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Abstract: We extend the Calderén-Zygmund theory for nonlocal equations to strongly coupled system of linear
nonlocal equations £ u = f, where the operator £ is formally given by

s _J Alx,y) X-y)®((x-Yy)
au=
Ix —y|*2s x - y|?

R"

(u(x) - u(y)) dy.

ForO0<s<1land A:R"xR" — R taken to be symmetric and serving as a variable coefficient for the opera-
tor, the system under consideration is the fractional version of the classical Navier-Lamé linearized elasticity
system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal
mechanics, primarily in peridynamics. Our regularity result states that if A(-,y) is uniformly Holder contin-

uous and infyern A(X, X) > 0, then for f € Lfoc, for p > 2, the solution vector u € lejc_‘s’p for some § € (0, s).
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1 Introduction

1.1 Motivation and notations
The goal of this work is to obtain Sobolev regularity estimates for solutions of the strongly coupled system of
linear nonlocal equations £ u = f, where the operator £, is formally given by

suzj A(X;)’) (X_)’)®(X_)’)
A X =y -yl

(u(x) - u@)) dy.

R

Herewetaken > 1,0 < s < 1,and A : R" x R" — Ris taken to be symmetric and serves as a variable coefficient
for the operator le. For vectors a = (ay,...,ay)and b = (by, ..., by) in R", the tensor product a ® b is the rank
one matrix with its (ij)th entry being a;b;.

Coupled systems of linear nonlocal equations of the above type appear in applications. In fact, the operator
L5 isrelated to the bond-based linearized peridynamic equation [31, 32]. To briefly describe where the operator
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comes from, consider a heterogeneous elastic solid occupying the domain Q in R", n = 1, 2, or 3, that is linearly
deforming when subjected to an external force field f. In the framework of the peridynamic model, a bounded
domain hosting an elastic material is conceptualized as a sophisticated mass-spring system. Here, any pair of
points x and y within the material is considered to interact through the bond vector x — y. When external load
f is applied, the material undergoes a deformation, mapping a point x in the domain to the point x + u(x) € R",
where the vector field u represents the displacement field. Adhering to the principles of uniform small strain
theory [32], the strain of the bond x - y is given by the nonlocal linearized strain

ux) —u@y) x-y
-yl Ix=-yl

The linearized bond-based peridynamic static model relates the displacement field u and the external load f by
the equation (see [8, 18])

s[ul(x, y) =

| ety dy=foo, xee,
]RVI
where the vector-valued pairwise force density function € is given by

C(s[ul(x, ), x,y) = A(x,y) p(x - y)s[u](xy)|—§|

Inthe above A(x, y) serves as a “spring constant” for the bond joining x and y and the function p is the interaction
kernel that is radial and describes the force strength between material points. After noting that

X-y (x-y)ex-y) ulx) -uy)
slulx.) Ix-yl |x - y|2 Ix -yl

L3 is precisely the linearized bond-based peridynamic operator corresponding to the kernel of interaction

px-y)= |X_y|n+2(s—1)'

To describe the problem we study, let us first introduce some standard notations and define relevant func-
tion spaces. For t € (0, 2) the fractional Laplacian (—A)% is, defined via the Fourier transform,
(-8)tu = 57 2n1é ),

where the Fourier transform is defined as F(u)(¢) = ii(§) = I]R" e~ 28y (x) dx. It also has a useful integral rep-
resentation and for any vector field u in the Schwartz class

)

(—A)éu(x) = CtnpVv. J ux) - uy)

|X _y|n+t
R

where pv. stands for the principal value, whose mentioning we will suppress. The inverse operator of the
fractional Laplacian is the Riesz potential whose integral representation is

(-A)"7v(x) = I'v(x) = ¢ J % dy
IR".

for a vector field v in the Schwartz class. We introduce types of fractional Sobolev spaces that we need to state the
main result: Bessel potential spaces H*? and Besov spaces WP.For1 < p < coand s € (0, 1), the Bessel potential
spaces H*P(R") are defined as follows: f € HSP(R") if f € LP(R") and (—A)éf € LP(RR"). The associated norm is

1Al zse mey = Iflecrey + 1(=D) 2 fllLo (rry.

For any open subset Q c R", the Besov spaces W5P(Q), for s € (0, 1), are induced by the semi-norm (called
Sobolev-Slobodeckij or Gagliardo norm)

(flwseq) = (JJ ) SO dx dy>p,

|x — y|n+sp
QQ
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and | - lwsr) = I - lzr(@) + [Jwsr(g) serves as a norm. For p = 2, WS%(R") = H%2(R"), which we denote by
HS(R™). For p < 2, we have WSP(R") ¢ H%P(R") and for p > 2, HSP(R") ¢ W*SP(R"). These spaces are partic-
ular examples of the more general Triebel-Lizorkin spaces and Fls,p(IR") = WSP(R") and F;,Z(IR”) = HSP(RM),
see [24].

Given s € (0,1), A € L°(R" x R") and u € L} (R", R"), we understand L5 u as a distribution defined as

S Ax,y) v -x v -x)
wsuwor= | | ey () ~ ) - 000 ~ 900y - [ dy dx

R RM

loc

for all ¢ € C°(R", R"). Moreover, if u € H¥(R", R"), then from the above definition, Lf;,u € HS(R", R") with
the estimate that 1
ILaullg-s < I"u"H%

where H5(R", R") represents the dual of H5(R", R").

Our interest is to address the question of regularity of solutions u to £ u = f relative to the data f. To
that end, we require the coefficient A to satisfy some continuity and boundedness assumptions. First, we say A
satisfies a uniform Hoélder continuity assumption if for some a € (0,1) and A > 0,

sup |A(z, x) - A(z,y)| < Alx - y|%. 1D

zZeRM

Given A, A > 0 and a € (0, 1), we define the coefficient class

Ala, A, A) = {A A(X,y) = AW, X), mf K, x) > A, Al < I and satisfies (1. 1)}

We note that members of the coefficient class A(a, 4, A) can be negative off diagonal. Indeed, as indicated in [19],
the coefficient A(x, y) = % +10(sin x + smy)1+|x ylﬂ belongs to A(a, A, A) for some A, A and yet can be
negative off diagonal.

