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Abstract: In a geometrically non-linear Cosserat model for micro-polar elastic solids, we prove that critical
points of the Cosserat energy functional with an arbitrary large (finite) number of singularities do exist, whereas
Cosserat energy minimizers are known to be locally Holder continuous. To reach that goal, we first develop a
technique to insert dipole pairs of singularities into smooth maps while controlling the amount of Cosserat
energy needed to do so. We then use this method to force an arbitrary number of singular points into (weak)
Cosserat-elastic solids by prescribing smooth boundary data. The boundary data themselves are given in such a
way, that they contain no topological obstruction to regularity. Throughout this paper, we often exploit connec-
tions between harmonic maps and Cosserat-elastic solids, so that we are able to adapt and incorporate ideas of
R. Hardt and F-H. Lin for harmonic maps with singularities, as well as of F. Béthuel for dipole pairs of singular-
ities.
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1 Introduction and statement of results

Cosserat elasticity is a well-known class of models in elasticity theory, whose foundations were laid at the
beginning of the 20th century by the Cosserat brothers. The geometrically non-linear model for micro-polar
elastic solids being discussed in this paper is a type of Cosserat elasticity that has first been studied in the context
of calculus of variations by P. Neff, for example in [13]. Its basic concept is the following.

An elastic body in its original state is described as a subset Q ¢ R3. It can be deformed by shifting each
point x € Q to its new location ¢(x) € R3. Moreover, the micro-polar structure of the body allows each point to
undergo some micro-rotation (without deforming the body any further), meaning that to each point x, there is
attached an orthonormal frame, which is free to rotate by an orthogonal matrix R(x) € SO(3). The micro-rotation
being in SO(3), rather than using infinitesimal rotations in the corresponding Lie-algebra of skew-symmetric
matrices, ultimately leads to the geometric non-linearities in the Euler-Lagrange equations of the model. Both
deformation and micro-rotation cause material stresses, measured in terms of R” - Do — I3 and RT - DR, respec-
tively. Leaving additional external forces and moments aside (as it was discussed in [6]), summing up the energy
stored in the body, the Cosserat energy functional is given by

Jo(9,B) = [P(R" - D - I3) |2, g, + AIR" - DRI}, g,

with constant A > 0, parameter p > 2 and linear operator P: R — R3*3, describing a weighted sum of the
deviatoric symmetric part and the skew-symmetric part of a matrix as well as a diagonal matrix of its trace.
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With material constants p1, g, gz > 0,

P(A) = +Ju1 devsym(A) + /uc skew(A) + @ tr(A) - Is.
The existence of minimizers of this Cosserat energy on a bounded Lipschitz domain Q ¢ R® was proven in [14].
Further aspects of the model and the existence of Cosserat energy minimizers are discussed in [15].

When studying regularity of minimizers, Gastel recently observed a connection between the Cosserat prob-
lem and p-harmonic maps, which is a well-studied area in Geometric Analysis. In the case p = 2 (A = 1 without
loss of generality), when all constants are assumed equal (41 = t¢ = U2), he found the following (cf. [6]): On one
hand, he showed Hélder-continuity for all minimizers on the whole domain Q. On the other hand, he gave an
example of a critical point (meaning a weak solution of the Euler-Lagrange equations) of the Cosserat energy
for Q = B3, p = 2and yy = y, = U, = 1, whose micro-rotational part exhibits a point singularity at the origin. So
in contrast to minimizers, regularity of critical points should be an issue.

Note that with this particular choice of constants P(-) becomes the identity and

Jo(p,R) = J|RT Do - I3* + |DR)? dx.
Q

In Geometric Analysis, many results are known about (non-)regularity of harmonic mappings (i.e. weak solu-
tions for the Euler-Lagrange equations of the Dirichlet integral). Having in mind several of them, concerning
harmonic mappings into the standard sphere S, the starting point of our research is the question: How “big” can
the singular set Sing(f) of a critical point f = (¢, R) of the Cosserat energy get? (In this situation, Sing(f) denotes
the set of points, where f fails to be locally in C1# x C%* for any u € (0, 1), its elements are called singularities.
Similarly, Sing(R) denotes the set, where R fails to be locally in €% for any u € (0,1).)

An idea for being able to use the vast machinery of results about the regularity of harmonic mappings
into S? is to observe a connection between S? and the set

S :={A € SO(3) : A describes a 180°-rotation around some axis in R%}.

