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Abstract: Given is a bounded domain Ω ⊂ ℝn , and a vector-valued function defined on ∂Ω (depicting tempera-
ture distributions from different sources), our objective is to study the mathematical model of a physical prob-
lem of enclosing ∂Ω with a specific volume of insulating material to reduce heat loss in a stationary scenario.
Mathematically, this task involves identifying a vector-valued function u = (u1 , . . . , um) (m ≥ 1) that represents
the temperature within Ω and gives rise to a free boundary, somehow reminiscent of, but not equivalent to, the
Bernoulli free boundary problem.
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1 Introduction

1.1 Background

In this paper we consider an extension of a classical optimization problem in heat conduction, described as
follows: given a surface ∂Ω (boundary of a domain Ω ⊂ ℝn) and positive functions defined on it (each repre-
senting temperature distribution), the aim is to enclose ∂Ω with a prescribed volume of insulating material to
minimize heat loss in a stationary scenario. Mathematically, the objective is to discover a vector-valued func-
tion u = (u1 , . . . , um) (m ≥ 1) that corresponds to the temperature within Ω.Whenever the components of u are
nonnegative and the volume of its support is equal to 1, they become p-harmonic. The target is to minimize the
heat flow, which can be regarded as a continuous family of convex functions dependent on ∇u along ∂Ω.

Our research was inspired by a series of papers [2–4] and their generalization presented in [16]. The
initial two articles focused on studying constant temperature distributions, specifically in the linear case where
Γ(x, t) = t. This linear setting enabled [2, 4] to reduce the quantity to be minimized to the Dirichlet integral.
However, even within the linear case, the problem of nonconstant temperature distribution, examined in [3],
introduced various new challenges.

The main objective of our article is to explore the system version of the nonlinear case with a nonconstant
temperature distribution, wherein the equation is governed by the p-Laplacian. The nonlinearity addressed
in this paper holds significant physical importance, as problems involving monotone operators, akin to those
studied in [16], arise in the optimization of domains for electrostatic configurations.

The nonlinearity associated with ∇u introduces various new challenges. For instance, computing normal
derivatives of W1,p-functions becomes problematic, leading to difficulties in providing a reasonable mathe-
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matical model. In [3], this challenge was overcome by minimizing the total mass of Δu, which can be treated
as a nonnegative measure when u is subharmonic. However, in the present case, there is no representation
available for

∫
∂Ω

Γ(x, Aνu(x)) dσ

as an integral over Ω. To address this issue, similarly to [16], we solve appropriate auxiliary variational problems
and compare them with the minimizer.

Now let us introduce the problem in mathematical framework. Let Ω ⊂ ℝn (n ≥ 2) be a bounded open set
with smooth boundary whose volume |Ω| > 1. Consider the p-Laplace differential operator (1 < p < ∞)

Δpui = div(|∇ui|p−2 ∇ui) = div(A[ui]),

where we set A[ui] = A(∇ui) := |∇ui|p−2 ∇ui to simplify the notation.
Let φ : ∂Ω → ℝm be a C1 function with positive components φi > 0. For u : Ω → ℝm (m ≥ 1) satisfying

{{{
{{{
{

Δpui = 0 in {|u| > 0},
ui = φi on ∂Ω,

vol(spt |u|) = 1,
(1.1)

we want to minimize the functional

J(u) := ∫
∂Ω

Γ(x, Aνu1(x), . . . , Aνum(x)) dσ(x),

where ν is the outward normal vector on ∂Ω,

Aνui := |∇ui|p−2 ∂νui ,

and Γ(x, ξ) : ∂Ω × ℝm → ℝ is a continuous function that satisfies:
(1) For each fixed x, Γ(x, ⋅) is a convex function.
(2) For every i, ∂ξiΓ( ⋅ , ⋅ ) is positive and has a positive lower bound on any set of the form {(x, ξ) : ξi ≥ a}. In

addition, ∂ξiΓ( ⋅ , ⋅ ) is bounded above on any set of the form {(x, ξ) : ξi ≤ b}. (The bounds candepend on a, b.)
(3) For each fixed ξ, ∂ξiΓ(⋅, ξ) is a C1 function.
Note that, as a result, for every ξ we have

Γ(x, ξ1 , . . . , ξm) ≥ ∑
i≤m

∂ξiΓ(x, 0)ξi + Γ(x, 0) ≥ ∑
i≤m

ψi(x)ξi − C,

where ψi(x) := ∂ξiΓ(x, 0) > 0 are positive C1 functions and C is a constant. In particular, we have

Γ(x, Aνu1 , . . . , Aνum) ≥
m
∑
i=1
ψi(x)Aνui − C. (1.2)

A typical example of Γ is
Γ(x, ξ) = ψ1(x)γ1(ξ1) + ⋅ ⋅ ⋅ + ψm(x)γm(ξm),

where the ψi are C1 and positive, and the γi are C1 increasing convex functions with positive derivative.

Remark. It might be worth remarking that this problem has some fundamental differences with the well-
known Bernoulli problem [4], singular perturbation [8], or volume constraint problems [1], where in all these
problems the Dirichlet integral is part of the cost functional to be minimized under constraints. There is a vast
literature around these problems, and we refrain ourselves to get into. To see connection between our prob-
lem at hand and the aforementioned ones, we consider the energy above in a simple scalar case such as
Γ(x, Aνu(x)) = ∂νu(x), with u being constant, say u = 1 on ∂Ω. Alternatively we may consider a u-dependent
function u∂νu(x). The drill is now simple:

∫
∂Ω

u∂νu =
1
2 ∫
∂Ω

∂νu2 = ∫
Ω

uΔu + |∇u|2 = ∫
Ω

|∇u|2 ,

upon assuming u would be harmonic in its support.
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1.2 Structure of the paper

The structure of our paper is as follows: In Section 2, we introduce the physical problem under consideration.
We then formulate a penalized version of the variational problem for the temperature u and define suitable
constraint sets as part of our strategy to overcome the challenges arising from the nonlinearity. We solve the
optimization problem over weakly closed subsets ofW1,p (the sets Vδ), establishing the optimal regularity prop-
erties of the minimizers, including Lipschitz regularity. These results are crucial for proving the existence of
an optimal configuration for the original penalized problem, as discussed in Section 3. Here we also present
fundamental geometric-measure properties of the optimal configuration, such as linear growth away from the
free boundary and uniformly positive density. These properties allow us to establish a representation theorem
following the framework of [4].

In Section 4, we recover the original physical problem from the penalized problem by showing that for
sufficiently small ε, the volume of {|uε| > 0} automatically adjusts to be equal to 1.

Section 5 is dedicated to the optimal regularity of the free boundary, for the case p = 2.We demonstrate that
the normal derivative of the minimizer along the free boundary is a Hölder continuous function, leading to the
conclusion that the free boundary is a C1,α surface. Furthermore, using the free boundary condition obtained
during the proof of Hölder continuity, we establish that the free boundary is an analytic surface, except for a
small singular set.

2 The penalized problem

Let Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ} and

Vδ := {u ∈ W1,p(Ω;ℝm) : ui ≥ 0, Δpui ≥ 0, Δpui = 0 in Ωδ , ui = φi on ∂Ω}.

Furthermore, we set
V := ⋃

δ>0
Vδ .

Observe that the above definition is consistent due to the assumption φi > 0 on ∂Ω. Also, by Δpui ≥ 0 we mean
that for any test function ζ ∈ C∞c (Ω) with ζ ≥ 0 we have

−∫
Ω

∇ζ ⋅ |∇ui|p−2∇ui dx ≥ 0.

This implies that there is a Radon measure μi such that for any test function ζ ∈ C∞c (Ω) we have

∫
Ω

ζ dμi = −∫
Ω

∇ζ ⋅ |∇ui|p−2∇ui dx.

To simplify the notation, we denote μi by Δpui , and dμi by Δpui dx. (It should be noted that this notation is not
meant to imply μi is absolutely continuous with respect to the Lebesgue measure. In fact, for the minimizer, the
two measures are mutually singular as we will see in Theorem 3.5.) It is also worth noting that

ui > 0 in Ωδ (2.1)

by the strong maximum principle, since ui is p-harmonic in Ωδ , and while it is positive on ∂Ω, it is nonnegative
everywhere.

Let fε : ℝ → ℝ be

fε(t) :=
{
{
{

1 + 1
ε (t − 1), t ≥ 1,

1 + ε(t − 1), t < 1.

We are interested in minimizing the penalized functional

Jε(u) := ∫
∂Ω

Γ(x, Aνu(x)) dσ + fε(|{|u| > 0}|)
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over V . The significance of the above penalization is that it forces the volume |{|u| > 0}| to be 1 for small
enough ε; see Theorem 4.3. (Notice that the components of u ∈ V are p-harmonic near ∂Ω; therefore they are
smooth enough near the boundary, and it makes sense to compute their derivatives along ∂Ω.)We first consider
the minimizer of Jε over Vδ .

Lemma 2.1. Let u ∈ V. Then we have

∫
Ω

ψiΔpui dx + ∫
Ω

∇ψi ⋅ A[ui] dx = ∫
∂Ω

ψiAνui dσ, (2.2)

where the ψi are C1 functions.

