω in L1 as k →∞. From Lemma 3.5, we have that

H1((∂∗Ω ∩ Aεδ)ΔΓ̃) = 0.

By definition, we can write

ukH1 (∂Ωk ∩ Aεδ)
∗
⇀ μ Aεδ = uH

1 Γ̃ + μs Aεδ + uH
1 Cε ,

as k →∞, and, by applying Theorem 3.18, we have

lim inf
k→∞

∫

∂Ωk∩Aεδ

ψ(uk) dH1 ≥ ∫

Γ̃∩Aεδ

ψ̃(u) dH1 + θμs(Aεδ) + θ ∫
Cε

u dH1 , (6.4)

as desired.

Step 3. We now deal with the third term on the right-hand side of (6.2). Define

Eℓk := Ωk ∩ R
ℓ
k and Erk := Ωk ∩ R

r
k . (6.5)

Using Lemma 3.8 we obtain that

Eℓk → Rℓ := (xi − δ, xi) × (0, h−(xi) − ε),
Eℓk → Rr := (xi , xi + δ) × (0, h−(xi) − ε),

as k →∞ in L1. Note that, for every k large enough, both Eℓk ̸= 0 and E
r
k ̸= 0. Furthermore, notice that

∂Eℓk ∩ R
ℓ = (Γk ∩ Rℓk) ∪ [{xk} × (0, hk(xk))],

∂Erk ∩ R
r = (Γk ∩ Rrk) ∪ [{xk} × (0, hk(xk))].

We now define the densities

uℓk(x) :=
{
{
{

uk(x), x ∈ Γk ∩ Rℓk ,
0, x ∈ {xk} × (0, hk(xk)),

urk(x) :=
{
{
{

uk(x), x ∈ Γk ∩ Rrk ,
0, x ∈ {xk} × (0, hk(xk)).

We now prove that

μℓk := u
ℓ
kH

1 (∂Eℓk ∩ R
ℓ)
∗
⇀ μℓ := fH1 (Γc \ Cε) + (μℓ)s ,

μrk := u
r
kH

1 (∂Erk ∩ R
r)
∗
⇀ μr := gH1 (Γc \ Cε) + (μr)s

for some f, g ∈ L1(Γc \ Cε) such that
f + g = u|Γc\Cε , (6.6)

and
(μℓ)s + (μr)s = μs , (6.7)

where (μℓ)s and (μr)s are supported in Γc \ Cε . Notice that

μℓk({xk} × (0, hk(xk))) = μ
r
k({xk} × (0, hk(xk))) = 0

holds for every k ∈ ℕ. By definition, we have μℓk + μ
r
k = μk , for every k ∈ ℕ. Moreover, for every set A, measur-

able with respect to μk (thus also for μℓk and μ
r
k), we have

μℓk(A) ≤ μk(A) = ∫
Γk∩A

uk dH1 = ‖uk‖L1(Γk∩A) ≤ L,

where L is a constant independent of A, and is given by the fact that the sequence (μk)k is weakly∗ converging.
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The same bound for μrk also holds. We have that, up to a subsequence (not relabelled), there are two Radon
measures μℓ and μr such that

μℓk
∗
⇀ μℓ and μrk

∗
⇀ μr

as k →∞.
We claim that supp(μℓ) ⊂ Γc \ Cε and supp(μr) ⊂ Γc \ Cε . Indeed, take any set A such that μ((Γc \ Cε) ∩ ∂A) =

0 and A ∩ (Γc \ Cε) = 0. Then μ((Γc \ Cε) ∩ A) = 0. If we had μℓ((Γc \ Cε) ∩ A) > μ((Γc \ Cε) ∩ A), we would have

μ((Γc \ Cε) ∩ A) = lim
k→∞

μk((Γc \ Cε) ∩ A) ≥ lim
k→∞

μℓk((Γ
c \ Cε) ∩ A) = μℓ((Γc \ Cε) ∩ A),

and this implies that μℓ((Γc \ Cε) ∩ A) = 0. Thus μℓ ≤ μ and if μ((Γc \ Cε) ∩ A) = 0, then also μℓ((Γc \ Cε) ∩ A) = 0.
As the same holds for μr , we conclude our claim.

Then there are f, g ∈ L1(Γc \ Cε) for which we can write

μℓ = fH1 (Γc \ Cε) + (μℓ)s and μr = gH1 (Γc \ Cε) + (μr)s ,

with (μℓ)s and (μr)s are singular measures with respect to fH1 (Γc \ Cε) and gH1 (Γc \ Cε) respectively. We
now prove that μ = μℓ + μr . Notice that for every φ ∈ Cc(ℝ2),

∫

∂Eℓk∪∂Erk
φ dμk → ∫

Γc\Cε

φ dμ

as k →∞, from the fact that μk
∗
⇀ μ. On the other hand we have

∫

∂Eℓk∪∂Erk
φ dμk = ∫

∂Eℓk∪∂Erk
φ d(μℓk + μ

r
k) = ∫

∂Eℓk
φ dμℓk + ∫

∂Erk

φ dμrk 󳨀󳨀󳨀󳨀→k→∞
∫

Γc\Cε

φ dμℓ + ∫
Γc\Cε

φ dμr .

Since φ ∈ Cc(ℝ2) is arbitrary, we get μ = μℓ + μs . In particular, we obtain (6.6) and (6.7).
We now prove the convergence of the energy. Set

Sk := {xk} × (0, hk(xk)) and S := {xi} × (0, h(xi)).

We notice thatH1(Sk) → H1(S) as k →∞. In particular, this implies that

lim
k→∞
∫
Sk

ψ(0) dH1 = ∫
S

ψ(0) dH1 . (6.8)

Now, we want to apply Theorem 3.18. Recalling Definition 6.5 of the sets Eℓk and E
r
k , we obtain

lim inf
k→∞

∫

Γk∩Rε
δ

ψ(uk) dH1 + 2∫
S

ψ(0) dH1 = lim inf
k→∞
[ ∫

Γk∩Rε
δ

ψ(uk) dH1 + 2∫
Sk

ψ(0) dH1]

= lim inf
k→∞
[ ∫

∂Eℓk∩Rε
δ

ψ(uℓk) dH
1 + ∫

∂Erk∩R
ε
δ

ψ(urk) dH
1]

≥ lim inf
k→∞

∫

∂Eℓk∩Rε
δ

ψ(uℓk) dH
1 + lim inf

k→∞
∫

∂Erk∩R
ε
δ

ψ(urk) dH
1

≥ ∫

∂Rℓ∩Rε
δ

ψ̃(f) dH1 + θ(μℓ)s(∂Rℓ ∩ Rε
δ)

+ ∫

∂Rr∩Rε
δ

ψ̃(g) dH1 + θ(μr)s(∂Rr ∩ Rε
δ)

= ∫
Γc\Cε

ψ̃(f) dH1 + θ(μℓ)s(Γc \ Cε)

+ ∫
Γc\Cε

ψ̃(g) dH1 + θ(μr)s(Γc \ Cε) + 2∫
S

ψ(0) dH1

≥ ∫
Γc\Cε

ψc(u) dH1 + θμs(Γc \ Cε) + 2∫
S

ψ(0) dH1 ,
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where the last inequality follows from (6.6) together with the definition of ψc . Thus,

lim inf
k→∞

∫

Γk∩Rε
δ

ψ(uk) dH1 ≥ ∫
Γc\Cε

ψc(u) dH1 + θμs(Γc \ Cε) (6.9)

for all ε > 0.

Step 5. Using (6.2), (6.3), (6.4) and (6.9) we obtain

lim inf
k→∞
[ ∫
Ωk

W(E(vk) − E0(y)) dx + ∫
Γk

ψ(uk) dH1]

≥ ∫
Ω

W(E(v) − E0(y)) dx + ∫
Γ̃∩Aεδ

ψ̃(u) dH1 + θμs(Aεδ) + θ ∫
Cε

u dH1 + ∫
Γc\Cε

ψc(u) dH1 + θμs(Γc \ Cε).

By letting ε → 0, and using (6.1), we get the desired liminf inequality.

7 Limsup inequality

The goal of this section is to prove the limsup inequality for the mass constrained problem. We recall that the
classesAr(m,M) andAr(m,M) are given in Definitions 4.2 and 4.5 respectively.

Theorem 7.1. Let m,M > 0. Let (Ω, v, μ) ∈ A(m,M). Then there exists a sequence of regular configurations
(Ωk , vk , μk)k ⊂ Ar(m,M) such that

lim sup
k→∞

F(Ωk , vk , μk) ≤ G(Ω, v, μ),

and with (Ωk , vk , μk) → (Ω, v, μ) as k →∞.