By identifying each rotation in 8§ c SO(3) with its axis of rotation, we obtain a two-fold covering of the mani-
fold 8, given by F: S> — 8, q — 2q ® q — Is. A quick calculation in local coordinates shows that F is locally
isometric up to the factor V8. Moreover, a well-known fact from Algebraic Topology implies that, if the domain
Q is simply connected and locally path-connected, any continuous mapping can be lifted [8, Theorem 6.1 and
Corollary 6.4, p. 26f]. To be precise, for the covering F and any continuous mapping R: Q — 8, there exist two
continuous mappings n12: @ — s n1 = —nz such thatR = F o )y, aslong as Q is simply connected and locally
path-connected.
So instead of looking at the full variational Cosserat problem

90(0, R) = JlRT ‘Do - L2 + DR dx — min  in H'(Q, R? x SO(3)), @)
Q

we mostly work with the restricted Cosserat problem

Jo(@,R) = JlRT Do - I3)* + DR dx — min  in HY(Q, R® x §). (@*)
Q

Often, restricting a variational problem to a submanifold changes the Euler-Lagrange equations and thus is
not a suitable method for finding results for the general problem. But here 8§ is a totally geodesic submanifold
of SO(3). This fact implies (just like it is proven for harmonic mappings), that restricted minimizers (i.e. mini-
mizers of the restricted Cosserat problem (P*)) are at least still critical points of the full Cosserat problem ().
In general, they are not minimizers of ().

In [6], Gastel showed that the (interior) singular set of a Cosserat energy minimizer of the full problem (%)
is a discrete set and in fact empty. But the line of reasoning made there to show discreteness holds true for
restricted minimizers, cf. [11, Section 4.1]. With similar arguments, following the suggestions from [18], based
on [17] in the context of harmonic maps, one can even show full boundary regularity given C*-Dirichlet bound-
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ary data, see also [11, Section 4.2]. So at most, we expect only isolated point singularities in the interior for
restricted minimizers. In contrast to the local Holder continuity for Cosserat energy minimizers in [6], as well
as in contrast to smoothness for energy minimizers of a (two-dimensional) flat Cosserat micropolar membrane
shell model developed via dimensional decent (recently shown by A. Gastel and P. Neff in [7]), yet at the same
time in analogy to a result by R. Hardt and E-H. Lin [9] for harmonic maps u: B> — S?, we derive the following
statement. It shows that critical points of the Cosserat energy can be forced to have an arbitrary large number
of singularities, by prescribing suitable smooth boundary data.

Theorem 1. Forevery N € N there exist smooth boundary data gy = (9o, Ro) € C®(9B3, R3 x 8) with deg(Rp) =0
such that each (restricted) minimizer f = (¢, R) of the Cosserat energy Jgs(-) in the class HéO(B3, R3x8):= {ge
HY(B3, R®x 8) : gap: = o} must have at least N singularities in its micro-rotational part R.

Remark 1. The property deg(Rp) = 0 emphasizes that the singularities, which we are about to enforce, do not
appear simply due to elementary topological reasons, see the discussion in [3, p.15] for example, in regard
to harmonic mappings u: @ — S2. But, as 8 ~ RP? is a non-orientable manifold, the concept of the classical
Brouwer-degree deg(y) of a mapping ¢ between orientable manifolds, which is used for the deformation com-
ponent ¢, needs to be modified for the micro-rotational component R. Inspired by observations in [16] and
[12, Section 4], we define the (mod 2)-degree as follows.

Definition 1. Let Q c R® be a bounded, simply connected and locally path-connected set and let f be a map with
components f = (¢, R): @ — R3 x 8.
(i) ForR e C%(Q, 8), there existsaliftn: @ — S% which means F o n = R. Then the (mod 2)-degree of R is given
by
deg(R) = deg(n) mod 2.

(i) For an isolated singularity a € Sing(R), we define
deg,(R) = deg(ng(a)) = deg,(n()) mod 2,

where S%(a) ¢ Qis an arbitrary sphere of radius r > 0 around a such that the corresponding ball B_ﬁ(a) does
not contain any other singularities of f, and n(, denotes the lift of R existing on Bi(a) \ {a}.

In both cases, the (mod 2)-degree lies in Z/27. This definition has the advantage, that nice properties of the
classical Brouwer-degree, like additivity and homotopy invariance, continue to hold.

Because we are going to use the concept of dipoles a lot throughout this paper, we also have to modify the
original definition of a dipole as introduced in [5] to fit into the situation of (restricted) Cosserat solids.

Definition 2. Let @ c R® and f = (¢, R): Q — R® x § be as in Definition 1. A pair of singularities (P, N) of R is

called a dipole for R if there is an open bounded cylinder Z3(q) ¢ Q, rotationally symmetric (of radius r > 0)

around the line segment [P, N] such that

() [P,N] c Z3(q) and Z3(q) is centered at the center q of [P, N],

(i) Z3(q) does not contain any further singularities of f, o

(iii) degp(R) = 1 = degy(R) and the lift n¢) of R (existing on Z?(q) \ {P, N}) has a classical dipole (P, N), i.e.
degp(ng)) = d = —degy(n)) forad € Z \ {0}.

A central method to prove Theorem 1 in Section 3 is inserting dipoles into a given smooth mapping while con-
trolling the energy needed to do so. The details are stated in the following theorem, which will be proven in
Section 2.