Proof. Let ϕk ∈ C∞(Ω)be such that ϕk ≡ 1 on Ω̃k := Ω − Ω1/k and ϕk ≡ 0 on ∂Ω.Weknow thatu ∈ Vδ for some δ.
Suppose k is large enough so that 1

k < δ, and thus Ω1/k ⊂ Ωδ . Then we have

∫
Ω

∇(ϕkψi) ⋅ A[ui] dx = ∫
Ω1/k

∇(ϕkψi) ⋅ A[ui] dx + ∫
Ω̃k

∇(ϕkψi) ⋅ A[ui] dx

= ∫
Ω1/k

∇(ϕkψi) ⋅ A[ui] dx + ∫
Ω̃k

∇ψi ⋅ A[ui] dx.

Now, noting that ∂Ω1/k = ∂Ω̃k ∪ ∂Ω, and by using the integration by parts formula proved in [6], we get

∫
Ω1/k

∇(ϕkψi) ⋅ A[ui] dx = ∫
Ω1/k

∇(ϕkψi) ⋅ A[ui] + ϕkψiΔpui dx

= − ∫

∂Ω̃k

ϕkψiAνui dσ + ∫
∂Ω

ϕkψiAνui dσ

= − ∫

∂Ω̃k

ψiAνui dσ 󳨀󳨀󳨀󳨀→
k→∞
− ∫
∂Ω

ψiAνui dσ.

In addition, we have
∫

Ω̃k

∇ψi ⋅ A[ui] dx 󳨀󳨀󳨀󳨀→
k→∞
∫
Ω

∇ψi ⋅ A[ui] dx,

and
∫
Ω

∇(ϕkψi) ⋅ A[ui] dx = −∫
Ω

ϕkψi Δpui dx 󳨀󳨀󳨀󳨀→
k→∞
−∫
Ω

ψiΔpui dx,

which together give the desired result.

We can similarly show that
∫
Ω

Δpui dx = ∫
∂Ω

Aνui dσ.

In addition, note that ∫Ω u
iΔpui dx is meaningful (since ui − φi ∈ W

1,p
0 while Δpui ∈ W−1,p/(p−1) and φi is con-

tinuous) and we can similarly show that

∫
Ω

uiΔpui + |∇ui|p dx = ∫
∂Ω

φiAνui dσ. (2.3)

Note that ui = φi on ∂Ω.

Lemma 2.2. For u ∈ V we have
m
∑
i=1
∫
Ω

|∇ui|p dx ≤ C + C ∫
∂Ω

∑
i≤m

ψi(x)Aνui dσ.

Remark. As we will see, the above inequality actually holds for each summand. Furthermore, with a slight
modification of the last part of the proof we obtain that

∫
Ω

Δpui dx ≤ C + C ∫
∂Ω

ψi(x)Aνui dσ.
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Proof. Let h0 be the vector-valued function in Ω satisfying Δphi0 = 0, and taking the boundary values φ on ∂Ω.
Note that hi0 is C1 and we can plug it in (2.2). By subtracting the resulting relation from (2.3) we get

∫
Ω

(ui − hi0)Δpu
i dx + ∫

Ω

∇(ui − hi0) ⋅ A[u
i] dx = 0.

Hence
∫
Ω

|∇ui|p dx = ∫
Ω

∇ui ⋅ A[ui] dx = ∫
Ω

(hi0 − u
i)Δpui dx + ∫

Ω

∇hi0 ⋅ A[u
i] dx

≤ ∫
Ω

hi0Δpu
i dx + C∫

Ω

|∇hi0|
p dx + 12 ∫

Ω

|A[ui]|
p
p−1 dx

≤ C∫
Ω

Δpui dx + C +
1
2 ∫
Ω

|∇ui|p dx,

where we have used the facts that ui , Δpui ≥ 0 and |A[ui]|
p
p−1 = |∇ui|p . Thus we have

∫
Ω

|∇ui|p dx ≤ C∫
Ω

Δpui dx.

But since ψi , Δpui ≥ 0 we get

∫
Ω

|∇ui|p dx ≤ C∫
Ω

Δpui dx ≤ CCi ∫
Ω

ψi Δpui dx,

where Ci = maxΩ
1
ψi > 0. Hence by (2.2) we get

∫
Ω

|∇ui|p dx ≤ C∫
Ω

ψi Δpui dx

= −C∫
Ω

∇ψi ⋅ A[ui] dx + C ∫
∂Ω

ψiAνui dσ

≤ C̃∫
Ω

|∇ψi|p dx +
1
2 ∫
Ω

|A[ui]|
p
p−1 dx + C ∫

∂Ω

ψiAνui dσ

≤ C + 12 ∫
Ω

|∇ui|p dx + C ∫
∂Ω

ψiAνui dσ,

which gives the desired.

Theorem 2.3. There exists a minimizer uδε ∈ Vδ for Jε .

Proof. Let {uk} ⊂ Vδ be a minimizing sequence. Then by the above lemma and (1.2) we have
m
∑
i=1
∫
Ω

|∇uik|
p dx ≤ C + C ∫

∂Ω

∑
i≤m

ψiAνuik dσ

≤ C + C ∫
∂Ω

Γ(x, Aνu1k , . . . , Aνu
m
k ) + C dσ

≤ C + CJε(uk).

Hence ‖∇uk‖Lp is bounded. In addition, for the dual exponent q = p
p−1 we can see that ‖A[uk]‖Lq = ‖∇uk‖

p−1
Lp

is also bounded. Hence, up to a subsequence, we can assume that ∇uik ⇀ ∇u
i in Lp , A[uik] ⇀ A[ui] in Lq , and

uk → u a.e. in Ω. Thuswe have ui ≥ 0. Also, ui = φi on ∂Ω, since uik − φ
i ∈ W1,p

0 (Ω), which is a closed and convex
set, hence weakly closed. Finally, to see that Δpui has the desired properties, notice that for an appropriate test
function ϕ we have

∫
Ω

∇ϕ ⋅ A[ui] dx = lim
k→∞
∫
Ω

∇ϕ ⋅ A[uik] dx



302  M. Fotouhi et al., A weakly coupled system of p-Laplace type in a heat conduction problem

due to the weak convergence of A[uk]. Therefore u ∈ Vδ . Now we can repeat the proof of [16, Lemma 3.3] to
deduce theweak lower semicontinuity of Jε with respect to this sequence, and conclude the proof (the convexity
of Γ is needed here).

Although Hopf’s lemmas for p-harmonic functions are well known (see for example [15]), we include the proof
of the following version as we need a specific form for the constant.

Lemma 2.4 (Hopf’s lemma for p-harmonic functions). Suppose h is a p-harmonic function on B1(0) with nonneg-
ative boundary values on ∂B1. Then we have

h(x) ≥ c(n, p) dist(x, ∂B1) sup
B1/2

h.

Proof. Consider the function g(x) = e−λ|x|2 − e−λ for some λ > 0. Note that g = 0 on ∂B1, and 0 < g < 1 on B1. We
also have

∂ig = −2λxie−λ|x|
2 , ∂ijg = (4λ2xixj − 2λδij)e−λ|x|

2 .

Now we have Δg = (4λ2|x|2 − 2nλ)e−λ|x|2 , and

Δ∞g := ∑
i,j
∂ig∂jg∂ijg = ∑

i,j
4λ2(4λ2x2i x

2
j − 2λδijxixj)e

−3λ|x|2 = 4λ2(4λ2|x|4 − 2λ|x|2)e−3λ|x|2 .

Therefore
Δpg = div(|∇g|p−2∇g) = |∇g|p−4(|∇g|2Δg + (p − 2)Δ∞g)

= (2λ|x|)p−4(4λ2|x|2(4λ2|x|2 − 2nλ) + (p − 2)4λ2(4λ2|x|4 − 2λ|x|2))e−(p−1)λ|x|2

= (2λ)p−1|x|p−2(2λ|x|2 − n + (p − 2)(2λ|x|2 − 1))e−(p−1)λ|x|2

= (2λ)p−1|x|p−2(2(p − 1)λ|x|2 − n − p + 2)e−(p−1)λ|x|2 .

Thus for 1
2 ≤ |x| ≤ 1 and large enough λ we have

Δpg ≥ 2λp−1((p − 1)
λ
2 − n − p + 2)e

−(p−1)λ > 0.

Now we have h ≥ infB1/2 h > (infB1/2 h)g on B1/2 (note that h is positive on B1 by maximum principle), and
on B1 − B1/2 we have Δph = 0 < Δpg. Also on ∂B1 we have h ≥ 0 = g. Hence by the maximum principle we have
h(x) ≥ g(x)(infB1/2 h) for x ∈ B1. But by the Harnack’s inequality we have

inf
B1/2

h ≥ C sup
B1/2

h

for some constant C which does not depend on h. Hence we obtain

h(x) ≥ Cg(x) sup
B1/2

h.