The proof is long and therefore it will be divided in several steps, each proved in a separate result. In particular,
we will need to work with a specific class of piecewise constant functions, that we introduce here.

Definition 7.2. Let h ∈ BV(a, b) and δ > 0. We say that a finite family (Qj)Nj=1 of open and pairwise disjoint
rectangles is δ-admissible covering for Γ if
(i) the side lengths of each Qj is less than δ,
(ii) it holds

Γ ⊂
N
⋃
i=1
Qj ,

(iii) H1(Γ ∩ ∂Qj) = 0 for all j = 1, . . . , N .

A simple result that will be use repeatedly without mentioning it is the following (see (a) of 5.4).

Lemma 7.3. Let h ∈ BV(a, b) and δ > 0. Then there exists a δ-admissible covering for Γ.

Definition 7.4. Let h ∈ BV(a, b) and δ > 0. A function u ∈ L1(Γ) is called δ-grid constant if there exists a δ-admis-
sible covering for Γ, such that u|Qj∩Γ = uj ∈ ℝ, for every j = 1, . . . , N . Moreover, we say that u ∈ L1(Γ) is grid
constant if there exists δ > 0 such that it is δ-grid constant.

We are now in a position to explain the steps of the strategy that we will use in order to prove Theorem 7.1.

Step 1. For any configuration (Ω, v, μ) ∈ A(m,M), we find a sequence (uk)k ⊂ L1(Γ) where each uk is a grid
constant function, such that μk := ukH1 Γ ∗⇀ μ as k →∞, (Ω, v, μk) ∈ A(m,M) for all k ∈ ℕ, and

lim
k→∞

G(Ω, v, μk) ≤ G(Ω, v, μ).

This will be proved in Proposition 7.6.
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Step 2. Let (Ω, v, μ) ∈ A(m,M) be such that μ = uH1 Γ, and u ∈ L1(Γ) is grid constant. In Proposition 7.7,
we construct a sequence (Ωk , vk , μk)k ⊂ Ar(m,M), where μk = ukH1 Γk and uk is grid constant, such that
(Ωk , vk , μk) → (Ω, v, μ) as k →∞, and

lim
k→∞

G(Ωk , vk , μk) = G(Ω, v, μ).

Step 3. For every configuration (Ω, v, μ) ∈ Ar , with each uk grid constant, in Proposition 7.8we build a sequence
(Ωk , vk , μk)k ⊂ Ar with (Ωk , vk , μk) → (Ω, v, μ) as k →∞ such that

lim
k→∞

F(Ωk , vk , μk) = G(Ω, v, μ).

Step 4. From Propositions 7.6, 7.7 and 7.8 and a diagonalization argument we get the limsup inequality.

Remark 7.5. Using Theorem 7.1 with Theorem 6.1, we have proved Theorem 1.1 and Theorem 1.2.

We now carry on Step 1: approximate any admissible configuration with a sequence of configurations where
the density is grid constant.

Proposition 7.6. Let (Ω, v, μ) ∈ A(m,M). Then there exists a sequence (uk)k ⊂ L1(Γ), with uk ∈ L1(Γ) grid con-
stant, such that (Ω, v, μk) → (Ω, v, μ), as k →∞, and

lim
k→∞

G(Ω, v, μk) ≤ G(Ω, v, μ),

where μk := ukH1 Γ. Moreover, (Ω, v, μk) ∈ A(m,M).

Proof. We divide the proof into four steps.

Step 1. Given (Ω, v, μ) ∈ A(m,M), with μ = uH1 Γ + μs , we would like to approximate μs with a finite num-
ber of Dirac deltas. Given k ∈ ℕ, consider an 1

k -admissible covering of Γ. Let Q
1 , . . . , QNk be those cubes that

intersect with Γ. For each i = 1, . . . , Nk , let xik ∈ Q
i ∩ Γ. We define

mi
k := μ

s(Qik)

and set

μk := uH1 Γ +
Nk

∑
i=1
mi
kδxik ,

where, for every k ∈ ℕ, Nk is finite. It is possible to see that μk(Γ) = m and μk
∗
⇀ μ as k →∞. Furthermore, the

fact that μs(Γ) = ∑Nk
i=1 m

i
k , for every k ∈ ℕ, implies that

G(Ω, v, μk) = G(Ω, v, μ)

for every k ∈ ℕ.

Step 2. Now, consider (Ω, v, μ) ∈ A(m,M), with μ = uH1 Γ + ∑Ni=1 miδxi , with xi ∈ Γ and mi > 0 as defined in
Step 1, for every i = 1, . . . , N . We now construct an admissible covering in order to define a suitable density
on Γ. For k ∈ ℕ, consider (Qjk)

Lk
j=1, an

1
k -admissible covering for Γ. Consider the covering of Γ given by

(
N
⋃
i=1
Q(xi , 1k )) ∪ [(

Lk
⋃
j=1
Qjk) \ (

N
⋃
i=1
Q(xi , 1k ))] (7.1)

We notice that (⋃Lkj=1 Q
j
k) \ (⋃

N
i=1 Q(xi , 1k )) can be divided Nk rectangles whose sides does not exceed 1

k . Thus,
up to a further subdivision in rectangles, we consider (7.1) as a 1

k -admissible covering of Γ. In order to
simplify the notation, we denote as Qjk any rectangle contained in (7.1). Furthermore, by reordering the rect-
angles in (7.1), we assume that for j = 1, . . . , N , Qjk ⊂ ⋃

N
i=1 Q(xi , 1k ) and for j = N + 1, . . . , N + Nk , we have

Qjk ⊂ (⋃
Lk
j=1 Q

j
k) \ (⋃

N
i=1 Q(xi , 1k )).

Fix ε > 0. Since

lim
k→∞

μs(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
= +∞ and lim

k→∞

μs(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
= +∞
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for all j = 1, . . . , N , there is k̄ ∈ ℕ such that, for every k ≥ k̄, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

H1(Γ ∩ Qjk)

μs(Γ ∩ Qjk)
ψ̃(

μs(Γ ∩ Qjk)

H1(Γ ∩ Qjk)
) − θ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε (7.2)

and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

H1(Γ ∩ Qjk)

μs(Γ ∩ Qjk)
ψc(

μs(Γ ∩ Qjk)

H1(Γ ∩ Qjk)
) − θ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε. (7.3)

We now define a density on Γ. For x ∈ Qjk , we define uk : Γ → ℝ as

uk(x) :=

{{{{{{{
{{{{{{{
{

μ(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
if x ∈ Γ̃, Γ̃ ∩ Qjk ̸= 0,

μ(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
if x ∈ Γc , Γc ∩ Qjk ̸= 0.

Note that the function uk ∈ L1(Γ) is 1
k -grid constant by definition. For each k ∈ ℕ, define the measure

μk := ukH1 Γ. (7.4)

By definition, it follows directly that the mass constrained is satisfied, namely that (Ω, v, μk) ∈ A(m,M).

Step 3. We now prove that μk
∗
⇀ μ as k →∞. Take φ ∈ Cc(ℝ2). Fix ε > 0. Using the uniform continuity of φ,

there exists k̄ ∈ ℕ such that for every k ≥ k̄ we have that

|φ(x) − φ(xik)| < ε

for every x ∈ Qjk , where x
i
k is the intersection point of the diagonals of Q

j
k . First, we write

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γ

φ dμk − ∫
Γ

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃

φ dμk − ∫
Γ̃

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γc
φ dμk − ∫

Γc
φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
N+Nk

∑
j=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃∩Qjk

φ dμk − ∫

Γ̃∩Qjk

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
N+Nk

∑
j=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γc∩Qjk

φ dμk − ∫

Γc∩Qjk

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (7.5)

and we estimate the two terms on the right-hand side of (7.5) separately. We have that
N+Nk

∑
j=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃∩Qjk

φ dμk − ∫

Γ̃∩Qjk

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
N+Nk

∑
j=1
[ ∫

Γ̃∩Qjk

|φ(x) − φ(xik)| dμk

+ ∫

Γ̃∩Qjk

|φ(x) − φ(xik)| dμ + |φ(x
i
k)||μ(Γ̃ ∩ Q

j
k) − μk(Γ̃ ∩ Q

j
k)|]

≤ 2mε‖φ‖C0(ℝ2) , (7.6)

where we used the fact that μ(Γ̃ ∩ Qjk) = μk(Γ̃ ∩ Q
j
k) for each j = 1, . . . ,M + Nk and every k ∈ ℕ, by the defini-

tion of μk . Using similar computations, we also get that the second term on the right-hand side of (7.5) can be
estimated as

N+Nk

∑
j=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γc∩Qjk

φ dμk − ∫

Γc∩Qjk

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2mε‖φ‖C0(ℝ2) , (7.7)

Finally, from (7.5), (7.6) and (7.7), we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γ

φ dμk − ∫
Γ

φ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 4mε‖φ‖C0(ℝ2) .

