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Abstract: Given is a bounded domain Q ¢ R", and a vector-valued function defined on 9 (depicting tempera-
ture distributions from different sources), our objective is to study the mathematical model of a physical prob-
lem of enclosing dQ with a specific volume of insulating material to reduce heat loss in a stationary scenario.
Mathematically, this task involves identifying a vector-valued function u = (u!, ..., u™) (m > 1) that represents
the temperature within Q and gives rise to a free boundary, somehow reminiscent of, but not equivalent to, the
Bernoulli free houndary problem.
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1 Introduction

1.1 Background

In this paper we consider an extension of a classical optimization problem in heat conduction, described as
follows: given a surface 9Q (boundary of a domain Q ¢ R") and positive functions defined on it (each repre-
senting temperature distribution), the aim is to enclose Q with a prescribed volume of insulating material to
minimize heat loss in a stationary scenario. Mathematically, the objective is to discover a vector-valued func-
tionu = (ul,...,u™) (m > 1) that corresponds to the temperature within Q. Whenever the components of u are
nonnegative and the volume of its support is equal to 1, they become p-harmonic. The target is to minimize the
heat flow, which can be regarded as a continuous family of convex functions dependent on Vu along 0.

Our research was inspired by a series of papers [2-4] and their generalization presented in [16]. The
initial two articles focused on studying constant temperature distributions, specifically in the linear case where
I'(x, t) = t. This linear setting enabled [2, 4] to reduce the quantity to be minimized to the Dirichlet integral.
However, even within the linear case, the problem of nonconstant temperature distribution, examined in [3],
introduced various new challenges.

The main objective of our article is to explore the system version of the nonlinear case with a nonconstant
temperature distribution, wherein the equation is governed by the p-Laplacian. The nonlinearity addressed
in this paper holds significant physical importance, as problems involving monotone operators, akin to those
studied in [16], arise in the optimization of domains for electrostatic configurations.

The nonlinearity associated with Vu introduces various new challenges. For instance, computing normal
derivatives of WhP-functions becomes problematic, leading to difficulties in providing a reasonable mathe-
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matical model. In [3], this challenge was overcome by minimizing the total mass of Au, which can be treated
as a nonnegative measure when u is subharmonic. However, in the present case, there is no representation
available for

J I'(x,Ayu(x))do

a0
asanintegral over Q. To address this issue, similarly to [16], we solve appropriate auxiliary variational problems
and compare them with the minimizer.

Now let us introduce the problem in mathematical framework. Let @ ¢ R" (n > 2) be a bounded open set

with smooth boundary whose volume |Q| > 1. Consider the p-Laplace differential operator (1 < p < 00)

Apu' = div(|Vu'[P~2 vu') = div(A[u']),
where we set A[u'] = A(Vu!) := |Vu!|P~2 Vu! to simplify the notation.
Let @ : 9Q — R™ be a C! function with positive components ¢! > 0. Foru: @ — R™ (m > 1) satisfying
Aput=0 in{jul > 0},
ul = (pi on o0Q, 1.1)

vol(spt|u|) =1,

we want to minimize the functional
J(u) := j T(x, Ayul(x), ..., Ayu™(x) da(x),

00

where v is the outward normal vector on 6Q,

i._ i\p-2 i
v . i)
Ayu = |VulF = oyu

and I'(x, &) : 0Q x R™ — R is a continuous function that satisfies:

(1) For each fixed x, I'(x, -) is a convex function.

(2) Forevery i, 0¢I(-,-) is positive and has a positive lower bound on any set of the form {(x, {) : §; > a}. In
addition, 0gI'(-, -) ishounded above on any set of the form {(x, £) : ¢; < b}. (The bounds can depend ona, b.)

(3) Foreachfixed ¢, 0gT(-, &) isa ¢! function.

Note that, as a result, for every ¢ we have

06 &L En) 2 ) 06T (6 0)E +T(X,0) 2 ) $i0&i - C,

where ¥;(x) := 0gI'(x, 0) > 0 are positive C! functions and C is a constant. In particular, we have

m
TG Ay, ..., Aylim) 2 Y Yi(0Au' - C. (12)
i=1
A typical example of T is
I'(x,§) = Y100y1(61) + -+ + YmX)ym(Em),

where the ¥; are C' and positive, and the y; are C! increasing convex functions with positive derivative.

Remark. It might be worth remarking that this problem has some fundamental differences with the well-
known Bernoulli problem [4], singular perturbation [8], or volume constraint problems [1], where in all these
problems the Dirichlet integral is part of the cost functional to be minimized under constraints. There is a vast
literature around these problems, and we refrain ourselves to get into. To see connection between our prob-
lem at hand and the aforementioned ones, we consider the energy above in a simple scalar case such as
I'(x, Ayu(x)) = dyu(x), with u being constant, say u = 1 on 9Q. Alternatively we may consider a u-dependent
function ud,u(x). The drill is now simple:

1
J udyu = 5 J dyu? = JuAu +|Vul? = J [Vul?,
Ele) Ele) Q Q
upon assuming u would be harmonic in its support.
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1.2 Structure of the paper

The structure of our paper is as follows: In Section 2, we introduce the physical problem under consideration.
We then formulate a penalized version of the variational problem for the temperature u and define suitable
constraint sets as part of our strategy to overcome the challenges arising from the nonlinearity. We solve the
optimization problem over weakly closed subsets of W7 (the sets V), establishing the optimal regularity prop-
erties of the minimizers, including Lipschitz regularity. These results are crucial for proving the existence of
an optimal configuration for the original penalized problem, as discussed in Section 3. Here we also present
fundamental geometric-measure properties of the optimal configuration, such as linear growth away from the
free boundary and uniformly positive density. These properties allow us to establish a representation theorem
following the framework of [4].

In Section 4, we recover the original physical problem from the penalized problem by showing that for
sufficiently small &, the volume of {jug| > 0} automatically adjusts to be equal to 1.

Section 5is dedicated to the optimal regularity of the free boundary, for the case p = 2. We demonstrate that
the normal derivative of the minimizer along the free boundary is a Holder continuous function, leading to the
conclusion that the free boundary is a C1 surface. Furthermore, using the free boundary condition obtained
during the proof of Hélder continuity, we establish that the free boundary is an analytic surface, except for a
small singular set.

2 The penalized problem

Let Qs := {x € Q : dist(x, 8Q) < 6} and
Vs :={ue WP(Q:R™:ul >0, Apui >0, Apui =0in Qg, u' = ¢’ on 4Q}.

Furthermore, we set

V::UV(g.

6>0
Observe that the above definition is consistent due to the assumption ¢! > 0 on Q. Also, by Apui > 0 we mean
that for any test function ¢ € C2°(Q) with ¢ > 0 we have

- J V(- VulP~vul dx > 0.
Q
This implies that there is a Radon measure u' such that for any test function { € C°(Q) we have
J’ (dul = - I V(- VulPval dx.
Q Q

To simplify the notation, we denote ' by A,u’, and du' by A,u' dx. (It should be noted that this notation is not
meant to imply 4! is absolutely continuous with respect to the Lebesgue measure. In fact, for the minimizer, the
two measures are mutually singular as we will see in Theorem 3.5.) It is also worth noting that

ul>0 inQs 2.1

by the strong maximum principle, since u' is p-harmonic in Qs, and while it is positive on 8%, it is nonnegative
everywhere.
Letfs : R —» Rbe

1
fe(t) = <|1 +3(t-1), t=1,
1+e(t-1), t<1l

We are interested in minimizing the penalized functional

Je(w) = j T(x, Ayu(x) do + fe(l{lu] > 0})

o0Q
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over V. The significance of the above penalization is that it forces the volume |{|u| > 0}| to be 1 for small
enough ¢; see Theorem 4.3. (Notice that the components of u € V are p-harmonic near dQ; therefore they are
smooth enough near the boundary, and it makes sense to compute their derivatives along 9Q.) We first consider
the minimizer of J, over Vs.

Lemma 2.1. Letu € V. Then we have

J Yibpul dx + vai Al dx = j vidvid do, 2.2)
2 2 a9
where the y; are C* functions.

