
Adv. Calc. Var. 2025; 18(2): 367–380

Research Article

Vanessa Hüsken*

On prescribing the number of singular points
in a Cosserat-elastic solid
https://doi.org/10.1515/acv-2023-0110
Received October 9, 2023; accepted June 20, 2024

Abstract: In a geometrically non-linear Cosserat model for micro-polar elastic solids, we prove that critical
points of the Cosserat energy functionalwith an arbitrary large (finite) number of singularities do exist, whereas
Cosserat energy minimizers are known to be locally Hölder continuous. To reach that goal, we first develop a
technique to insert dipole pairs of singularities into smooth maps while controlling the amount of Cosserat
energy needed to do so. We then use this method to force an arbitrary number of singular points into (weak)
Cosserat-elastic solids by prescribing smooth boundary data. The boundary data themselves are given in such a
way, that they contain no topological obstruction to regularity. Throughout this paper, we often exploit connec-
tions between harmonic maps and Cosserat-elastic solids, so that we are able to adapt and incorporate ideas of
R. Hardt and F.-H. Lin for harmonic maps with singularities, as well as of F. Béthuel for dipole pairs of singular-
ities.
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1 Introduction and statement of results

Cosserat elasticity is a well-known class of models in elasticity theory, whose foundations were laid at the
beginning of the 20th century by the Cosserat brothers. The geometrically non-linear model for micro-polar
elastic solids being discussed in this paper is a type of Cosserat elasticity that has first been studied in the context
of calculus of variations by P. Neff, for example in [13]. Its basic concept is the following.

An elastic body in its original state is described as a subset Ω ⊂ ℝ3. It can be deformed by shifting each
point x ∈ Ω to its new location φ(x) ∈ ℝ3. Moreover, the micro-polar structure of the body allows each point to
undergo some micro-rotation (without deforming the body any further), meaning that to each point x, there is
attached anorthonormal frame,which is free to rotate by an orthogonalmatrix R(x) ∈ SO(3). Themicro-rotation
being in SO(3), rather than using infinitesimal rotations in the corresponding Lie-algebra of skew-symmetric
matrices, ultimately leads to the geometric non-linearities in the Euler–Lagrange equations of the model. Both
deformation andmicro-rotation cause material stresses, measured in terms of RT ⋅ Dφ − I3 and RT ⋅ DR, respec-
tively. Leaving additional external forces andmoments aside (as it was discussed in [6]), summing up the energy
stored in the body, the Cosserat energy functional is given by

JΩ(φ, R) = ‖P(RT ⋅ Dφ − I3)‖2L2(Ω) + λ‖R
T ⋅ DR‖pLp(Ω) ,

with constant λ > 0, parameter p ≥ 2 and linear operator P : ℝ3×3 → ℝ3×3, describing a weighted sum of the
deviatoric symmetric part and the skew-symmetric part of a matrix as well as a diagonal matrix of its trace.
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With material constants μ1 , μc , μ2 > 0,

P(A) = √μ1 devsym(A) + √μc skew(A) +
√μ2
3 tr(A) ⋅ I3 .

The existence of minimizers of this Cosserat energy on a bounded Lipschitz domain Ω ⊂ ℝ3 was proven in [14].
Further aspects of the model and the existence of Cosserat energy minimizers are discussed in [15].

When studying regularity of minimizers, Gastel recently observed a connection between the Cosserat prob-
lem and p-harmonic maps, which is a well-studied area in Geometric Analysis. In the case p = 2 (λ = 1 without
loss of generality), when all constants are assumed equal (μ1 = μc = μ2), he found the following (cf. [6]): On one
hand, he showed Hölder-continuity for all minimizers on the whole domain Ω. On the other hand, he gave an
example of a critical point (meaning a weak solution of the Euler–Lagrange equations) of the Cosserat energy
for Ω = B3, p = 2 and μ1 = μc = μ2 = 1, whose micro-rotational part exhibits a point singularity at the origin. So
in contrast to minimizers, regularity of critical points should be an issue.

Note that with this particular choice of constants P( ⋅ ) becomes the identity and

JΩ(φ, R) = ∫
Ω

|RT ⋅ Dφ − I3|2 + |DR|2 dx.

In Geometric Analysis, many results are known about (non-)regularity of harmonic mappings (i.e. weak solu-
tions for the Euler–Lagrange equations of the Dirichlet integral). Having in mind several of them, concerning
harmonicmappings into the standard sphere S2, the starting point of our research is the question: How “big” can
the singular set Sing(f) of a critical point f = (φ, R) of the Cosserat energy get? (In this situation, Sing(f) denotes
the set of points, where f fails to be locally in C1,μ × C0,μ for any μ ∈ (0, 1), its elements are called singularities.
Similarly, Sing(R) denotes the set, where R fails to be locally in C0,μ for any μ ∈ (0, 1).)

An idea for being able to use the vast machinery of results about the regularity of harmonic mappings
into S2 is to observe a connection between S2 and the set

S := {A ∈ SO(3) : A describes a 180∘-rotation around some axis in ℝ3}.

By identifying each rotation in S ⊂ SO(3) with its axis of rotation, we obtain a two-fold covering of the mani-
fold S, given by F : S2 → S, q 󳨃→ 2q ⊗ q − I3. A quick calculation in local coordinates shows that F is locally
isometric up to the factor√8. Moreover, a well-known fact from Algebraic Topology implies that, if the domain
Ω is simply connected and locally path-connected, any continuous mapping can be lifted [8, Theorem 6.1 and
Corollary 6.4, p. 26f]. To be precise, for the covering F and any continuous mapping R : Ω → S, there exist two
continuous mappings η1,2 : Ω → S2, η1 = −η2 such that R = F ∘ η1,2, as long as Ω is simply connected and locally
path-connected.