On the other hand note that

g(x) = g(x) − g(x/|x|) =
1

∫
1
|x|

d
dt g(tx) dt =

1

∫
1
|x|

x ⋅ ∇g(tx) dt

=
1

∫
1
|x|

−2λt|x|2e−λt2|x|2 dt = 2λ|x|2
1
|x|

∫
1

te−λt2|x|2 dt

≥ 2λ|x|2
1
|x|

∫
1

te−λ dt = λe−λ|x|2( 1
|x|2
− 1) = λe−λ(1 − |x|2)

≥ λe−λ(1 − |x|) = λe−λ dist(x, ∂B1),

which gives the desired.
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If h is a p-harmonic function on Br(x0), then h̃(x) := h(x0 + rx) is a p-harmonic function on B1(0). Hencewehave

h(x0 + rx) = h̃(x) ≥ c(n, p) dist(x, ∂B1) sup
B1/2

h̃

= c(n, p) (1 − |x|) sup
B1/2

h̃ = c(n, p) r − r|x|
r

sup
Br/2(x0)

h

= c(n, p) dist(x0 + rx, ∂Br(x0))
1
r

sup
Br/2(x0)

h.

Lemma 2.5. Let w ∈ W1,p(Ω) be a nonnegative function. Then there exists c > 0, depending only on p and the
dimension, such that for any ball Br(x0) ⊂ Ω we have

(
1
r

sup
Br/2(x0)

h)
p
⋅ |Br(x0) ∩ {w = 0}| ≤ c ∫

Br(x0)

|∇(w − h)|p dy,

where h satisfies Δph = 0 in Br(x0) taking boundary values equal to w on ∂Br(x0).

Proof. Let τ ∈ (0, 1) be fixed. For ξ with |ξ| = 1 we set

tξ := inf{t ∈ [τr, r] : w(x0 + tξ) = 0}

provided that this set is nonempty. Otherwise we set tξ := r. Now note that w − h and w are absolutely continu-
ous in almost every direction ξ; in particular we have w(x0 + tξξ) = 0 (note that this will not be necessarily true
if we allow τ to be zero). Alsow − h isHn−1-a.e. zero on ∂Br(x0) as its trace is zero there, so (w − h)(x0 + rξ) = 0.
Thus for almost every ξ for which tξ < r we have

h(x0 + tξξ) = (w − h)(x0 + rξ) − (w − h)(x0 + tξξ)

=
r

∫
tξ

d
dt ((w − h)(x0 + tξ)) dt =

r

∫
tξ

∇ξ(w − h)(x0 + tξ) dt

≤ (r − tξ)
p−1
p (

r

∫
tξ

|∇(w − h)(x0 + tξ)|p dt)
1
p

.

On the other hand, using Hopf’s lemma we get

h(x0 + tξξ) ≥ c(n, p) dist(x0 + tξξ, ∂Br(x0))
1
r sup
Br/2(x0)

h = c(n, p)(r − tξ)
1
r sup
Br/2(x0)

h.

Hence we obtain

(r − tξ)(
1
r sup
Br/2(x0)

h)
p
≤ C(n, p)

r

∫
tξ

|∇(w − h)(x0 + tξ)|p dt.

Note that this inequality is trivially satisfied if tξ = r.
Now by integrating with respect to dξ we get

C(n, p) ∫
Br(x0)

|∇(w − h)(x)|p dx ≥ C(n, p) ∫
∂B1(0)

r

∫
tξ

|∇(w − h)(x0 + tξ)|p dt dξ

≥ (
1
r sup
Br/2(x0)

h)
p
∫

∂B1(0)

(r − tξ) dξ

= (
1
r sup
Br/2(x0)

h)
p
∫

∂B1(0)

r

∫
tξ

1 dt dξ

≥ (
1
r sup
Br/2(x0)

h)
p
∫

Br(x0)−Bτr(x0)

χ{w=0} dx,

where the last inequality follows from the definition of tξ . Finally, we get the desired by letting τ → 0.
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Lemma 2.6. Let u = uδε be a minimizer of Jε over Vδ , and let B ⊂ Ω be a ball. Then there exists a unique
vi ∈ W1,p(Ω) that minimizes the functional

∫
Ω

|∇vi|p dx

among all functions with vi = φi on ∂Ω and vi ≤ 0 on {ui = 0} − B. The functions vi also satisfy:
(1) vi = 0 on {ui = 0} − B,
(2) v = (v1 , . . . , vm) ∈ Vδ ,
(3) 0 ≤ ui ≤ vi ≤ C0 = max∂Ω |φ|,
(4) ∫Ω v

i Δpvi dx = 0.

Remark. Instead of a ball B, we can also use other open subsets of Ω in the above lemma. Essentially, all we
need is that the p-energy functional has a minimum over the corresponding set K in the following proof; so no
regularity assumption is actually needed regarding such open sets.

Proof. It is easy to see that

K := {v ∈ W1,p(Ω) : v = φi on ∂Ω and v ≤ 0 on {ui = 0} − B}

is a closed convex subset of W1,p(Ω). It is nonempty too as ui ∈ K. So there exists a unique vi ∈ K minimizing
the strictly convex and coercive functional ∫Ω |∇v|

p dx. Then for every v ∈ K we have

d
dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=0
∫
Ω

|∇(vi + t(v − vi))|p dx ≥ 0,

and hence vi satisfies the variational inequality

∫
Ω

|∇vi|p−2∇vi ⋅ ∇(v − vi) dx ≥ 0. (2.4)

Now note that v = vi − ζ ∈ K for any test function ζ ∈ C∞c (Ω) with ζ ≥ 0. Therefore

−∫
Ω

|∇vi|p−2∇vi ⋅ ∇ζ dx ≥ 0,

which means Δpvi ≥ 0. As a result, vi ≤ max∂Ω φi ≤ C0 by the maximum principle.
Next note that if spt ζ does not intersect {ui = 0} − B, then we also have vi + ζ ∈ K. Thus we also get

∫
Ω

|∇vi|p−2∇vi ⋅ ∇ζ dx ≥ 0,

which together with the previous inequality implies

−∫
Ω

|∇vi|p−2∇vi ⋅ ∇ζ dx = 0.

Therefore Δpvi = 0 in the interior of

Ω − ({ui = 0} − B) = (Ω − {ui = 0}) ∪ B.

In particular, Δpvi = 0 in Ωδ since ui > 0 in Ωδ by (2.1).
In addition, for ϵ > 0 we have v = max(vi , −ϵ) ∈ K. By plugging this test function in (2.4) we get

0 ≤ ∫
Ω

|∇vi|p−2∇vi ⋅ ∇(v − vi) dx = ∫
{vi<−ϵ}

|∇vi|p−2∇vi ⋅ ∇(−ϵ − vi) dx = − ∫
{vi<−ϵ}

|∇vi|p dx.

By letting ϵ→ 0we obtain∫{vi<0} |∇v
i|p dx = 0, and hence vi ≥ 0. In particular, wemust have vi = 0 on {ui = 0} − B

as vi is assumed to be nonpositive there. Furthermore, note that we have so far shown v = (v1 , . . . , vm) ∈ Vδ .
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Next, since Δpvi = 0 in the exterior of {ui = 0} − B, and Δpui ≥ 0, themaximumprinciple implies that ui ≤ vi
(note that ui , vi have the same boundary values in the exterior of {ui = 0} − B).

Finally, for ζ ∈ C∞c (Ω) with ζ ≥ 0 and small enough ϵ we have

vi ± ϵζvi = (1 ± ϵζ)vi ∈ K.

By plugging this test function in (2.4) we get

0 ≤ ±ϵ∫
Ω

|∇vi|p−2∇vi ⋅ ∇(ζvi) dx 󳨐⇒ ∫
Ω

|∇vi|p−2∇vi ⋅ ∇(ζvi) dx = 0.

In other words
∫
Ω

ζviΔpvi dx = 0.

By letting ζ → 1 we obtain ∫Ω v
iΔpvi dx = 0, as desired. Alternatively, we can take ζ to be 1 over a neighborhood

of {ui = 0} − B. From this and that Δpvi = 0 in the exterior of {ui = 0} − B, we obtain ∫Ω v
iΔpvi dx = 0.

Theorem 2.7. Let u = uδε be a minimizer of Jε over Vδ . There exists a constant M = Mε , independent of δ, such
that if for some j we have

1
r sup
Br/2(x)

uj ≥ M,

then Br(x) ⊂ {|u| > 0}, and Δpui = 0 in Br(x) for every i.

Proof. Let v ∈ Vδ be the function given by Lemma 2.6 for Br(x). Then we have

Jε(u) ≤ Jε(v).

Let h0 be the vector-valued function in Ω satisfying Δphi0 = 0, and taking the boundary values φ on ∂Ω. Since
0 ≤ ui ≤ vi ≤ hi0, for each z ∈ ∂Ω we have

∂νhi0(z) ≤ ∂νv
i(z) ≤ ∂νui(z) ≤ 0.