Now for an openset @ ¢ R" and f € HS(R", R"), a vector field u € HS(R", R") isa solutionto L u = fin Q
if

(LSu, ) = (f, @) forallp e C°(Q,R"). 1.2)

In the event, A = 1, then operator agrees with the integral operator defined as
1 ( Z®2Z

2B\ 22 )(u(x) u(x +z))dz,

(—ﬁ)su(x) =PV I

]RY[

where the integral converges in the sense of principal value for smooth vector fields. For vector fields u in the
Schwarz space S(R", R"), we have

F(-h)*u) = (zma)“(eln + fzg)?( ) 13)

11>

for some positive constants #1 and ¢, depending only on n and s. As a consequence, as shown in [20] for any
7>0andf € LP(R", R") with 1 < p < 0o, then the solution u to

(—B)Su +tu=f

lives in H25P(R™, R™). For the nonlocal equation of variable coefficient (1.2), we would like to obtain a Sobolev
regularity of the above type for solutions in the event that the right hand side f has additional regularity. We
begin by noting that for some A and A, A € A(a, A, A), and f € H5(R", R™), a solution to (1.2) exists under some
volumetric condition on u and on the domain Q. Indeed, if Q is a Lipschitz domain, a minimizer of the energy

E(u) = %(Lzu, uy - {f, u)

over the space H5(Q) = {u € H(R", R") : u = 0 on R" \ Q} will satisfy equation (1.2). For a Lipschitz domain ,
H5(Q) is precisely the closure of C.(Q, R") in H*(R", R"), and therefore A(Q) is a Hilbert space with obvious
inner product, [17]. The existence of a minimizer for the quadratic functional E over H*(Q), with a possible sign
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changing A € A(a, A, A) will be shown later using Lax-Milgram theorem. As has been demonstrated in [18],
with a proper multiplicative constant c(s, n), in terms of the nonlocality parameter s, the operator c(s, n)Lj‘ u
that corresponds to A(x, y) = 1/2(a(x) + a(y)) will converge in an appropriate sense to the Lamé differential
operator

Lou(x) = div(a(x)Vu) + 2V(a(x) div u(x)).
This operator is strongly elliptic in the sense of Legendre-Hadamard but not uniformly elliptic. One can then
view (1.2) as a fractional analogue of the classical Navier-Lamé system of linearized elasticity equation.

1.2 Statement of the main result

The main result of the paper is the following interior regularity estimate which is the version of the regularity
result proved in [19] for the coupled system of nonlocal equations under discussion.

Theorem 1.1. Let s € (0,1) and s < t < min{2s, 1}. Let @ c R™ be an open bounded set. If for 2 < q < oo, f1,f2 €
LI(Q,RM) N L2(RY, RY), and u € HS(R™, R") is a distributional solution of Lju= (—A)%fl +f2 in Q, in the sense
that
(L5, 9) = J(fl, (-0)F 0y dx+ j<f2, 0)dx forallg e CO(QRY),
R R
with L3 correspondingto A € A(a, A, A) for some givena € (0,1) and A, A > 0, then we have(—A)é ue quOC(Q, R™)
and for any Q' cc Q we have

2
t
I(=D)zullzegry < C(llullwsl(W) + z IfillLe@) + ||fi||L2(1Rn)>-

i=1
The constant C depends only s, t, g, a, A, A, Q, and Q'.

Remark 1.2. Since q > 2, by the embedding theorems on Triebel-Lizorkin spaces, we have Ff{’z C Ffm, cf. [24]. As
a consequence, under the same assumption of the theorem, Theorem 1.1 implies that the solution u € Wf(;Z(Q)

and from the estimate we obtain

1
u(x) — u(y)|? a 2
[ulweagary = <J J 1400 - upit dx dy) < C<||u"W5v2(IR") + Z IfillLa) + ||fi||L2(1R")>-
Qo

_ y|nt+tqg
Ix -yl &

The proof of Theorem 1.1 parallels the approach used in [19]. Namely, we compare the operator £ with the

simpler operator f)f;l;sz, where s1 + 53 = 25, and is defined as, for u € H¥(R", R") and ¢ € CX(R", R"),

(& u, 0) = j Ap@){(cil + 2R @ R)(-8) P u(z), (-1) % 9(2)) dz (14)
]R'l
for constants ¢; and ¢, that will be determined as a function of s and n. In the above definition, the operator
R = (Rq, Ry, ..., Ry)isthe vector of Riesz transforms, and Ap(z) = A(z, z), the restriction of the coefficient A on
the diagonal. Notice that for constant coefficients the two operators £ and QZ’S coincide. Indeed, if A(x, y) = A,
constant, then by using (1.3), for vector fields in the Schwarz space
Liu = A(-B)"u = A(€r(-8) u + (R © R)(-B)}u) = E5°u
with ¢; = €1 and ¢; = £,. We will prove an optimal regularity result for solutions of the strongly coupled equation
(L 1, 0) = (g ) forallg e CX(R",R") (15)
and use those solutions as approximations of the solution to the original system of equations. The mechanism
we accomplish this is via perturbation argument where we show that the difference operator
Dot = Liu-E;lu

can be understood as a lower order term in the event that A is Holder continuous.
While our work studies solutions to strongly coupled linear nonlocal PDEs, there has been a number of
results in the literature that studied the regularity of solutions to scalar nonlocal PDEs. To name a few, opti-
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mal local regularity results are obtained in [2] for weak solutions to the Dirichlet problem associated with the
fractional Laplacian. Similar results are obtained for the fractional heat equation in [12, 13]. Almost optimal
regularity results are obtained in [5] for weak solutions to nonlocal equations with Hélder regular coefficients.
Optimal Sobolev regularity are proved in [7] for strong solutions to nonlocal equations with translation invari-
ant coefficients (A(x, y) = A(x — y)). For equations with less regular coefficients, higher integrability and higher
differentiability results are obtained in [21, 23] for nonlocal equations with variable coefficients that have small
mean oscillations. See also [9, 10] for related results. For elliptic, measurable, and bounded coefficients, solu-
tions to nonlocal PDEs are proved in [15] to have a self-improvement property where higher integrability and
higher differentiability are obtained without any smoothness assumption on the coefficients, see also [27]. Sim-
ilar results are also verified in [4, 30] for solutions to nonlocal double phase problems. For a concise description
of the results of the above mentioned manuscripts, we refer to [19]. See also [1, 3, 22].