So instead of looking at the full variational Cosserat problem

JΩ(φ, R) = ∫
Ω

|RT ⋅ Dφ − I3|2 + |DR|2 dx → min in H1(Ω,ℝ3 × SO(3)), (P)

we mostly work with the restricted Cosserat problem

JΩ(φ, R) = ∫
Ω

|RT ⋅ Dφ − I3|2 + |DR|2 dx → min in H1(Ω,ℝ3 × S). (P∗)

Often, restricting a variational problem to a submanifold changes the Euler–Lagrange equations and thus is
not a suitable method for finding results for the general problem. But here S is a totally geodesic submanifold
of SO(3). This fact implies (just like it is proven for harmonic mappings), that restricted minimizers (i.e. mini-
mizers of the restricted Cosserat problem (P∗)) are at least still critical points of the full Cosserat problem (P).
In general, they are not minimizers of (P).

In [6], Gastel showed that the (interior) singular set of a Cosserat energy minimizer of the full problem (P)
is a discrete set and in fact empty. But the line of reasoning made there to show discreteness holds true for
restricted minimizers, cf. [11, Section 4.1]. With similar arguments, following the suggestions from [18], based
on [17] in the context of harmonic maps, one can even show full boundary regularity given C1-Dirichlet bound-
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ary data, see also [11, Section 4.2]. So at most, we expect only isolated point singularities in the interior for
restricted minimizers. In contrast to the local Hölder continuity for Cosserat energy minimizers in [6], as well
as in contrast to smoothness for energy minimizers of a (two-dimensional) flat Cosserat micropolar membrane
shell model developed via dimensional decent (recently shown by A. Gastel and P. Neff in [7]), yet at the same
time in analogy to a result by R. Hardt and F.-H. Lin [9] for harmonic maps u : B3 → S2, we derive the following
statement. It shows that critical points of the Cosserat energy can be forced to have an arbitrary large number
of singularities, by prescribing suitable smooth boundary data.

Theorem 1. For every N ∈ ℕ there exist smooth boundary data g0 = (φ0 , R0) ∈ C∞(∂B3 ,ℝ3 × S)with deg(R0) = 0
such that each (restricted) minimizer f = (φ, R) of the Cosserat energy JB3 ( ⋅ ) in the class H1

g0 (B
3 ,ℝ3 × S) := {g ∈

H1(B3 ,ℝ3 × S) : g|∂B3 = g0}must have at least N singularities in its micro-rotational part R.

Remark 1. The property deg(R0) = 0 emphasizes that the singularities, which we are about to enforce, do not
appear simply due to elementary topological reasons, see the discussion in [3, p. 15] for example, in regard
to harmonic mappings u : Ω → S2. But, as S ≃ ℝP2 is a non-orientable manifold, the concept of the classical
Brouwer-degree deg(ψ) of a mapping ψ between orientable manifolds, which is used for the deformation com-
ponent φ, needs to be modified for the micro-rotational component R. Inspired by observations in [16] and
[12, Section 4], we define the (mod 2)-degree as follows.

Definition 1. Let Ω ⊂ ℝ3 be a bounded, simply connected and locally path-connected set and let f be amapwith
components f = (φ, R) : Ω → ℝ3 × S.
(i) For R ∈ C0(Ω, S), there exists a lift n : Ω → S2, whichmeans F ∘ n = R. Then the (mod 2)-degree of R is given

by
deg(R) := deg(n) mod 2.

(ii) For an isolated singularity a ∈ Sing(R), we define

dega(R) := deg(R|S2r(a)) = dega(n(a)) mod 2,

where S2r(a) ⊂ Ω is an arbitrary sphere of radius r > 0 around a such that the corresponding ball B3r(a) does
not contain any other singularities of f , and n(a) denotes the lift of R existing on B3r(a) \ {a}.

In both cases, the (mod 2)-degree lies in ℤ/2ℤ. This definition has the advantage, that nice properties of the
classical Brouwer-degree, like additivity and homotopy invariance, continue to hold.

Because we are going to use the concept of dipoles a lot throughout this paper, we also have to modify the
original definition of a dipole as introduced in [5] to fit into the situation of (restricted) Cosserat solids.

Definition 2. Let Ω ⊂ ℝ3 and f = (φ, R) : Ω → ℝ3 × S be as in Definition 1. A pair of singularities (P, N) of R is
called a dipole for R if there is an open bounded cylinder Z3r(q) ⊂ Ω, rotationally symmetric (of radius r > 0)
around the line segment [P, N] such that
(i) [P, N] ⊂ Z3r(q) and Z3r(q) is centered at the center q of [P, N] ,
(ii) Z3r(q) does not contain any further singularities of f ,
(iii) degP(R) = 1 = degN(R) and the lift n(q) of R (existing on Z3r(q) \ {P, N}) has a classical dipole (P, N), i.e.

degP(n(q)) = d = − degN(n(q)) for a d ∈ ℤ \ {0}.

A central method to prove Theorem 1 in Section 3 is inserting dipoles into a given smooth mapping while con-
trolling the energy needed to do so. The details are stated in the following theorem, which will be proven in
Section 2.

Theorem 2. Let Ω ⊂ ℝ3 be a bounded, simply connected and locally path-connected set. Let P, N be two distinct
points in Ω such that the line segment [P, N] lies fully in Ω. For any smooth mapping f = (φ, R) ∈ C∞(Ω,ℝ3 × S),
there exists a sequence of mappings

fm = (φm , Rm) ∈ H1(Ω,ℝ3 × S) ∩ C∞(Ω \ {P, N},ℝ3 × S)

with the following three properties. First, the pair (P, N) is a dipole for each Rm , i.e. in particular it holds

degP(Rm) = 1 = degN(Rm).
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Second, all mappings fm agreewith f outside of a small neighborhood Km of [P, N]which itself fulfils Km → [P, N],
m →∞, in Hausdorff-distance. Third,

lim
m→∞

JΩ(fm) ≤ JΩ(f) + 64π|P − N|.

2 Construction of dipoles

As mentioned above, a key ingredient in the construction of suitable boundary data for the proof of Theorem 1
is the insertion of dipole pairs of singularities, each with (mod 2)-degree 1, into smooth maps. Theorem 2 gives
us a tool for doing so while using a controlled amount of Cosserat energy, depending only on the dipole’s length.
The main part of this paper will consist of its proof, as it contains some technical intricacies.