As ε > 0 is arbitrary, we can conclude that μk
∗
⇀ μ as k →∞.
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Step 4. We now prove the convergence of the energy. We will prove that

lim sup
k→∞

G(Ω, v, μk) ≤ G(Ω, v, μ).

Since the bulk term of the energy is unchanged, we estimate the other contributions. We have that

∫

Γ̃

ψ̃(uk) dH1 + ∫
Γc
ψc(uk) dH1

=
N+Nk

∑
j=1
[ ∫

Γ̃∩Qjk

ψ̃(uk) dH1 + ∫

Γc∩Qjk

ψc(uk) dH1]

=
N+Nk

∑
j=1
[H1(Γ̃ ∩ Qjk)ψ̃(

μ(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
) +H1(Γc ∩ Qjk)ψ

c(
μ(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
)]

=
N
∑
j=1
[H1(Γ̃ ∩ Qjk)ψ̃( −∫

Γ̃∩Qjk

u dH1 +
μs(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
) +H1(Γc ∩ Qjk)ψ

c( −∫
Γc∩Qjk

u dH1 +
μs(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
)]

+
N+Nk

∑
j=N
[H1(Γ̃ ∩ Qjk)ψ̃( −∫

Γ̃∩Qjk

u dH1) +H1(Γc ∩ Qjk)ψ
c( −∫

Γc∩Qjk

u dH1)]

≤
N
∑
j=1
[H1(Γ̃ ∩ Qjk)ψ̃( −∫

Γ̃∩Qjk

u dH1) +H1(Γ̃ ∩ Qjk)ψ̃(
μs(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
)

+H1(Γc ∩ Qjk)ψ
c( −∫

Γc∩Qjk

u dH1) +H1(Γc ∩ Qjk)ψ
c(

μs(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
)]

+
N+Nk

∑
j=N
[H1(Γ̃ ∩ Qjk)ψ̃( −∫

Γ̃∩Qjk

u dH1) +H1(Γc ∩ Qjk)ψ
c( −∫

Γc∩Qjk

u dH1)]

≤
N
∑
j=1
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 +H1(Γ̃ ∩ Qjk)ψ̃(
μs(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
)

+ ∫

Γc∩Qjk

ψc(u) dH1 +H1(Γc ∩ Qjk)ψ
c(

μs(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
)]

+
N+Nk

∑
j=N
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 + ∫

Γc∩Qjk

ψc(u) dH1]

=
N
∑
j=1
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 + μs(Γ̃ ∩ Qjk)
H1(Γ̃ ∩ Qjk)

μs(Γ̃ ∩ Qjk)
ψ̃(

μs(Γ̃ ∩ Qjk)

H1(Γ̃ ∩ Qjk)
)

+ ∫

Γc∩Qjk

ψc(u) dH1 + μs(Γc ∩ Qjk)
H1(Γc ∩ Qjk)

μs(Γc ∩ Qjk)
ψc(

μs(Γc ∩ Qjk)

H1(Γc ∩ Qjk)
)]

+
N+Nk

∑
j=N
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 + ∫

Γc∩Qjk

ψc(u) dH1], (7.8)

where in the first inequality we used the sub-additivity of ψ̃ and ψc , while in the previous to last step we used
Jensen’s inequality.
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By construction, we have that (7.2) and (7.3) hold. Thus, from (7.8), we obtain

∫

Γ̃

ψ̃(uk) dH1 + ∫
Γc
ψc(uk) dH1 ≤

N
∑
j=1
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 + μs(Γ̃ ∩ Qjk)(θ + ε) + ∫

Γc∩Qjk

ψc(u) + μs(Γc ∩ Qjk)(θ + ε)]

+
N+Nk

∑
j=N
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 + ∫

Γc∩Qjk

ψc(u) dH1]

=
N+Nk

∑
j=1
[ ∫

Γ̃∩Qjk

ψ̃(u) dH1 + ∫

Γc∩Qjk

ψc(u) dH1 + θμs(Γ ∩ Qjk) + εμ
s(Γ ∩ Qjk)]

≤ ∫

Γ̃

ψ̃(u) dH1 + ∫
Γc
ψc(u) dH1 + θμs(Γ) + εμs(Γ). (7.9)

From (7.9), since ε is arbitrary, we can conclude

lim sup
k→∞

G(Ω, v, μk) ≤ G(Ω, v, μ).

This concludes the proof.

We proceed our analysis with the second step, which will allows us to reduce to the case of a Lipschitz profile
and a grid constant adatom density.

Proposition 7.7. Let (Ω, v, μ) ⊂ A(m,M) be such that u is grid constant. Then there exists a sequence

(Ωk , vk , μk)k ⊂ Ar(m,M),

where μk = ukH1 Γk with each uk grid constant, such that

lim
k→∞

G(Ωk , vk , μk) = G(Ω, v, μ),

and (Ωk , vk , μk) → (Ω, v, μ), as k →∞.

Proof. The strategy of the proof is the following. In Step 1 we show that it suffices to build the required sequence
in case h has finitely many cut points. In Step 2 we build the recovery sequence. Finally, in Step 3 we show the
convergence of the energy.

Step 1. In this first stepwe are going to show that it suffices to prove the result in the case h has a finite number of
cuts. Namely, we prove that there exist sequences (Ωgk , wk , νk)k ⊂ A(m,M)where each gk has a finite number
of cuts, and νk is grid constant, such that

lim
k→∞

G(Ωgk , wk , νk) = G(Ω, v, μ),

and (Ωgk , wk , νk) → (Ω, v, μ) as k →∞.
The following construction is inspired by [15, Theorem 2.8]. For k ∈ ℕ, define (see Figure 5)

ĝk(x) := min{max{h−(x) −
1
k
, 0}, h(x)}

for every x ∈ (a, b). It is possible to see that, for each k, the function ĝk is lower semicontinuous, of bounded
variation, and such that ĝk ≤ h. Moreover, thanks to Lemma 5.3, we have that ĝk has finitely many cuts. We then
define

gk(x) := ĝk(x) + εk , (7.10)

for each k, where

εk :=
1

b − a
(M −

b

∫
a

ĝk(x) dx) > 0.
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Figure 5: In order to reduce to a finite number of cuts, we do the following: first, we shift down by 1
k the regular part of the graph of h

(not the cuts), getting the red graph. In this process, some parts of the graph might have gone below zero. Thus, we get the function ĝk
by cutting them, and by adding the remaining part of the original cuts.

Set Γk := Γgk , and note that
lim
k→∞

H1(Γk) = H1(Γ). (7.11)

We now need, for each k ∈ ℕ, to define the displacement vk and the adatom density uk . For the former, by fixing
a y0 < 0 such that v( ⋅ , y0) ∈ W1,2((a, b);ℝ2), we define

wk(x) :=
{{{
{{{
{

v(x, y − εk) if y > y0 + εk ,
v(x, y0) if y0 < y ≤ y0 + εk ,
v(x, y) if y ≤ y0 .

(7.12)

For k ∈ ℕ \ {0}, and x ∈ Γk , we define

zk(x) :=

{{{{{{
{{{{{{
{

u(x, y + 1
k
) if (x, y + 1

k
) ∈ Γ̃ and h(x) > 1

k
,

u(x, y) if x ∈ Γc ,

u(x, 0) if h(x) = 0.

For each k ∈ ℕ \ {0}, we then define the measure

νk := (zk + rk)H1 Γk ,

where
rk :=

1
H1(Γk)
[∫
Γ

u dH1 − ∫
Γk

zk dH1].

We notice that, by using (7.11),
lim
k→∞

rk = 0. (7.13)

Step 1.1. Note that, by definition, the sequences (gk)k and (νk)k satisfy the mass and the density constraint as in
Theorem 1.2, and thus (Ωgk , wk , νk)k ⊂ A(m,M).