The paper is organized as follows. In the next section, we will discuss some preliminary results we need in
the sequel. In Section 3, we estimate (D, ;u, @) in terms of the Riesz potential I = (—A)‘%. In Section 4, we will
develop the optimal regularity result for a solution of equation (1.5). In Section 5, we prove the main result of
the paper by using an iterative argument making use of the commutator estimate we prove in Section 3 and the
optimal regularity result obtained in Section 4.

Throughout the paper, we work under the convention that domains of integrals are always open sets and we
use the symbol cc to say compactly contained, e.g., Q1 cc Q; if Q; is compact and Q; c Q. Constants change
from line to line, and unless it is important we may not detail their dependence on various parameters. We
will make frequent use of <, > and =, which denotes inequalities with multiplicative constants (depending on
non-essential data). For example we say A < B if for some constant C > 0 we have A < CB. We will use the angle
bracket (-, -) to represent the standard inner product or the duality pairing depending on the context.

2 Some preliminaries

Our arguments below make use of the various definition and properties of fractional Laplacian operators,
accompanying Sobolev spaces, Sobolev inequalities, and various embedding that can be found in [24]. See [6, 11],
or monographs [25] for more on fractional operators.

Sobolev inequalities needed for this paper are proved in [19, Proposition 2.1] (see also [33]) and we summa-
rize them as follows.

Lemma 2.1. The following statements hold:
(@) Ifsp < n, then there exists a constant C = C(s, p, n) > 0 such that

||Isv||L & < ClVlrewrny foranyv e LP(R", R"). (VA

m=SP (R

o, . . . np . _
In addition, if @ ¢ R" is bounded, then corresponding to any q € [1, s ], there is a constant C = C(s,p,n, Q) > 0
such that

IIVILaq) < ClIVlLewny for any v e LP(R", R"). 2.2)

(b) If sp = n and Q c R" is bounded domain, then for any q € [1,0), and r € [1, %), there exists a constant
C = C(s,p, n, Q) > 0 such that for any v € LP(R", R"),

I1°VIizay < C(IVILerry + IVILrme))- 2.3)

The above Sobolev estimates together with the relationship between the fractional Laplacian and the Riesz
potentials yield the following result that is also stated and proved in [19, Proposition 2.4]. We state it here in
a slightly different way to suit our setting.

Lemma 2.2 ([19]). Suppose that n1, 2 € CX(R"), and 2 = 1 in the neighborhood of the support of n1. Then for
any Y € C(R") such that supp(¥) c {x: ni1(x) =1}, and any q, p € (1, 0c0) and t € (0, 2) we have

I(1 = 72)(=8)2 (1 =PI Y)llzawny < CIYlzo(wn)- 2.4
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Moreover; if r > —— > 1 for T < 1, then for any bounded set Q c R", there exists a constant C(Q) such that

n+Tp
I=8)E (L = DI W)l gy < CIY L goy- 25)
In either case the constant C may also depend on'r, q, 7, p, n, and on n1, Nz, but not on Y.

Notice that because of the strict inclusion of the support of 1 — 1, into the support of 1 — 1, inequality (2.4) holds
for any p, q € (1, 0o0). The way it is written here, the inequality is slightly different from part (a) of [19, Proposi-
tion 2.4] but the same proof can be repeated for the proof of (2.4).

We also mention the dual definition of (—Aﬁ operator. Indeed, for vector fields u and v in the Schwartz
class, the L%-inner product of (—Aﬁ u(x) and v(x) can be represented as, for s € (0, 2),

(uy) -v(x)) - (v(y) - v(x))

Xy dx dy. 2.6)

J(—A)%u(x)- v(x) dx = j J

R” R* R
The proof can be found [26, Proposition 2.36.] or [6].
The Riesz transform, R = (Rq, ..., Ry) := VIL, plays a central role in this work. First, R has the Fourier
symbol ¢t | EI and can also be represented as
Xy

RFCX) = j I fiy) dy
R"

-y

Second, we will use the fact that they are Calderén-Zygmund operators and for 1 < p < co, there exists a con-
stant C = C(n, p) > 0 such that
IRAlr < Clifile  forall f e LP.

Finally, we state and prove existence of a solution to the nonlocal system (1.2). We recall the space
H(Q)={ue HH@R" R") :u=00nR"\ Q},

which is equal to the closure of C.(2, R") in H5(R", R") when Q is a Lipschitz domain. As noted earlier, and
therefore, H*(Q) is a Hilbert space with obvious inner product, [17].

Proposition 2.3. Suppose that @ c R" is an open bounded set with Lipschitz boundary. Then for any, a, s € (0, 1),
there exists C > 0 so that if f—\ > C, A e Ala, A, A), and f € HS(R", R"), then there exists a unique u € H5(Q) such
that

(Lu, vy =(f,v) forallve H Q).

Moreover; the solution is a minimizer of the functional
1 -
Vi gwfa"’ v) —{f,v) forallv e H(Q).

Proof. We will apply the Lax-Milgram theorem to show existence of a unique solution corresponding to any f
in the dual of the Hilbert space H(Q). To that end, we introduce the bilinear form B, : H5(Q) x H5(Q) — R by

Ba(u,v) = (L5u,v).
By applying Hélder’s inequality, we see that B is continuous. In fact, for any u, v € H¥(R", R"),
1BA@, V)1 < 21l Vi < 51l IVl
Next, we show that this bilinear form is coercive in H5(Q). Now for any v € A5(Q),

lv) -ve0) - P

Bs(v,Vv) = J J A(x,y) = X dy dx
R R
lv) -ve0) - P
_ J J Anlo ) dy dx+ Egoa, (), @7

R" R"
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where

W) - v(x) - L
EA_AD(w=nlni[A(x,y>—AD(x,x>]| o L

Since infxerr Ap(X, X) = A > 0 and using the fractional Korn’s inequality in [29] which proves that there is a con-
stant ¢ > 0 such that for any s € (0, 1) and v € H(R", R"),

€IVl gy < dy dx < |V nys

[ Lo

R R™

we can estimate the first term of (2.7) as

dy dx > A |V ny-

V) - v0e0) - §5I”
J J Ap(x, X) ly - Xx|n+2s

R R"

Applying the fractional Poincaré inequality on H°(Q), there exists C = C(, s, n) > 0 such that for any v € H%(Q),
|v|§15 @& 2 C ||v||§IS(IR"), and therefore combining with above estimate we have

|v) —v(x) - L2 )
j J Ap(6 0~ lef " dy dx = CAIVIG goy- 2.8)
R R?