Proof of Theorem 2. This proof is divided into three steps: First, we present a construction, that was used by F.
Béthuel in [1] to remove a dipole froma givenmapwith a controlled amount of (Dirichlet) energy.Working in the
other direction, it gives rise to a sequence of Lipschitzmappingswith the desired singularities of (mod 2)-degree
1 inserted. Additionally, the mappings of the sequence exhibit further singularities of degree 0. Second, we cal-
culate the estimates for the Cosserat energy needed. During the last step, we use some approximation results
from [2] to replace each Lipschitz mapping of the sequence with an approximation in order to get rid of the
additional singularities of degree 0 and to gain the desired smoothness (except in P, N) without affecting the
Cosserat energy.

Step 1 (Construction). In [1, Lemma 2], F. Béthuel uses a cuboid construction together with a cube lemma
[1, Lemma 3] plus some calculations from the two-dimensional case in [4]. We can use exactly the same cuboid
construction, together with the following modified cube lemma for the Cosserat energy which itself will be
proved after having completed the proof of Theorem 2.

Lemma 1 (Cube Lemma). For ν > 0, let Cν = [−ν, ν]2 × [−2ν, 0] be a cube. On the cubes’ boundary, consider
a Lipschitz mapping f = (φ, R) : ∂Cν → ℝ3 × S with deg(R) = d0, d0 ∈ ℤ/2ℤ. Then, for each ε > 0, there exists
a constant α0 ∈ (0, ν) such that for any 0 < α < α0, there exists a Lipschitz mapping fα = (φ, Rα) : ∂Cν → ℝ3 × S
with

deg(Rα) = d0 + 1 mod 2,
fα = (φ, Rα) = (φ, R) = f in ∂Cν \ (B2α × {0})

and
∫

B2α×{0}

2 ⋅ |RTα ⋅ Dφ − I3|2 + |DRα|2 dH2 < 64π + ε. (2.1)

Moreover, on (B2α \ B2α
2
) × {0} we have

|DRα| ≤ const, (2.2)

and on B2α
2
× {0}

|DRα(x, y, 0)|2 =
64α4

(α4 + x2 + y2)2
. (2.3)

Following the notation from [1] for the cuboid construction, with
∙ d := |P − N|,
∙ am := d

2(m−1) , m ∈ ℕ>1,
∙ Km the cuboid around [P, N]: Km := [−am , am]2 × [−am , d + am],
∙ Km divided into m cubes: Cjm := [−am , am]2 × [(−1 + 2j)am , (1 + 2j)am], j = 0, . . . ,m − 1,
∙ cj the barycenter of C

j
m and

∙ πjm : C
j
m → ∂Cjm the radial retraction with center cj , given by

πjm(x) =
x − cj
|x − cj|∞

⋅ am + cj ,

where |x − cj|∞ = maxi=1,2,3(|xi − (cj)i|),
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we iteratively use Lemma 1 (for m fixed) on the boundaries of each of the (m-1) single lower cubes Cjm ,
j = 0, . . . ,m − 2. For the boundary of the uppermost cube Cm−1m , we set fm,α to be equal to f on all faces except
for the bottom one. As this bottom face of the last cube Cm−1m simultaneously is the upper face of the cube Cm−2m ,
we set fm,α to have the same values there as constructed by using Lemma 1 on Cm−2m , in order to obtainmatching
boundary values. Extending everything to the cubes’ interiors by means of radial retraction πjm , the whole pro-
cess implies that for each m ≥ m0 ≫ 1, there exists a sequence of Lipschitz mappings ( ̃fm,α)α ∈ H1(Ω,ℝ3 × S)
(with α ↘ 0) given by

̃fm,α = (φ̃m,α , R̃m,α) :=
{
{
{

(φ, R) = f in Ω \ Km ,
fm,α ∘ π

j
m in Km ,

where

fm,α :
m−1
⋃
j=0

∂Cjm → ℝ3 × S, fm,α = (φ, Rm,α),

with Sing( ̃fm,α) = {P = c0 , c1 , . . . , cm−2 , cm−1 = N}. For this sequence, we have

degP(R̃m,α) = 1 = degN(R̃m,α),
degcj (R̃m,α) = 0 for j = 1, . . . ,m − 2,

degcj (φ̃m,α) = 0 for j = 0, . . . ,m − 1,

as well as
̃fm,α = f on ∂Km ,

due to the fact that during the construction, changes of the original mapping only happen on little discs
(of radius α < am) on the upper faces of the lower m − 1 cubes C0m , . . . , Cm−2m , so that the values on ∂Km
remain unaffected. The degree of R̃m,α in the inner singularities c1 , . . . , cm−2 vanishes, because for the cor-
responding cubes’ boundaries, the original map was changed both on the upper and the lower face. Also, by
definition and known properties of the classical topological degree for the deformation component, we have
degcj (φ̃m,α) = deg(φ) ⋅ deg(π

j
m) = 0 ⋅ 1 = 0.

Step 2 (Calculation of Cosserat energy cost). Many of the calculations in this step follow ideas and estimates
carried out in [19], where in the context of removing dipoles from given maps u : Ω → S2, [1, Lemma 2] was
generalized to the case that S2 is equipped with an arbitrary Riemannian metric.

So similar to [19], in order to calculate the Cosserat energy of ̃fm,α on Km , we start by dividing each cube C
j
m

into disjoint sets
B3am (cj), Ajm = (C

j
m \ B3am (cj)) ∩ (π

j
m)−1(B2α

2
× {(−1 + 2j)am}),

Djm = (C
j
m \ B3am (cj)) ∩ (π

j
m)−1(B2α

2
× {(1 + 2j)am}),

Ejm = (C
j
m \ B3am (cj)) ∩ (π

j
m)−1((B2α \ B2α2 ) × {(−1 + 2j)am}),

F jm = (C
j
m \ B3am (cj)) ∩ (π

j
m)−1((B2α \ B2α2 ) × {(1 + 2j)am})

and the rest
Gjm = C

j
m \ (B3am (cj) ∪ A

j
m ∪ D

j
m ∪ E

j
m ∪ F

j
m).