Then by using the fact that u, v, h0 take the same boundary values and therefore have equal tangential deriva-
tives on ∂Ω, we deduce that

a ≤ Aνhi0(z) ≤ Aνv
i(z) ≤ Aνui(z),

where a is a lower bound for Aνhi0 (note that a does not depend on δ).
Hence by property (2) of Γ we have

∫
∂Ω

Γ(x, Aνu(x)) − Γ(x, Aνv(x)) dσ =
m
∑
i=1
∫
∂Ω

Γ(x, Aνu1 , . . . , Aνui−1 , Aνui , Aνvi+1 , . . . , Aνvm)

− Γ(x, Aνu1 , . . . , Aνui−1 , Aνvi , Aνvi+1 , . . . , Aνvm) dσ (2.5)

≥ Ca
m
∑
i=1
∫
∂Ω

Aνui − Aνvi dσ,

where Ca > 0 is the lower bound of the ∂ξiΓ on the set {(x, ξ) : ξi ≥ a}. On the other hand, using the identity (2.3)
we get

C0 ∫
∂Ω

Aνui − Aνvi dσ ≥ ∫
∂Ω

φi(Aνui − Aνvi) dσ

= ∫
Ω

ui Δpui + |∇ui|p dy − ∫
Ω

vi Δpvi + |∇vi|p dy (2.6)

≥ ∫
Ω

|∇ui|p dy − ∫
Ω

|∇vi|p dy,

where C0 = max∂Ω |φ|, and in the last lineweused the facts that∫Ω v
i Δpvi dy = 0 and ui , Δpui ≥ 0. Now consider

the function hi in Br(x) satisfying Δphi = 0, and taking boundary values equal to ui . We extend hi to be equal
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to ui outside of Br(x). Then we have h = (h1 , . . . , hm) ∈ Vδ . In addition, hi = ui = φi on ∂Ω and hi = ui = 0 on
{ui = 0} − Br(x). Hence due to the minimality property of vi given by Lemma 2.6 we have

∫
Ω

|∇vi|p dy ≤ ∫
Ω

|∇hi|p dy.

Combining this with the above inequality we get

C0 ∫
∂Ω

Aνui − Aνvi dσ ≥ ∫
Ω

|∇ui|p − |∇vi|p dy ≥ ∫
Ω

|∇ui|p − |∇hi|p dy ≥ C ∫
Br(x)

|∇(ui − hi)|p dy,

where the last inequality can be proved similarly to the proof of [9, Lemma 3.1]. (Note that in the last line we
have also used the fact that ui = hi outside Br(x).)

Summing the above inequality for each i, and using the facts that Jε(u) ≤ Jε(v), and fε has Lipschitz constant
equal to 1

ε , we get Ca
C0
∑
i≤m
∫

Br(x)

|∇(ui − hi)|p dy ≤ Ca ∫
∂Ω

∑
i≤m
(Aνui − Aνvi) dσ

≤ ∫
∂Ω

Γ(x, Aνu(x)) − Γ(x, Aνv(x)) dσ

≤ fε(|{|v| > 0}|) − fε(|{|u| > 0}|)

≤
1
ε |Br(x) ∩ {|u| = 0}|,

since 0 ≤ ui ≤ vi , and outside of Br(x), |u| = 0 implies |v| = 0. Therefore by Lemma 2.5 applied to uj we obtain

|Br(x) ∩ {|u| = 0}| ≥
εCa
C0
∑
i≤m
∫

Br(x)

|∇(ui − hi)|p dy

≥
εCa
C0
∫

Br(x)

|∇(uj − hj)|p dy

≥
εCa
cC0
(
1
r sup
Br/2(x)

hj)
p
⋅ |Br(x) ∩ {uj = 0}|

≥
εCa
cC0
(
1
r sup
Br/2(x)

uj)
p
⋅ |Br(x) ∩ {uj = 0}|

≥
εCaMp

cC0
|Br(x) ∩ {|u| = 0}|,

since |u| = 0 implies uj = 0, and hj ≥ uj as uj is p-subharmonic. Hence if M > ( cC0εCa )
1
p , then |Br(x) ∩ {|u| = 0}|

must be zero, as desired. Note that in this case the above inequality also implies that ui = hi in Br(x) for each i;
so ui satisfies the equation in Br(x).

Corollary 2.8. All minimizers uδε are Lipschitz, and for every Ω󸀠 ⊂⊂ Ω there exists a constant Kε = Kε(Ω󸀠), inde-
pendent of δ, such that

‖uδε |Ω󸀠‖Lip ≤ Kε .

In addition, Δp(uδε )i = 0 in the open set {|uδε | > 0}.

Proof. For simplicity we set u = uδε . First let us show that {|u| > 0} is an open set. Suppose x ∈ {|u| > 0}. Then
uj(x) > 0 for some j. Then for small enough r we must have

1
r sup
Br/2(x)

uj ≥ 1r u
j(x) ≥ M.

Hence the previous theorem implies that Br(x) ⊂ {|u| > 0} and we have Δpui = 0 in Br(x).
Next note that∇u = 0 a.e. in {|u| = 0}. So suppose x ∈ {|u| > 0} ∩ Ω󸀠. Let Ω󸀠 ⊂⊂ Ω̃ ⊂⊂ Ω, and B = Bd(x), where

d = dist(x, ∂({|u| > 0} ∩ Ω̃)). If ∂B touches ∂{|u| = 0} then Bd+d󸀠 (x) intersects {|u| = 0}, and by previous theorem
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we have
1

d + d󸀠 sup
B(d+d󸀠)/2(x)

ui ≤ M

for every i. Hence in the limit d󸀠 → 0 we get

1
d

sup
Bd/2(x)

ui ≤ M.

Now since the ui are p-harmonic in B, as shown in the proof of [7, Lemma 3.1], we have

|∇ui(x)| ≤ C 1
d

sup
Bd/2(x)

ui ≤ CM,

where the constant C depends only on p and the dimension n. On the other hand, if ∂B touches ∂Ω̃ then, by the
interior derivative estimate of [11], we obtain (the dependence on d follows from the proof of this estimate; see
[11, equation (3.4)])

|∇ui(x)| ≤ C(n, p)dn ‖u‖W
1,p ≤ C,

since d ≥ dist(Ω󸀠 , ∂Ω̃), and ‖u‖W1,p is bounded independently of δ aswill be shownnow. Let Ω󸀠 ⊂⊂ Ω be a smooth
open set with |Ω − Ω󸀠| = 1. Let u0 be a vector-valued function on Ω − Ω󸀠 that satisfies the equation Δpui0 = 0,
and takes the boundary values φ on ∂Ω and 0 on ∂Ω󸀠. Then for every small enough δ we have u0 ∈ Vδ . Hence
(remember that u = uδε )

C = Jε(u0) ≥ Jε(uδε ) ≥ ∫
∂Ω

Γ(x, Aνuδε (x)) dσ

≥ ∫
∂Ω

m
∑
i=1
ψi(x)Aν(uδε )i − C dσ,

where we used (1.2) in the last line. Thus by Lemma 2.2 the ‖∇uδε ‖Lp(Ω;ℝm) is bounded as δ → 0, and the bound-
edness of ‖uδε ‖W1,p follows from Poincaré inequality and the fact that all of uδε ’s have the same boundary values.

Finally, to see that u is Lipschitz continuous on all of Ω, note that u has p-harmonic components near the
smooth boundary ∂Ω, attaining smooth boundary conditions φ; hence the gradient of u is bounded near the
boundary too.

Lemma 2.9. There exists δ0 = δ0(ε) > 0 such that for every δ we have |uδε | > 0 in Ωδ0 .

Remark. Note that as a consequence, Δp(uδε )i = 0 on Ωδ0 for every δ (by Theorem 2.7). In other words, uδε ∈ Vδ0
for every δ.

Proof. Suppose to the contrary that there is a sequence uk = uδkε for which we have

2dk := dist({|uk| = 0}, ∂Ω) → 0.

Then the midpoint of the closest points on {|uk| = 0} and ∂Ω, which we call xk , has distance dk from both of
these sets. So the boundary of the ball Bdk (xk) touches both of these sets. In addition, by Theorem 2.7, for every
t > 0 we must have

1
dk

sup
Bdk /2(xk+tνk)

uik ≤ Mε

for every i (here νk is the direction of the line segment from xk to its closest point on {|uk| = 0}). So in the limit
t → 0 we get

sup
Bdk /2(xk)

uik ≤ Mεdk . (2.7)

We also have
sup
Bdk (xk)
|uk| ≥ c0 ,

where c0 = minimin∂Ω φi > 0. Because at the point yk ∈ ∂Bdk (xk) ∩ ∂Ω we have uik(yk) = φ
i(yk) ≥ c0 (note that

uik is continuous up to the boundary).
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Next consider the functions
ûk(x) :=

u(xk + dkx)
supBdk (xk) |uk|

on B1. Then ûik is positive and p-harmonic on B1, and we have supB1 |ûk| = 1. In addition, by (2.7) we have

sup
B1/2

ûik =
supBdk /2(xk) u

i
k

supBdk (xk) |uk|
≤
Mεdk
c0
󳨀󳨀󳨀󳨀→
k→∞

0.

Furthermore, note that ûik is a uniformly bounded sequence of p-harmonic functions on B1, so there is α > 0
such that for all r < 1 the Hölder norms ‖ûik‖C0,α(Br) are uniformly bounded (see [10, p. 251]). Hence, by a diagonal
argument, we can construct a subsequence of ûik , which we still denote by û

i
k , that locally uniformly converges

to a nonnegative p-harmonic function ûi∞ on B1. In addition, ûi∞ must vanish on B1/2 by the above estimate.
Thus by the strong maximum principle we must have û∞ ≡ 0 on B1.