Theorem 2. Let Q c R® be a bounded, simply connected and locally path-connected set. Let P, N be two distinct
points in Q such that the line segment [P, N] lies fully in Q. For any smooth mapping f = (¢, R) € C®(Q, R3 x 8),
there exists a sequence of mappings

f = (@m, Rm) € H'(Q, R x §) N C®(Q\ {P, N}, R® x §)
with the following three properties. First, the pair (P, N) is a dipole for each Ry, i.e. in particular it holds
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Second, all mappings fi, agree with f outside of a small neighborhood K, of [P, N] which itself fulfils K, — [P, N],
m — oo, in Hausdorff-distance. Third,

Lm Jo(fm) < do(f) + 647|P - NI.

2 Construction of dipoles

As mentioned above, a key ingredient in the construction of suitable boundary data for the proof of Theorem 1
is the insertion of dipole pairs of singularities, each with (mod 2)-degree 1, into smooth maps. Theorem 2 gives
us a tool for doing so while using a controlled amount of Cosserat energy, depending only on the dipole’s length.
The main part of this paper will consist of its proof, as it contains some technical intricacies.

Proof of Theorem 2. This proof is divided into three steps: First, we present a construction, that was used by F.
Béthuel in [1] to remove a dipole from a given map with a controlled amount of (Dirichlet) energy. Working in the
other direction, it gives rise to a sequence of Lipschitz mappings with the desired singularities of (mod 2)-degree
1inserted. Additionally, the mappings of the sequence exhibit further singularities of degree 0. Second, we cal-
culate the estimates for the Cosserat energy needed. During the last step, we use some approximation results
from [2] to replace each Lipschitz mapping of the sequence with an approximation in order to get rid of the
additional singularities of degree 0 and to gain the desired smoothness (except in P, N) without affecting the
Cosserat energy.

Step 1 (Construction). In [1, Lemma 2], F. Béthuel uses a cuboid construction together with a cube lemma
[1, Lemma 3] plus some calculations from the two-dimensional case in [4]. We can use exactly the same cuboid
construction, together with the following modified cube lemma for the Cosserat energy which itself will be
proved after having completed the proof of Theorem 2.

Lemma 1 (Cube Lemma). For v > 0, let C, = [V, V]? x [-2Vv, 0] be a cube. On the cubes’ boundary, consider
a Lipschitz mapping f = (¢, R): dC, — R® x 8 with deg(R) = do, dy € Z/2Z. Then, for each € > 0, there exists
a constant ag € (0, v) such that for any 0 < a < ay, there exists a Lipschitz mapping fu = (¢, Ry): 8C, — R3 x 8
with

deg(Ry) = dop +1 mod 2,

fa=(9,Ra) = (9,R) = findCy \ (B x {0})

and
J 2-|RY Do - I3|* + DRy |? dH? < 647 + €. 2.1)
B2x{0}
Moreover, on (B?z \ Bzg) x {0} we have
2
IDR,| < const, 2.2)
and on B% x {0}
2 5 64a*
DRa(%,y,0)" = ————— 23)

C(at+ X2+ y2)2

Following the notation from [1] for the cuboid construction, with

e d=|P-Nj,

o ap:= Z(m;d—l)’ m e Nsq,

* Ky the cuboid around [P, N]: K = [~am, aml® x [-am, d + am],

e Kp divided into m cubes: C]m = [-am, am]* x [(-1 + 2))am, (1 +2j)am],j=0,...,m-1,

+ ¢ the barycenter of Cj, and
e 7n: Cp — AC), the radial retraction with center c;, given by

X—Cj
X = Cjloo

ﬂjm (x) =

'am+cj,

where |X - ¢jloo = maxi=1,2,3(|x; = (¢})il),
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we iteratively use Lemma 1 (for m fixed) on the boundaries of each of the (m-1) single lower cubes C,,
j=0,...,m- 2. For the boundary of the uppermost cube C"~1, we set f;, o to be equal to f on all faces except
for the bottom one. As this bottom face of the last cube C7'~! simultaneously is the upper face of the cube C7~2,
we set fin o to have the same values there as constructed by using Lemma 1 on ™2, in order to obtain matching
boundary values. Extending everything to the cubes’ interiors by means of radial retraction 7, the whole pro-
cess implies that for each m > mg > 1, there exists a sequence of Lipschitz mappings (fin.q)a € H'(Q, R% x 8)
(with a N\ 0) given by

((P;R) :f HIQ\Km;
fmae ﬂJm in K,

fm,a = ((pm,a) Rm,a) = ‘l

where
m-1 .
frma: | 0Ch > R¥XS,  fina = (9, Rma),
j=0
with Sing(fm,a) ={P=cp,C1,...,Cm-2, Cm—1 = N}. For this sequence, we have
degp(Rm,a) =1= degN(km,a),
deg,(Rma) =0 forj=1,...,m-2,
degcj((pm,a) =0 forj=0,...,m-1,
as well as

fa=f onoKn,

due to the fact that during the construction, changes of the original mapping only happen on little discs
(of radius a < ap) on the upper faces of the lower m — 1 cubes C?n, e, Cmfz, so that the values on 9K,
remain unaffected. The degree of Rm,a in the inner singularities ¢, ..., cm—2 vanishes, because for the cor-
responding cubes’ boundaries, the original map was changed both on the upper and the lower face. Also, by
definition and known properties of the classical topological degree for the deformation component, we have
deg, (Pm,o) = deg(¢) - deg(rmy) = 0-1=0.