Note that different constants appearing in the following estimates are always denoted by the same γ ∈ ℝ≥0.
They only depend on am , Lipschitz constants of π

j
m|S2ρ(cj)

(see below) and the suprema of |Dφ|2 and |DR|2 for the
original smooth (φ, R) in the compact set Km .

Starting with B3am (cj), we can estimate the Cosserat energy in terms of

JB3am (cj)(
̃fm,α) = ∫

B3am (cj)

|(Rm,α ∘ π
j
m)T ⋅ D(φ ∘ π

j
m) − I3|2 + |D(Rm,α ∘ π

j
m)|2 dx

=
am

∫
0

∫

S2ρ(cj)

|(Rm,α ∘ π
j
m)T ⋅ D(φ ∘ π

j
m) − I3|2 + |D(Rm,α ∘ π

j
m)|2 dH2 dρ
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≤ γa3m + Lip2(π
j
m|S2ρ(cj)
)
am

∫
0

∫

∂Cjm

{2|RTm,α ⋅ Dφ − I3|2 + |DRm,α|2} Jac−1(π
j
m|S2ρ(cj)
) dH2 dρ

≤ γa3m + 9am ⋅ 2 ⋅ ∫

∂Cjm\(B2α×{(−1+2j)am ,(1+2j)am})

|RT ⋅ Dφ − I3|2 + |DR|2 dH2

+ am ∫

B2α×{(−1+2j)am ,(1+2j)am}

(1 + |y|
2

a2m
)
2
{2|RTm,α ⋅ Dφ − I3|2 + |DRm,α|2} dH2(y)

≤ γa3m + 18am ∫

∂Cjm

|RT ⋅ Dφ − I3|2 + |DR|2 dH2 + 2am(1 +
α2

a2m
)
2
(64π + ε)

≤ γa3m + 2am(1 +
α2

a2m
)
2
(64π + ε), (2.4)

because of (2.1) and because the original f = (φ, R) is smooth in all of Ω. Therefore, |RT ⋅ Dφ − I|2 and |DR|2 are
bounded on Km , thus for each j = 0, . . . ,m − 1,

∫

∂Cjm

|RT ⋅ Dφ − I3|2 + |DR|2 dH2 ≤ γ ⋅ a2m .

In the set Gjm , because each x ∈ G
j
m gets projected by πjm onto the boundary of Cjm outside of the small discs

B2α × {(−1 + 2j)am; (1 + 2j)am}, we have ̃fm,α(x) = (fm,α ∘ π
j
m)(x) = (f ∘ π

j
m)(x). Hence,

JGjm
( ̃fm,α) = ∫

Gjm

|(R ∘ πjm)T ⋅ D(φ ∘ π
j
m) − I3|2 + |D(R ∘ πm,j)|2 dx ≤ γ ⋅ a3m , (2.5)

as (R ∘ πjm) ∈ S ⊂ SO(3), Dφ and I3, as well as DR are bounded and πjm is Lipschitz in Cjm \ B3am . Similarly, we
have

̃fm,α = f ∘ π0m in A0m ∪ E0m ,
̃fm,α = f ∘ πm−1m in Dm−1m ∪ Fm−1m

by construction, and therefore
JA0m∪E0m∪Dm−1

m ∪Fm−1
m
( ̃fm,α) ≤ γ ⋅ a3m . (2.6)

Along the same line of reasoning, which is possible because of (2.2), we find

JEjm
( ̃fm,α) ≤ γ ⋅ a3m , j = 1, . . . ,m − 1, (2.7)

and
JF jm
( ̃fm,α) ≤ γ ⋅ a3m , j = 0, . . . ,m − 2. (2.8)

We now proceed with estimates on Ajm (j ̸= 0), and note that Djm (j ̸= m − 1) can be treated analogously by
symmetry. While using the Cube Lemma (Lemma 1) in the construction’s background, we changed the origi-
nal lift n : Ω → S2 of R into a Lipschitz mapping nm,α : Ω → S2 in order to get the new Rm,α = F ∘ nm,α having
m singularities. Here again, F denotes the two-fold covering map between S2 and S as introduced in the expla-
nation just above (P). The deformation part of the Cosserat energy on Ajm (j ̸= 0) thus is bounded once again
by γ ⋅ a3m with the same argument as for estimate (2.5). Additionally, for the micro-rotational part we have
the following, notating R̃m,α = Rm,α ∘ π

j
m = F ∘ nm,α ∘ π

j
m = F ∘ ñm,α and with the fact that ñm,α is constant in

(x1 , x2 , 2jam − x3)-direction. It holds
∂ñm,α
∂x3
=

x1
x3 − 2jam

∂ñm,α
∂x1
+

x2
x3 − 2jam

∂ñm,α
∂x2

and thus

|Dñm,α(x)|2 = (1 + (
x1

x3 − 2jam
)
2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂ñm,α
∂x1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+ (1 + ( x2

x3 − 2jam
)
2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂ñm,α
∂x2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+ 2 x1x2
(x3 − 2jam)2

∂ñm,α
∂x1

∂ñm,α
∂x2

.
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As x21 + x
2
2 ≤ (x3 − 2jam)2 in this regime, it directly follows that

|D(nm,α ∘ π
j
m)(x)|2 ≤ 3 ⋅ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂ñm,α
∂x1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂ñm,α
∂x2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
)

= 3 ⋅ ( am
x3 − 2jam

)
2
⋅ |Dnm,α|B2α

2
×{(−1+2j)am}(π

j
m(x))|2

≤ 6 ⋅ 8α4

(α4 + (πjm(x))21 + (π
j
m(x))22)2

,

using (2.3) and Rm,α = F ∘ nm,α in combination with the fact, that the covering map F is homothetic.
With the transformation to polar coordinates (η, ϑ, ξ) for the cone (πjm)−1(B2α

2
× {(−1 + 2j)am}) translated in

x3-direction,with η denoting the radius, ϑ ∈ [0, 2π)denoting the angle and ξ denoting the translated height-level
of the disc of points (η, ϑ), i.e.