To estimate the second term of (2.7), we first notice that if A € A(a, A, A), then for any B € (0, a), we have
A € A(B, A, Ap) for some Ag > 0. This follows from the estimate that for any B € (0, @) and any x, y, z € R",

B _B _B B
|A(z, X) - A(z,)| = |A(z, X) - A(z,Y)]]A(z, ) = A(z,y)|""@ < 2] All=)"c Aa|x - yIP.

Thus, without loss of generality we may assume that 0 < a < 2s. It then follows that

(v(y) - v(x))
| n+2(sfl{)X|| dydxz-APE o
-l Py

Eq_ap(v) = -A j J

R R

We now use the continuous embedding H¥(R", R") c H (5=3)(R", R™), to conclude that there is a positive con-
stant ¢ = ¢(s, a, n) such that
Eq-2,(v) 2 =A clVIIFs gy 2.9)

Combining (2.8) and (2.9), we obtain that for any v € H 5~(Q),
B(v, V) = (€A = AV ny-

For A, A satisfying (€A — cA > 0, the bilinear form is coercive. O

3 Commutator estimates
In this section, we obtain estimates for the quantity Ds, 5, u defined in the previous section. To be precise, for
s € (0,1) such that 51 + s2 = 2s, u € H(R", R"), and ¢ € C.(R", R"), we recall that

D5 (U, @) = (L3U, @) = (L3 u, 9). 3.1

Before we begin estimating this difference, let us first find a different characterization of the operator £ u that
uses Riesz potentials. To that end, for any x, y € R" and ¢ € C.(R", R"),

P(X) - 0(y) = (I (-D) 7 9(x) - I (-A) % p(y))
e j(—m%«pm)ux C 2l ly - 2l dz (3.2)

RrR"



428 —— T Mengesha et al., Calder6n-Zygmund for nonlocal systems DE GRUYTER

for a constant c¢; that depends only on s, and n. This identity remains valid for ¢ € H2(R", R"). Similarly, for
any 0 < € < sy, we can write

900 ~ 9O) = c2(E) I 4(-0) T p(x) ~ I*~4(-0) % p(y))
- c2(e) [ 0% pl)x - 2ol ~ by - 22l (33)
IRI[
where cy(€) depends on ¢, in addition to s; and n. We note that ¢3(0) = ¢ > 0. Now we plug ¢(x) — ¢(y) and
u(x) - u(y) in

s 3 Axy) /(X=y)®(Xx-Yy)
(Latt ) = J J |x — y|n+2s Ix - y|?

(u0) - u@), 9(x) - () ) dx dy

R" R™

and apply Fubini’s theorem to obtain the expression that for any € € [0, s3),

o) = | [ (K20 Fu@), (0% p(z) d dza, (3.4)
R* R
where for any set function B(x, y),and 0 < € < sy,
B(X,y) s-¢ x-y)®(x-y)
K5(z1, z2) :]R[]Rjn mksf (x,y,zl,zz)W dx dy (3.5)

with, c(€) = ¢1 - ¢2(¢),
Kﬁf_g(x,y, z1,27) = c(e)(|x - lesl—n -ly- Z1|Sl_n) (Ix = ZZ|52—5—" ~ly- Z2|Sz—£—n). (3.6)

See [19, Lemma 3.6.] for a rigorous justification of the above calculations. With this at hand, we introduce an
intermediate operator Ap L7 given by

(ApLSu, ) = j jAu(zn(K‘}(zl,zZ)(—A)%u(zl), (-0)% 0(22)) dz1 dzs,
R R"

where lK(l’ is as given in (3.5) with € = 0 and B = 1. It then follows from (3.3) that for € € [0, s2), and integrating
in the z, variable that

(ApLSu, ) = j jAu(zl)<n<i(z1,zz)(—A)%um), (-0)F 9(23)) dz1 dzs.
R R"

Now, for a given ¢ € [0, s2), we first write the difference Dy, s, (u, ) defined in (3.1) as

D5, (U, @) = (L3U = (ApLU, @) + (Ap LU, @) — (L3 u, 9)
= Di(u, 9) + D3 (u, ).
We then have that
(L5u,0) = (E%u, @) + Di(u, @) + D3 (u, 9). 3.7
The next two propositions estimate the last two terms of (3.7). First, we estimate D (u, ) = (L5 u — (ApL)u, 9).
Proposition 3.1. Let s € (0,1) with s1 + s3 = 25, a € (0,1) and A > 0. Then there exist constants oy € (0, a] and

a constant ¢ > 0 such that the decomposition (3.7) holds and for any A € A(a, A) ={A: R" x R" - R: |A(X,y)| <A,
(1.1) holds}, any o € (0, ay), and any € € (0, ), we have

|Di(u, @) < J I8|(=8) T ul(0) 1(-) % pl(x) dx
]Rn
and )
D3 (u, 9)| < J 17°8)(=0) "7 ul(x) |(=8) 7 p|(x) dx
]R'l
forallu e HS"P(R",R") and ¢ € CP(R", R").
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Proof. From the definition of the operator A DLi and integrating in the z, variable that for any € € [0, s5),

Antiu 9 = | [ Ap) (Kt 2(-0)F un, (-0)% 9(20)) dz1 dza

R* R
and so using the (3.4) and the definition of Ap L3, we have that
Di(u, @) = J j (ME (21, 25)(~D) 7 u(z1), (-B) T 9(22)) dz1 dzs, (3.8)
R* R

where

M?(z1, z2) = K5 (21, 22) — Ap(21)K (21, Z2)

AX,y) = Ap(z1) s,- (x-y)e(x-y)
= j j W@f E(X,y, Zl,Zz)W dx dy
R" R"
and k3’ ° as defined in (3.6). It then follows that
Ks;  (6.Y,21,22)|
Mzl < [ [ 140y - A 21" T yyli 2ldxay,