Proof. Let¢y € C*°(Q)besuchthatdr =1onQy = Q - Q1/xand ¢ = 00on 0Q. We know thatu € Vs for some 6.
Suppose k is large enough so that % < &, and thus Q4,x ¢ Qs. Then we have

JV(WPI') -A[u'] dx = j V(Pkthi) - A[u'] dx + j V(okihi) - A[u'] dx

Q Qa/k Qr
= [ V60 A dx s [ vy Al ax
Qi/k Qk

Now, noting that 9Q1,x = Qx U dQ, and by using the integration by parts formula proved in [6], we get
J V(¢xyi) - Alu'] dx = J V(i) - Alu'] + pripidpu’ dx
Ql/k gl/k

q)kl,biAvui do + j q’)kl,biAvui do
09

[fo L a—

~

5}

=- J tpiAvuido m - J I,D,'Avui do.
Q

0Qx 0Q

In addition, we have
j Vipi - Alu'] dx — j Vi - Alul] dx,
—00

Qi Q
and
| w0 At ax = [ gupiyul dx — - [ pisyu a,
Q Q Q
which together give the desired result. O

We can similarly show that
I Apu'dx = J Ayuldo.
Q o0
In addition, note that [, u’A,u’ dx is meaningful (since u' - ¢' Wé’p while A,u’ € W-LP/(?-D and ¢ is con-
tinuous) and we can similarly show that
J uiApui +|VUlP dx = J 0'A,ul do. 2.3)
Q aQ
Note that u’ = ¢’ on 0Q.

Lemma 2.2. Foru € V we have
m
Z J IVu'lPdx < C+C J Z Yi(x)Ayu' do.
i=1g 50 ism
Remark. As we will see, the above inequality actually holds for each summand. Furthermore, with a slight
modification of the last part of the proof we obtain that
JApui dx<C+C J l,bi(x)Avui do.
Q Ele)
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Proof. Let hg be the vector-valued function in Q satisfying A hé =0, and taking the boundary values ¢ on 0Q.
Note that hy is C' and we can plug it in (2.2). By subtracting the resulting relation from (2.3) we get

J(ui AU dx+ JV(ui ~hi)- Alu] dx = 0.

Q Q
Hence
j Vul[P dx = JVui Al dx = J(hg AUl dx + Jth Alu] dx
Q Q Q
sj oApu' dx+CJ|Vh |pdx+—J|A[u]|P1dx
Q Q Q
CJApu dx+C+—j|Vu P dx,
Q Q

where we have used the facts that u!, Apu > 0and |A[u ]|L1 = |Vu!|P. Thus we have

J |VullPdx < C Apui dx.

Q

[ E—

But since y;, Apu' > 0 we get

J Vull dx < CIA,,ui dx < CC; I vi Apul dx,
Q Q Q

where C; = maxg % > 0. Hence by (2.2) we get

I VulP dx < cJ ¥i Apul dx

Q Q
-C J Vi -A[ui] dx +C J l,biAvui do
2 29
wa P dx + J JA[Ul]) 7T dx + C I YiAvu' do
Q 2 a9
<C+= J IVul|P dx + C J YA u do,
bl a0

which gives the desired. O

Theorem 2.3. There exists a minimizer u$ € Vs for J.

Proof. Let {uyx} c Vs be a minimizing sequence. Then by the above lemma and (1.2) we have

m
z j [Vu [P dx<C+C J z YiAyu do
i=1g 90 ism
<C+C J T(x, Ay, ..., Ayu}) + Cdo
0Q
< C+ CJs(uy).

Hence [[Vug|z» is bounded. In addition, for the dual exponent q = = 1 we can see that [|[A[ug]llLe = IIVuk|| Pl
is also bounded. Hence, up to a subsequence, we can assume that Vu — Vu in LP, A[uk] — A[u']in L9, and
u; — ua.e.in Q. Thuswe have u' > 0. Also, u! = go on 0Q, since uk go e W, p(Q) which is a closed and convex
set, hence weakly closed. Finally, to see that A,u u' has the desired properties, notice that for an appropriate test
function ¢ we have

J V6 Afu] dx = lim j Vo - Alul] dx

Q Q



302 — M. Fotouhi et al., A weakly coupled system of p-Laplace type in a heat conduction problem DE GRUYTER

due to the weak convergence of A[uk]. Therefore u € V5. Now we can repeat the proof of [16, Lemma 3.3] to
deduce the weak lower semicontinuity of /. with respect to this sequence, and conclude the proof (the convexity
of T is needed here). O

Although Hopf’s lemmas for p-harmonic functions are well known (see for example [15]), we include the proof
of the following version as we need a specific form for the constant.

Lemma 2.4 (Hopf’s lemma for p-harmonic functions). Suppose h is a p-harmonic function on B1(0) with nonneg-
ative boundary values on 0B;. Then we have

h(x) = c(n, p) dist(x, 0B1) sup h.
Bz

Proof. Consider the function g(x) = e*** — e~ for some A > 0. Note that g = 0 on 8By, and 0 < g < 1 on By. We
also have
0,8 = —2/1Xi€_/1|x|2, 0ijg = (4/12X,'Xj - 2)[5ij)€_/1|x|z.

Now we have Ag = (442|x|? - 2nA)e~""" and

Doog = Y 0i80;804g = Y 4A*(4A%xIx} — 2A8xixj)e M = 42242 |x|" - 2A1xP%)e A,
ij ij

Therefore
Apg = div(|VgIP~2Vg) = [VgIP~4(IVEl*Ag + (p - 2)Acg)

= AP AAAX X2 @A%|X]% = 2n2) + (p - 2)422(4A%|X]* = 22|x]2))e~ P~ DA
= QOPLXIP2@AX: = n + (p - 2)2A|x]? — 1))e”@-DAX?
= 2P XP2 Q20 - DAIX = = p + 2)eP-DANE,

Thus for § < |x| < 1 and large enough A we have
A
Apg = 27“”_1((17 -Dg-n-p+ 2>e‘(”‘1)" > 0.

Now we have h > infgl/2 h> (infE/2 h)g on B ;2 (note that h is positive on B1 by maximum principle), and
on B; — By, we have Aph =0 < Apg. Also on 0By we have h > 0 = g. Hence by the maximum principle we have

h(x) > g(x)(infgll2 h) for x € By. But by the Harnack’s inequality we have

infh>Csuph
Bz By

for some constant C which does not depend on h. Hence we obtain

h(x) > Cg(x) sup h.

Bija

On the other hand note that

g0 = g00 - gx/Ix) = | g de = | x-vg(tn at

t

[ e,

[,
Q.l QL

=]
=]

=

1 i
= [ -2acixe N de - 212 [ eI a
W

_

> 22 |x|?

= e, ]

te dt = Ae”llxlz(% - 1) = e - x[?)

> e (1 - |x]) = Ae * dist(x, 8B;),

which gives the desired. O
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If his a p-harmonic function on B-(xp), then h(x) = h(xo + rx)isa p-harmonic function on B1(0). Hence we have

h(xo + 7X) = h(x) = c(n, p) dist(x, dB1) sup h
By

r-rlx|

=c(n,p)(1 - Ix)sup h = c(n, p) sup h
Bl/z r Br/Z(XU)

1
= c¢(n, p) dist(xo + rx, 0Br(xp))— sup h.
By2(Xo)

Lemma 2.5. Let w € WP(Q) be a nonnegative function. Then there exists ¢ > 0, depending only on p and the
dimension, such that for any ball Br(xo) ¢ Q we have

p
(1 sup h) - By(xo) N {w = 0}] < ¢ I IV(w - h)[P dy,
" Byja(x0) B.(x0)

where h satisfies Ayh = 0 in Br(xo) taking boundary values equal to w on B (Xo).
Proof. Let T € (0,1) be fixed. For ¢ with [§]| = 1 we set
te :=inf{t € [tr, 1] : w(Xo + t&) = 0}

provided that this set is nonempty. Otherwise we set t¢ := r. Now note that w — h and w are absolutely continu-
ous in almost every direction &; in particular we have w(xq + t¢£) = 0 (note that this will not be necessarily true
if we allow 7 to be zero). Also w — h is H" 1-a.e. zero on dB,(Xg) as its trace is zero there, so (w — h)(xg + ) = 0.
Thus for almost every ¢ for which tg < r we have
h(xo + te§) = (w = h)(xo + &) — (W = ) (xo + t&§)
r d r
- J (= R (xg + £8) dt = J Ve(w - h)(xo + t8) dt
te

te
r 1

— p
<(r- tgc)pl’l( J V(W = h)(xo + t&)P dt) .
t
On the other hand, using Hopf’s lemma we get
h(xo + te&) = c(n, p) dist(xp + t¢&, aBr(xo))1 sup h=c(n,p)(r- tg)1 sup h.
By2(Xo) By2(xo)
Hence we obtain

1 p (
(r- tg)(— sup h) < C(n,p) j [V(w — h)(xo + t&)|P dt.
By2(x0) i

Note that this inequality is trivially satisfied if tg = r.
Now by integrating with respect to d§ we get
;
cmp) | Vv -meoP ez cop) | [ 1vor-mo+ e deag
Br(xo) 0B1(0) t¢

2(1 sup h)p J (r—tgdé

r By2(x0) 3B)(0)
r
1 p
=<- sup h) j jldtdg‘
r By2(xo) 3B1(0) it

1 p
2<; sup h) J vy &
Brj2(xo) B (X0)—Bqr(xo)

where the last inequality follows from the definition of ¢¢. Finally, we get the desired by letting 7 — 0. O
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Lemma 2.6. Let u = ufgS be a minimizer of J. over Vs, and let B c Q be a ball. Then there exists a unique

vi € WYP(Q) that minimizes the functional
J VViP dx
2
among all functions with v! = ¢! on dQ and v' < 0 on {u' = 0} — B. The functions v' also satisfy:
(1 vi=0on{u'=0}-B,
@ v=L...,v™) e Vs,
(3) 0<ul <vi<Cy=maxsg |0,
@ f,viapvidx=0.