ξ = √x21 + x
2
2 + (x3 − 2jam)2 ,

y1 = (π
j
m(x))1 =

am
|x3 − 2jam|

⋅ x1 =
am

√ξ2 − x21 − x
2
2

⋅ x1 ,

y2 = (π
j
m(x))2 =

am
|x3 − 2jam|

⋅ x2 =
am

√ξ2 − x21 − x
2
2

⋅ x2 ,

η2 = y21 + y
2
2

dx1 dx2 dx3 =
ξ2amη
(a2m + η2)

3
2
dη dϑ dξ,

we finally get the estimate

JAjm
( ̃fm,α) = ∫

Ajm

|(Rm,α ∘ π
j
m)T ⋅ D(φ ∘ π

j
m) − I3|2 + |D(Rm,α ∘ π

j
m)|2 dx

≤ γ ⋅ a3m + ∫

Ajm

|D(F ∘ (nm,α ∘ π
j
m))|2 dx = γ ⋅ a3m + 8 ∫

Ajm

|D(nmα ∘ π
j
m)|2 dx

≤ γ ⋅ a3m + 8 ⋅ 48α4 ⋅
2π

∫
0

α
2

∫
0

√η2+a2m

∫
am

1
(α4 + η2)2

⋅
ξ2amη
(a2m + η2)

3
2
dξ dη dϑ

= γ ⋅ a3m + 8 ⋅ 32πα4 ⋅

α
2

∫
0

amη
(α4 + η2)2

⋅
(a2m + η2)

3
2 − a3m

(a2m + η2)
3
2

dη

= γ ⋅ a3m + 8 ⋅ 32πα4 ⋅

α
2

∫
0

amη
(α4 + η2)2

⋅ (1 − 1
(1 + ( ηam )

2)
3
2
) dη

≤ γ ⋅ a3m + γ ⋅ α4 ⋅

α
2

∫
0

amη
(α4 + η2)2

⋅
η2

a2m
dη, (2.9)

since η ≤ α
2 < am . Hence for j = 1, . . . ,m − 1, (2.9) becomes

JAjm
( ̃fm,α) ≤ γ ⋅ a3m + γα4 ⋅

1
am

α
2

∫
0

η3

(α4 + η2)2
dη

≤ γ ⋅ a3m + γ ⋅
α4

am
⋅ ln(1 + 1

4α2
)

≤ γ ⋅ (a3m + a2m). (2.10)
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The last inequality holds because of α < am and the estimate

ln(1 + x) = 2 ln(√1 + x) ≤ 2 ln(1 + √x) ≤ 2√x for x > 0,

as 1 + x ≤ 1 + 2√x + x ≤ (1 + √x)2 for non-negative x.
As mentioned above, we also find

JDjm
( ̃fm,α) ≤ γ ⋅ (a3m + a2m) (2.11)

for j = 0, . . . ,m − 2 by symmetry.
Combining (2.4)–(2.8), (2.10) and (2.11), we have

JKm ( ̃fm,α) =
m−1
∑
j=0

JCjm
( ̃fm,α)

=
m−1
∑
j=0
(JB3am (cj)(

̃fm,α) + JGjm (
̃fm,α)) +

m−1
∑
j=1
(JAjm (
̃fm,α) + JEjm (

̃fm,α))

+
m−2
∑
j=0
(JDjm (
̃fm,α) + JF jm (

̃fm,α)) + JA0m∪E0m∪Dm−1
m ∪Fm−1

m
( ̃fm,α)

≤ 2m ⋅ am ⋅ (1 +
α2

a2m
)
2
(64π + ε) + γ ⋅ (a3m + am)

α↘0
󳨀󳨀󳨀→ 2m ⋅ am(64π + ε) + γ ⋅ (a3m + am).

In other words, for any ε > 0 and any m ≥ m0, there is a number α̃ and a corresponding mapping ̃fm,α̃ , which
we simply call ̃fm , with

JKm ( ̃fm) ≤ 2m ⋅ am(64π + ε) + γ ⋅ (a3m + am) + ε
m→∞
󳨀󳨀󳨀󳨀󳨀→ d ⋅ 64π + (d + 1)ε.

Hence, for each ε > 0 we have a number m (= m(ε)) ≥ m0 and a mapping ̃fm that fulfils

JKm ( ̃fm) ≤ 64π ⋅ d + (d + 2)ε.

As a consequence, for any sequence (εm)m∈ℕ with εm ↘ 0, we have constructed a sequence of Lipschitz map-
pings ̃fm ∈ H1(Ω,ℝ3 × S) such that
(i)

̃fm = (φ̃m , R̃m) =
{
{
{

(φ, R) = f in Ω \ Km ,
(φ ∘ πjm , Rm ∘ π

j
m) in Km ,

where Km → [P, N],m →∞, in Hausdorff-distance,
(ii) Sing( ̃fm) = {P = c0 , c1 , . . . , cm−2 , cm−1 = N} with

{{{
{{{
{

degcj (φ̃m) = 0, j = 0, . . . ,m − 1,
degcj (R̃m) = 0, j = 1, . . . ,m − 2,
degP(R̃m) = 1 = degN(R̃m),

(iii)
lim sup
m→∞

JΩ( ̃fm) ≤ JΩ(f) + 64π ⋅ |P − N|.