Now for yk ∈ ∂Bdk (xk) ∩ ∂Ω and r < dk we have

osc
Br(yk)∩Ω

uik ≤ C(n, p)(r
α + osc

Br(yk)∩∂Ω
φi) ≤ Crα

for some α ∈ (0, 1). This estimate holds by [14, Theorem 4.19] when 1 < p ≤ n. And when p > n this estimate
holds due to the uniform Hölder continuity of uik on Ω, since ‖uk‖W1,p(Ω) is uniformly bounded as we have seen
in the proof of Corollary 2.8. Hence for r = dk/2 we have

min
Bdk /2(yk)∩Bdk (xk)

uik ≥ min
Bdk /2(yk)∩Ω

uik ≥
1
2 c0 ,

where c0 = minimin∂Ω φi . Therefore for ŷk = 1
dk (yk − xk) ∈ ∂B1 we have

min
B1/2(ŷk)∩B1

ûik =
1

supBdk (xk) |uk|
min

Bdk /2(yk)∩Bdk (xk)
uik ≥ c > 0,

since supBdk (xk) |uk| ≤ mC0 where C0 = max∂Ω |φ|. Thus û
i
k has a uniform positive lower bound on a subset

of B1 with positive volume (where the volume is independent of k). So no subsequence of ûk can converge
locally uniformly to û∞ ≡ 0, because otherwise they will uniformly converge to 0 outside a set of small volume,
contradicting the uniform boundedness from below.

Now we can find a minimizer for Jε over V .

Theorem 2.10. There exists a minimizer uε ∈ V for Jε . Moreover, uε is a Lipschitz function, and Δpuiε = 0 in the
open set {|uε| > 0}.

Remark. As we will see in the following proof, uδε ∈ Vδ0 for δ0 = δ0(ε) given by the above lemma. So in fact uε
is a minimizer of Jε over some Vδ , and therefore it has all the properties of uδε ’s that we have proved so far. In
particular, we have |uε| > 0 on Ωδ0 .

Proof. As we have shown in the proof of Corollary 2.8, ‖∇uδε ‖Lp(Ω;ℝm) is bounded as δ → 0. Hence there is a sub-
sequence such that uδε ⇀ uε weakly in W1,p (and also a.e.) with A(∇(uδε )i) ⇀ A(∇uiε) in Lq as δ → 0. So, in
particular, uiε ≥ 0, uiε is p-subharmonic, and attains the boundary condition φi . Furthermore, by Corollary 2.8,
uδε → uε uniformly on compact subsets of Ω. Hence for each ball B ⊂ {|uε| > 0} and all small enough δ we have
B ⊂ {|uδε | > 0}. Therefore by using test functions with support in B together with A(∇(uδε )i) ⇀ A(∇uiε) we can
conclude that uiε is p-harmonic in B.

The same reasoning applied to test functions with support in Ωδ0 , for δ0 given by the previous lemma,
implies that uiε is p-harmonic in Ωδ0 , and thus uε ∈ Vδ0 ⊂ V . In particular, uiε is p-harmonic near the smooth
boundary ∂Ω, attaining smooth boundary conditions φi , so it is Lipschitz near ∂Ω. Moreover, uε is Lipschitz
inside Ω away from its boundary, because it is the uniform limit of a sequence of Lipschitz functions with
uniformly bounded Lipschitz constants. Hence uε is Lipschitz on all of Ω.

Finally, note that uε minimizes Jε over V , since for everyw ∈ V we havew ∈ Vδ for some δ. Thus we obtain
Jε(uδε ) ≤ Jε(w). However, uδε → uε , so we get Jε(uε) ≤ Jε(w) due to the semicontinuity of Jε .
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3 Regularity of solutions to the penalized problem

To simplify the notation, throughout this section we will suppress the index ε in uε .

Theorem 3.1. For τ ∈ (0, 14 ) there exists mε(τ) such that if for each i we have
1
r
sup
Br/2(x)

ui ≤ mε(τ),

then Bτr(x) ⊂ {|u| = 0}.

Proof. Similarly to Lemma 2.6, we can show that there is vi ∈ W1,p(Ω) thatminimizes the functional∫Ω |∇v
i|p dx

among all functions with vi = φi on ∂Ω and vi ≤ 0 on {ui = 0} ∪ Bτr(x). The function vi also satisfies

Δpvi ≥ 0, ∫
Ω

vi Δpvi dx = 0, ui ≥ vi ≥ 0

(to see this, note that Δpvi ≥ Δpui on Ω − ({ui = 0} ∪ Bτr(x)) ⊂ {|u| > 0}, and vi − ui ≤ 0 on {ui = 0} ∪ Bτr(x)
or ∂Ω). In addition, we have v = (v1 , . . . , vm) ∈ Vδ1 ⊂ V (where δ1 is small enough so that Bτr(x) ⊂ Ω − Ωδ1 ).
Thus Jε(u) ≤ Jε(v). Let us assume that δ1 is small enough so that Br(x) ⊂ Ω − Ωδ1 and u ∈ Vδ1 . Letw be a vector-
valued p-harmonic function in Ωδ1 with boundary values equal to φ on ∂Ω and equal to 0 on ∂Ωδ1 − ∂Ω. Then
we have ui ≥ vi ≥ wi ≥ 0 (since u, v are also p-harmonic on Ωδ1 , and nonnegative everywhere). Thus for each
z ∈ ∂Ω we have

0 ≥ ∂νwi(z) ≥ ∂νvi(z) ≥ ∂νui(z).
Next using the fact that u, v,w take the same boundary values on ∂Ω, and therefore have equal tangential
derivatives on ∂Ω, we deduce that

0 ≥ Aνwi(z) ≥ Aνvi(z) ≥ Aνui(z).

Now similar to (2.5) we can show that

∫
∂Ω

Γ(x, Aνv(x)) − Γ(x, Aνu(x)) dσ ≤ C1
m
∑
i=1
∫
∂Ω

Aνvi − Aνui dσ,

where C1 > 0 is the upper bound of ∂ξiΓ’s on the set {(x, ξ) : ξi ≤ 0}. On the other hand, using the identity (2.3)
we obtain (using the notation c0 = minimin∂Ω φi)

c0 ∫
∂Ω

Aνvi − Aνui dσ ≤ ∫
∂Ω

φi(Aνvi − Aνui) dσ

= ∫
Ω

vi Δpvi + |∇vi|p dy − ∫
Ω

ui Δpui + |∇ui|p dy

= ∫
Ω

|∇vi|p dy − ∫
Ω

|∇ui|p dy, (3.1)

where in the last line we used the facts that ∫Ω v
i Δpvi dy = 0, and Δpui = 0 on {ui ̸= 0} ⊂ {|u| > 0}.

Summing the above inequality for each i, and using the facts that Jε(u) ≤ Jε(v), and the derivative of fε is
bounded below by ε, we get

C1
c0
∑
i≤m
∫
Ω

|∇vi|p − |∇ui|p dy ≥ C1 ∫
∂Ω

∑
i≤m
(Aνvi − Aνui) dσ

≥ ∫
∂Ω

Γ(x, Aνv(x)) − Γ(x, Aνu(x)) dσ

≥ fε(|{|u| > 0}|) − fε(|{|v| > 0}|)
≥ ε|{|u| > 0} ∩ {|v| = 0}|
≥ ε|{|u| > 0} ∩ Bτr(x)|, (3.2)

since ui ≥ vi ≥ 0 and vi = 0 in Bτr(x).
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Next we define g : (0,∞) → ℝ by

g(t) :=
{{{{
{{{{
{

t
p−n
p−1 − (τr)

p−n
p−1 , p > n,

log t − log(τr), p = n,

(τr)
p−n
p−1 − t

p−n
p−1 , p < n.

Note that g is an increasing function that vanishes at t = τr, and is negative for t < τr. In addition, g(|x|) is
a p-harmonic function in ℝn − {0}, which is negative on Bτr(x) and vanishes on ∂Bτr(x). Now let us define
hi : B√τr(x) → ℝ by

hi(y) := min{ui(y), si
g(√τr)
(g(|y − x|))+},

where si := maxB√τr(x) u
i . We extend hi by ui outside of B√τr(x). Note that we have hi = 0 on {ui = 0} ∩ Bτr(x)

and hi = ui = φi on ∂Ω. Hence hi competes with vi , and we have ∫Ω |∇v
i|p dx ≤ ∫Ω |∇h

i|p dx. Therefore we can
exchange vi by hi in inequality (3.2) to get

εc0
C1
|{|u| > 0} ∩ Bτr(x)| ≤ ∑

i≤m
∫

B√τr(x)

|∇hi|p − |∇ui|p dy.