Remark. Instead of a ball B, we can also use other open subsets of Q in the above lemma. Essentially, all we
need is that the p-energy functional has a minimum over the corresponding set K in the following proof; so no

regularity assumption is actually needed regarding such open sets.

Proof. Itis easy to see that

K={ve W?@Q):v=0¢'ondQandv <0on {u' =0}-B}

is a closed convex subset of W'P(Q). It is nonempty too as u' € K. So there exists a unique v’ € K minimizing

the strictly convex and coercive functional fQ |[Vv|P dx. Then for every v € K we have

J VO + t(v = viY)IP dx > 0,
Q

i
dtle=o
and hence V' satisfies the variational inequality
I IVVIP2vvi. v(v - vi) dx > 0.
Q
Now note that v = vi — { € K for any test function { € C%°(Q) with ¢ > 0. Therefore
- J [VVIP=2Vvi- v dx > 0,
Q
which means A,V > 0. As a result, v! < maxag ¢' < Co by the maximum principle.
Next note that if spt { does not intersect {u’ = 0} — B, then we also have v! + { € K. Thus we also get
J [VVIP=2vvi - v dx > 0,
Q
which together with the previous inequality implies
- J [VVIP~2vvi. v dx = 0.
Q

Therefore Apvi = 0 in the interior of
Q-({u'=0}-B)=(Q-{u' =0})UB.

In particular, A,v’ = 0in Qs since u' > 0in Qs by (2.1).
In addition, for € > 0 we have v = max(v!, —€) € K. By plugging this test function in (2.4) we get

0< J [VVIP2vvl. v(v — vi) dx = J IVVIP2vvl. V(e - vi) dx = - J |VViIP dx.

Q {vi<—e} {vi<—¢€}

(2.4)

By letting € — 0 we obtain f{v,.<0} |VVi|P dx = 0,and hence v! > 0. In particular, we must have v = 0 on {u! = 0} - B
as vl is assumed to be nonpositive there. Furthermore, note that we have so far shown v = ..., v™) e Vs.



DE GRUYTER M. Fotouhi et al., A weakly coupled system of p-Laplace type in a heat conduction problem == 305

Next, since Apv' = 0in the exterior of {u' = 0} - B,and Apu' > 0, the maximum principle implies that u’ < v!
(note that u, vi have the same boundary values in the exterior of {u! = 0} — B).
Finally, for { € C2°(Q) with ¢ > 0 and small enough ¢ we have

vitevi = (1+eQv eK.
By plugging this test function in (2.4) we get

0< iej VP29l . V(v dx = J IVVEP-290 . V(¢VE) dx = 0.

Q Q
In other words

J viApvidx = 0.

Q
By letting { — 1 we obtain fg viApvi dx = 0, as desired. Alternatively, we can take { to be 1 over a neighborhood
of {u! = 0} - B. From this and that A,v’ = 0 in the exterior of {u’ = 0} - B, we obtain jg vidpvidx = 0. O

Theorem 2.7. Let u = ué be a minimizer of J. over Vs. There exists a constant M = M., independent of §, such
that if for some j we have

1 )
= sup W =M,
r B2 (x)

then B-(x) c {ju|] > 0}, and Apui = 0in Br(x) for every i.
Proof. Letv e Vs be the function given by Lemma 2.6 for B.(x). Then we have
Je(u) < Je(v).

Let hy be the vector-valued function in Q satisfying Aph(i] =0, and taking the boundary values ¢ on 0. Since
0 < u' < vi<h,foreachz € Q we have

dyhi(z) < a,vi(2) < 0yui(z) < 0.

Then by using the fact that u, v, hy take the same boundary values and therefore have equal tangential deriva-
tives on 0Q, we deduce that
a < Ayhy(z) < Ayv'(z) < Ayu'(2),

where a is a lower bound for Avh("] (note that a does not depend on 6).
Hence by property (2) of T we have

m
[ Tee A0 - T AwE o = Y [ Tow A A, A AL AT
a0 =l

—T(x, Ayul, ..., Ayu™ AV AV L AV do (2.5)

m
>Co ) J Ayul — Ayt do,
=150
where C, > 0is the lower bound of the d¢,T on the set {(x, £) : &; > a}. On the other hand, using the identity (2.3)
we get

Co J Avui —Avvi do > J (pi(Avui —Avvi) do
a0 a0
= J u' Apui +|vullP dy - Jvi Apvi +|VViP dy (2.6)
Q Q
> [ wu'lP dy - [ 1vvie ay,
Q Q

where Cy = maxyg ||, and in the last line we used the facts that Ig viA,vidy = 0and u', Apu' > 0.Now consider
the function h' in B,(x) satisfying Aph' = 0, and taking boundary values equal to u'. We extend h' to be equal
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to u' outside of B,(x). Then we have h = (hy, ..., hy;) € Vs. In addition, h' = u’ = ¢ on dQ and hi = u' = 0 on
{u! = 0} - B,(x). Hence due to the minimality property of v given by Lemma 2.6 we have

Jwviv’ dy < thiv’ dy.
Q Q

Combining this with the above inequality we get

Co J Aut—Ayvido > J IVullP — |VviP dy > J [Vu'lP — |[VRI|P dy > C j IV(u' - hY|P dy,
oQ Q Q B (x)
where the last inequality can be proved similarly to the proof of [9, Lemma 3.1]. (Note that in the last line we
have also used the fact that u! = h' outside B(x).)

Summing the above inequality for each i, and using the facts that /. (u) < J¢(v), and f; has Lipschitz constant

equal to 1, we get
Ca

- J V@t - K)P dy < Cq J Y (Al - A do

ismB,(x) 390 i<sm

< j I'(x,Ayu(x)) - T'(x,Ayv(x))do
EYe)

< fe(l{lvl > 0}]) — fe(I{lul > 0})
1
< Z1Br() 0 {lul =04,

since 0 < u' < v, and outside of B,(x), [u| = 0 implies [v| = 0. Therefore by Lemma 2.5 applied to w we obtain

eC . .
B =0l > 2 Y [ - mP ay
O ismp 1y

> ﬁ J IV(uj _ hj)|P dy

Co

By (x)

sCa<1 AP .
LY (L hf) 1By (X) N {u = 0}|

cCo rBr/zg() '

gca < 1 .)P .
>—(=sup ) -|Br(x)n{/ =0}

cCo rBr/zg() '

eCqaMP
> —2—|Br(x)n{lu| = 0},

CCO

. . . . 1
since [u| = 0 implies & =0, and W > v/ as W is p-subharmonic. Hence if M > (g—gg)ﬁ, then |B,(x) N {ju] = 0}
must be zero, as desired. Note that in this case the above inequality also implies that u’ = h in B,(x) for each i;
so u! satisfies the equation in B (x). O

Corollary 2.8. All minimizers u$ are Lipschitz, and for every Q' cc Q there exists a constant K, = K¢(Q"), inde-
pendent of 8, such that
luglorluip < Ke.

In addition, Ap(ul)! = 0 in the open set {|juf| > 0}.
Proof. For simplicity we set u = u?. First let us show that {Ju| > 0} is an open set. Suppose x € {|u| > 0}. Then
W (x) > 0 for some j. Then for small enough r we must have

1 o1

- sup W > =wW(x)>M.