Step 2 (Calculation of Cosserat energy cost). Many of the calculations in this step follow ideas and estimates
carried out in [19], where in the context of removing dipoles from given maps u: @ — 2, [1, Lemma 2] was
generalized to the case that S? is equipped with an arbitrary Riemannian metric. '
So similar to [19], in order to calculate the Cosserat energy of fm,a on K, we start by dividing each cube C]m
into disjoint sets _ _ _
B, (), Al = (Cn \ B}, () N () " (BY x {(-1+ 2)am}),

Din = (Cu \ B, (6)) 1 ()™ (B, x {(1 + 2)am)),
Ep = (Cn \ B3, (6)) N (7)™ (BE \ BY) x {(=1 + Z)an}),
Fhy = (Ch \ B, (6)) 0 ()™ (B2 \ BY) x {(1 + 2))am})

and the rest _ ‘ ) _ ' ‘
G = Chn \ (B3 (¢j) U AW UDy UERL UF).
Note that different constants appearing in the following estimates are always denoted by the same p € Ro.
They only depend on a,;,, Lipschitz constants of n’m (see below) and the suprema of [Dg|? and |DR|? for the
original smooth (¢, R) in the compact set K.
Starting with Bgm (¢j), we can estimate the Cosserat energy in terms of

IS2(c;)

It Fn) = | 1R o) D@ o ) = B + DR o Tl dx
B3, (c})
am
=j j (Rma )T - D(@ o ) — Tl + [D(Rmg o ) 2 3 dp

0 S3(cp)
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am

< ya + Lp, o ) | [ (2R o Do - B + IDRma}ac e, )3 dp

m|S3(c;)

0 5c,
<yad +9ap-2- J IRT . Do - I3|* + |DR|? dF?
A0 \BEX{(-1+2) A, (1+2))an})
DI 2 2y qa2
+an 1+ o {2|RT ¢ - D@ — Is]* + [DRm,q|*} dF*(y)

2 . . m
Bax{(=1+2))am,(1+2))am}

2.2
a
< yad, + 18am j IRT . Do - L2 + DRI d32 + 2am<1 + a—z) (647 + ¢)
. m
ach,
aZ 2
<yad, + 2am(1 N a—z) (6471 + &), 2.4)
m

because of (2.1) and because the original f = (¢, R) is smooth in all of Q. Therefore, |[RT - D¢ — I |2 and |DR|? are
bounded on Kp,, thus foreachj=0,...,m-1,

J IRT . Do - I3)* + IDR*dH% < y - d,.
ach,

In the set G];n, because each x € G]}n gets projected by ”J;n. onto the boundary of C],-n outside of the small discs
B(ZI x {(=1+2))am; (1 + 2j)am}, we have fin ¢(X) = (fm,q o T)(X) = (f o n’m)(x). Hence,

35, (fma) = j (R 7p)" - D(@ o 7p) = Is|* + ID(R o )| dx < y - 25)

G
as (Ro 71{,1) € 8§ ¢ SO(3), Dy and I3, as well as DR are bounded and ﬂ",-n is Lipschitz in C{n \Bgm. Similarly, we
have B
fa=fomy,  inA% UEY,
fa=fenmt inpm-tyfpmt
by construction, and therefore
HA%UE&UD%’luF,",}*l (fma) Y- afn- (2.6)

Along the same line of reasoning, which is possible because of (2.2), we find

Ip fmd) <y-ap, j=1,...,m-1, @7

and
3F,-m(fm,a)gy-a§n, j=0,...,m-2. (2.8)

We now proceed with estimates on A%, (j # 0), and note that D), (j # m — 1) can be treated analogously by
symmetry. While using the Cube Lemma (Lemma 1) in the construction’s background, we changed the origi-
nal lift n: @ — S? of R into a Lipschitz mapping npmq: @ — S? in order to get the new Ry, q = F o Ny o having
m singularities. Here again, F denotes the two-fold covering map between §% and 8 as introduced in the expla-
nation just above (). The deformation part of the Cosserat energy on A%, (j # 0) thus is bounded once again
by y - a3, with the same argument as for estimate (2.5). Additionally, for the micro-rotational part we have
the following, notating Rm,a =Rmq-° n’m =FonNmyge n’m = F o fyy ¢ and with the fact that fip, ¢ is constant in
(x1, X2, 2jam — x3)-direction. It holds