Step 3 (Approximation). Finally, we need suitable approximation arguments to achieve smoothness except in
P, N for each ̃fm without affecting the Cosserat energy estimates. Also, (P, N) is not yet a dipole for R̃m according
to Definition 2. Luckily, we are able to use severalmethods developed in [2]. During the construction in Step 1, we
changed the original smoothmapping f in the cuboid Km only. Sinceℝ3 is contractible, we can use [2, Theorem 1
bis]. Therefore it is possible to approximate the changed deformation component φ̃m|Km in H1-topology with
mappings

φm,s ∈ C∞(Km ,ℝ3), s ∈ ℕ,

while the boundary values remain φm,s = φ̃m = φ in ∂Km . Replacing φm,s by a subsequence, we may assume
φm,s → φ̃m , s →∞, pointwise almost everywhere.
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For the micro-rotational component R̃m|Km = (Rm ∘ π
j
m) ∈ H1(Km , S) we first note again that

R̃m|Km = F ∘ nm ∘ π
j
m = F ∘ ñm ,

with ñm ∈ H1(Km , S2),

degP(ñm) = 2k + 1 = − degN(ñm) for some k ∈ ℤ, and degcj (ñm) = 0

for each j = 1, . . . ,m − 2, having smooth boundary values ñm|∂Km = n|∂Km ∈ C∞(∂Km , S2) due to the underlying
construction making use of the smooth lift n of the original smooth R. Applying [2, Theorem 2 bis], since S2
is a compact manifold without boundary and Km is dividable into cubes (cf. “cubeulation” in [2]), there exists
a sequence

nm,t ∈ H1(Km , S2) ∩ C∞(Km \ {P, N, c1 , . . . , cm−2}, S2)
with
(i) nm,t → ñm , t →∞, in H1(Km , S2),
(ii) degP(nm,t) = 2k + 1 = − degN(nm,t) and degcj (nm,t) = 0, j = 1, . . . ,m − 2,
(iii) nm,t|∂Km = ñm|∂Km = n|∂Km .
Now we can use the technique from the proof of [2, Lemma 1 bis] to get rid of those singularities c1 , . . . , cm−2,
in which the homotopy class of nm,t is trivial. For nm,t in Qm := ⋃m−2j=1 Cjm , each nm,t|Qm (subject to their own
boundary values g := nm,t|∂Qm ) can be approximated in H1-topology by mappings

nm,t,s ∈ H1
g(Qm , S2) ∩ C∞(Qm , S2),

that agree with nm,t outside of⋃m−2j=1 B31/s(cj).
That is why for each ñm : Km → S2, there exists a sequence of mappings

nm,t,s ∈ H1(Km , S2) ∩ C∞(Km \ {P, N}, S2), s ∈ ℕ,

by defining

nm,t,s =
{
{
{

nm,t,s in Qm ,
nm,t in C0m ∪ Cm−1m ,

with nm,t,s → ñm in H1(Km , S2), degP(nm,t,s) = 2k + 1 = − degN(nm,t,s) and smooth values on the boundary
of Km which are given by nm,t,s|∂Km = ñm|∂Km = n|∂Km .

Finally, we project everything back from S2 to S. For each of the mappings R̃m|Km = F ∘ ñm : Km → S, we
thus have a sequence of mappings

Rm,t,s := F ∘ nm,t,s ∈ H1(Km , S) ∩ C∞(Km \ {P, N}, S),

which approximate R̃m|Km in H1-topology, because (after passing to an a.e.-pointwise convergent subsequence)
it holds that

∫
Km

|Rm,t,s − R̃m|2 dx = ∫
Km

|F ∘ nm,t,s − F ∘ ñm|2 dx

= ∫
Km

|2[nm,t,s ⊗ nm,t,s − ñm ⊗ ñm]|2 dx

≤
3
∑
i,j=1
∫
Km

[ |nim,t,s − ñim|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
→0

⋅ |njm,t,s + ñ
j
m|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤2

+ |nim,t,s + ñim|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤2

⋅ |njm,t,s − ñ
j
m|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

→0

]2 dx s→∞
󳨀󳨀󳨀󳨀→ 0,

and

∫
Km

|DRm,t,s − DR̃m|2 dx = ∫
Km

|DF ∘ nm,t,s ⋅ Dnm,t,s − DF ∘ ñm ⋅ Dñm|2 dx

≤ 2 ∫
Km

|DF ∘ nm,t,s ⋅ Dnm,t,s − DF ∘ ñm ⋅ Dnm,t,s|2 + |DF ∘ ñm ⋅ Dnm,t,s − DF ∘ ñm ⋅ Dñm|2 dx

≤ 2 ∫
Km

|DF ∘ nm,t,s − DF ∘ ñm|2 ⋅ |Dnm,t,s|2∞ + |DF ∘ ñm|2∞ ⋅ |Dnm,t,s − Dñm|2 dx
s→∞
󳨀󳨀󳨀󳨀→ 0.
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Summarizing, for any sequence (εm)m∈ℕ with εm ↘ 0, there exists a sequence of Sobolev mappings ( ̃fm)m with

JΩ( ̃fm) ≤ JΩ(f) + 64π ⋅ d + (d + 2)εm ,

as well as another sequence of mappings (fm,t,s)s ,

fm,t,s ∈ H1(Ω,ℝ3 × S) ∩ C∞(Ω \ {P, N},ℝ3 × S), fm,t,s :=
{
{
{

(φ, R) = f in Ω \ Km ,
(φm,t,s , Rm,t,s) in Km ,

with fm,t,s → ̃fm , s →∞, inH1(Ω,ℝ3 × S). Moreover, Rm,t,s has a dipole (P, N). Hence for each εm , by dominated
convergence, we get the existence of a mapping fm with the desired properties and

JKm (fm) ≤ JKm ( ̃fm) + εm ≤ 64π ⋅ d + (d + 3)εm ,

meaning we have found the sequence (fm)m∈ℕ of mappings, which are smooth except for a dipole in the micro-
rotation and whose Cosserat energy fulfils

lim
m→∞

JΩ(fm) ≤ JΩ(f) + 64π ⋅ |P − N|.

Having finished the proof of Theorem 2, it remains to prove the Cube Lemma for the Cosserat energy.