Step 1.2. We now prove that (Ωgk , wk , νk) → (Ω, v, μ) as k →∞. By using the definition, it is possible to see that
ℝ2 \ Ωgk

H
→ ℝ2 \ Ω, and wk ⇀ v inW1,2

loc (Ω;ℝ
2) as k →∞. In particular, we have that

H1(Γk) → H1(Γ)

as k →∞.
We now prove that νk

∗
⇀ μ as k →∞. Take any φ ∈ Cc(ℝ2) and fix ε > 0. By the uniform continuity of φ

we find δ > 0 such that, if |(x, y − 1
k ) − (x, y)| < δ, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
φ(x, y − 1

k
) − φ(x, y)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε.
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Then, for k large enough,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

φzk dH1 + ∫
Γk

rkφ dH1 − ∫
Γ

φu dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃∩{h> 1k }

φ(x, y − 1
k
)u dH1 + ∫

Γ̃∩{h=0}

φu(x, 0) dH1 − ∫

Γ̃

φu dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γck

φu dH1 − ∫
Γc
φu dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ‖φ‖C0(ℝ2)H

1(Γk)rk

≤ ε‖u‖L1(Γ̃) +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃∩{h> 1k }

φu dH1 − ∫

Γ̃∩{h>0}

φu dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γc\Γck

φu dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ‖φ‖C0(ℝ2)H

1(Γk)rk .

Here we notice that Γc \ Γck → 0, rk → 0 and that Γ̃ ∩ {h > 1
k } → Γ̃ ∩ {h > 0} as k →∞. From these considera-

tions, as ε is arbitrary, we infer that νk
∗
⇀ μ as k →∞.

Step 1.3. Finally, we prove the convergence of the energy. First, by a standard argument, we can reduce to the
case u ∈ L∞(Γ). Thus, we have

|G(Ωk , wk , νk) − G(Ω, v, μ)| ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωk

W(E(wk) − E0(y)) dx − ∫
Ω

W(E(v) − E0(y)) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃k

ψ̃(zk + rk) dH1 − ∫

Γ̃

ψ̃(u) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γck

ψc(zk + rk) dH1 − ∫
Γc
ψc(u) dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7.14)

Regarding the bulk term on the right-hand side of (7.14), since wk ⇀ v inW1,2
loc (Ω;ℝ

2) as k →∞, we have that

lim
k→∞

E(wk) = E(v).

Remember that, by construction, Ωk ⊂ Ω. From the fact that Ωk → Ω in L1 as k →∞, we can find k̄ ∈ ℕ such
that for every k ≥ k̄, we have |Ω \ Ωk| < ε. Then, for k ≥ k̄, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωk

W(E(wk) − E0(y)) dx − ∫
Ω

W(E(v) − E0(y)) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
Ωk

|W(E(wk) − E0(y)) −W(E(v) − E0(y))| dx

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω\Ωk

W(E(v) − E0(y)) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7.15)

Notice that the first term on the right-hand side of (7.15) is zero, whereas, by Dominated Convergence Theorem,
we can conclude that the second term is going to zero as k →∞.

We now consider the surface terms on the right-hand side of (7.14). From (7.13), we can choose k large
enough so that rk ≤ 1. Since u ∈ L∞(Γ), we have that ψ̃ and ψc are uniformly continuous in [0, ‖u‖L∞ + 1]. Then,
for every ε > 0, there is k̄ ∈ ℕ such that, for every k ≥ k̄,

|ψ̃(u + rk) − ψ̃(u)| < ε and |ψc(u + rk) − ψc(u)| < ε. (7.16)

For the first term, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃k

ψ̃(zk + rk) dH1 − ∫

Γ̃

ψ̃(u) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃

[ψ̃(u + rk) − ψ̃(u)] dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ̃∩{0<h< 1k }

ψ̃(zk + rk) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7.17)
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Now we use (7.16), together with
Γ̃ ∩ {0 < h < 1

k
} → 0,

and we conclude the convergence to 0 of the surface term in (7.17), as k →∞. Regarding the second surface
term on the right-hand side of (7.14), we have that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γck

ψc(u + rk) dH1 − ∫
Γc
ψc(u) dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γc
[ψc(u + rk) − ψc(u)] dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

Γc∩{h−(x)− 1k <y<h−(x)}
ψc(u) dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(7.18)

From (7.16) and since
Γc ∩ {h−(x) − 1

k
< y < h−(x)} → 0

for k →∞, we conclude our estimate on the cut part.
By putting together (7.15), (7.17) and (7.18) in (7.14), we get that

lim
k→∞

G(Ωk , wk , νk) = G(Ω, v, μ).

Step 2. Now, consider h ∈ BV(a, b)with a finite number of cuts. Let (ci)ni=1 ⊂ (a, b) be the orthogonal projection
on the x-axes of the cuts. Set

ε0 := min{|ci − cj| : i ̸= j = 1, . . . , n}. (7.19)

In order to lighten the notation, and since we are considering a function h which has a finite number of cut
points, we can work as h had a single cut and then repeating the following construction for the general case. So
let c be the cut point of h.

The idea of the construction is to use a Yosida–Moreau transform far from the cut point a < c < b and,
around the cut, we use an interpolation in [c − ε0k , c +

ε0
k ] in order to get the Hausdorff convergence to the

vertical cut. We need to apply the Yosida–Moreau transform of h with maximal slope k beforehand because
we need the mass constraint to be satisfied, as we want to use the same procedure as in (7.10), which requires
a sequence that lies below h. Moreover, since we use the Yosida–Moreau transform of h with maximal slope k
far form the cut point, thanks to [15, Lemma 2.7], we have the Hausdorff convergence to our configuration as
well as the convergence of the length of the graph.

We define, for each k ∈ ℕ, hℓk : (a, c) 󳨃→ [0,∞) as the Yosida–Moreau transform of h with maximal slope k
on (a, c) and hrk : (c, b) 󳨃→ [0,∞) as the Yosida transform of h on (c, b). Namely,

hℓk(x) := inf{h(z) + k|x − z| : z ∈ (a, c)},
hrk(x) := inf{h(z) + k|x − z| : z ∈ (c, b)}.

We have that both hℓk and h
r
k are k-Lipschitz functions such that h

ℓ
k ≤ h and h

r
k ≤ h. Furthermore, by [15, Lem-

ma 2.7] we have that Ωhℓk → Ω ∩ [(a, c) × ℝ] and Ωhrk → Ω ∩ [(c, b) × ℝ] as k →∞, together with their conver-
gence of the length of their respective graph, namely

H1(Γhℓk ) → H1(Γ ∩ ((a, c) × ℝ)),

H1(Γhrk ) → H1(Γ ∩ ((c, b) × ℝ))

as k →∞. We can also extend by continuity hℓk and h
r
k at c, as we have both right and left limit of h at c. We are

going to use the following notation:
Sk := [c −

ε0
k
, c + ε0

k
] × ℝ,

Sℓk := [c −
ε0
k
, c] × ℝ,

Srk := [c, c +
ε0
k
] × ℝ,

where ε0 is defined in (7.19). The definition of our sequence (hk)k uses the definition of hℓk and h
r
k outside Sk

whereas in Sk we have a linear interpolation from the cut point (c, h(c)) and the points (c − ε0k , h
ℓ
k(c −

ε0
k )
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and (c + ε0k , h
r
k(c +

ε0
k )). We define our Lipschitz sequence as

ĥk(x) :=

{{{{{{
{{{{{{
{

hℓk(x), x ∈ (a, c − ε0k ),
mℓkx + q

ℓ
k , x ∈ Sℓk ,

mr
kx + q

r
k , x ∈ Srk ,

hrk(x), x ∈ (c + ε0k , b),

with suitable coefficientsmℓk , q
ℓ
k ,m

r
k , q

r
k ∈ ℝ such thatwe have linear interpolation from (c −

ε0
k , h
ℓ
k(c −

ε0
k )) and

(c + ε0k , h
r
k(c +

ε0
k )) to the point (c, h(c)). Notice that, by definition, ĥk(c) = ĥ(c) and hk is continuous. Moreover,

thanks to Theorem 3.2, for k large enough, it holds that ĥk ≤ h. Now, following the same path as in (7.10), we set

hk(x) := ĥk(x) + εk ,

where

εk :=
1

b − a
(M −

b

∫
a

ĥk(x) dx).

We then have that the sequence (hk)k satisfies the mass constraint, namely,

b

∫
a

hk(x) dx = M.

Step 2.1. For every k ∈ ℕ, let Ωk be the sub-graph of hk . We prove that ℝ2 \ Ωk
H
→ ℝ2 \ Ω as k →∞. We use

again the equivalence of the Hausdorff convergence with the Kuratowski convergence (see Proposition 3.9).
Take x̄ = (x̄, ȳ) ∈ ℝ2 \ Ω. We first want to prove that there exists a sequence (xk , yk)k ⊂ ℝ2 \ Ωk such that
(xk , yk) → x̄. Then we have different cases depending on whether x̄ ∈ Sk or not. In case x̄ ∉ Sk , as the sequence
(hk)k is defined as the Yosida–Moreau transform of h, away from the cut point we can use [15, Lemma 2.7] and
we have already the Hausdorff convergence desired.