ONm,q X1 O0fim,a X2 O0Nm,a

Ox3  X3—2jam 0xq * X3 - 2jam 08Xz

2 X2 2\|0ftm,q
(1 (5 23a) N on
X3 —2janm 0Xy

and thus

D a0 = (14 (2 )2>‘ Oftm,a

X3 —2janm 0xq

z X]Xz aflm’a aﬁm,a

(X3—2jam)2 0x1 0Xp '
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As X3 + x5 < (x3 - 2jam)? in this regime, it directly follows that

0Nm,q
aXZ

OMm,q |?
6X1

)
5. (—22 )" ipn (T I
3 () Dy s e
X3 — 2jam m,alB%x{(—l+2])am} m
8a*

(@ + (T ()2 + (T (X))2)2

ID(m,q © ) ()2 < 3- (|

<6

using (2.3) and Ry q = F © Ny ¢ in combination with the fact, that the covering map F is homothetic.
With the transformation to polar coordinates (1, 4, &) for the cone (71],,1)‘1 (B x {(-1+ 2j)am}) translated in
2
xs-direction, with n denoting the radius, & € [0, 277) denoting the angle and ¢ denoting the translated height-level

of the disc of points (1, 9), i.e.

&= \/x% + x% + (X3 - 2jam)?,
am am

y1= (ﬂ];n(x))l = —— - X1 = - X1,
X3 = 2janl £ - x% - X2
~ a a
Y2 = (Tn(0))2 = o za T T x,
3~ 4]am & - X% _ X%
Nt =yi+y;
Ezam’)
dxq dxp dx3 = ———— dndddé,
(an +n?)?

we finally get the estimate

3y ) = [ (R o ) D@ o ) = o + DR ) dx

Ay
<y-dd+ le(Fo (Mmoo )P dx =y - ad, +8 le(nma o 172 dx
Al Al
on § Vs :
1 &amn
< -a3+8-48a4-H J LA Gedp a9
i 00 (@t +n%)? (g, +n?)} !

ann (@ +D)i-dd, q

@22 (a4 )

=y-a, +8-32ma*-

o_n\;\;:

=y.a +8-32ma’-

O_.N‘Q

amn 1
(@ + 2 <1 A+ (L)l )dn

z 2

a

<y- a:;’n +y- (14 . J —(a4 :_HZZ)Z . _Z%n dn’ (29)
0

since np < % < am.Henceforj=1,...,m-1,(2.9) becomes
%
- 1 r,?’
) 3 4
Y Uma) <y vy a!md”

4 1
sy-a§n+y-:—-1n<1+m)

m

<y-(d +ad%). (2.10)
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The last inequality holds because of a < a;, and the estimate
In(1+x) =2In(vV1+x) <2In(1 + Vx) < 2+v/x forx >0,

as1+x<1+2vx+x < (1++/x)?for non-negative x.
As mentioned above, we also find
dp Fma) < V- (am +ap) (2.11)
forj=0,...,m- 2 by symmetry.
Combining (2.4)-(2.8), (2.10) and (2.11), we have

~ m_l ~
gKm(fm,a) = Z gdn(fm,a)
j=0

m-1

m-1
= Z(:)(Hggm(ci)(fm,a) + HG/,'n(fm,a)) + Z (3Al;"(fm,a) + 3E{'[(fm,a))
j= j=
m-2

+ z (3D1m (fm,a) + gFJy'n (fm,a)) + 3A9"U59nupg-1upﬁ‘1 (fm,a)
j=0
a® \2
3 aN0 3
sZm-am-(1+—2) 64r+e)+y-(ay +am) — 2m - am(64m + &) +y - (ay + Am).
am
In other words, for any & > 0 and any m > my, there is a number & and a corresponding mapping f,.z, which

we simply call f,, with
Ik, () < 2M - am(64T + €) +y - (@3, + ) + € ——> d - 6477 + (d + 1)e.
Hence, for each € > 0 we have a number m (= m(¢)) > my and a mapping f"m that fulfils
Ik, (fm) < 647 - d + (d + 2)e.

As a consequence, for any sequence (€m)men With €, N\ 0, we have constructed a sequence of Lipschitz map-
pings fn € H(Q, R® x 8) such that
®
~ - ~ ( ) R) = in Q \ K )
fm=((Pm,Rm)= ¢ i f i . "
(o njm; Rm o njm) in Ky,

where K, — [P, N], m — oo, in Hausdorff-distance,
(ii) Sing(fn) ={P = co,C1,...,Cm-2, Cm_1 = N} with

deg,,(pm) =0, j=0,...,m-1,
degcj(Rm):O, j=1,...,m-2,
degp(Rm) = 1 = degy(Rm),
(iii)
lim sup Jo (fim) < da(f) + 64 - [P - N|.
m—oo

Step 3 (Approximation). Finally, we need suitable approximation arguments to achieve smoothness except in
P, N for each f,, without affecting the Cosserat energy estimates. Also, (P, N) is not yet a dipole for R, according
to Definition 2. Luckily, we are able to use several methods developed in [2]. During the construction in Step 1, we
changed the original smooth mapping f in the cuboid K, only. Since R® is contractible, we can use [2, Theorem 1
bis]. Therefore it is possible to approximate the changed deformation component @ x, in H'-topology with
mappings

Oms € C¥(Km, R%), seN,

while the boundary values remain ¢;; s = @, = ¢ in 0Kp,. Replacing ¢, s by a subsequence, we may assume
Om,s — Pm, S — 00, pointwise almost everywhere.