T Brja(0 r

Hence the previous theorem implies that B-(x) c {|u| > 0} and we have Apui =01in By(x).
Nextnote that Vu = 0 a.e.in {|u| = 0}. Sosuppose x € {ju] > 0} N Q'.Let Q' cc Q cc Q,and B = B4(x), where
d = dist(x, a({Ju|] > 0} n Q)). If 8B touches d{[u| = 0} then By, 4 (x) intersects {ju| = 0}, and by previous theorem
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we have
—— sup ut <M
d+d Baraty2(X)
for every i. Hence in the limit d’ — 0 we get
1 i
= sup u <M.
d By

Now since the u' are p-harmonic in B, as shown in the proof of [7, Lemma 3.1], we have

|Vui(x)| < Cl sup ul < CM,
B2 (x)
where the constant C depends only on p and the dimension n. On the other hand, if B touches dQ then, by the
interior derivative estimate of [11], we obtain (the dependence on d follows from the proof of this estimate; see
[11, equation (3.4)])

C(n, p)
drl
since d > dist(Q', 8Q), and |Ju/| 2, is bounded independently of § as will be shown now. Let Q' cc Q be a smooth
open set with |Q — Q'| = 1. Let ug be a vector-valued function on Q — Q' that satisfies the equation Ap uf) =0,
and takes the boundary values ¢ on Q and 0 on 9Q’. Then for every small enough &§ we have ugy € Vs. Hence

(remember that u = u?)

IVui(x)| <

laflwrr < C,

C = Je(ug) = o) = j I'(x, Ayué(x) do
o0Q

m
> [ Y vieoaswd) - cdo,

5o i=1
where we used (1.2) in the last line. Thus by Lemma 2.2 the ||Vu§ 7 (@;rm) is bounded as § — 0, and the bound-
edness of ||u§ lw» follows from Poincaré inequality and the fact that all of ug’s have the same boundary values.
Finally, to see that u is Lipschitz continuous on all of Q, note that u has p-harmonic components near the
smooth boundary 9%, attaining smooth boundary conditions ¢; hence the gradient of u is bounded near the
boundary too. O

Lemma 2.9. There exists 8§y = So(€) > 0 such that for every § we have |u§| > 0in Qs,.

Remark. Note that as a consequence, Ap(ug Y=0on Qs, for every § (by Theorem 2.7). In other words, uf,f e Vs,
for every §.

Proof. Suppose to the contrary that there is a sequence uy = ugk for which we have
2dy := dist({|ux| = 0}, 0Q) — 0.

Then the midpoint of the closest points on {|uk| = 0} and 92, which we call xx, has distance dx from both of
these sets. So the boundary of the ball By, (xx) touches both of these sets. In addition, by Theorem 2.7, for every
t > 0 we must have
—  sup ul <M,
dx Bay 2 (tic+tvie) K ‘
for every i (here v is the direction of the line segment from xj to its closest point on {|ux| = 0}). So in the limit
t — 0 we get
sup Uy < Medy. 2.7
Bay (X1
We also have
sup |ukl = co,
Bay (Xk)
where ¢y = min; mingo (pi > 0. Because at the point yx € 0By, (xx) N 0Q we have u}'((yk) = (pi(yk) > ¢ (note that
u, is continuous up to the boundary).
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Next consider the functions
u(xy + dgx)

Sudek(Xk) U]

on By. Then ﬂ}'( is positive and p-harmonic on By, and we have supy ) [Gx| = 1. In addition, by (2.7) we have

Ur(x) =

i
sup itl = Sudek/z(Xk) Uy < Medy
K=

< 0.
By, SUP3,, (xy) [ugl Co  k—oo

Furthermore, note that ﬂ}; is a uniformly bounded sequence of p-harmonic functions on By, so thereis a > 0
such that for all r < 1 the Hélder norms || a;'{uco,a@r) are uniformly bounded (sge [10, p. 251]). Hence, by a diagonal
argument, we can construct a subsequence of i, which we still denote by i}, that locally uniformly converges
to a nonnegative p-harmonic function @}, on Bs. In addition, u{, must vanish on By, by the above estimate.
Thus by the strong maximum principle we must have G, = 0 on B;.
Now for yx € 0By, (xx) N 0Q and r < dy we have
Br(())}ig:ng uy, < C(n, p)(r"‘ + Br(gks;%ag (pl) <cr®

for some a € (0, 1). This estimate holds by [14, Theorem 4.19] when 1 < p < n. And when p > n this estimate
holds due to the uniform Hélder continuity of us( on Q, since |[u|| wir(@) s uniformly bounded as we have seen
in the proof of Corollary 2.8. Hence for r = di/2 we have

. i . i1
min u, >  min _u > -co,
Bay2(Yi)NBay, (Xk) B 21N 2

where ¢y = min; mingg . Therefore for yj = dik(yk - Xx) € 8B, we have

o 1
min uk =

1 _ min u}'( >c>0,
Bi(i)nBy SUPg, (x) Wkl Bayr2(iInBa (00)

since supy 4,050 [ux| < mCy where Cyp = maxaq |@|. Thus a;‘( has a uniform positive lower bound on a subset
of B; with positive volume (where the volume is independent of k). So no subsequence of @y can converge
locally uniformly to i, = 0, because otherwise they will uniformly converge to 0 outside a set of small volume,
contradicting the uniform boundedness from below. O

Now we can find a minimizer for J, over V.

Theorem 2.10. There exists a minimizer u, € V for J.. Moreover, u; is a Lipschitz function, and A,[,uf8 = 0inthe
open set {|lug| > 0}.

Remark. Aswe will see in the following proof, u € Vs, for 8y = 8¢(¢) given by the above lemma. So in fact u,
is a minimizer of J, over some Vs, and therefore it has all the properties of ufg’s that we have proved so far. In
particular, we have |u,| > 0 on Qs,.

Proof. Aswe have shown in the proof of Corollary 2.8, ||Vuf§|| r(q;rmy 1S bounded as § — 0. Hence there is a sub-
sequence such that ué — u, weakly in W'? (and also a.e.) with A(V(u8))) — A(Vul) in L9 as § — 0. So, in
particular, ul > 0, ul is p-subharmonic, and attains the boundary condition ¢'. Furthermore, by Corollary 2.8,
ufj — u, uniformly on compact subsets of Q. Hence for each ball B c {|u,| > 0} and all small enough § we have
B c {|u¢| > 0}. Therefore by using test functions with support in B together with A(V(u¢)}) — A(Vul) we can
conclude that u! is p-harmonic in B.

The same reasoning applied to test functions with support in Qs,, for §o given by the previous lemma,
implies that u! is p-harmonic in Qg,, and thus u. € V5, ¢ V. In particular, u. is p-harmonic near the smooth
boundary 89, attaining smooth boundary conditions ¢, so it is Lipschitz near Q. Moreover, u, is Lipschitz
inside Q away from its boundary, because it is the uniform limit of a sequence of Lipschitz functions with
uniformly bounded Lipschitz constants. Hence u, is Lipschitz on all of Q.

Finally, note that u, minimizes J, over V, since for every w € V we have w € Vs for some 6. Thus we obtain
]g(uﬁ) < Je(w). However, u‘g — Ug, SO we get [ (u;) < Je(w) due to the semicontinuity of J. O
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3 Regularity of solutions to the penalized problem

To simplify the notation, throughout this section we will suppress the index € in u,.

Theorem 3.1. For 7 € (0, %) there exists m¢(t) such that if for each i we have
1 .
= sup u' < me(7),
I Brp(x)

then B (x) ¢ {|lu| = 0}.

Proof. Similarly to Lemma 2.6, we can show that thereis v/ € W'?(Q) that minimizes the functional | o [VViP dx
among all functions with vi = ¢! on dQ and v < 0 on {u! = 0} U B.-(x). The function v! also satisfies

Apvi >0, JviApvidx=0, u'>v'>0
Q
(to see this, note that Apv' > Ayu’ on Q - ({u! = 0} U B+ (x)) ¢ {lul > 0}, and v - u’ <0 on {u’ = 0} U B (X)
or 0Q). In addition, we have v = (v1,...,vn) € Vs, ¢ V (where §; is small enough so that Bo(x) c Q- Qs,).
Thus J.(u) < J¢(v). Let us assume that §; is small enough so that Br(x) c Q- Qs, and u € Vs,. Let w be a vector-
valued p-harmonic function in Qs, with boundary values equal to ¢ on 0Q and equal to 0 on 9Qs, — Q. Then
we have u! > vi > w! > 0 (since u, v are also p-harmonic on Qs,, and nonnegative everywhere). Thus for each
z € 0Q we have
0> 9,w'(z) 2 yvi(z) = 0, (2).