RM R™
and as a consequence,

Dia o)l < [ [ IME (G 2lI-0 F ull-0)F o)l dzs dze.
R RM
We observe that the upper bound of |IM#(z1, z3)| is exactly the quantity that appear in [19, Lemma 3.5], and so
for o > 0 small enough, the inequality

D3 (u, )| < J 7= ul(0) |(-8) % 0l (x) dx.
]R'l
follows from [19, Theorem 3.1]. The other estimate follows the same way by reversing the role of u and ¢, and
sy and s3. O

Next we estimate D3 (u, 9) = (ApLiu, ) - (£)"*u, ¢). Recall that the operator Ap L] is defined as follows:

it 0) = [ [ Ap(a (e -0 F uz), (0% o) dzn dza
R RM
Let us obtain a compact form of the action of the operator Ap£{ on vector fields. Denoting U := (—A)ST1 u and
V= (—A)ST2 0, it follows that

(ApLiu, g) = j jAD(zl)<n<2(zl,zZ)U(zl>, V(z2)) dzy dz,
R? R

_ IJ x-y)e(x-y)

) (I (ApU)(X) - I (Ap U)()), T2 V(x) — I V(y)> dx dy.

Observe the following for y; = (n + 2s — 2)(n + 2s) and y; = (n + 2s — 2):

1 x-y)ex-y) 1 1
v? = - . 3.9
<|X_y|n+25—2) |x—y|2 |x _y|n+25 V2 |X_y|n+23 3.9)
It then follows that
s 3.9) 2 s s s s
rtin ) 2 | jW(I1(ADU)<x)—11<ADU>(y))-<IZV<x)—12V(y>)dxdy
R* R
~ 2 1 S1 _ 751 S2 _ 752
+y1nlnl<v (e 0™ A0 ~ I (A0, IV ~ 12V )
- [ 7:40@ V@) - V@) + 11 (AU, V(@) d
]RVI

= J(PzAD(Z)U(Z) + 1R @ R(ApU)(2)) - V(2) dz.

R"
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The precise value of constants y; and y, are computed in [28] and verify that j; # 2. For the argument to
follow, the exact value is not as important, but these are the constants that appear in the regular operator E}I;SZ.
As a consequence, the expression for D;l’sz (u, @) simplifies to

DS (u, 9) = j (R& R(Ap(-0) T u)(z) - ApR & R((—8) 7 u)(2)), (D)7 ¢(2)) dz
]R'l

=M J ([R®R, Apl(-0) T u)(2), (-0)F 9(2)) dz,
IRH

where we used the commutator notation

[T, b(f) = T(bf) - bTF.
We normalize the constant and assume that y; = 1. The next proposition estimates @;1’32(11, 0).
Proposition 3.2. Let s € (0,1) with s1 + S = 2s and a > 0. For u € H*P(R") and ¢ € C°(R"), let

Dy (u, @) = I ([R® R, Apl((-0) T w)(2), (-8)? p(2)) dz.
]Rn
Then there exists ¢ > 0 such that (3.7) holds and for any € € (0, a) and for any A € A(a,A) ={A :R"xR" > R:
|[A(x, y)| < A, (1.1) holds} we have the estimates
D5 (u, p)| < j I°¢|(-0) T ul(2) [(-0) F p(2) dz
]RVI

and
D5 (u, 9)| < J I)(=0) T ul(2) I(-8) T ¢l(2) dz
R
forallu e HS"P(R") and ¢ € CX(RM).

Proof. By applying an integration by parts, we get

Dy (u, @) = J’ (~D)E([R® R, Ap)(-0) T w)(2), (-0)F 9(2)) dz

IRI[
IRI[ IRYl

Notice that

[Re R, Apl((-A) 7 u)(2) = R® R(Ap(-A) 7 u)(2) - ApR ® R((~A) T u)(2)

Qly-2) 51
- | Ly(y_ 2 (40.y) - Az )0 up) @,
IRYL
where we are using the notation Q(¢) = i;—el’f. We recall that Slzf(li) is the Calderén-Zygmund kernel for the second

order matrix of Riesz transform R ® R, see (3.9). Thus we have

Do) = | (W, 2-0% up -0 92)) dy d,

R R™
h
T - | o (a0 - e - 2024wy - 46,2 ) dz
»alT J |z - z|nte\ |y — z|n Y ’ ly - z|n Y ’ ’

We claim that
(We(y, 2)| < ly — 2|57,
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Assume the claim is proved for now. We then have

D3 (1, 9)| < j(j 12 = Y1 I(-0) F ul(y) dy) I(-8)F gl(z) dz

]Rn IRfl
- [ 110 Fu@) -0 ol dz.
]RI[
Hence, we obtain the second estimate for D;l’sz(u, ©). By reversing the role of u and ¢, and s; and sy, the first

estimate follows the same way.
What remains is to prove the claim. To that end, we divide the domain into three cases.

Case1:|z-2| < Jly —zlor|z-Z| < §ly - Z|. We first consider

_ Qv — 3
s&(y_ z|Z") (A0, - Alz,2)) - [y(y_ len) (A(y,y) - A(Z, 2))|
Qy-2z) Qy-32) o
< l( ly_z|n - Iy_2|n )(A(y,)’) _A(Z,Z))| ly e (A(Z 7)-A(z,2))|.

Since in this case we have |y — z| < |y — Z|, we can use the application of the fundamental theorem of calculus
(see [19, Lemma 3.2]) to obtain

|z - Z| _ 1 S . -
[We(y, 2)| < I 12— Z"*ely -z |A(y,y) - A(z, z)| dZ + I mh‘l(z’z) -A(z,2)|dz
R R
|z - Z| N 1 ~d gs
Sj _ p|n+ely — n+1D)_Z|adZ+J _ z|n+ely — n|Z—Z|adZ’
122y — 2] 122y -~ z]

where the second inequality above follows from the a-Holder continuous of A. Then we integrate with respect

to Z and get
|Z _ le—s—n B |Z _ Zla—s—n ~
W@y, 2)] < j Lot/ j =27 4
-z n+l-a _ Z|"
|z-Z|<|y-z| 4 | |z-Z|<ly-z| v

< ly _ le—aly _ Zla—l—n + ly _ Z|a—8—n < D) _ Zla—s—n.
Case2:|z-2| > 3ly-zland |z-2| > |y - | and |y—z| < |y - Z|. Since A is a-Holder continuous, we have

IWEy, 2)| < n+€(|y Z|TM 4y — 2| dz
1z - Z|

|z-Z|2|y-z|

S J

|z-z|2]y-z|

1

5 a-&e—n
mdl:l})—z| .