Next we deal the case in which x̄ ∈ Sk . If x̄ = c and ȳ ≤ h−(c), consider the sequence

(xk , yk) := (
ȳ − qℓk
mℓk

, ȳ)

for every k ∈ ℕ. We obtain (xk , yk) → (c, ȳ) as k →∞.
In case x̄ = c and ȳ ≥ h−(c) or in case x̄ ̸= c, it is enough to consider the constant sequence (xk , yk) := (c, ȳ),

since by definition hk ≤ h and thus we have that (x̄, ȳ) ∈ ℝ2 \ Ωk , for every k ∈ ℕ.
We are left to check the second condition of the Kuratowski convergence. Take a sequence

(xk , yk)k ⊂ ℝ2 \ (Ωk ∩ Sk)

and suppose that (xk , yk) → (x, y) as k →∞. We need to prove that (x, y) ∈ ℝ2 \ Ω. Since (xk , yk) ∈ Sk and the
vertical strip Sk is shrinking to the vertical line c × ℝ, wemust have that x = c and thus the point (x, y) ∈ ℝ2 \ Ω.

In case our sequence (xk , yk)k is laying both in ℝ2 \ (Ωk ∩ Sk) and in ℝ2 \ (Ωk \ Sk), as it is converging, it
is enough consider k large enough and we get that (xk , yk) is only in one of the two sets. Then we can proceed
as before.

Thus, we can conclude that ℝ2 \ Ωk
H
→ ℝ2 \ Ω as k →∞.

Step 2.2. We are going to define a density on Γk . Since u is grid constant, we can consider a family of squares
(Qj)j∈J , with J = {1, . . . , N}, such that on each square Qj we have

u|Qj∩Γ = uj ∈ ℝ.

We now define two index sets
Ak := {j ∈ J : Qj ∩ Sk = 0}, Bk := J \ Ak . (7.20)
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In order to define what follows, we recall Lemma 5.4. The density is then defined as uk : Γk → ℝ by

uk(x) :=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

uj H
1(Γ̃ ∩ Qj)

H1(Γk ∩ Qj)
, x ∈ Γk ∩ Qj , j ∈ Ak ,

aj H1(Γc ∩ Qj)
H1(Γk ∩ Qj ∩ Sℓk)

, x ∈ Γk ∩ Qj ∩ Sℓk , j ∈ Bk ,

bj H1(Γc ∩ Qj)
H1(Γk ∩ Qj ∩ Srk)

, x ∈ Γk ∩ Qj ∩ Srk , j ∈ Bk ,

uj H
1((Γ̃ ∩ Qj) \ Sk)

H1((Γk ∩ Qj) \ Sk)
, x ∈ (Γk ∩ Qj) \ Sk , j ∈ Bk ,

where aj , bj are such that
aj + bj = uj (7.21)

and
ψc(uj) = ψ̃(aj) + ψ̃(bj). (7.22)

As the size of the squares is fixed, we take k large enough such that the vertical strip Sk is contained in a single
vertical column of squares.

For each k ∈ ℕ, define the measure μk := ukH1 Γk . We have that μk satisfies the density constraint.
Indeed,

∫
Γk

uk dH1 = ∑
j∈Ak
∫

Γk∩Qj

uj H
1(Γ̃ ∩ Qj)

H1(Γk ∩ Qj)
dH1 + ∑

j∈Bk
( ∫

Γk∩Qj∩Sℓk
aj H1(Γc ∩ Qj)
H1(Γk ∩ Qj ∩ Sℓk)

dH1

+ ∫

Γk∩Qj∩Srk

bj H1(Γc ∩ Qj)
H1(Γk ∩ Qj ∩ Srk)

dH1 + ∫

(Γk∩Qj)\Sk

uj
H1((Γ̃ ∩ Qj) \ Sk)
H1((Γk ∩ Qj) \ Sk)

dH1)

= ∑
j∈Ak

ujH1(Γ̃ ∩ Qj) + ∑
j∈Bk
(ajH1(Γc ∩ Qj) + bjH1(Γc ∩ Qj) + ujH1((Γ̃ ∩ Qj) \ Sk))

=
N
∑
j=1
∫

Γ∩Qj

uj dH1 = m,

where in the previous to last step we used (7.21).

Step 2.3. We prove that μk
∗
⇀ μ. Take any φ ∈ Cc(ℝ2). For every ε > 0, we can find k̄ ∈ ℕ such that for every

k ≥ k̄ we have |φ(x) − φ(xj)| ≤ ε for all x ∈ Qj , where xj denotes the center of the square Qj . From Lemma 5.4
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

φuk dH1 − ∫
Γ

φu dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∑

Ak

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj

φuk dH1 − ∫

Γ̃∩Qj

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
Bk
(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj∩Sk

φuk dH1 − ∫

Γ∩Qj∩Sk

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

(Γk∩Qj)\Sk

φuk dH1 − ∫

(Γ̃∩Qj)\Sk

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
). (7.23)

We now compute first the sum over the indexes in Ak on the right-hand side of (7.23). By summing and subtract-
ing φ(xj) inside each of the integral, it holds that

∑
j∈Ak

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj

φuj H
1(Γ̃ ∩ Qj)

H1(Γk ∩ Qj)
dH1 − ∫

Γ̃∩Qj

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2 ∑

j∈Ak
|φ(x) − φ(xj)||uj|H1(Γ̃ ∩ Qj)

≤ 2ε ∑
j∈Ak

H1(Γ̃ ∩ Qj)|uj|

≤ 2ε‖u‖L1(Γ̃) . (7.24)
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We now estimate the sum over Bk on the right-hand side of (7.23). Note that, up taking a larger k̄ ∈ ℕ, we can
assume that

∑
j∈Bj
|H1(Γ ∩ Qj ∩ Sk) −H1(Γ ∩ Qj)| ≤ 4ε

for all k ≥ k̄. Bearing in mind that for every j ∈ ℕ it holds aj + bj = uj , we get

∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj∩Sk

φuk dH1 − ∫

Γ∩Qj∩Sk

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= ∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj∩Sℓk
φaj H1(Γc ∩ Qj)

H1(Γk ∩ Qj ∩ Sℓk)
dH1

+ ∫

Γk∩Qj∩Srk

φbj H1(Γc ∩ Qj)
H1(Γk ∩ Qj ∩ Srk)

dH1 − ∫

Γ∩Qj∩Sk

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2ε ∑
j∈Bk

uj(H1(Γc ∩ Qj) +H1(Γ ∩ Qj ∩ Sk))

+ |φ(xj)|uj
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
H1(Γc ∩ Qj) −H1(Γ ∩ Qj ∩ Sk)|

≤ 2ε(2‖u‖L∞(Γ) + 4ε) + 4ε‖φ‖C0(ℝ2)‖u‖L∞(Γ) . (7.25)

In the same way, we can obtain the estimate for last two terms of the sum over Bk on the right-hand side
of (7.23),

∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

(Γk∩Qj)\Sk

φuj dH1 − ∫

(Γ̃∩Qj)\Sk

φuj dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cε‖u‖L1(Γ̃) (7.26)

for some constant C > 0. In conclusion, if we put together (7.23), (7.24), (7.25), (7.26), we obtain that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

φuk dH1 − ∫
Γ

φu dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< C󸀠ε,

with C󸀠 > 0. Since ε is arbitrary, we get that μk
∗
⇀ μ as k →∞.

Step 2.4. Arguing as in (7.12), we can define the displacement sequence (vk)k , with vk ∈ W1,2(Ωk ;ℝ2) such that
vk ⇀ v inW1,2

loc (Ω;ℝ
2) as k →∞.