DE GRUYTER V. Husken, Very singular Cosserat-solids == 375

For the micro-rotational component Rm| Ky = (Rm o 721;,1) € HY (K, 8) we first note again that

leKm =F°nm°77]m =Fony,
with Ay, € H' (K, §%),
degp(fm) = 2k +1 = —degy(Ry) forsomek € Z, and degcj(ﬁm) =0

foreachj =1,..., m - 2, having smooth boundary values fimax, = Mok, € C®(dKm,S?) due to the underlying
construction making use of the smooth lift n of the original smooth R. Applying [2, Theorem 2 bis], since S?
is a compact manifold without boundary and K, is dividable into cubes (cf. “cubeulation” in [2]), there exists
a sequence

N € H (K, $?) N C®°(Km \ {P,N, 1, ..., Cm2}, S?)
with
) nmt— Ay, t > 0o,in HY (K, S%),
(i) degp(nm,) =2k +1=—-degy(nm,) and degcj(nm,t) =0,j=1,...,m-2,
(ii) nm,t10K,, = Nmiok, = NoKy-
Now we can use the technique from the proof of [2, Lemma 1 bis] to get rid of those singularities ¢y, ..., Cm-2,
in which the homotopy class of n, ; is trivial. For np in Qp = angz C]m, each np o, (subject to their own
boundary values g := N, ta0,,) can be approximated in H'-topology by mappings

NMm,t,s € H;(Qm, SZ) N C®(Qm, Sz),
that agree with ny,, ; outside of Uj"i]z Bi /s(c]-).
That is why for each i, : Ky, — S2, there exists a sequence of mappings
Nm,ts € H' (K, %) 0 C°(Km \ {P,N}, %), s €N,

by defining
Mmts = {nm,t,s in Qm,

Nm,¢ in C(r)n V] Cm_l,

with npm,s — Ay In HY(Kp, S%), degp(Nm,,s) = 2k +1 = —degy(nm,s) and smooth values on the boundary
of Ky, which are given by np ¢ sjox,, = fimjak,, = MoK,

Finally, we project everything back from S% to 8. For each of the mappings Rm| Ky, = F oy Km — §, we
thus have a sequence of mappings

Rmts=FoNlms € Hl(Km, 8) N C®(Km \ {P,N}, 8),
which approximate Rk, in H'-topology, because (after passing to an a.e.-pointwise convergent subsequence)
it holds that
J' [Rm,t,s — Rm|2 dx = J [Fonpmts—Fo flm|2 dx

Kn Km

= j [2[Nm,t,s ® Nmyt,s — Nin ® flm]|2 dx

Kn
3 . . . .
€ Y [ [ = Bl 1T+ T+ g+ Rl [t = Tl 1 =,
Lji=1g, -0 <2 <2 -0

and
J IDRm,¢s — DRy |* dx = j IDF o Ny ts - Dim,t.s — DF o Ay - Dty dx
Kn Km
<2 J IDF o Ny .5 - Di,t.s — DF © fiyy - DN g s|% + IDF © Aoy - DNi,,s — DF o iy - Dity|? dx
Kn

~ ~ ~ §$—00
<2 j IDF o Ny t.s — DF o ftyg|> - [DNm,e.s|2, + IDF o fim|%, - [DNm,¢.s — Ditn]? dx —— 0.

K
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Summarizing, for any sequence (€,;)men With &, N\ 0, there exists a sequence of Sobolev mappings (fm)m with
Jo(fm) < Jo(f) + 64m - d + (d + 2)em,
as well as another sequence of mappings (fm,¢,s)s
,R) = inQ\ Kpn,
frts € H(Q, R x8) N C®(Q\ {P, N}, R¥x 8),  fimts = (0B =1 , \ Ko
(Omt,s» Rmt,s) 1IN Kp,

with fi.¢.s = fm, § — 00, in H(Q, R® x 8). Moreover, Ry, ¢ s has a dipole (P, N). Hence for each &,,, by dominated
convergence, we get the existence of a mapping f;,;, with the desired properties and

Ik, (fm) < me(fm) +Em<64m-d+(d+3)em,

meaning we have found the sequence (f;;) men 0of mappings, which are smooth except for a dipole in the micro-
rotation and whose Cosserat energy fulfils

dim Jo(fm) < da(f) + 647 - [P - NI. O
Having finished the proof of Theorem 2, it remains to prove the Cube Lemma for the Cosserat energy.