Case3:|z-2|> Ily-zland|z-2| > Jly -zl and |y—z| > |y - z|. We have

wyals [ ZW ey - 2"+ y - 21 dz
|z—Z|2|y-zI
< ly _ Z|—a—n J ly _ Z|a—n dZ = Iy _ Zla—a—n_
ly-zlly-z|
That completes the proof of the proposition. O

4 The weighted fractional Lamé system

In this section, we prove an optimal regularity result for the system of equations

8By = (-0)*F i + o, 4.1
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where A is a positive, measurable function that is bounded from below and above by positive constants, and
Egzs_t is as defined in (1.4), and can be understood as the operator

(=0T (A@2)[(-D)? u(z) + cR & R(-A)? u(2)]),

where after scaling in (1.4), we assume that ¢ # 1. The following is an a priori regularity estimate that we will
use as an iterative device to obtain the optimal regularity result for the (4.1).

Proposition 4.1. Lets € (0,1) and t € (0, 2s) such that 2s — t < 1. Suppose that A : R" — R is a positive, measur-
able, and bounded from above and below, i.e.,

AMl<A@z)<A forae zeR".

Assume that for some q € (1, 00), u € H*9(R", R") is a distributional solution to

25—
2

j A@){(-D)7u(z) + cR @ R(-A)1u(z), (-A) T ¢(2)) dz
IRn
= J(ﬁ(z), (-0)F 9(2)) dz + J(fz(l), ¢(z))dz forallp € CZ°(Q,R"), 4.2)
]R’l IRYl
where ¢ # 1. Suppose now that Q1 cc Q; cc Q ¢ R™. Then:
(a) There exists q such that g > q > #ﬁ_nq > 1 such that if f1, f» € LY(R", R") n L9(Q, R"), then
(-0)7u € L(Q1, R")
and
t 2 t
I(=B)zullLag,) < Z(IIijILa(QZ) + IfilLaqrny) + 1(=A) 2 ullLa(wrny.
=1
(b) Foranyp > q, andr € (1, p) such that r > % > 1,iff1, f» € LYR", R") N LP(Q,, R"), then the LP norm
of (-A) % u can be estimated as

2
I-8)2ullzo@y < Y (fjlzec@n + Iflacrn) + I(=8) 2 ullzr@y,) + I(=8) T ullzacrny. 43)
j=1
For ¢ = 0, part (b) of Proposition 4.1 is precisely [19, Proposition 4.1]. For the case when ¢ # 1, the proof of the
proposition uses arguments that parallel the proof of [19, Proposition 4.1]. Notice also that the estimate for
part (a) follows from part (b) after we made sure q exists and taking p = q and r = q. For the existence, given
q > 1, we can choose

_ nq n

q¢ (n—(Zs—t)q’ n—(Zs—t))'
The interval is nonempty because q > 1. Below we will sketch the proof of part (b). First, we state and prove the
following observation, see also [28].

Lemma 4.2. Assume c # 1. Then forany U : RY — RY and 1 < p < co, we have

1Ulo(rey < U + ¢ (R @ R)Ull o ray- 4.4

Moreover, we have for any open set Q1 cc Qy and any 7 € [0, 1] such that nZ’;p >1andq € [1, 00),

1Ulzr@,) < U+ ¢ (R R)Ullrr(e,) + ||U||Lny;p et 1Ullzaqwrn

with the constant depending on Q1, 2, T, q.

Proof. The first estimate of lemma is known, see, e.g., [28], but for the convenience of the reader we sketch the
argument. After recalling that the Riesz-transform R is the operator with Fourier symbol l%, we may take the
Fourier transform to obtain

FU + c(R@®R)VU) = CD(§TFU(S),
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where

fed

€2
We observe that D(§) is a symmetric matrix with eigenvalues 1 (eigenspace: £+ which is (d — 1)-dimensional)
and 1 - ¢ # 0 (eigenspace span(§), whenever & € R" \ {0}. In particular, for any & € R" \ {0}, D~(¢) exists, and
is given by

D) =TI,-¢

PR O 1.1
D (E)—Hn+1_c o

It then follows that [D-1(&)| < #=¢. Then we may write
U=FYDFU + c(RoR)U)).

The claim about the L? estimate follows from Mikhlin- or Hormander multiplier theorem, [20] or [28] for detailed
calculation.
For the second inequality, take 11, Ny € C(Q2), 0< 11,02 <1, n1 =11in Q4, N2 =1 in supp 1. Then we
apply inequality (4.4) to n1 U to obtain that
1Ulr @)y < N1 Ullrwny < MU + ¢ (R @ R)(N1U)llewry-

It then follows that
1UlLe0y) < 1T+ c (R R)Ullrp(g,) + IR @ R, n11(U)llze ey,

where here we used the commutator notation [T, n1](f) := T(n1f) — n1T(f). To estimate the last term in the
previous inequality, we use the identity n1(1 — n2) = 0 to write

[ROR, n11(U) = [R® R, n1]1(N2U) + m1R @ R((1 - n2)U)
and therefore

IR @R, n1](D)leewey < IR @R, n1](N2D)llze ey + 111K @ R(A = n2) U)o (mr)-

For the first term, in view of commutator estimates, say in [16, Theorem 6.1.] or [14], for any 7 € [0, 1] denoting

by I” = (—-A)~% the Riesz potential, and then using Sobolev inequality (if nip € (1,00))

IR ® R, n11(n2D)lIerey < 101 leipll* (2 Dlzearey < 102011

np IO o o
TP (RM) LD (Q,)

Here, as usual,
In1lLip = In1lzee + 1VA1llLip-
For the other term, we observe that for any x € R",
1

[N1()R @ R((1 - n2))X)| < J nl(X)m(l - n2)IUIQY) < K = |Ul(X),

]RYl
where

1
K(z) = W}ﬂzm,

where the constant in > depends on the distance of the support of (1 — ;) to the support of ;. We observe
that k € L1(R") for any q € (1, co]. It then follows from Young’s convolution inequality that for any q € [1, co)
(observing that « is integrable to any power)

N1R & R((1 = N2)D)lrewry < Ik * |UlllLeomny < 1Kl Lo qmey 1UNLary < 1UllLaqwr)-
Putting the inequalities together we complete the proof of the lemma. O
We are now ready to sketch the proof of Proposition 4.1.