Proof of Lemma 1. Since the set ∂Cν is bounded, simply connected and locally path-connected, the Lipschitz
mapping R : ∂Cν → S can be lifted, whichmeans for the coveringmap F of S (F : S2 → S, q 󳨃→ 2q ⊗ q − I3), there
exist exactly two Lipschitz mappings

ni : ∂Cν → S2 with R = F ∘ ni ,

i = 1, 2 and n1 = −n2 (cf. Section 1). We choose one of these mappings and keep it fixed (n := n1). Additionally,
there is a number deg(n) = c0 ∈ ℤ such that d0 = deg(R) = c0 mod 2. Moreover, F is homothetic, i.e. for any
tangent vector V ∈ Tp(∂Cν) we have

|DRp(V)|2 = |DFn(p)(Dnp(V))|2 = 8 ⋅ |Dnp(V)|2 . (2.12)

We perform the modifications used in [4] on our n, to the following effect. The construction from [4], which
will shortly be described below, implies that for each ε > 0 there is a constant 0 < α0 < ν such that for each
0 < α < α0, there exists a Lipschitz mapping ñα : ∂Cν → S2, which fulfils

deg(ñα) = c0 + 1,
ñα = n on ∂Cν \ (B2α × {0})

and
∫

B2α×{0}

|Dñα|2 dH2 = 8π + O(α2) with α ↘ 0, (2.13)

as well as
|Dñα| ≤ const in (B2α \ B2α2 ) × {0} (2.14)

and
|Dñα(x, y, 0)|2 =

8α4

(α4 + x2 + y2)2
in B2α

2
× {0}. (2.15)

That is to say, we change the degree of the original n by +1, without changing the map n outside of the
disc B2α × {0}. For doing so, we only need a controlled amount of (Dirichlet) energy. All this is achieved by
the construction mentioned above taken from [4]: For polar coordinates (r, ϕ) in (x1 , x2)-plane, we set

ñα(x1 , x2 , x3) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

2α2

α4 + r2
(

x1
x2
−α2
)+(

0
0
1
) , r < α2 , x3 = 0,

(
A1r + B1
A2r + B2

√1 − (A1r + B1)2 − (A2r + B2)2
) , α

2 ≤ r < α, x3 = 0,

n(x1 , x2 , x3), else.
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Basically, in the small disc B2α
2
× {0}, we stretch by a factor of 1

α2 and then use stereographic projection from the
North-pole to S2. In the annulus (B2α \ B2α

2
) × {0}, we interpolate (linearly in r) between the values of the original n

on ∂B2α × {0} and the values of the stereographic projection after stretching on ∂B2α
2
× {0}, so that the new map

ñα is continuous. This means that the interpolating functions Ai , Bi (i = 1, 2, depending on ϕ) are chosen such
that

α
2 A1 + B1 =

4α
4α2 + 1

cos(ϕ),

α
2 A2 + B2 =

4α
4α2 + 1

sin(ϕ),

αAi + Bi = ni(α cos(ϕ), α sin(ϕ), 0) for i = 1, 2.
With further calculations to be found in [4], we then get the statement made above, including (2.13)–(2.15).

Coming back to ourmicro-rotation R, wemake use of the coveringmap F again. Nowwe define R̃α := F ∘ ñα
such that

R̃α = F ∘ ñα = F ∘ n = R on ∂Cν \ (B2α × {0})

and
deg(R̃α) = deg(ñα) mod 2 = c0 + 1 mod 2 = d0 + 1 mod 2.

The properties (2.2) and (2.3) follow directly from (2.14) and (2.15) respectively, because of (2.12). For the other
part of the Cosserat energy of ̃fα , coming from the deformation, we easily see |R̃Tα ⋅ Dφ − I3|2 = O(1), α ↘ 0, as
R̃α ∈ S ⊂ SO(3) and φ is Lipschitz by assumption.

Using (2.12) and (2.13), we therefore find

∫

B2α×{0}

2|R̃Tα ⋅ Dφ − I3|2 + |DR̃α|2 dH2 = ∫

B2α×{0}

2|R̃Tα ⋅ Dφ − I3|2 + 8 ⋅ |Dñα|2 dH2

= 64π + O(α2) with α ↘ 0.

Thus we can choose α0 ≪ 1 sufficiently small such that

∫

B2α×{0}

2|R̃Tα ⋅ Dφ − I3|2 + |DR̃α|2 dH2 < 64π + ε

holds for every α < α0.

3 Prescribing the number of singular points in a Cosserat-elastic
solid (proof)

Now that we have provided a tool for constructing dipoles with a controlled amount of Cosserat energy, we can
use it to prove Theorem 1.

Proof of Theorem 1. We use a combination of ideas from [3] and [9], adapted to the restricted Cosserat prob-
lem (P∗). First, we define the desired smooth boundary conditions following an idea from [3, Section II.4]. Then
we show that each restricted minimizer of the Cosserat energy in the corresponding class must at least have a
given number of point singularities, just as it was done in [9] for harmonic mappings.

For N ∈ ℕ, we define numbers λi := i
2N , i = 1, . . . , N , points

ξi = (0,√1 − λ2i , λi) and ηi = (0, −√1 − λ2i , −λi),

as well as pairs of points
{
{
{

P+i,ε = (1 − ε)ξi ,

N+i,ε = (1 + ε)ξi ,
and
{
{
{

P−i,ε = (1 + ε)ηi ,

N−i,ε = (1 − ε)ηi ,

for each ε > 0. By Z+i,ε and Z−i,ε , we denote the ε-tubular neighborhood of the line segment [P+i,ε , N
+
i,ε] and

[P−i,ε , N
−
i,ε] respectively.
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Without loss of generality, let ε ≪ 1 such that

|z − ẑ| ≥ 1
4N for all (x, y, z) ∈ Z+i,ε , (x̂, ŷ, ẑ) ∈ Z

+
j,ε with i ̸= j, (3.1)

meaning the neighborhoods Z+i,ε are separated by circular slices with a height of at least 1
4N . Moreover, let

g = (ϑ, S) ∈ C∞(B32 ,ℝ3 × S) be given as

ϑ(x, y, z) ≡ (
−x
−y
z
) and S(x, y, z) ≡ (

−1 0 0
0 −1 0
0 0 1

) .