Proof of Lemma 1. Since the set aC, is bounded, simply connected and locally path-connected, the Lipschitz
mapping R: dC, — 8 can be lifted, which means for the covering map F of § (F: §* — 8, q — 2q ® q - I3), there
exist exactly two Lipschitz mappings

ni: 8Cy — §* withR = Fon;,
i =1,2and n; = —ny (cf. Section 1). We choose one of these mappings and keep it fixed (n := ny). Additionally,

there is a number deg(n) = ¢y € Z such that dy = deg(R) = ¢y mod 2. Moreover, F is homothetic, i.e. for any
tangent vector V € T,(0Cy) we have

IDRy(V)I* = [DFyp) (Dp(V)I* = 8- Dy (V). 212)

We perform the modifications used in [4] on our n, to the following effect. The construction from [4], which
will shortly be described below, implies that for each ¢ > 0 there is a constant 0 < ag < v such that for each
0 < a < ay, there exists a Lipschitz mapping fi,: C, — §%, which fulfils
deg(fig) = co + 1,
flu=n onaC,\ (B x {0})

and
J IDitg|? dH? = 8w+ O(a®) witha \ 0, (2.13)
Bx{0}
as well as
IDfiq| < const in (B2 \ BZ%) x {0} (2.14)
and
DRy, 0 = — 3 B2 xq0). 2.15)
(a* + x% + y?)? 2

That is to say, we change the degree of the original n by +1, without changing the map n outside of the
disc B% x {0}. For doing so, we only need a controlled amount of (Dirichlet) energy. All this is achieved by
the construction mentioned above taken from [4]: For polar coordinates (r, ¢) in (x1, X2)-plane, we set

X 0
2(12 ! a
—— | x2 |+ 0], r<—,x3=0,
at +r? 5 2
-a 1
Na(X1, X2, X3) = 1 Aqir + By .
Asr + By s Esr<a,X3=O,
V1= (A1r + B1)? — (Agr + By)?
n(x1, X2, X3), else.
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Basically, in the small disc B2 x {0}, we stretch by a factor of ;; 1 and then use stereographic projection from the
North-pole to $2. In the annulus (B2 \ B2) x {0}, we 1nterpolate (hnearly in r) between the values of the original n
on B2 x {0} and the values of the steréographlc projection after stretching on dB% x {0}, so that the new map
Ng is continuous. This means that the interpolating functions A;, B; (i = 1, 2, depeﬁding on ¢) are chosen such
that

a 4a
—A1+B1 = ——— cos(d)),

2 4q?
a 4
EAZ + By = 121 sm(¢))

aA; + B; = nj(a cos(¢ ,asin(¢),0) fori=1,2.

With further calculations to be found in [4], we then get the statement made above, including (2.13)—(2.15).
Coming back to our micro-rotation R, we make use of the covering map F again. Now we define R, := F o fi,
such that
Ry=Fofiy=Fon=R onaC,\ (B%x{0})
and
deg(R,) = deg(fig) mod 2 = ¢cg +1 mod 2 = dp + 1 mod 2.

The properties (2.2) and (2.3) follow directly from (2.14) and (2.15) respectively, because of (2.12). For the other
part of the Cosserat energy of f,, coming from the deformation, we easily see [RT - Do - I3|*> = O(1), a \, 0, as
Ry € 8 ¢ SO(3) and ¢ is Lipschitz by assumption.

Using (2.12) and (2.13), we therefore find

J 2|RT . Do — I3)* + |DRy|* dH? = j 2|RT . Do - I3)* + 8 - DAy | dFH?
B%x{0} BZx{0}
=647+ 0(a®) with a \ 0.

Thus we can choose ap <« 1 sufficiently small such that

J 2|RY Do - I3)* + DR, | dH? < 647 + €
B%x{0}

holds for every a < ag. O

3 Prescribing the number of singular points in a Cosserat-elastic
solid (proof)

Now that we have provided a tool for constructing dipoles with a controlled amount of Cosserat energy, we can
use it to prove Theorem 1.

Proof of Theorem 1. We use a combination of ideas from [3] and [9], adapted to the restricted Cosserat prob-
lem (P*). First, we define the desired smooth boundary conditions following an idea from [3, Section I.4]. Then
we show that each restricted minimizer of the Cosserat energy in the corresponding class must at least have a
given number of point singularities, just as it was done in [9] for harmonic mappings.

