Startseite Free boundary regularity in the fully nonlinear parabolic thin obstacle problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Free boundary regularity in the fully nonlinear parabolic thin obstacle problem

  • Xi Hu und Lin Tang EMAIL logo
Veröffentlicht/Copyright: 24. April 2024

Abstract

We study the regularity of the free boundary in the fully nonlinear parabolic thin obstacle problem. Under the assumption of time semiconvexity, our main result establishes that the free boundary is a C 1 graph in x near any regular free boundary point.

MSC 2020: 35R35; 35K55

Communicated by Luis Silvestre


Award Identifier / Grant number: 11771023

Funding statement: Supported by the National Natural Science Foundation of China (No. 11771023).

References

[1] I. Athanasopoulos and L. A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, J. Math. Sci. (N. Y.) 132 (2006), no. 3, 274–284. 10.1007/s10958-005-0496-1Suche in Google Scholar

[2] I. Athanasopoulos, L. A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math. 130 (2008), no. 2, 485–498. 10.1353/ajm.2008.0016Suche in Google Scholar

[3] A. Banerjee, D. Danielli, N. Garofalo and A. Petrosyan, The structure of the singular set in the thin obstacle problem for degenerate parabolic equations, Calc. Var. Partial Differential Equations 60 (2021), no. 3, 91–142. 10.1007/s00526-021-01938-2Suche in Google Scholar

[4] B. Barrios, A. Figalli and X. Ros-Oton, Free boundary regularity in the parabolic fractional obstacle problem, Comm. Pure Appl. Math. 71 (2018), no. 10, 2129–2159. 10.1002/cpa.21745Suche in Google Scholar

[5] B. Barrios, A. Figalli and X. Ros-Oton, Global regularity for the free boundary in the obstacle problem for the fractional Laplacian, Amer. J. Math. 140 (2018), no. 2, 415–447. 10.1353/ajm.2018.0010Suche in Google Scholar

[6] S.-S. Byun, K.-A. Lee, J. Oh and J. Park, Regularity results of the thin obstacle problem for the p ( x ) -Laplacian, J. Funct. Anal. 276 (2019), no. 2, 496–519. 10.1016/j.jfa.2018.06.003Suche in Google Scholar

[7] L. Caffarelli, X. Ros-Oton and J. Serra, Obstacle problems for integro-differential operators: Regularity of solutions and free boundaries, Invent. Math. 208 (2017), no. 3, 1155–1211. 10.1007/s00222-016-0703-3Suche in Google Scholar

[8] L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), no. 9, 1067–1075. 10.1080/03605307908820119Suche in Google Scholar

[9] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence, 1995. 10.1090/coll/043Suche in Google Scholar

[10] L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425–461. 10.1007/s00222-007-0086-6Suche in Google Scholar

[11] G. Chatzigeorgiou, Regularity for the fully nonlinear parabolic thin obstacle problem, Commun. Contemp. Math. 24 (2022), no. 3, Article ID 2150011. 10.1142/S0219199721500115Suche in Google Scholar

[12] D. Danielli, N. Garofalo, A. Petrosyan and T. To, Optimal regularity and the free boundary in the parabolic Signorini problem, Mem. Amer. Math. Soc. 249 (2017), no. 1181, 1–103. 10.1090/memo/1181Suche in Google Scholar

[13] D. De Silva and O. Savin, Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Rev. Mat. Iberoam. 32 (2016), no. 3, 891–912. 10.4171/rmi/902Suche in Google Scholar

[14] X. Fernández-Real, C 1 , α estimates for the fully nonlinear Signorini problem, Calc. Var. Partial Differential Equations 55 (2016), no. 4, 94–113. 10.1007/s00526-016-1034-3Suche in Google Scholar

[15] X. Fernández-Real and X. Ros-Oton, Free boundary regularity for almost every solution to the Signorini problem, Arch. Ration. Mech. Anal. 240 (2021), no. 1, 419–466. 10.1007/s00205-021-01617-8Suche in Google Scholar PubMed PubMed Central

[16] A. Figalli and H. Shahgholian, A general class of free boundary problems for fully nonlinear parabolic equations, Ann. Mat. Pura Appl. (4) 194 (2015), no. 4, 1123–1134. 10.1007/s10231-014-0413-7Suche in Google Scholar

[17] J. Frehse, On Signorini’s problem and variational problems with thin obstacles, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 4 (1977), no. 2, 343–362. Suche in Google Scholar

[18] N. Garofalo and A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math. 177 (2009), no. 2, 415–461. 10.1007/s00222-009-0188-4Suche in Google Scholar

[19] N. Garofalo, A. Petrosyan and M. Smit Vega Garcia, An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients, J. Math. Pures Appl. (9) 105 (2016), no. 6, 745–787. 10.1016/j.matpur.2015.11.013Suche in Google Scholar

[20] N. Guillen, Optimal regularity for the Signorini problem, Calc. Var. Partial Differential Equations 36 (2009), no. 4, 533–546. 10.1007/s00526-009-0242-5Suche in Google Scholar

[21] X. Hu and L. Tang, H 1 + α estimates for the fully nonlinear parabolic thin obstacle problem, J. Differential Equations 321 (2022), 40–65. 10.1016/j.jde.2022.03.010Suche in Google Scholar

[22] D. Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl. (9) 60 (1981), no. 2, 193–212. Suche in Google Scholar

[23] H. Koch, A. Petrosyan and W. Shi, Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal. 126 (2015), 3–44. 10.1016/j.na.2015.01.007Suche in Google Scholar

[24] H. Koch, A. Rüland and W. Shi, The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 4, 845–897. 10.1016/j.anihpc.2016.08.001Suche in Google Scholar

[25] H. Lewy, On the coincidence set in variational inequalities, J. Differential Geometry 6 (1972), 497–501. 10.4310/jdg/1214430639Suche in Google Scholar

[26] E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem, Adv. Math. 217 (2008), no. 3, 1301–1312. 10.1016/j.aim.2007.08.009Suche in Google Scholar

[27] D. L. Richardson, Variational problems with thin obstacles, Ph.D. Thesis, University of British Columbia, 1978. Suche in Google Scholar

[28] X. Ros-Oton and J. Serra, The structure of the free boundary in the fully nonlinear thin obstacle problem, Adv. Math. 316 (2017), 710–747. 10.1016/j.aim.2017.06.032Suche in Google Scholar

[29] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67–112. 10.1002/cpa.20153Suche in Google Scholar

[30] N. N. Uraltseva, On the regularity of solutions of variational inequalities, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 151–174. Suche in Google Scholar

[31] L. Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math. 45 (1992), no. 1, 27–76. 10.1002/cpa.3160450103Suche in Google Scholar

[32] L. Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math. 45 (1992), no. 2, 141–178. 10.1002/cpa.3160450202Suche in Google Scholar

Received: 2023-11-14
Accepted: 2024-03-27
Published Online: 2024-04-24
Published in Print: 2025-04-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2023-0126/html?lang=de
Button zum nach oben scrollen