Next using the fact that u, v, w take the same boundary values on 92, and therefore have equal tangential
derivatives on 0Q, we deduce that

0> AW (z) > AVi(2) > A ul(2).
Now similar to (2.5) we can show that
m
[ rex a0y - T Ao do s €1 Y. [ A - Al do,

PYe) =150
where C; > 0 is the upper bound of 0¢Is on the set {(x, £) : &; < 0}. On the other hand, using the identity (2.3)
we obtain (using the notation ¢y = min; mingg goi)

o J Avi-Ayutdo < j o' AV - Ayul) do
EJe) o)

J vt Apvi + |WViP dy - J ut Apui +|vul)P dy

Q

Q
= J |VViIP dy — J [Vu'lP dy, 3.1
Q Q
where in the last line we used the facts that [, v A,v'dy = 0,and Ayu’ = 0 on {u’ # 0}  {lu| > 0}.
Summing the above inequality for each i, and using the facts that J.(u) < J¢(v), and the derivative of f is
bounded below by ¢, we get

% D levi|p —|Vu'lP dy > j Y (A - Ayu') do
lSmQ EYo) <m
> J I'(x,Ayv(x)) -T(x,Ayu(x)) do
0Q
= fe(I{lul > 0}]) — fe(I{Iv] > O}))
2 gl{lul > 0} n {|v| = 0}
2 g[{lu] > 0} N B (x|, (3.2)

since u! > vi > 0 and v = 0in B (x).
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Next we define g : (0, c0) — R by

L
1—(Tr)P1, p>n,

g(t) := {logt-log(tr), p=n,
p-n o pon
(tr)p T —tr 1, p<n.
Note that g is an increasing function that vanishes at t = tr, and is negative for t < 7r. In addition, g(|x|) is

a p-harmonic function in R" - {0}, which is negative on B.-(x) and vanishes on B (x). Now let us define
h': B z(x) — Rby

Ri) = min{u' (), ——(g(ly - x)*},
(\/— )
where s; 1= maxg _ u'. We extend h' by u outside of Bz.(x). Note that we have hi = 0 on {u! = 0} N B;+(x)
and h' = u’ = ¢’ on 3Q. Hence h! competes with v, and we have Ig [VVIP dx < jQ |Vh!|P dx. Therefore we can
exchange v! by h' in inequality (3.2) to get
o> 0 Baol< Y | VAP - vuP dy.
=My 20
Now since h' = 0 on B(x), we can rewrite the above inequality as
C . . .
ol > 0Bl + Y [ wuPaysY [ AP -vapay. (3
! =mp.(x) ISMp e (0)-Ber(x)
But
IVRYP — |Vu!|P < —p|VAP~2VR! - V(u' - hY),
since for two vectors a, b we have |a|P — |b|P < —plalp‘za - (b - a) due to the convexity of the function - +— | - |P

(see for example [12]). So we can estimate the right-hand side of (3.3) as follows (using integration by parts, and
the facts that Ayh' = 0 on {u’ > h'}, h' = 0 on 0B (x), and h' = u' on 8Bz (x)):

IVRUP - VUl dy < -p J IVR'P72V(u' - h') - VR dy

B\/?r(x)_Brr(X) B\/?r(x)_Brr(X)
= p I (u — hY|VAIP-2Vhi - v do - p J (! - hY|VAP-2Vhi - v do
0B (X) aB\ﬁV(X)

=p J W|VRYP-2Vht . vdo

0B (X)
st )
_ i i
=C(n,p, 1) o J u'do,
0B (x)
where the last equality is calculated using the fact hi(y) o \ﬂ) gly-x)*=0o0n B+(x); hence on 0B (X)
we have 2 |
p-n 2-n-p
|.y_X| H()’—X), p#n)
Vhi = C(sirrt { p-1
ly = xI7(y - x), p=n,
and thus
IVRIP2Vh v = C(n p, 08! PPy —x Ly~ x2(y ) O
1 Pt
= Cn,p, O] Py x| = p D
Hence (3.3) becomes
ec st
—°|{|u| >0} N B (X)] + ). J IVullP dy < C(n, p, 7) Z St J u' do. (3.4)

i=mp ) izm " aBn(x>
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On the other hand we have

J uidcrsc(n,r)( J uidy+ J |Vui|dy>

0B (x) Ber(x) B (x)

< c(n, T)((Si +1) - l{lul > 0} N B (X)] + J [vu'lP dy), (3.5)
B (x)
where in the last line we estimated u!, |Vu!| from above by s;, 1 + |Vu!|P on the set {u’ > 0} c {|u| > 0}. Next note
that

S = max ul < sup ul < rmg(7), (3.6)
B\/?r(x) Byj2(x)

since 7 < 1. Combining inequalities (3.4), (3.5), and (3.6), we get
p-1

ec i S; i
> 0Bl + Y [ Wu'lPdy<ec Y ﬁ((si +1)- > 0} n B0l + | (9ulp dy)
! iﬁmBrr(X) ism B (X)
<cC mé’l(r)(|{|u| > 0N B ()] Y (si+1)+ ) J IVu'|P dy).
ism ismB”(x)
Now if m,(7) is small enough, we must necessarily have |u| = 0 on B.(x), as desired. O

Now let us set
U:=1{xe€Q:ux) >0}

E:={xeQ:ulx)| =0}
Lemma 3.2. For every i we have
U:{xegzui(x)>0}, E:{er:ui(x):O}.

Proof. By Theorem 2.10, each u' is p-harmonic in the open set U. So in each component of U either u! > 0
or u' = 0 (by the strong maximum principle). Now consider a component of U, say U;. If dU; does not inter-
sect 0Q, then it must be a subset of E. Therefore every u! vanishes on Uy, and hence every u! vanishes on U;
by the maximum principle. So we would have U; c E, which is a contradiction. Thus 0U; must intersect 0Q.
Hence each u’ > 0 on Uy, since they are positive on dQ. Therefore each u' is positive on every component of U,
as desired. O

Corollary 3.3. There are ¢, C > 0 such that for x € U near 0E we have
¢ - dist(x, 0E) < |u(x)| < C - dist(x, OF).

Proof. The right-hand side inequality holds according to the Lipschitz regularity of the solutions, Theorem 2.10.
To see the left-hand side inequality, we argue indirectly. Assume to the contrary that there exists a sequence
Xi € U such that

[u(xp)| < %dist(xk, 0E). 3.7
Let rx = dist(xx, 0F) and define
u(xg + rgx)
Up(x) = ——=.
Ik

The sequence uy is uniformly bounded and uniformly Lipschitz in B; due to Lipschitz regularity of u and
assumption (3.7).
Recall that Apu; = 0 in U, then we may choose a converging subsequence ux — uo such that u; is also

p-harmonic. Furthermore, by Theorem 3.1 we get that

sup |ug| = lim sup |ug| = me >0,

Bu/2(0) k=00 B, (0)
since |ux(0)| > 0. Also, (3.7) yields that ug(0) = 0, which contradicts the maximum (minimum) principle; remem-
ber that each component of uy is nonnegative. O
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Corollary 3.4. There exists ¢ = c¢ € (0,1) such that for any x € 0U and small enough r we have

|E N Br(X)]
<— " <l1-c (3.8)
[Br ()|
Proof. The proof is similar to the proof of [9, Theorem 4.2]. By Theorem 3.1, there exists z € B/2(x) such that
[u(z)| > mer > 0. Now for any y € B;-(z) we have

lu(y) - u(z)| < Lipwly - z| < Lipw)zr < %

provided that 7 is small enough. Hence we must have [u(y)| > “* > 0. This gives the upper estimate in (3.8).

To prove the estimate from below, suppose to the contrary that there exists a sequence of points xx € dU
and radii rx — 0 such that

{lul = 01 1 By, (60l < By, ()1 = 27 1Bl
Now let us define
W) = u(xg + rkx)'

T'k
Note that ux(0) = u(xx) = 0, and thus uy is uniformly bounded and uniformly Lipschitz in B; = B1(0) due to
Lipschitz regularity of u. Also

1
[{lug| = 0} n By| = —[{lu| = 0} N By, (X)| —— 0.
T'k k—o00
Let v} be a p-harmonic function in By, with boundary data v} = u on 8Bj. Then hi(x) = rkvﬁ{(x;—;‘k) is
a p-harmonic function in By, 2(Xx) with boundary data h;< =ulon 0By, /2(xk). Now, similarly to the proof of
Theorem 2.7, we can show that

o 1 S
J IV(uy, - vi)IP dx = 0 j |V(u' = hy)IP dx (3.9
By k By 2 (Xk)
C1
< ——l{lu| =0} N By, (X)| —— 0.
& rk k—00

(Note that the constant C does not depend on the radius rx or the point xx.)

Since u} and therefore v} are uniformly Lipschitz in By/4, we may assume that u} — u} and v} — v} uni-
formly in By/4. Observe that A,v; = 0, and (3.9) implies that ug = vy + C for some constant C. Thus Ayuj = 0in
B1/4 and from the strong minimum principle it follows uf) = 01in Byy4, Since ué >0and u(i)(O) = lim u}'((O) =0.0n
the other hand the nondegeneracy property, Theorem 3.1, implies that (since x is not in the interior of {ju| = 0})

1 me
lukllze (s, = r_k"u”Lm(B'k"‘(X")) > - > 0.