Now since hi = 0 on Bτr(x), we can rewrite the above inequality as
εc0
C1
|{|u| > 0} ∩ Bτr(x)| + ∑

i≤m
∫

Bτr(x)

|∇ui|p dy ≤ ∑
i≤m

∫
B√τr(x)−Bτr(x)

|∇hi|p − |∇ui|p dy. (3.3)

But
|∇hi|p − |∇ui|p ≤ −p|∇hi|p−2∇hi ⋅ ∇(ui − hi),

since for two vectors a, b we have |a|p − |b|p ≤ −p|a|p−2a ⋅ (b − a) due to the convexity of the function ⋅ 󳨃→ | ⋅ |p
(see for example [12]). So we can estimate the right-hand side of (3.3) as follows (using integration by parts, and
the facts that Δphi = 0 on {ui > hi}, hi = 0 on ∂Bτr(x), and hi = ui on ∂B√τr(x)):

∫
B√τr(x)−Bτr(x)

|∇hi|p − |∇ui|p dy ≤ −p ∫
B√τr(x)−Bτr(x)

|∇hi|p−2∇(ui − hi) ⋅ ∇hi dy

= p ∫
∂Bτr(x)

(ui − hi)|∇hi|p−2∇hi ⋅ ν dσ − p ∫
∂B√τr(x)

(ui − hi)|∇hi|p−2∇hi ⋅ ν dσ

= p ∫
∂Bτr(x)

ui|∇hi|p−2∇hi ⋅ ν dσ

= C(n, p, τ)
sp−1i
rp−1
∫

∂Bτr(x)

ui dσ,

where the last equality is calculated using the fact hi(y) = si
g(√τr) (g(|y − x|))

+ = 0 on Bτr(x); hence on ∂Bτr(x)
we have

∇hi = C(τ)sir
n−p
p−1
{{
{{
{

2|p − n|
p − 1 |y − x|

2−n−p
p−1 (y − x), p ̸= n,

|y − x|−2(y − x), p = n,
and thus

|∇hi|p−2∇hi ⋅ ν = C(n, p, τ)sp−1i rn−p|y − x|2−n−p|y − x|p−2(y − x) ⋅ (y − x)τr

= C(n, p, τ)sp−1i rn−p|y − x|−n+2 1τr = C(n, p, τ)
sp−1i
rp−1

.

Hence (3.3) becomes

εc0
C1
|{|u| > 0} ∩ Bτr(x)| + ∑

i≤m
∫

Bτr(x)

|∇ui|p dy ≤ C(n, p, τ) ∑
i≤m

sp−1i
rp−1
∫

∂Bτr(x)

ui dσ. (3.4)
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On the other hand we have

∫
∂Bτr(x)

ui dσ ≤ c(n, τ)( ∫
Bτr(x)

ui dy + ∫
Bτr(x)

|∇ui| dy)

≤ c(n, τ)((si + 1) ⋅ |{|u| > 0} ∩ Bτr(x)| + ∫
Bτr(x)

|∇ui|p dy), (3.5)

where in the last line we estimated ui , |∇ui| from above by si , 1 + |∇ui|p on the set {ui > 0} ⊂ {|u| > 0}. Next note
that

si = max
B√τr(x)

ui ≤ sup
Br/2(x)

ui ≤ rmε(τ), (3.6)

since√τ < 1
2 . Combining inequalities (3.4), (3.5), and (3.6), we get

εc0
C1
|{|u| > 0} ∩ Bτr(x)| + ∑

i≤m
∫

Bτr(x)

|∇ui|p dy ≤ cC ∑
i≤m

sp−1i
rp−1
((si + 1) ⋅ |{|u| > 0} ∩ Bτr(x)| + ∫

Bτr(x)

|∇ui|p dy)

≤ cC mp−1
ε (τ)(|{|u| > 0} ∩ Bτr(x)| ∑

i≤m
(si + 1) + ∑

i≤m
∫

Bτr(x)

|∇ui|p dy).

Now if mε(τ) is small enough, we must necessarily have |u| = 0 on Bτr(x), as desired.

Now let us set
U := {x ∈ Ω : |u(x)| > 0},
E := {x ∈ Ω : |u(x)| = 0}.

Lemma 3.2. For every i we have

U = {x ∈ Ω : ui(x) > 0}, E = {x ∈ Ω : ui(x) = 0}.

Proof. By Theorem 2.10, each ui is p-harmonic in the open set U . So in each component of U either ui > 0
or ui ≡ 0 (by the strong maximum principle). Now consider a component of U , say U1. If ∂U1 does not inter-
sect ∂Ω, then it must be a subset of E. Therefore every ui vanishes on ∂U1, and hence every ui vanishes on U1
by the maximum principle. So we would have U1 ⊂ E, which is a contradiction. Thus ∂U1 must intersect ∂Ω.
Hence each ui > 0 on U1, since they are positive on ∂Ω. Therefore each ui is positive on every component of U ,
as desired.

Corollary 3.3. There are c, C > 0 such that for x ∈ U near ∂E we have

c ⋅ dist(x, ∂E) ≤ |u(x)| ≤ C ⋅ dist(x, ∂E).

Proof. The right-hand side inequality holds according to the Lipschitz regularity of the solutions, Theorem 2.10.
To see the left-hand side inequality, we argue indirectly. Assume to the contrary that there exists a sequence
xk ∈ U such that

|u(xk)| ≤
1
kdist(xk , ∂E). (3.7)

Let rk = dist(xk , ∂E) and define
uk(x) =

u(xk + rkx)
rk

.

The sequence uk is uniformly bounded and uniformly Lipschitz in B1 due to Lipschitz regularity of u and
assumption (3.7).

Recall that Δpuik = 0 in U , then we may choose a converging subsequence uk → u0 such that ui0 is also
p-harmonic. Furthermore, by Theorem 3.1 we get that

sup
B1/2(0)
|u0| = lim

k→∞
sup
B1/2(0)
|uk| ≥ mε > 0,

since |uk(0)| > 0. Also, (3.7) yields that u0(0) = 0, which contradicts themaximum (minimum) principle; remem-
ber that each component of u0 is nonnegative.
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Corollary 3.4. There exists c = cε ∈ (0, 1) such that for any x ∈ ∂U and small enough r we have

c ≤ |E ∩ Br(x)|
|Br(x)|

≤ 1 − c. (3.8)

Proof. The proof is similar to the proof of [9, Theorem 4.2]. By Theorem 3.1, there exists z ∈ Br/2(x) such that
|u(z)| ≥ mεr > 0. Now for any y ∈ Bτr(z) we have

|u(y) − u(z)| ≤ Lip(u)|y − z| < Lip(u)τr < mεr
2 ,

provided that τ is small enough. Hence we must have |u(y)| > mεr
2 > 0. This gives the upper estimate in (3.8).

To prove the estimate from below, suppose to the contrary that there exists a sequence of points xk ∈ ∂U
and radii rk → 0 such that

|{|u| = 0} ∩ Brk (xk)| <
1
k
|Brk (xk)| =

1
k
rnk |B1|.

Now let us define
uk(x) =

u(xk + rkx)
rk

.

Note that uk(0) = u(xk) = 0, and thus uk is uniformly bounded and uniformly Lipschitz in B1 = B1(0) due to
Lipschitz regularity of u. Also

|{|uk| = 0} ∩ B1| =
1
rnk
|{|u| = 0} ∩ Brk (xk)| 󳨀󳨀󳨀󳨀→k→∞

0.

Let vik be a p-harmonic function in B1/2 with boundary data vik = u
i
k on ∂B1/2. Then hik(x) = rkv

i
k(

x−xk
rk ) is

a p-harmonic function in Brk/2(xk) with boundary data hik = u
i on ∂Brk/2(xk). Now, similarly to the proof of

Theorem 2.7, we can show that

∫
B1/2

|∇(uik − v
i
k)|

p dx = 1
rnk
∫

Brk /2(xk)

|∇(ui − hik)|
p dx (3.9)

≤
C
ε
1
rnk
|{|u| = 0} ∩ Brk (xk)| 󳨀󳨀󳨀󳨀→k→∞

0.

(Note that the constant C does not depend on the radius rk or the point xk .)
Since uik and therefore v

i
k are uniformly Lipschitz in B1/4, we may assume that u

i
k → ui0 and v

i
k → vi0 uni-

formly in B1/4. Observe that Δpvi0 = 0, and (3.9) implies that u
i
0 = v

i
0 + C for some constant C. Thus Δpu

i
0 = 0 in

B1/4 and from the strongminimum principle it follows ui0 ≡ 0 in B1/4, since u
i
0 ≥ 0 and u

i
0(0) = lim uik(0) = 0. On

the other hand the nondegeneracy property, Theorem 3.1, implies that (since xk is not in the interior of {|u| = 0})

‖uk‖L∞(B1/4) =
1
rk
‖u‖L∞(Brk /4(xk)) ≥

mε
2 > 0.

Therefore we get ‖u0‖L∞(B1/4) ≥ mε/2, which is a contradiction.

Hence we can apply the results in [4, Section 4] and in [5, Section 3] to conclude (see also [9, Sections 5 and 6])

Theorem 3.5. Let u = uε be a minimizer of Jε over V. Then we have:
(1) The (n − 1)-dimensional Hausdorff measure of ∂E is locally finite, i.e.Hn−1(Ω󸀠 ∩ ∂E) < ∞ for every Ω󸀠 ⊂⊂ Ω.

Moreover, there exist positive constants cε , Cε , depending on n, p, Ω, Ω󸀠 , ε, such that for each ball Br(x) ⊂ Ω󸀠
with x ∈ ∂E we have

cεrn−1 ≤ Hn−1(Br(x) ∩ ∂E) ≤ Cεrn−1 .