Step 2.5. It remains to prove the convergence of the energy. By using the index sets in (7.20), we have that

|G(Ωk , vk , μk) − G(Ω, v, μ)| ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωk

W(E(vk) − E0(y)) dx − ∫
Ω

W(E(v) − E0(y)) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
j∈Ak

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj

ψ̃(uj) dH1 − ∫

Γ̃∩Qj

ψ̃(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 − ∫

Γc∩Qjk

ψc(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

(Γk∩Qj)\Sk

ψ̃(uj) dH1 − ∫

(Γ̃∩Qj)\Sk

ψ̃(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7.27)

We will estimate the four terms on the right-hand side of (7.27) separately. For the bulk term, we can use the
same method as in (7.15) and we conclude that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωk

W(E(vk) − E0(y)) dx − ∫
Ω

W(E(v) − E0(y)) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
→ 0 (7.28)

as k →∞.
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We now consider the first sum on the right-hand side of (7.27). We have that

∑
j∈Ak

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj

ψ̃(uj
H1(Γ̃ ∩ Qj)
H1(Γk ∩ Qj)

) dH1 − ∫

Γ̃∩Qj

ψ̃(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
j∈Ak

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ψ̃(uj H

1(Γ̃ ∩ Qj)
H1(Γk ∩ Qj)

)H1(Γk ∩ Qj) − ψ̃(uj)H1(Γk ∩ Qj)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑
j∈Ak
|ψ̃(uj)H1(Γk ∩ Qj) − ψ̃(uj)H1(Γ̃ ∩ Qj)|. (7.29)

From the fact that ψ̃ is continuous and sinceH1(Γk ∩ Qj) → H1(Γ̃ ∩ Qj) as k →∞, for every ε > 0, there is k̄ ∈ ℕ
such that for every k ≥ k̄ we have

|H1(Γk ∩ Qj) −H1(Γ̃ ∩ Qj)| < ε
and 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ψ̃(uj
H1(Γ̃ ∩ Qj)
H1(Γk ∩ Qj)

) − ψ̃(uj)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε.

Then, from (7.29) we have that

∑
j∈Ak

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj

ψ̃(uj H
1(Γ̃ ∩ Qj)

H1(Γk ∩ Qj)
) dH1 − ∫

Γ̃∩Qj

ψ̃(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ε ∑

j∈Ak
H1(Γk ∩ Qj) + ε ∑

j∈Ak
ψ̃(uj). (7.30)

As ε is arbitrary, we can conclude our estimate.
Regarding the second sum on the right-hand side of (7.27), we use the a similar method as in (7.25). Now, for

the first two terms can be estimated as follows:

∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 − ∫

Γc∩Qj

ψc(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ψ̃(aj H1(Γc ∩ Qj)

H1(Γk ∩ Qj ∩ Sℓk)
)H1(Γk ∩ Qj ∩ Sℓk)

+ ψ̃(bj H1(Γc ∩ Qj)
H1(Γk ∩ Qj ∩ Srk)

)H1(Γk ∩ Qj ∩ Srk) − ψ
c(uj)H1(Γc ∩ Qj)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7.31)

By using the same argument that led us to (7.30), consider ε > 0 as before, then, for k large enough, we have

|H1(Γk ∩ Qj ∩ Sℓk) −H
1(Γc ∩ Qj)| < ε,

|H1(Γk ∩ Qj ∩ Srk) −H
1(Γc ∩ Qj)| < ε,

and, by the continuity of ψ̃,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ψ̃(aj H1(Γc ∩ Qj)

H1(Γk ∩ Qj ∩ Sℓk)
) − ψ̃(aj)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ψ̃(bj H1(Γc ∩ Qj)

H1(Γk ∩ Qj ∩ Srk)
) − ψ̃(bj)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε.

As a consequence, from (7.31) we get

∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 − ∫

Γc∩Qj

ψc(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ε ∑
j∈Bk
(H1(Γk ∩ Qj ∩ Sℓk) +H

1(Γk ∩ Qj ∩ Srk))

+ ∑
j∈Bk
|ψ̃(aj)H1(Γk ∩ Qj ∩ Sℓk) + ψ̃(bj)H

1(Γk ∩ Qj ∩ Srk) − ψ
c(uj)H1(Γc ∩ Qj)|

= ε ∑
j∈Bk

H1(Γk ∩ Qj ∩ Sk) + ε ∑
j∈Bk
(ψ̃(aj) + ψ̃(bj)) + ∑

j∈Bk
|ψ̃(aj) + ψ̃(bj) − ψc(uj)|H1(Γc ∩ Qj) (7.32)

Now, we conclude our estimate by using (7.22) and the fact that ε is arbitrary.
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The third sum in the right-hand side of (7.27) can be treated in the same way as before. Consider ε > 0 as
above, then, for k large enough, we have

|H1((Γ̃ ∩ Qj) \ Sk) −H1(Γ̃ ∩ Qj)| < ε

and 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ψ̃(uj

H1((Γ̃ ∩ Qj) \ Sk)
H1((Γk ∩ Qj) \ Sk)

) − ψ̃(uj)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε.

Thus, we have

∑
j∈Bk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

(Γk∩Qj)\Sk

ψ̃(uj
H1((Γ̃ ∩ Qj) \ Sk)
H1((Γk ∩ Qj) \ Sk)

) dH1 − ∫

(Γ̃∩Qj)\Sk

ψ̃(uj) dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ε ∑
j∈Bk

H1((Γk ∩ Qj) \ Sk) + ε ∑
j∈Bk

ψ̃(uj)H1((Γk ∩ Qj) \ Sk)

+ ∑
j∈Bk
|ψ̃(uj)H1((Γk ∩ Qj) \ Sk) − ψ̃(uj)H1(Γ̃ ∩ Qj)|. (7.33)

Since ε is arbitrary and from the fact that H1((Γk ∩ Qj) \ Sk) → H1(Γ̃ ∩ Qj) as k →∞, we can conclude the
last estimate.

By putting together (7.28), (7.30), (7.32) and (7.33) in (7.27), we conclude that

lim
k→∞

G(Ωk , vk , μk) = G(Ω, v, μ).

Proposition 7.8. Let (Ω, v, μ) be such that h is a non-negative Lipschitz function, v ∈W1,2(Ω;ℝ2) and μ = uH1 Γ,
with u ∈ L1(Γ) a grid constant density. Then there is a sequence (Ωk , vk , μk)k ⊂ Ar(m,M), with μk = ukH1 Γk
and uk ∈ L1(H1 Γk) grid constant, such that

lim
k→∞

F(Ωk , vk , μk) = G(Ω, v, μ),

and (Ωk , vk , μk) → (Ω, v, μ) as k →∞.

Proof. We divide the proof into seven steps.

Step 1. Denote by ψcvx the convex envelope of ψ, namely,

ψcvx := {ρ : ρ is convex and ρ ≤ ψ}.

It is well known (see, for instance, [18, Theorem 5.32 and Remark 5.33]) that for any given density w ∈ L1(Γg),
with g a Lipschitz function, then there is a sequence (wm)m ⊂ L1(Γg) such that wm ⇀ w in L1(Γg) and

lim
m→∞
∫
Γg

ψ(wm) dH1 = ∫
Γg

ψcvx(w) dH1 .

In particular, wmH
1 Γg

∗
⇀ wH1 Γg as k →∞. Therefore, if we prove the statement of the proposition for

ψ convex we also have it for ψ Borel. Thus, from now on, in order to enlighten the notation, we will assume ψ
to be a convex function.

Step 2. Take any configuration (Ω, v, μ), where h is a Lipschitz function, v ∈ W1,2(Ω;ℝ2) and μ = uH1 Γ is
a grid constant density. Then we can consider a finite grid of open squares (Qj)j∈J such that

u|Qj∩Γ = uj ∈ ℝ

for each j ∈ J. By construction, there are finitely many points a = x0 < x1 < ⋅ ⋅ ⋅ < xn = b such that u = ui ∈ ℝ on

graph(h) ∩ [(xi , xi+1) × ℝ]

for every i = 0, . . . , n (see Figure 6).
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Figure 6: On each interval [x i , x i+1], depending on whether u j > s0 or not, we will apply the wriggling process and change the density
to s0, or do not change anything.

Define the index sets

A := {i = 1, . . . , n : ui ≤ s0}, B := {i = 1, . . . , n} \ A, (7.34)

where s0 is given by Lemma 3.16. In such a way, we are going to apply the wriggling process for i ∈ B. By
Lemma 5.5, for every i ∈ B, we choose ri > 1 such that

ui = ris0 .

and we have, on each interval (xi , xi+1), a Lipschitz sequence (h̄ik)k , that verifies the following properties:
(i) H1(Γik) = r

iH1(Γ ∩ [(xi , xi+1) × ℝ]), where Γik := graph(h̄
i
k);

(ii) h(xi) = h̄ik(x
i) and h(xi+1) = h̄ik(x

i+1);
(iii) h|(xi ,xi+1) ≤ h̄ik ;
(iv) h̄ik → h|(xi ,xi+1) uniformly as k →∞;
(v) H1 Γik

∗
⇀ riH1 (Γ ∩ (xi , xi+1) × ℝ) as k →∞.

Then we define the Lipschitz sequence (h̄k)k as

h̄k|(xi ,xi+1) := {{
{

h̄ik , ui > s0 ,
h|(xi ,xi+1) , ui ≤ s0 .