Therefore we get [ gl (s,,,) = Me/2, which is a contradiction. O
Hence we can apply the results in [4, Section 4] and in [5, Section 3] to conclude (see also [9, Sections 5 and 6])

Theorem 3.5. Let u = u, be a minimizer of | over V. Then we have:

(1) The (n - 1)-dimensional Hausdorff measure of OE is locally finite, i.e. H""1(Q' n E) < oo for every Q' cc Q.
Moreover; there exist positive constants c, Ce, depending on n, p, Q, Q', &, such that for each ball Br(x) c Q'
with x € 0E we have

cer"™! < H"1(Br(X) N OE) < Cer" .

(2) There exist Borel functions q' = q. such that
Apu' = ' HL O,
that is, for any ¢ € C3°(Q) we have

-JA[u"] VI dy = J ¢qt dgcm .,
Q oE
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(3) For H"-a.e. points x € OE we have

m
ce< ) q'(x) < Ce.
i-1

(4) For H"-a.e. points x € OE an outward unit normal v = v(x) is defined, and
u'(x+y) =(q' 07 (y-v)* +o(lyD),

which allows us to define A,u'(x) = q'(x) at those points.
(5) The reduced boundary dyeqE satisfies H""1(OE — dreqE) = 0.

4 The original problem

In this section we will show that for € > 0 small enough, a minimizer of ], over V satisfies |{|u,| > 0}| = 1, and
hence it can be regarded as a solution to our original problem (1.1). Remember that

U=U:={lug >0}, E=E;=/{ug=0}.

Note that by Lemma 2.9, the free boundary 9E has a positive distance from the fixed boundary 9Q. We say
X € OE is a regular point of the free boundary if it satisfies (3) and (4) in Theorem 3.5. The set of such regular
points of the free boundary will be denoted by R = R.; Theorem 3.5 shows that H""1(3E — R) = 0.

Lemma 4.1. There is a constant C > 0, independent of €, such that

(% at)=c
<m

Remark. Note that ¥;_,, ¢ > c; > 0 by Theorem 3.5.

Proof. Let Q' cc Q be a smooth open set with |Q — Q'| = 1. Let ug be a vector-valued function on Q — Q' that
satisfies the equation Ap u(i) =0, and takes the boundary values ¢ on dQ and 0 on 8Q’. Then for some small
enough 8y we have ug € Vs, c V; hence

c-= j I(x, Aytig) do + 1 = Je(p) = Je(uy)
0Q

- j I(x, Ayue) do + fo(l{ug] > O})

oQ

> [ Y widv - do+ fullifuel > 0})
aq =1

>cy j VUL dx - C + fo(l{ue] > O})

i=1g
1
2 =C+ _(l{fuel > 0} -1,
where we have used (1.2) and Lemma 2.2. Thus we get the bound
|U| = {lug| > 0} <1+ Ce.

Note that J.(u), and thus C, does not depend on ¢ due to the definition of f;. As a result, we have a lower bound
for the volume of E. Hence, by the isoperimetric inequality, we have a lower bound for "' (3E), independent
of €. Now note that (keep in mind that v points to the interior of U)

J Ayul do - J Apul dx"™t = J Apul dx = 0.
30 oF i
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Therefore we get
JAVu}; dH" 1 = j Ayuldo = jA,,u}; dx<C+C j viAyul do,
o a0 Q a0

where the last inequality follows from the remark below Lemma 2.2. Thus we have

: i n-1 i n-1
1£f(i§n,4vu8>:}c (3F) < J Y Ayuldx

oE tsm

<C+C | Y pidyuldo

30 i<m

<c+cC j I(x, Ayue)do (by (1.2))
aQ
< C+ CJa(ue) < C+ CJe(ug) < C,

which gives the desired (noting that q' = A, u’ by Theorem 3.5). O

Lemma 4.2. For small enough € we have
[{lug| > 0} > 1.

Proof. Consider a point zy € Q€ which has distance §, from dQ. Then the ball Bs,(zo) is an exterior tangent ball
to 0Q. Let ¢ = t(¢) be the first time at which 0Bs,.¢(zo) intersects d{|u| = 0}, at a point xo = xo(€). Now let v be
a p-harmonic function in Bs,.¢(zo) — Ego (zo) with boundary values 0 on 0Bs,.¢(Zo) and ¢y on 0Bs,(zo), where
Co = min; mingg ¢! > 0. Then on 8(Q N Bs,+t(20)) we have v < u'; so by the maximum principle we have v < u!
in Q N Bs,+t(zo). However, by an easy modification of the proof of Hopf’s lemma (Lemma 2.4), we can see that

V(X) > cco dist(X, 0Bs,+:(20)),

where the constant ¢ only depends on n, p, §y. Therefore, for points x in the line segment between xg, zo we
have
u'(x) = v(x) = cco dist(x, 0Bs,+¢(20)) = cColX — Xol.

Now consider the ball B-(xp) for small enough r. Then we have

! sup u' > Loeel = o
- 2 —CCoy = —,
r By2(Xo) 2 2
independently of e.
Let h be the vector-valued function which satisfies Aphi = 01in B,(xp), and is equal to u in Q — B,(xg). By
Lemma 2.5 and the fact that h! > u’ we have

S 1 AP .
J V(' = Y dyzC(— sup h’) +|Br(x0) N {u' = 0}

B, x0) Byj2(x0)

1 i)’ i

> C(— sup u ) - 1By(x0) N {ud = 0}
r By2(xo)

> C|By(Xo) N {u' = 0}| = C|Br(xo) N {lul = O}.

Next let v be the function given by Lemma 2.6 for B, (xg). We know that J.(u) < J¢(v). Then similarly to the proof
of Theorem 2.7 we can see that

cy j IV(u' - h)P dy < I I'(x,Ayu) - T'(x, Ayv) do
=M, (x0) 39

< fe(H{Ivl > 0})) - fe(I{lul > 0O3)).

A closer inspection of the proof of Theorem 2.7 reveals that the constant C in the above estimate only depends
onn,p,Q,¢0,T.
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Now suppose to the contrary that |{ju] > 0}| < 1. Then, since 0 < u! < vi, and outside of B,(xo), [u| = Oimplies
[v| = 0, we have
[{lvl > 0}| < [{lu| > O} + |Br(xo) N {lu| = 0}| <1

for small enough r. Hence, using the monotonicity of f, we have
fe(I{Ivl > O}) = fe(l{lul > 0})) Sfe(l{llll > 0} + |Br(xo0) N {lul = 0}|> = fe(l{lul > 0}))
= €[Br(xo) N {[u| = 0}].
Combining this estimate with the estimates of the above paragraph, and using (3.8), we obtain
0 < CIBr(xo) N {lul = 0}| < €|Br(xo) N {lu] = 0},
which gives a positive lower bound for &, and results in a contradiction. O
Theorem 4.3. When ¢ is small enough, we have
[{luel > 0} = 1.

Proof. By the above lemma we only need to show that |{[ug| > 0}| < 1. To this end, we will compare u, with
a suitable perturbation of itself. Let xo € R, and let p : R — R be a nonnegative smooth function supported
in (0, 1). For small enough r, A > 0 we consider the vector field

[x — Xol

X+ Mp( )V(Xo) if x € Br(xo),

T (x) =
X elsewhere.

Here, v(Xp) is the outward normal vector provided in (4) of Theorem 3.5. We can easily see that for x in B(xp)

we have | N y
_T. 11X — Xo X — Xo,
DT (x)-=I-+Ap ( g ) Vo), 1)

where I is the identity matrix. Hence, if A is small enough, T is a diffeomorphism that maps B(xp) onto itself.
Now consider
v, (%) = u(T; ' (%))

for r > 0 small enough. Similarly to the proof of Theorem 3.1, we consider the vector-valued function w whose
components minimize the Dirichlet p-energy subject to the condition

wi <0 on{u=0}u(Br(xo)N{v, =0}).