(2) There exist Borel functions qi = qiε such that

Δpui = qiHn−1 ∂E,

that is, for any ζ ∈ C∞0 (Ω) we have

−∫
Ω

A[ui] ⋅ ∇ζ dy = ∫
∂E

ζqi dHn−1 .
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(3) ForHn−1-a.e. points x ∈ ∂E we have

cε ≤
m
∑
i=1
qi(x) ≤ Cε .

(4) ForHn−1-a.e. points x ∈ ∂E an outward unit normal ν = νE(x) is defined, and

ui(x + y) = (qi(x))
1
p−1 (y ⋅ ν)+ + o(|y|),

which allows us to define Aνui(x) = qi(x) at those points.
(5) The reduced boundary ∂redE satisfiesHn−1(∂E − ∂redE) = 0.

4 The original problem

In this section we will show that for ε > 0 small enough, a minimizer of Jε over V satisfies |{|uε| > 0}| = 1, and
hence it can be regarded as a solution to our original problem (1.1). Remember that

U = Uε = {|uε| > 0}, E = Eε = {|uε| = 0}.

Note that by Lemma 2.9, the free boundary ∂E has a positive distance from the fixed boundary ∂Ω. We say
x ∈ ∂E is a regular point of the free boundary if it satisfies (3) and (4) in Theorem 3.5. The set of such regular
points of the free boundary will be denoted by R = Rε; Theorem 3.5 shows thatHn−1(∂E − R) = 0.

Lemma 4.1. There is a constant C > 0, independent of ε, such that

inf
Rε
(∑
i≤m

qiε) ≤ C.

Remark. Note that ∑i≤m qiε ≥ cε > 0 by Theorem 3.5.

Proof. Let Ω󸀠 ⊂⊂ Ω be a smooth open set with |Ω − Ω󸀠| = 1. Let u0 be a vector-valued function on Ω − Ω󸀠 that
satisfies the equation Δpui0 = 0, and takes the boundary values φ on ∂Ω and 0 on ∂Ω󸀠. Then for some small
enough δ0 we have u0 ∈ Vδ0 ⊂ V ; hence

C = ∫
∂Ω

Γ(x, Aνu0) dσ + 1 = Jε(u0) ≥ Jε(uε)

= ∫
∂Ω

Γ(x, Aνuε) dσ + fε(|{|uε| > 0}|)

≥ ∫
∂Ω

m
∑
i=1
ψiAνuiε − C dσ + fε(|{|uε| > 0}|)

≥ C
m
∑
i=1
∫
Ω

|∇uiε|p dx − C + fε(|{|uε| > 0}|)

≥ −C + 1ε (|{|uε| > 0}| − 1),

where we have used (1.2) and Lemma 2.2. Thus we get the bound

|U| = |{|uε| > 0}| ≤ 1 + Cε.

Note that Jε(u0), and thus C, does not depend on ε due to the definition of fε . As a result, we have a lower bound
for the volume of E. Hence, by the isoperimetric inequality, we have a lower bound forHn−1(∂E), independent
of ε. Now note that (keep in mind that νE points to the interior of U)

∫
∂Ω

Aνuiε dσ − ∫
∂E

Aνuiε dHn−1 = ∫
U

Δpuiε dx = 0.
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Therefore we get
∫
∂E

Aνuiε dHn−1 = ∫
∂Ω

Aνuiε dσ = ∫
Ω

Δpuiε dx ≤ C + C ∫
∂Ω

ψiAνuiε dσ,

where the last inequality follows from the remark below Lemma 2.2. Thus we have

inf
Rε
(∑
i≤m

Aνuiε)Hn−1(∂E) ≤ ∫
∂E

∑
i≤m

Aνuiε dHn−1

≤ C + C ∫
∂Ω

∑
i≤m

ψiAνuiε dσ

≤ C + C ∫
∂Ω

Γ(x, Aνuε) dσ (by (1.2))

≤ C + CJε(uε) ≤ C + CJε(u0) ≤ C,

which gives the desired (noting that qi = Aνuiε by Theorem 3.5).

Lemma 4.2. For small enough ε we have
|{|uε| > 0}| ≥ 1.

Proof. Consider a point z0 ∈ Ωc which has distance δ0 from ∂Ω. Then the ball Bδ0 (z0) is an exterior tangent ball
to ∂Ω. Let t = t(ε) be the first time at which ∂Bδ0+t(z0) intersects ∂{|uε| = 0}, at a point x0 = x0(ε). Now let v be
a p-harmonic function in Bδ0+t(z0) − Bδ0 (z0) with boundary values 0 on ∂Bδ0+t(z0) and c0 on ∂Bδ0 (z0), where
c0 = minimin∂Ω φi > 0. Then on ∂(Ω ∩ Bδ0+t(z0))we have v ≤ ui; so by the maximum principle we have v ≤ ui
in Ω ∩ Bδ0+t(z0). However, by an easy modification of the proof of Hopf’s lemma (Lemma 2.4), we can see that

v(x) ≥ cc0 dist(x, ∂Bδ0+t(z0)),

where the constant c only depends on n, p, δ0. Therefore, for points x in the line segment between x0 , z0 we
have

ui(x) ≥ v(x) ≥ cc0 dist(x, ∂Bδ0+t(z0)) = cc0|x − x0|.

Now consider the ball Br(x0) for small enough r. Then we have

1
r sup
Br/2(x0)

ui ≥ 1r cc0
r
2 =

cc0
2 ,

independently of ε.
Let h be the vector-valued function which satisfies Δphi = 0 in Br(x0), and is equal to u in Ω − Br(x0). By

Lemma 2.5 and the fact that hi ≥ ui we have

∫
Br(x0)

|∇(ui − hi)|p dy ≥ C(1r sup
Br/2(x0)

hi)
p
⋅ |Br(x0) ∩ {ui = 0}|

≥ C(1r sup
Br/2(x0)

ui)
p
⋅ |Br(x0) ∩ {ui = 0}|

≥ C|Br(x0) ∩ {ui = 0}| ≥ C|Br(x0) ∩ {|u| = 0}|.

Next let v be the function given by Lemma 2.6 for Br(x0). We know that Jε(u) ≤ Jε(v). Then similarly to the proof
of Theorem 2.7 we can see that

C ∑
i≤m
∫

Br(x0)

|∇(ui − hi)|p dy ≤ ∫
∂Ω

Γ(x, Aνu) − Γ(x, Aνv) dσ

≤ fε(|{|v| > 0}|) − fε(|{|u| > 0}|).

A closer inspection of the proof of Theorem 2.7 reveals that the constant C in the above estimate only depends
on n, p, Ω, φ, Γ.
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Nowsuppose to the contrary that |{|u| > 0}| < 1. Then, since 0 ≤ ui ≤ vi , and outside of Br(x0), |u| = 0 implies
|v| = 0, we have

|{|v| > 0}| ≤ |{|u| > 0}| + |Br(x0) ∩ {|u| = 0}| < 1

for small enough r. Hence, using the monotonicity of fε , we have

fε(|{|v| > 0}|) − fε(|{|u| > 0}|) ≤ fε(|{|u| > 0}| + |Br(x0) ∩ {|u| = 0}|) − fε(|{|u| > 0}|)

= ε|Br(x0) ∩ {|u| = 0}|.

Combining this estimate with the estimates of the above paragraph, and using (3.8), we obtain

0 < C|Br(x0) ∩ {|u| = 0}| ≤ ε|Br(x0) ∩ {|u| = 0}|,

which gives a positive lower bound for ε, and results in a contradiction.

Theorem 4.3. When ε is small enough, we have

|{|uε| > 0}| = 1.

Proof. By the above lemma we only need to show that |{|uε| > 0}| ≤ 1. To this end, we will compare uε with
a suitable perturbation of itself. Let x0 ∈ R, and let ρ : ℝ → ℝ be a nonnegative smooth function supported
in (0, 1). For small enough r, λ > 0 we consider the vector field

Tr(x) :=
{{
{{
{

x + rλρ( |x − x0|r )
ν(x0) if x ∈ Br(x0),

x elsewhere.

Here, ν(x0) is the outward normal vector provided in (4) of Theorem 3.5. We can easily see that for x in Br(x0)
we have

DTr(x) ⋅ = I ⋅ + λρ󸀠(
|x − x0|

r )
⟨x − x0 , ⋅ ⟩
|x − x0|

ν(x0), (4.1)

where I is the identity matrix. Hence, if λ is small enough, Tr is a diffeomorphism that maps Br(x0) onto itself.
Now consider

vr(x) := u(T−1r (x))

for r > 0 small enough. Similarly to the proof of Theorem 3.1, we consider the vector-valued function w whose
components minimize the Dirichlet p-energy subject to the condition

wi ≤ 0 on {u = 0} ∪ (Br(x0) ∩ {vr = 0}).