By setting Γk := graph(h̄k), we define the density ūk on Γk as

ūk|(xi ,xi+1)×ℝ := {{
{

s0 , ui > s0
ui , ui ≤ s0 .

We have that the sequence (ūk)k define above satisfies the density constraint. Indeed, by considering the index
set defined in (7.34), we have

∫

Γk

ūk dH1 = ∑
i∈A

∫

Γk∩[(xi ,xi+1)×ℝ]
ui dH1 + ∑

i∈B
∫

Γk∩[(xi ,xi+1)×ℝ]
s0 dH1

= ∑
i∈A

uiH1(Γk ∩ [(xi , xi+1) × ℝ]) + ∑
i∈B

s0H1(Γk ∩ [(xi , xi+1) × ℝ])

= ∑
i∈A

uiH1(Γ ∩ [(xi , xi+1) × ℝ]) + ∑
i∈B

s0riH1(Γ ∩ [(xi , xi+1) × ℝ])

=
n
∑
i=1

∫

Γ∩[(xi ,xi+1)×ℝ] u
i dH1

= m,
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where in the third to last step we used the fact that

H1(Γk ∩ [(xi , xi+1) × ℝ]) = riH1(Γ ∩ [(xi , xi+1) × ℝ]) (7.35)

for every i ∈ B.

Step 3. Since in general h ≤ h̄k , we have that M = |Ω| ≤ |Ωk|, where Ωk is the sub-graph of h̄k , for each k ∈ ℕ.
In order to fix the mass constraint we set

γk :=
M
|Ωk|
≤ 1, (7.36)

and we have that γk → 1 as k →∞. Define, for each k ∈ ℕ,

hk := γk h̄k .

Now the sequence (hk)k satisfies the mass constraint, indeed
b

∫
a

hk dx =
b

∫
a

γk h̄k dx = γk|Ωk| = M.

Now, let Γk := graph(hk). Since in general, for every k ∈ ℕ, H1(Γk) ≤ H1(Γk), we need to adjust the density
constraint. By knowing that

∫

Γk

ūk dH1 = m,

we need to define a new sequence of density (uk)k on Γk such that, for every k ∈ ℕ,

∫
Γk

uk dH1 = m.

Thus we set, for each k ∈ ℕ,
uk :=

ūk
tk
,

with
tk :=

H1(Γk)
H1(Γk)

≤ 1.

Notice that tk → 1 as k →∞. We have that the sequence (uk)k satisfies the density constraint. Indeed,

∫
Γk

uk dH1 =
ūk
tk

H1(Γk) = ūkH1(Γk) = ∫
Γk

ūk dH1 = m.

Step 4. We now prove the convergence of the density, namely ukH1 Γk
∗
⇀ uH1 Γ. To do so, we first prove

that ūkH1 Γk
∗
⇀ uH1 Γ, and then we conclude by triangle inequality.

Take any φ ∈ Cc(ℝ2) and consider ε > 0. We can find δ > 0 such that, if x, y ∈ ℝ2 satisfy

|y − x| < δ,

then
|φ(y) − φ(x)| < ε. (7.37)

Up to refining the intervals (xi , xi+1), we can assume that

|xi − xi+1| < δ
√2

.

Let K > 0 such that for every k ∈ ℕ we have hk ≤ K and h ≤ K. This is possible, as our sequence is uniformly
bounded by definition and h is bounded. Consider a finite partition of [0, K] given by y0 = 0, y1 , . . . , ym = K such
that for every l = 1, . . . ,m we have

|yl − yl+1| < δ
√2

.

Moreover, for every l, consider ȳl ∈ [yl , yl+1]. Then, from (7.37), for every x ∈ [xi , xi+1] × [yl , yl+1], we have

|φ(x) − φ(x̄i , ȳl)| < ε.
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We then have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk

ūkφ dH1 − ∫
Γ

uφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
i∈A

∫

Γk∩[(xi ,xi+1)×ℝ]
uiφ dH1 + ∑

i∈B
∫

Γk∩[(xi ,xi+1)×ℝ]
s0φ dH1 −

n
∑
i=0

∫

Γ∩[(xi ,xi+1)×ℝ] u
iφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ∑
i∈B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩[(xi ,xi+1)×ℝ]
s0φ dH1 − ∫

Γ∩[(xi ,xi+1)×ℝ] u
iφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
m
∑
l=0
∑
i∈B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk∩[(xi ,xi+1)×(yl ,yl+1)]
s0[φ(x) − φ(x̄i , ȳl)] dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
m
∑
l=0
∑
i∈B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γ∩[(xi ,xi+1)×(yl ,yl+1)] u
i[φ(x) − φ(x̄i , ȳl)] dH1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
m
∑
l=0
∑
i∈B
|s0φ(x̄i , ȳl)H1(Γk ∩ [(xi , xi+1) × (yl , yl+1)])

− uiφ(x̄i , ȳl)H1(Γ ∩ [(xi , xi+1) × (yl , yl+1)])|

≤ εs0
m
∑
l=0
∑
i∈B

H1(Γk ∩[(xi , xi+1)×(yl , yl+1)]) + εui
m
∑
l=0
∑
i∈B

H1(Γ∩[(xi , xi+1)×(yl , yl+1)])

+ ‖φ‖C0(ℝ2)

m
∑
l=0
∑
i∈B
|s0H1(Γk ∩ [(xi , xi+1) × (yl , yl+1)])

− uiH1(Γ ∩ [(xi , xi+1) × (yl , yl+1)])|
≤ εs0∑

i∈B
H1(Γk ∩ [(xi , xi+1) × ℝ]) + εui∑

i∈B
H1(Γ ∩ [(xi , xi+1) × ℝ])

+ ‖φ‖C0(ℝ2)∑
i∈B
|s0H1(Γk ∩ [(xi , xi+1) × ℝ]) − uiH1(Γ ∩ [(xi , xi+1) × ℝ])|.

Now, by using condition (7.35) we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk

ūkφ dH1 − ∫
Γ

uφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2ε‖u‖L1(Γ) , (7.38)

where we can conclude as ε was arbitrary.
In order to prove that ukH1 Γk

∗
⇀ uH1 Γ, we can use (7.38) together with the triangle inequality and

the following estimates. We fix φ and ε as in (7.37), so we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

ukφ dH1 − ∫

Γk

ūkφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

(
ūk
tk
φ(x, hk(x))√1 + γ2k h̄

󸀠
k(x)2 − ūkφ(x, h̄k(x))√1 + h̄

󸀠
k(x)2) dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

[(
1
tk
− 1)ūkφ(x, hk(x))√1 + γ2k h̄

󸀠
k(x)2

+ ūkφ(x, hk(x))√1 + γ2k h̄
󸀠
k(x)2 − ūkφ(x, h̄k(x))√1 + h̄

󸀠
k(x)2] dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7.39)

Regarding the first term on the right-hand side of (7.39), we have that the sequence (h̄k)k is uniformly Lipschitz,
as stated in Remark 5.6. Then there is L > 0 such that |h̄󸀠k| ≤ L. Furthermore, we have that, for every k ∈ ℕ,
|ūk| ≤ C, with C > 0, and we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

(
1
tk
− 1)ūkφ(x, hk(x))√1 + γ2k h̄

󸀠
k(x)2 dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
tk
− 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
C‖φ‖C0(ℝ2)√1 + γ2kL2 , (7.40)

Now, we estimate the remaining two terms on the right-hand side of (7.39). Let ε󸀠 > 0. There is k󸀠 ∈ ℕ such that
for k ≥ k󸀠 we have

|γk − 1| ≤ ε󸀠 .
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Since the function x 󳨃→ √1 + x2 is Lipschitz we have
󵄨󵄨󵄨󵄨󵄨󵄨
√1 + γ2k h̄

󸀠
k(x)2 − √1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 2|γk h̄

󸀠
k(x) − h̄

󸀠
k(x)| ≤ 2L|γk − 1| ≤ 2Lε

󸀠 . (7.41)

Thus we have
b

∫
a

󵄨󵄨󵄨󵄨󵄨󵄨ūkφ(x, hk(x))
√1 + γ2k h̄

󸀠
k(x)2 − ūkφ(x, h̄k(x))√1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 dx

≤
b

∫
a

󵄨󵄨󵄨󵄨󵄨󵄨ūkφ(x, hk(x))
√1 + γ2k h̄

󸀠
k(x)2 − ūkφ(x, hk(x))√1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 dx

+
b

∫
a

󵄨󵄨󵄨󵄨󵄨󵄨ūkφ(x, hk(x))
√1 + h̄󸀠k(x)2 − ūkφ(x, h̄k(x))√1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 dx. (7.42)

Then the first term on the right-hand side of (7.42) can be estimated by using (7.41) and we get

b

∫
a

󵄨󵄨󵄨󵄨󵄨󵄨ūkφ(x, hk(x))
√1 + γ2k h̄

󸀠
k(x)2 − ūkφ(x, hk(x))√1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 dx ≤ K

󸀠ε󸀠 , (7.43)

where K󸀠 := 2LC(b − a)‖φ‖C0(ℝ2).
The second term on the right-hand side of (7.42) is estimated by using the uniform continuity of φ. Since

there is C󸀠 > 0 such that |hk| < C󸀠, for every k ∈ ℕ, we also have

|hk(x) − h̄k(x)| = |γk − 1||h̄k(x)| ≤ ε󸀠C󸀠 .