With a calculation similar to (3.1) and (2.5) we get

0<Je(w)—Je(w) < C) j IVw!|P = [Vu']? dx + fe({lw] > O})) = fe(I{[ul > O})
i:lg2
<C) j IVVIP = [Vu')P dx + fe(I{lw] > O}]) - fe(l{lul > 0}]), (4.2)
=18, (x0)

where in the last inequality we have compared the Dirichlet p-energy of w with that of vy, (x,) + WYo-B,(x,)-
Now notice that

J [VVLIP dx = j IDTH (T (x)) " vul (T ()P dx
Br(xo) Br(x0)
- I IDT,(y)"'Vul(y)P|det DT,(y)| dy
Br(xo)

_ J IDT,(y) ' Vil(y)P|det DT, (y)| dz, z =
B

Y —Xo
—
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From (4.1), for small enough A we can write

© k-1 .
Dw)1:I+(z(_1)wpr(|z|)k<z v )” Ly(x0)
= z|k=1 )zl
= 1= 20202 v + g0, 2) 2 v 43
for some g. Hence we have
oy (2, V() :
DT,9)"1u'y) = Vut(y) - 201z = v) + 0
Thus y
IDT 0 U ) = ) - 22p'12) 222 (i), v + 0
and therefore
- Vi) : :
IDT,0) 15U Q) = Q)P (1 pap' 12 2T X vixe), vuy) ) + 0

Also, we have (noting that DT, is the identity matrix plus a rank 1 matrix)

(z, V(XO)>

|det DT,(y)| = 1+ Ap'(|z]) Z]

All these together, we obtain (remember that y = xq + rz)

(z,v(x0)) _p(z,Vul(y)><Vul(y),V(xO)>) ,

[ e - vue = a [ v yrp a5 s dz + 0.

Br(xo) B
Now consider the blowup sequence u,(z) := %u(xo + rz). We know that as r — 0 (see [5])
{ui >0}NBy —{z:z-v(xy) >0} NBy,
V() = Vil(z) = (q'(X0) 7T V(X0 izvixs0) - a.in By
Therefore we get

[ - e ac— -p-vaidonr [ o0 ST a2 06,

By (xo) B1n{z-v(xq)>0}

Note that formula (4.3) for (DT,)~! does not depend on r, and the function - + | - | is continuous; so the 0(A2)
term converges to an O(A%) term as r — 0. Next note that

!
. z
div(p(lz|)v) = P |(Z|| U (z,v).
Thus (noting that p(|z|) is zero near 0B1)
zZ,v(x
| P(IZI)dz
B1n{z-v(x¢)>0} B1n{z-v(xp)=

= —wp1 | (O Ydt = -Cpn_1,

Ol =

where wp_q is the volume of the (n — 1)-dimensional ball of radius 1, and C, depends only on p. Hence we can
write ,
IVVEP = [Vu']P dx = [(p - 1)AC,wn-11q'(Xo) 7T + 0D + o(r™).
Br(xl))
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On the other hand,
lir% r"|Br(xo) N {|vy| > 0}] = lirr(l) r I dx
r— r—
{lvr[>0}nBr(xo)

= lim 1" I |det DT, ()| dy
r—

{lu|>0}nB(xo)
Z, V(X
( ( 0)> dz

S IR R IR

Bin{z-v(x()>0}

1
1 1
= 20n- AWn-1 Jp(t)t"‘1 dt = 70n = ACpWn_1.
0

Thus for Ag := ({ju] > 0} — B,(xp)) U ({|v,| > 0} n Br(x()) we have
|Aol = I{lu] > 0}| = [Br(x0) N {[v| > 0}| = [B;(x0) N {lu] > O} = ~ACpwn_17" + 0(r").

In addition, it is easy to see that {|w| > 0} c Ay.
Now suppose to the contrary that |{Ju| > 0}] > 1. Then we can choose r small enough so that

[Aol = [{lu] > 0}| = ACpwp_17" + o(r") > 1.
Therefore, using the monotonicity of f; we get

fe(HIwl > 03) = fe(l{lul > 0}1) < fe(lAo]) = fe(I{lul > 0}))

1 1
= 2 (140l — {jul > 0})) = —EAprn-lr” +o(r").

Finally, by putting all these estimates in (4.2), we obtain

m
0<cy j VP — [Vul[P dx + fe(1Aol) ~ fe(I{ul > 0})
iler(XO)

m

= [(p ~ DACownt Y 1 (o)l + 0(2) |1 - %Aprn_lr” +o(r").
i=1

Dividing by r" and letting r — 0, and then dividing by A and letting A — 0, we get

1 UL, »
S <(@-1Y 100l
i=1

Now if we choose xj such that

Y doo<inf( ¥ q)+1,

i<m ¢ ti<m
then by Lemma 4.1 (and the equivalence of all norms on the finite-dimensional space R™) we have

L) | 7T
Y lg' (o)l < C,

i<m

independently of €. However, this implies that ¢ has a positive lower bound, which is a contradiction.

5 Regularity of the free boundary (case p = 2)

—_ 317

We are going to show that R is an analytic hypersurface when p = 2. To see this, we first derive the free boundary
condition, also known as the optimality condition, in the following lemma. We perturb the optimal set Q and
compute the first variation of the energy functional J.. To perform this computation, it is crucial to ensure
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that the p-harmonic solution within the perturbed domain is differentiable with respect to the perturbation
parameter. When p = 2, this can be established through the implicit function theorem . Howevey, it is noteworthy
that for p # 2 the following proof breaks down, primarily due to the ill-posedness of the derivative of the map
u — Apu. Nevertheless, we believe a different approach may give a direct proof of the smoothness of the free
boundary. This is left to future investigations.

Lemma 5.1. Let u be a solution of the minimization problem (1.1) for p = 2. Let h' be the solution of
AR' =0 inQ-E,
hi=0 onkE,
hi = 0, T(x,0,u) ondQ.

Then, on the regular part of the free boundary, we have

m . .
Y ayhloyu' = ¢ G.D
i=1

for some positive constant C.

Proof. Let x1 and x; be two regular points in R with corresponding unit normal vectors v(x;) and v(xy). Also,
let p : R — R be a nonnegative smooth function supported in (0, 1). Similarly to the proof of Theorem 4.3 we

define the vector field
[x — x4

X - rAp( )v(xl) if x € By(x1),

Tra(0) = X+ r)mp(@)v(xz) if x € By(xy),

X elsewhere,
for small enough r, A > 0 (which makes T, a diffeomorphism from B (x,) onto itself for a = 1, 2).
Now for some fixedr > 0let E; = T; ,(E), and assume that wy solves
Awi =0 inQ-E,
wh=9¢' onoQ,
w; =0 onokE,.

Define vy (y) := wA(T;}(y)). We are going to show that A — v; is a C! map from a neighborhood of A = 0 into
W2(Q - E). We know that each v} satisfies an elliptic PDE of the form

F[v,A] = FD}v,Vyv,y,))=0 inU=Q-E.
We also know that F = A when y ¢ Br(x1) U B;(x2) or when A = 0. In addition, we can consider F as a ct map
F: WY(@U) xR —» WD),
(v,A) = F[v, ],
where U = Q — E.
Now we employ the implicit function theorem to show that A + v; is C'. This can be readily deduced from

the fact that
dvFlico : W A(U) —» WH2(U)

is invertible, since we have

F[v+s‘,0]:i A(v+s-)=A-.

d
O0vFlp=0 - = —
vEla=o 5=0 dsls=o

ds

Therefore, v) = u + Aug + o(A) in WL2(U), where ug € Wé’z(U) solves

0-2

R |A=0F[VIA’A] = 0yFug + 0;F.
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In other words
Au(l] = =02 Fly=ui, 2=0-

Note that we also have Vv, = Vu + AVug + 0(A), since A — v, is a C! map into W"2(U); s0 A +— Vv, isa C! map
into L2(U).

Now let h! be the solution of Ah! = 0in U = Q - E with boundary data h! = ;T (x, dyu) on dQ and h' = 0
on OE. Then for small A > 0 we have (note that for p = 2 we have A, = 9,)

j I(x,8,v;) - I(x,d,u) do = j Y 0iT(x, 8,u)(8,V} - dyu') do + 0(2)

a9 Q !
=A J Z ;T (x, 6vu)6\,uf) do + o(A)
a0 |
— 4 | Y hovgdo+ o)
o 1
-1y j VAL Vil + hiAud dx + o(d)
Ly
—Y I M9 Fly—a. 220 dX + O(A).

U (B, (x1)UB, (x2))~E

Note that in the last line we have used the facts that Ah! = 0 in U and u(i) =0onoU = 0Q U OE. Also, we have
0 Fly=ui 2=0 = 0 outside B, (x1) U Br(x), because in that region F = A for all A.
Now let us extend w; to all of Q by setting it equal to 0 on E;. Note that wﬁ is positive on Q — E; by the
maximum principle. Hence
{lwal > 0} = Q - Ep.