At first, Theorem 2 gives us a mapping g̃ = (ϑ̃, S̃) in

H1(B32 ,ℝ
3 × S) ∩ C∞(B32 \ (

N
⋃
i=1
{P+i,ε , N

+
i,ε , P
−
i,ε , N
−
i,ε}),ℝ

3 × S),

which agrees with g outside of Z := ⋃Ni=1(Z
+
i,ε ∪ Z

−
i,ε), with S̃ having only the dipoles (P

±
i,ε , N
±
i,ε) as singularities,

degP+i,ε (S̃) = 1 = degN+
i,ε
(S̃),

degP−i,ε (S̃) = 1 = degN−
i,ε
(S̃),

and
JB3 (g̃) < 64π ⋅ 2ε ⋅ 2N + ε = (64π ⋅ 4N + 1) ⋅ ε. (3.2)

Now, the boundary values we prescribe are

g0 = (φ0 , R0) := g̃|∂B3 ∈ C∞(∂B3 ,ℝ3 × S),

with deg(R0) = 0 and
g̃|B3\Z ≡ (ϑ, S).

Due to (3.2), combined with (3.1), it is possible to choose ε ≪ 1 such that

JB3 (g̃) <
π
N . (3.3)

For the rest of this proof g̃ always means g̃|B3 and therefore, g̃ ∈ H1
g0 (B

3 ,ℝ3 × S). Thus, let f = (φ, R) be
a restricted minimizer, i.e. a minimizer of the problem (P∗) in the (non-empty) class H1

g0 (B
3 ,ℝ3 × S). Because

of (3.3), we also have
JB3 (f) <

π
N . (3.4)

From here, following [9], with (3.1) and (3.4), we find N + 1 numbers μ0 , . . . , μN ∈ ℝ,

0 < μ0 < λ1 < μ1 < λ2 < ⋅ ⋅ ⋅ < λN < μN < 1,

such that for each i = 0, . . . , N the disc Di := {(x, y, z) ∈ B3 : z = μi} satisfies Di ∩ Z = 0 and

∫

Di

|DR|2 dH2 < 4π. (3.5)

Suppose (3.5) was not possible. Then we would get

JB3 (f) ≥
1
4N ⋅ 4π =

π
N ,

because of (3.1), contradicting (3.4).
As we mentioned in the introduction, following the line of reasoning from [6] and carrying out similar

arguments at the boundary, we get discreetness of the singular set for restricted Cosserat energy minimizers
in the interior and full boundary regularity, cf. [11, Section 4]. Moreover, this is in accordance to full boundary
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regularity for (not restricted) Cosserat energyminimizers in amore general setting, as recently shown also with
similar arguments, but technicallymore involved [10]. In particular, singularities cannot lie at the boundary. This
implies that also Sing(R) ⊆ Sing(f) ⊂ B3 is a discrete set in (the interior of) B3. Hence we can assume without
loss of generality, that all isolated singularities of R are in B3 \ (⋃Ni=1 Di). Then for each compact subset C of
B3 \ Sing(R) and each i = 0, . . . , N , we have (with the area-formula, because R is Lipschitz continuous in Di ∩ C)

∫
S

H0(Di ∩ C ∩ R−1(p)) dμ(p) = ∫
Di∩C

Jac(R|Di∩C) dH2 ,

where μ denotes the natural Riemannian measure on S. Approximating the open set B3 from within by
a monotone sequence of compact sets Ck ⊂ B3, meaning Ck ⊂ Ck+1 for all k ∈ ℕ0, we know that the sequences
H0(Di ∩ Ck ∩ R−1(p)) and Jac(R|Di∩Ck ) are hence also monotone in k. Thus from monotone convergence (for
Ck ↗ B3), together with (3.5), we infer for each i = 0, . . . , N ,

μ(R(Di)) ≤ ∫
S

H0(Di ∩ R−1(p)) dμ(p) = lim
k→∞
∫
S

H0(Di ∩ Ck ∩ R−1(p)) dμ(p)

= lim
k→∞
∫

Di∩Ck

Jac(R|Di∩Ck ) dH2 ≤ lim
k→∞
∫
Di

Jac(R|Di∩Ck ) dH2

= ∫
Di

Jac(R|Di ) dH2 ≤
1
2 ∫
Di

|DR|2 dH2 < 2π = μ(S).

So each image R(Di) is a proper subset of S. On one hand, as R is (Hölder-) continuous on Di and Di ∩ Z = 0,
combined with R|∂B3 = R0 = S̃|∂B3 and

S̃|B3\Z = S = (
−1 0 0
0 −1 0
0 0 1

) ,

it holds that R|Di is homotopic to S relative to ∂Di , i.e.

R|Di ≃ (
−1 0 0
0 −1 0
0 0 1

) rel. ∂Di . (3.6)

And on the other hand, we infer

S̃|Di ≡ (
−1 0 0
0 −1 0
0 0 1

) . (3.7)

Finally, for each i = 1, . . . , N , we consider the slice Ωi := {(x, y, z) ∈ B3 : μi−1 < z < μi}. Then ∂Ωi = Di−1 ∪ Di ∪
(∂B3 ∩ Ωi) is homeomorphic to S2. By construction, the only singularity of S̃ in Ωi is the point P+i,ε with

degP+i,ε (S̃) = 1.
We also know that no singularities lie in ∂Ωi and that the interior of Ωi contains only isolated singularities
(namely only P+i,ε). Thus the degree of S̃|∂Ωi is obtained by adding up the degrees of S̃ at all isolated interior
singularities (mod 2) in Ωi and we get

deg(S̃|∂Ωi ) = ( ∑
x∈Sing(S̃∩Ωi)

degx(S̃)) mod 2 = degP+i,ε (S̃) = 1.
Moreover, (3.6), (3.7) and R|∂B3 = S̃|∂B3 imply R|∂Ωi ≃ S̃|∂Ωi . Hence, due to homotopy invariance of deg( ⋅ ), we also
find

deg(R|∂Ωi ) = deg(S̃|∂Ωi ) = 1.

This proves that R must have at least one singularity in Ωi for each i = 1, . . . , N .
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