As a consequence, by using a similar approach as in (7.37), we get

b

∫
a

󵄨󵄨󵄨󵄨󵄨󵄨ūkφ(x, hk(x))
√1 + h̄󸀠k(x)2 − ūkφ(x, h̄k(x))√1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 dx ≤ K

󸀠󸀠ε, (7.44)

where K󸀠󸀠 := (b − a)C√1 + L2.
By putting (7.43) and (7.44) in (7.41), we get that

b

∫
a

󵄨󵄨󵄨󵄨󵄨󵄨ūkφ(x, hk(x))
√1 + γ2k h̄

󸀠
k(x)2 − ūkφ(x, h̄k(x))√1 + h̄

󸀠
k(x)2
󵄨󵄨󵄨󵄨󵄨󵄨 dx ≤ K

󸀠ε󸀠 + K󸀠󸀠ε. (7.45)

Now, by putting (7.40) and (7.45) in (7.39) we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

ukφ dH1 − ∫

Γk

ūkφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ K󸀠ε󸀠 + K󸀠󸀠ε +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
tk
− 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
C‖φ‖C0(ℝ2)√1 + γ2kL2 . (7.46)

Finally, by using (7.38) and (7.46) we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

ukφ dH1 − ∫
Γ

uφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γk

ukφ dH1 − ∫

Γk

ūkφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Γk

ūkφ dH1 − ∫
Γ

uφ dH1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2ε‖u‖L1(Γ) + K󸀠ε󸀠 + K󸀠󸀠ε +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
tk
− 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
C‖φ‖C0(ℝ2)√1 + γ2kL2 .

we can conclude since ε and ε󸀠 were arbitrary and by letting k →∞.

Step 5. Regarding the displacement, set
vk(x, y) := v(x, γky).

The definition of the vk is well posed, indeed (x, γky) ∈ Ωk if and only if y ≤ h̄k(x). In particular, h ≤ h̄k , hence
v(x, γky) is well defined at every point. Notice that, since hk ≥ 0, we have that for y ≤ 0 it holds vk = v. Thus,
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denote the bounded open set
Ω+ := Ω ∩ {y > 0}

and note that the set
Ω+k := {(x, γky) : (x, y) ∈ Ω

+}

is also open and bounded.
We now prove that vk ⇀ v in W1,2

loc (Ω;ℝ
2) as k →∞. Indeed, take φ ∈ Cc(ℝ2). Fix ε > 0 and since φ is

uniformly continuous, we have that |φ(x) − φ(y)| < ε, every time |x − y| < δ for some δ > 0. In particular, since
γk → 1, if k is large enough, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
φ(x, y

γk
) − φ(x, y)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< ε.

By using the above fact, we get (recalling (7.36))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝ2

vkφ dx − ∫
ℝ2

vφ dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω+
k

vkφ dx − ∫
Ω+ vφ dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
γk
∫
Ω+ v(x, y)φ(x,

y
γk
) dx dy − ∫

Ω+ v(x, y)φ(x, y) dx dy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1
γk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω+ v(x, y)[φ(x,

y
γk
) − φ(x, y)] dx dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ (

1
γk
− 1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω+ v(x, y)φ(x, y) dx dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
ε
γk
‖v‖L1(Ω) + (

1
γk
− 1)‖v‖L2(Ω)‖φ‖L2(Ω) .

By letting ε → 0 and k →∞, we conclude the first estimate. Here, we used the Sobolev embedding for
W1,2(Ω+;ℝ2).

Now we prove the convergence of the gradient. First we note that the gradients are uniformly bounded,
namely it can be verified that

‖∇vk‖L2(Ω) ≤ C‖∇v‖L2(Ω)
for some positive uniform constant C > 0. Thus, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝ2

∇vk ⋅ ∇φ dx − ∫
ℝ2

∇v ⋅ ∇φ dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω+
k

∇vk ⋅ ∇φ dx − ∫
Ω+ ∇v ⋅ ∇φ dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1
λk
∫
Ω+ ∂xv(x, y)∂xφ(x,

y
λk
) dx dy + ∫

Ω+ ∂yv(x, y)∂yφ(x,
y
λk
) dx dy,

and, from similar estimates as before, togetherwith the uniform boundedness of the gradients, we can conclude
that vk ⇀ v inW1,2(Ω+;ℝ2), as k →∞.

Step 6. It remains to prove the convergence of the energy. Set μk := ukH1 Γk . We have

F(Ωk , vk , μk) − G(Ω, v, μ) = ∫
Ωk

W(E(vk) − E0(y))dx − ∫
Ω

W(E(v) − E0(y))dx + ∫
Γk

ψ(uk)dH1 − ∫
Γ

ψ̃(u)dH1 . (7.47)

Step 6.1. We now prove the convergence of the bulk term in (7.47). We have

∫
Ωk

W(E(vk) − E0(y)) dx − ∫
Ω

W(E(v) − E0(y)) dx

= ∫
Ωk

W(E(v(x, γky)) − E0(y)) dx − ∫
Ω

W(E(v) − E0(y)) dx

=
1
γk
[∫

Ωk

W(E(v(x, z)) − E0(
z
γk
)) dx dz − ∫

Ω

W(E(v) − E0(z)) dx dz]

+ (
1
γk
− 1)∫

Ω

W(E(v) − E0(z)) dx dz. (7.48)
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By noticing that E0(z) = E0( zγk ), fix ε
󸀠 > 0 such that, if k is large enough, |Ωk \ Ω| ≤ ε󸀠. In the first two terms on

the right-hand side of (7.48), we have that, for every k, Ω ⊂ Ωk , and then we can proceed as in (7.15), and we get

1
γk
[∫
Ωk

W(E(v(x, z)) − E0(z)) dx dz − ∫
Ω

W(E(v) − E0(z)) dx dz] =
1
γk
∫

Ωk\Ω

W(E(v) − E0(y)) dx dz.

From here we conclude by Dominated Convergence Theorem. Notice that the second term on the right-hand
side of (7.48) is going to zero, since γk → 1 as k →∞.

From here we conclude the convergence of the bulk term in (7.47).

Step 6.2. We now consider the surface terms in (7.47). Using the index sets defined in (7.34), we get

∫
Γk

ψ(uk) dH1 = ∑
i∈A

∫

Γk∩[(xi ,xi+1)×ℝ] ψ(
uj

tk
) dH1 + ∑

i∈B
∫

Γk∩[(xi ,xi+1)×ℝ] ψ(
s0
tk
) dH1 .

By using the fact that ψ is continuous (as we are in the convexity assumption stated in Step 1) and from the fact
that, for every i ∈ B,

ψ( s0
tk
)H1(Γk ∩ [(xi , xi+1) × ℝ]) = ri tkψ(

s0
tk
)H1(Γ ∩ [(xi , xi+1) × ℝ]),

we get

lim
k→∞
∫
Γk

ψ(uk) dH1 = lim
k→∞
[∑
i∈A

ψ(u
j

tk
)H1(Γ ∩ [(xi , xi+1) × ℝ]) + ∑

i∈B
ri tkψ(

s0
tk
)H1(Γ ∩ [(xi , xi+1) × ℝ])]

= ∑
i∈A

ψ(uj)H1(Γ ∩ [(xi , xi+1) × ℝ]) + ∑
i∈B

riψ(s0)H1(Γ ∩ [(xi , xi+1) × ℝ])

= ∑
i∈A

ψ̃(uj)H1(Γ ∩ [(xi , xi+1) × ℝ]) + ∑
i∈B

ψ̃(uj)H1(Γ ∩ [(xi , xi+1) × ℝ])

= ∫
Γ

ψ̃(uj) dH1 .

This concludes the estimate for the surface term in (7.47).

Step 7. By putting all the steps together, we then conclude that

lim
k→∞

F(Ωk , vk , μk) = G(Ω, v, μ).

This completes the proof of Theorem 7.1.
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