Furthermore, similarly to the proof of Theorem 4.3, we obtain

1
Se(l{lwal > 03) - fe(I{lul > 0}) < ~(IE] - |EzD)

A
:—( j p'(x - x2)

E:4
Br(x2)n{lul|>0}

(X = X2, v(x2))

dx
[x = X2

(x = X1, v(x1)) dx)

S AR R

Br(x1)n{|ul>0}
A
=—o(r.
E:4

Therefore if we compare the energy of u with w; (it is easy to see that w, € V) we get (in the second equality
below we use the fact that vy = w) near 0Q)

0 < Je(wz) - Je(w) = J I'(x,0yw3) - T(x, dyu) do + fe(I{lwal > 0})) - fe(I{lul > 0}])
a0

= I I'(x,0,v)) - T'(x,0,u)do + go(r”)
a0

; A
~ay J R0 Flucus oo dX + 0Q2) + 5 0(r™).
b (Br(x1)UBy(x2))-E

Hence if we divide by A and let A — 0 we obtain
0<-) j R0, Fly—yi =0 dX + o(r™). (5.2)
U (B, (x1)UB, (x2))-E

So we need to compute 0, F|y_yi -0
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Next let us compute F explicitly. Set x = T, 1A(y) so thaty = T 1(x). To simplify the notation we suppress the
Aor rin the indexes. We have vi(T(x)) = vi(y) = wi(x).

Hence ) ) ]
A W' =) 8y V'0y, T,
j
o W= Z 0, (3y, V'35, TV)
Z S veV 0y, Ty, T¢ + Z oy Vo, T
j
Therefore

14 2
Z yyev 0y, TV, T¢ + Zaylv 0% T
JEAS J.k

It is easy to see that inside B, (x,) (a = 1, 2) we have

X—-X

a5 T = Sjic+ (-1)Ap’ (IZI)HV’(xa) 2=,
0T = (105, (/1) 7 )V ).
Thus ]
Flv,Al = ) 0},,v0x, 05, T  + ) 8y vd},, T
J.t,k ik
= ¥[8+ D) (x| [ ek + (1R 2D v (x| 0, v
J.t.k

_1)a "z 2Ry
+sz[( 1295, p (|z|)|zl)v (Xa)13y,v

in By(xq) for a = 1,2, and F[v, A] = Av elsewhere. Now note that
72

" 22 1,
Y ou(pab ) = X (o e 4 oz g7 ~ P05 ) = 1oz,

|z| r|z|

Hence we get
OFlv-u, 1o0 = (-1)( 29! (|z|)zI Vol + DUCIYRLAIY
j

in Br(xg4) for a = 1, 2. Note that although a priori z, u!in the above equation are functions of y, at A = 0 we have
y = x, and thus we can regard them as functions of x too.

Let uy(z) = 2u(xq + rz) = lu(x) and hi(z) = 1hi(x, + rz) = 1h'(x). Putting all these in (5.2), we get (note
that in the following integration by parts the boundary term is zero, since p is 0 for z near dB; and h' is 0 on
0E)

0<- Z J 103 Flyu 10 dx + 0(™)
b (Br(x1)UB:(x2))-E
-Teve j (20 (|z|)z V) + - 29120 Y. Vi xa)aju ) dx + (™)

V(Xa ]

7)o+t J zZakh (|z|)%]2vf(xa)aju"+ i ”(|z|)va x@du')dx + (")
Br(Xa)— )

=Z(—1)“+1 j zz [oxtip (|z|)ﬂ+hak(p (2 7 l)] Rp"(12)) ¥V (x)oju' dx + o(r™)

Br(Xa)- ]

= Z(—l)‘“l J = akh"p’(lzl)%] - ;hip”(lzl)) Y V(xa)dju’ dx + o(r")

|z| -
Br(Xo)- k 1

= Yy J <—zz[ak oz l]—-rhlp”(|z|))ZvJ(xa)a,u dz + (™).
a,i k

Bin{lu,|>0}
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Now note that 9jul(z) — q'(xa)V/(Xq) = 9ju’(xe) when z - v(xq) > 0 by the results of [5]. Next note that h' is
Lipschitz continuous, since u! is Lipschitz and we have 0 < h < cu' for some constant c. To see this note that
the function 9¢I'(x, dyu) is positive and continuous on the compact set 9, so it is bounded there, and thus for
some ¢ > 0 we have h! = 95T (x, d,u) < co' = cu’ on 9Q. Hence the claim follows by the maximum principle.
Therefore, by Lemma B.1 in [9], we also have dxhi(z) — p'(xq)v¥(xq) = dxhi(xs) for some function pi, and
hi(z) — Vhi(xq) - z as h'(x,) = 0. Thus if we divide the above expression by r"* and let r — 0 we obtain

0 Y (1) (=23 [oxhia)pGzh 2 |20 (12D) Y Vixa)ogud x) dz

a Bin{z-v(xq)>0} k J

Zk
|z|

_ Z(_l)a+l

=) (D

(-2 [PV e’ (12D 25 | - P xa) (vxa) - 200" (12D vt (k) d2
k

B1n{z-v(xq)>0}
2 . .
(2D + p"(12) ) (v(xa) - 2P (ko)D) 2

|z|
Bin{z-v(x4)>0}

= 3 (1), (xa)ay i (x) 2 50zl + p" (12D )v(xe) - 2) dz
i
ai Bin{z-v(xa)>0}

- cp(z Ouhi(x2)dyu (x2) - Y. avh"(xl)avuf(xl)),

where
Cp = j (|§—|p’<|z|) + p”(|z|))(v(xa> -2) dz
B1n{z-v(x4)>0}
does not depend on x,; we have also used the fact that pi(xa) = 8,hi(xg). By switching the role of xi, x, we
conclude that

Z Avh (x2)a,ul (x) - Z_ ayhi(x1)a,u'(x)

must be zero, as desired. O

The main idea to show the regularity of the free boundary lies in utilizing the boundary Harnack principle,
which allows us to reduce the system into a scalar problem. The key tool in employing this approach is non-
tangential accessibility of the domain; for the definition of non-tangentially accessible (NTA) domains we refer
to [3].

Lemma 5.2. Let u be a solution of the minimization problem (1.1) for p = 2. Then U = {x : |u(x)| > 0} is a non-
tangentially accessible domain.

Proof. This result follows from the same analysis as of [3, Theorem 4.8] for the function u = u' +--- + u™. Note
that u is harmonic in {Ju| > 0} = {u > 0} (these two sets are equal due to Lemma 3.2), and the function u is also
Lipschitz continuous and satisfies the nondegeneracy property by Corollary 3.3. O

Theorem 5.3. Let x¢ € R be a regular point of the free boundary. Then there is r > 0 such that B,(xg) N d{|u| > 0}
is a Cb hypersurface for some a > 0.

Proof. We may assume that u' > 0 in By, (xo) N {lu] > 0} for some ro > 0. First we show that for some 0 < r < 1
there is a Holder continuous function g defined on B;(xg) N d{|u| > 0}, such that in the viscosity sense we have

ayh'o,ul =g ondE,

where hlis deﬁned_ in Lemma 5.1. Since By, (xo) N {|lu| > 0} is an NTA domain, the boundary Harnack inequality
implies that Gli= L‘f—i and H' = % are Holder continuous functions in Br(xg) N {|ju| > 0} for some 0 < r < ry. Now
if we consider a one-sided tangent ball at some point y € B(xp) N d{|u| > 0}, we have asymptotic developments

(see [9, Lemma B.1], noting that hiis Lipschitz as we have shown in the proof of Lemma 5.1)

Uy +x) = ¢ ()(x - v(y)* + o(|x]),
Ri(y +x) = piy)(x - v(y))* + o(Ix]).
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v iy — PO :
Py and H'(y) = )" Thus from (5.1) we can infer that

Therefore Gi(y) =

PO o(1+Y COR ) =Y P 0)go) = Y ohio.u
i>1 i i

is constant for every y € B,(xo) n d{|u| > 0}. Note that G, H > 0 at y as p', ¢' > 0. Hence by applying [13, Theo-
rem 3.1] we get the desired result. O

Corollary 5.4. Let u be a solution of the minimization problem (1.1) for p = 2. Then the regular part of the free
boundary, R, is analytic.

Proof. Suppose 0 € R and u® > 0 in B, n{ju| > 0}. Then we apply the hodograph-Legendre transformation
Xy =(X1,...,Xn1, ul). Next we define the partial Legendre functions

Vi) =X, Vi) i=ul(x) fori=2,...,m,
Wi(y) =hix) fori=1,...,m.

As Ris €1, it follows that u’ and h' are in C>%(B, n {|u| > 0}). So, vi and w' are C"-® in a neighborhood of the
originin {y, > 0}. Now we have verified all the hypothesis of Theorem 7.1in [3], and through a similar argument
we can obtain the analyticity of R. O
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