Sketch of the proof of Proposition 4.1. Instead of Q; and Q, we are going to prove the statement for Q4 and Q4
and some choice of Q,, Q3 such that Q1 cc Q; cc Q3 cc Q4. From the previous lemma, Lemma 4.2, we have

t ¢ t t t
1(=8)2Vlize(@y < (=8)2V + CR @ R(=D)2Vlr(@y) + I(=D) 2 UllLr(@y) + I(=D)2 UllLawrr).
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By the ellipticity of A and duality
1(=8)2v + cR ® R(=A) Vl|1ooy < IA((=8)2V + cR ® R(—8)? V) |Ir(,)
< sup J (AX)((~D)7V + cR ® R(=A)2v)(x), Y(x)) dx,
IRYl

where the supremum is taken over all € C2°(Qz; R") with 9], o,) < 1. To finish the proof of the proposition,
it suffices to prove that for any y € C2°(Qq; R"),

j ACO(~)Fv + cR ® R(-)v)(0), Y(0) dx
]Rll
< (fillzoce) + Walzo@a) + Ifillzesgn + 1-8)EVilzr@y) + 1-8)vllza@n) ¥l g,)-

To that end, pick 11, n2 € C2°(R3) with n; = 1in a neighborhood of Qy, and n; = 1 on the support of n;. For any

Zst

¥ € CX(Q2; RM), write ¥ = (-A) 7 (I*~'y) and

Y = (=0) T (N IP7) + (=0) T (1 - n) 1)

4.5)
= (=0) T (M) + na(=0) T (1 = nIP ) + (1 - n2)(=A) T (1 - n) I 1p).

Then we have

J (A((-D1)7v + cR ® R(~=1)7v)(x), P(x)) dx
]Rn
J(A(( —8)tv + cR & R(-A)Tv)(x), (-A) T = (ISt () dx
]RY(
j(A(( D)3V + cR @ R(=8) 5 v)(X), N2(X) (=) T (1 — )25~ 1) () dx
]Rll
j<A<( N)Fv + cR @ R(=A)F1)(X), (1 - n2)(=0) T (1 - )~ P)(x0) dx
]Rn
=T1+1I+]IIL

We estimate each of the above integrals. To estimate I, we set ¢ := n1I%~{ € C°(Q3). Then we notice that ¢ is
an admissible test function in equation (4.2) and, thus, we can use it in the equation

j(ﬁ(l) (-8)F p(2)) dz + j(fz(l),cﬂ(l)) dz

]R" ]R’l
- j<f1(z), V(@) dz + j (2(2), 0(2)) dz - j(ﬁ(z) (-0)F (1 - n)I*y) dz,
]R'l ]Rn ]Rn

where the latter is obtained using the decomposition (4.5). Now the first two terms can be estimates as follows:

J(ﬁ(l), Y(z)) dz + I(fz(l), 0(2)) dz < \fillLe@) 1l g, + If2llze @) 1910 (q)
]RYL ]R".
< (fillzecey) + If2lle @)Wl g,y

where we used Sobolev inequalities (2.2) and (2.3) and the fact that i is compactly supported to estimates

"(P"Lp’(gz) < ||IZS_[¢||Lp Q) S < Wl Q)
To estimate the last term of I, first we write it as
[ (fi(2), (~0)*F (1 - n)I*~y) dz = j (fi(2), n2(-0)F (1 - n)I* ') dz
R" R

. j (Fi(2), (1 - q2)(-0) 5 (1 - n)I>ty) dz.

R"
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Then while application of (2.5) of Lemma 2.2 (or [19, Proposition 2.4 part b)]) yields
2t 25—t t 25—t
j (f1(2), n2(=0)F (L - I Y)) dz < filo@n I (=) T L = nDI Yl o,
]Rn
< Mfillzen 1l g,
and application of (2.4) of Lemma 2.2 which holds for any r > 1 implies that
j (i(2), A= )BT (A = n)I*') dz < Wfi a1 = 12)(=8) T (1 = n)I Pl
]RI[
< Wil 19l (g,)-
That finishes the estimate for I. To estimate II, we again apply (2.5) of Lemma 2.2 to obtain
Il < j A=)V + R ® R(-B)FV)(0) 12 () (-8) T (1 = n)I*~$)(0)] dx

]Rn
- 25—
< JA((=8)2v + cR ® R(=8) V)@ I(=8) T (1 = NI P)lr g,
< -0l @y 1Yl g,)-
Finally, the estimate III follows from (2.4) of Lemma 2.2 as

I < j JA((=8) 2V + cR & R(-A)Fv)(X)II(1 = n2) () (=A) T (1 = n) I P)(x)] dx

IRYL
t
< I(=B)2VllLa@p Yl Ly () -
That concludes the proof of the proposition. O

We are now ready to state and prove the optimal regularity result for the weighted fractional Lamé equation
givenin (4.1). The result follows from Proposition 4.1 by iterating the result on successive subdomains. We sketch
its proof below.

Theorem 4.3. Lets € (0,1), t € (0, 2s) such that 2s — t < 1. Assume that for some q € (1, c0), (—A)% u e LY(R"Y) is
a distributional solution to

25—t
2

J (A@)((-0)7u + R ®R(-D)?u)(2), (-B) T 9(2)) dz

R

- j(ﬁ(z»(—A)%mz» dz + j<fz<z),<o(z)> dz forall e CX(Q).