For N € IN, we define numbers A; = 2N’ i=1,...,N,points

&=(0.1-22,4) and g =(0,—\1-22,-1),

Pi,=(1-8é, Py, =1 +em,
N and ”
N{ . =Q1+8)d, N, =(1-&mn,
we denote the e-tubular neighborhood of the line segment [Pfs, N:a] and

as well as pairs of points

for each &> 0. By Z;, and Z;

&’
[P}, N; ] respectively.
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Without loss of generality, let € « 1 such that
N 1 S N
lz-2| > i for all (x,y,z) € ZZE, (X,9,2) € Z]Tfa with i # j, 31

meaning the neighborhoods Z{E are separated by circular slices with a height of at least ﬁv- Moreover, let
g=(3,8) € C°(B3, R® x 8) be given as

—X -1 0 0
dx,y,z)=| -y and S(x,y,z)=( 0 -1 0
z 0 0 1

At first, Theorem 2 gives us a mapping & = (3, S) in
N
H' B3, R*x8)n COO(Bg \ (U{pzs,Ngs,pgs,Ngs}), R® x s)
i=1

which agrees with g outside of Z = Ufil(ZZE uZ;,), with S having only the dipoles (P¥ , N iifg) as singularities,

i€’
degpzs(fS) =1= degN:E ),
degPZE(S) =1= degNgE (),
and
Jp3(8) < 64m-2e-2N+e=(64m-4N +1) - €. (3.2)

Now, the boundary values we prescribe are
g0 = (9o, Ro) = 8japs € C®(8B% R® x 8),

with deg(Rp) = 0 and
g@\z =(9,9).
Due to (3.2), combined with (3.1), it is possible to choose ¢ « 1 such that

.. T
dp3(8) < N (3.3)

For the rest of this proof g always means g@ and therefore, g € H;O (B3, R® x 8). Thus, let f = (¢,R) be
a restricted minimizer; i.e. a minimizer of the problem (*) in the (non-empty) class Hg,o (B3, R® x 8). Because
of (3.3), we also have

Ip(P) < % (3.4)

From here, following [9], with (3.1) and (3.4), we find N + 1 numbers yo, ..., uy € R,
O<po<Adi<pi<Ay<---<Ay<uy<1,
such that foreach i = 0, ..., N the disc D; := {(x,y,z) € B3 : z = u;} satisfies D; n Z = ¢ and
JlDRlZ dH? < 4m. (3.5)
D;
Suppose (3.5) was not possible. Then we would get

1 s
> — Ar=—,
dp:(f) N N
because of (3.1), contradicting (3.4).
As we mentioned in the introduction, following the line of reasoning from [6] and carrying out similar
arguments at the boundary, we get discreetness of the singular set for restricted Cosserat energy minimizers

in the interior and full boundary regularity, cf. [11, Section 4]. Moreover, this is in accordance to full boundary
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regularity for (not restricted) Cosserat energy minimizers in a more general setting, as recently shown also with
similar arguments, but technically more involved [10]. In particular, singularities cannot lie at the boundary. This
implies that also Sing(R) < Sing(f) ¢ B® is a discrete set in (the interior of) B3. Hence we can assume without
loss of generality, that all isolated singularities of R are in B3 \ (U?il D;). Then for each compact subset C of
B3\ Sing(R) and eachi =0, ..., N, we have (with the area-formula, because R is Lipschitz continuous in D; n C)

[semincnrt@ndup) = [ JacRino aoe,

8 DinC
where u denotes the natural Riemannian measure on 8. Approximating the open set B® from within by
a monotone sequence of compact sets Cx C B3, meaning Cx C Ckyq for all k € Ny, we know that the sequences
HOD; n Cx N RY(p)) and Jac(R|p,nc,) are hence also monotone in k. Thus from monotone convergence (for
Cx / B3, together with (3.5), we infer for each i =0, ..., N,

KRDY) < | 3D 0B (p) du(p) = lim [ 3°(Di 0 Cen R (p) du(p)
S S
= lim J Jac(Rip;nc,) 3H?* < lim j]ac(le.nck) d?
k—00 k—co
DinCy D;
= J]ac(Rwi)dez < % JlDRlz dH? < 2m = u(s).
D; D;
So each image R(D;) is a proper subset of 8. On one hand, as R is (H6lder-) continuous on D; and D; N Z = 0,
combined with R|aBs =Ry = §|5B3 and

-1 0 0
S|Bs\z =S=({ 0 -1 0],
0 0 1
it holds that Rp, is homotopic to S relative to 0D, i.e.
-1 0 0
Rp, = 0 -1 0 | reloD;. (3.6)
0 0 1
And on the other hand, we infer
-1 0 0
Spi=| 0 -1 0. (3.7
0 0 1

Finally, for each i = 1, ..., N, we consider the slice Q; := {(x,y, z) € B¥:iuiq1<z< uit. Then 0Q; = D;_y U D; U

(8B n Q;) is homeomorphic to S2. By construction, the only singularity of § in Q; is the point PZE with

We also know that no singularities lie in 0Q; and that the interior of Q; contains only isolated singularities
(namely only P;,). Thus the degree of Siag; is obtained by adding up the degrees of § at all isolated interior
singularities (mod 2) in Q; and we get

deg(Sja0,) = ( Z degX(S)> mod 2 = degp: S =1.
xeSing(3nQ;) '

Moreover, (3.6), (3.7) and R|pps = S|a p3 iImply Rjag; = §|agi. Hence, due to homotopy invariance of deg( - ), we also
find
deg(R|agi) = deg(.§|agi) =1.

This proves that R must have at least one singularity in Q; foreachi=1,...,N. O
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