R" R"

Here A : R" — R is a positive, measurable, and bounded from above and below, i.e.,
AY<A(z)<A forae x eR"
Then for any Q' cc Q cc R", p € (1, 00), if f1, f> € LY(R") n LP(Q), then (D)t u € LP(Q') with
I8 ullzrery < Wfilleoe) + Wfallzee) + Ifilzaqeay + 1(=8) 2 ull o).
If, in addition, A is y-Holder continuous uniformly, that is,

A0 -Ap) _
X,yeR" |X _Y|V

then for any B € (0, min{y, 2s — t} and any Q' cc Q cc R",

“h t B
I(=28)7 ullzrry < I(=B)2ullLarry + 1(=8)2 fillLagrn) + If2llLag)-
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Proof. Suppose that p > ¢, and 2s — t < 1. We consider a sequence of pairs (Q;, p;) fori =1, 2, ..., L such that
Q= Q' p1=p, KiCCi,

and np;
1
n+(2s-tp >1
for some L and pr.+1 = q, pr = 4, where q is obtained in part (a) of Proposition 4.1. A finite L depending on
t, s, p, q exists. We then apply part (b) of Proposition 4.1 to obtain the inequality that

pi+1 € [q,pi] suchthat pjq >

2

t L t
(D) zullrei(q;) < Z("fj"LPi(Qm) + fillLarny) + 1(=D) 2 ullLrisa (@p,p) + 1(=D) 2 UllLa(rr).
=1

We now iterate to get the desired inequality.
The second part of the theorem can be proved in exactly the same was [19, Proposion 4.2]. O

5 The regularity theorem: Proof of Theorem 1.1

Theorem 1.1 will be proved by an iteration argument that is explained in detail in [19]. In short, it follows the
following steps. First, we obtain a localized small incremental improvement for a solution to a globally posed
problem. Second, via a cutoff argument, extend the solution with locally improved regularity to be globally
defined and also at the same time solve a globally posed problem. This extension is accompanied by essen-
tial controlled estimates. We now iterate and get a localized small improved regularity further increasing the
regularity of the solution, and so on. The localizing estimate can be done in exactly the same way as [19, Theo-
rem 5.1]. The only component missing is the “small localized improvement” that replaces [19, Theorem 6.1]. In
the remaining, we will only prove this missing regularity result and refer the execution of the iterative argument
to [19].

Theorem 5.1. Fix s € (0,1), t € [s,25), t < 1. For given a € (0,1), A, A >0, let A € A(a, A, A). Suppose also that
forany 2 < p < oo, u € HS*(R", R") n H-P(R®, R™) n HY2(R™, R™) with supp u ¢ Q cc R" is a solution to

(L, 9) = [<f1, (-0)* 9)dz + j<fz,<p> dz forallp e CO(R"). 5.1)

R R

Then there exists &€ > 0 such thatif r € [p,p + €) and f1, fo € L"(R") n LP(R"), then
t 2 t
I=8)zullr@) £ Y Wfillerey + Wfillzogrny + 1(=8)2 ull o gy
i=1
In addition, if B € [0, €], (~0)%fi € LP(R"), and fi, f, € LP(R™), then (~A) % u € LP. (R") and
wh [ B
1(=8)7 ullrrg) < I(=D)2fillLrwny + IfillLe ey + If2llLe ey + I(-4)? Ul (rry. (5.2)
Here, € > 0 is uniform in the following sense: € depends only on a and the number 0 € (0, 1) which is such that
1
0<s,t,2s-t<1-6 and 2<p< 'k

Proof. We proceed very similar to [19], by reformulating the system of equations to the weighted fractional
Lamé system studied in Proposition 4.1 — up to the commutators introduced in Section 3. Set

Flo] = j<f1,<—A)%o>dz . j<fz, or)dz.

R" R"

Then for t € [s, 2s), if u solves (5.1), then recalling the decomposition (3.7), we have up to a constant multiple

(Qﬁgis_tu, @) = Flo] - Di(u, 9) - ®§’2H(u, @) forall ¢ € C.(R™"; R"Y), (5.3)
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where the linear operator Eﬁ;i“ is the weighted fractional Lamé operator introduced in equation (1.4) with
Ap(z) = A(z, z) is bounded from below and above by positive constants. The functionals Dj and @;l’sz are as

defined in Section 3. We now define the two operators

Tilp] = Di(u, ¢) and Ta[p] = D3 (u, 9),

which are linear in ¢ € Ce°(R"). Given 6 as in the theorem, we can choose ¢ sufficiently small so that if we take
o = 8¢, we have
!

np

1
ro_p’ € (1,00) for allp € (2, 5)

and that Proposition 3.1 and Proposition 3.2 hold. Applying Proposition 3.1 with this o and Sobolev inequalities
(see Lemma 2.1) we see that for any g € [0, €],

2s—t—¢

2 ol(x) dx

IT1le]l < J |(=8) 2 ul(x)I°~*|(-A)

R"

t 2s—t-¢
SN2 ulle =827 ol wy
L n+(a-e)p’ (RM)

t 2s—t-¢
SNIED)2ulleI8)2 oll :
1, n+(a-pp’ (RM)

As a consequence, we have that for any § € [0, €]

Ty € (stftfﬁ’#i””(mn))*'

By representation of the dual elements [19, Proposition 2.2], there exists g}g ¢ L@ (R", R™) such that

Tilo] = [ (gh0. (-0 o) ax.

Rn

Similarly, applying Proposition 3.2 and repeating the above calculation for T, for any g € [0, €], and € < a, we
can get from the representation of dual elements that a vector field glzg e Lwoms (R", R") such that

Tolo] = [ (8300, (-8)F p(0) dx.

]R'l
After denoting gg = g + g5, We can now rewrite (5.3) as

at,2s—t i 2s-f
(La, W o) = J((—A)Zﬁ +88, (-A) T @)ydx+ J<f2’ 0)
R" R™
forall § € [0, ] and ¢ € C.(R", R").
Now if B = 0, then we may apply Theorem 4.3 to conclude that for any @ cc R and r € [p, %] we have

2
L t
I-8) sty < Y il + Ifillzecrey + 1(-0) % llzoeo)-
i=1

We notice that there exists an & > 0 such that ni’ﬂp >p+eforallp e [0, 3].
Also, if B € (0, €), since Ap is a-Holder continuous uniformly, we may apply the second part of Theorem 4.3

to obtain (5.2). O
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