With a calculation similar to (3.1) and (2.5) we get

0 ≤ Jε(w) − Jε(u) ≤ C
m
∑
i=1
∫
Ω

|∇wi|p − |∇ui|p dx + fε(|{|w| > 0}|) − fε(|{|u| > 0}|)

≤ C
m
∑
i=1
∫

Br(x0)

|∇vir|p − |∇ui|p dx + fε(|{|w| > 0}|) − fε(|{|u| > 0}|), (4.2)

where in the last inequality we have compared the Dirichlet p-energy of w with that of vrχBr(x0) + uχΩ−Br(x0).
Now notice that

∫
Br(x0)

|∇vir|p dx = ∫
Br(x0)

|DTr(T−1r (x))−1∇ui(T−1r (x))|p dx

= ∫
Br(x0)

|DTr(y)−1∇ui(y)|p|det DTr(y)| dy

= rn ∫
B1

|DTr(y)−1∇ui(y)|p|det DTr(y)| dz, z = y − x0r .
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From (4.1), for small enough λ we can write

DTr(y)−1 = I + (
∞

∑
k=1
(−1)kλkρ󸀠(|z|)k ⟨z, ν⟩

k−1

|z|k−1
)
⟨z, ⋅ ⟩
|z|

ν(x0)

= I − λρ󸀠(|z|) ⟨z, ⋅ ⟩
|z|

ν(x0) + λ2g(λ, z)
⟨z, ⋅ ⟩
|z|

ν(x0) (4.3)

for some g. Hence we have

DTr(y)−1∇ui(y) = ∇ui(y) − λρ󸀠(|z|)
⟨z, ∇ui(y)⟩
|z|

ν(x0) + O(λ2).

Thus
|DTr(y)−1∇ui(y)|2 = |∇ui(y)|2 − 2λρ󸀠(|z|)

⟨z, ∇ui(y)⟩
|z|
⟨ν(x0), ∇ui(y)⟩ + O(λ2),

and therefore

|DTr(y)−1∇ui(y)|p = |∇ui(y)|p(1 − pλρ󸀠(|z|)
⟨z, ∇ui(y)⟩
|z||∇ui(y)|2

⟨ν(x0), ∇ui(y)⟩) + O(λ2).

Also, we have (noting that DTr is the identity matrix plus a rank 1 matrix)

|det DTr(y)| = 1 + λρ󸀠(|z|)
⟨z, ν(x0)⟩
|z| .

All these together, we obtain (remember that y = x0 + rz)

r−n ∫
Br(x0)

|∇vir|p − |∇ui|p dx = λ ∫
B1

|∇ui(y)|pρ󸀠(|z|)(⟨z, ν(x0)⟩
|z| − p

⟨z, ∇ui(y)⟩⟨∇ui(y), ν(x0)⟩
|z||∇ui(y)|2

) dz + O(λ2).

Now consider the blowup sequence ur(z) := 1
ru(x0 + rz). We know that as r → 0 (see [5])

{uir > 0} ∩ B1 → {z : z ⋅ ν(x0) > 0} ∩ B1 ,

∇ui(y) = ∇uir(z) → (qi(x0))
1
p−1 ν(x0)χ{z⋅ν(x0)>0} a.e. in B1 .

Therefore we get

r−n ∫
Br(x0)

|∇vir|p − |∇ui|p dx 󳨀󳨀󳨀→r→0 −(p − 1)λ|q
i(x0)|

p
p−1 ∫

B1∩{z⋅ν(x0)>0}

ρ󸀠(|z|) ⟨z, ν(x0)⟩
|z| dz + O(λ2).

Note that formula (4.3) for (DTr)−1 does not depend on r, and the function ⋅ 󳨃→ | ⋅ |p is continuous; so the O(λ2)
term converges to an O(λ2) term as r → 0. Next note that

div(ρ(|z|)ν) = ρ
󸀠(|z|)
|z| ⟨z, ν⟩.

Thus (noting that ρ(|z|) is zero near ∂B1)

∫
B1∩{z⋅ν(x0)>0}

ρ󸀠(|z|) ⟨z, ν(x0)⟩
|z| dz = − ∫

B1∩{z⋅ν(x0)=0}

ρ(|z|) dz

= −ωn−1
1

∫
0

ρ(t)tn−1 dt = −Cρωn−1 ,

where ωn−1 is the volume of the (n − 1)-dimensional ball of radius 1, and Cρ depends only on ρ. Hence we can
write

∫
Br(x0)

|∇vir|p − |∇ui|p dx = [(p − 1)λCρωn−1|qi(x0)|
p
p−1 + O(λ2)]rn + o(rn).
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On the other hand,

lim
r→0

r−n|Br(x0) ∩ {|vr| > 0}| = lim
r→0

r−n ∫
{|vr |>0}∩Br(x0)

dx

= lim
r→0

r−n ∫
{|u|>0}∩Br(x0)

|det DTr(y)| dy

= ∫
B1∩{z⋅ν(x0)>0}

1 + λρ󸀠(|z|) ⟨z, ν(x0)⟩
|z|

dz

=
1
2ωn − λωn−1

1

∫
0

ρ(t)tn−1 dt = 12ωn − λCρωn−1 .

Thus for A0 := ({|u| > 0} − Br(x0)) ∪ ({|vr| > 0} ∩ Br(x0)) we have

|A0| − |{|u| > 0}| = |Br(x0) ∩ {|vr| > 0}| − |Br(x0) ∩ {|u| > 0}| = −λCρωn−1rn + o(rn).

In addition, it is easy to see that {|w| > 0} ⊂ A0.
Now suppose to the contrary that |{|u| > 0}| > 1. Then we can choose r small enough so that

|A0| = |{|u| > 0}| − λCρωn−1rn + o(rn) > 1.

Therefore, using the monotonicity of fε we get

fε(|{|w| > 0}|) − fε(|{|u| > 0}|) ≤ fε(|A0|) − fε(|{|u| > 0}|)

=
1
ε (|A0| − |{|u| > 0}|) = −

1
ε λCρωn−1r

n + o(rn).

Finally, by putting all these estimates in (4.2), we obtain

0 ≤ C
m
∑
i=1
∫

Br(x0)

|∇vir|p − |∇ui|p dx + fε(|A0|) − fε(|{|u| > 0}|)

= [(p − 1)λCρωn−1
m
∑
i=1
|qi(x0)|

p
p−1 + O(λ2)]rn − 1ε λCρωn−1r

n + o(rn).

Dividing by rn and letting r → 0, and then dividing by λ and letting λ → 0, we get

1
ε ≤ (p − 1)

m
∑
i=1
|qi(x0)|

p
p−1 .

Now if we choose x0 such that
∑
i≤m

qi(x0) ≤ inf
Rε
(∑
i≤m

qi) + 1,

then by Lemma 4.1 (and the equivalence of all norms on the finite-dimensional space ℝm) we have

∑
i≤m
|qi(x0)|

p
p−1 ≤ C,

independently of ε. However, this implies that ε has a positive lower bound, which is a contradiction.

5 Regularity of the free boundary (case p = 2)
Weare going to show thatR is an analytic hypersurfacewhen p = 2. To see this, wefirst derive the free boundary
condition, also known as the optimality condition, in the following lemma. We perturb the optimal set Ω and
compute the first variation of the energy functional Jε . To perform this computation, it is crucial to ensure
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that the p-harmonic solution within the perturbed domain is differentiable with respect to the perturbation
parameter.When p = 2, this can be established through the implicit function theorem .However, it is noteworthy
that for p ̸= 2 the following proof breaks down, primarily due to the ill-posedness of the derivative of the map
u 󳨃→ Δpu. Nevertheless, we believe a different approach may give a direct proof of the smoothness of the free
boundary. This is left to future investigations.

Lemma 5.1. Let u be a solution of the minimization problem (1.1) for p = 2. Let hi be the solution of

{{{
{{{
{

Δhi = 0 in Ω − E,
hi = 0 on E,
hi = ∂ξiΓ(x, ∂νu) on ∂Ω.

Then, on the regular part of the free boundary, we have
m
∑
i=1
∂νhi∂νui = C (5.1)

for some positive constant C.

Proof. Let x1 and x2 be two regular points in R with corresponding unit normal vectors ν(x1) and ν(x2). Also,
let ρ : ℝ → ℝ be a nonnegative smooth function supported in (0, 1). Similarly to the proof of Theorem 4.3 we
define the vector field

Tr,λ(x) :=

{{{{{{
{{{{{{
{

x − rλρ( |x − x1|r )
ν(x1) if x ∈ Br(x1),

x + rλρ( |x − x2|r )ν(x2) if x ∈ Br(x2),

x elsewhere,

for small enough r, λ > 0 (which makes Tr,λ a diffeomorphism from Br(xa) onto itself for a = 1, 2).
Now for some fixed r > 0 let Eλ = T−1r,λ(E), and assume that wλ solves

{{{
{{{
{

Δwi
λ = 0 in Ω − Eλ ,

wi
λ = φ

i on ∂Ω,
wi
λ = 0 on ∂Eλ .

Define vλ(y) := wλ(T−1r,λ(y)). We are going to show that λ 󳨃→ vλ is a C1 map from a neighborhood of λ = 0 into
W1,2(Ω − E). We know that each viλ satisfies an elliptic PDE of the form

F[v, λ] = F(D2yv, ∇yv, y, λ) = 0 in U = Ω − E.

We also know that F = Δ when y ∉ Br(x1) ∪ Br(x2) or when λ = 0. In addition, we can consider F as a C1 map

F : W1,2(U) × ℝ → W−1,2(U),
(v, λ) 󳨃→ F[v, λ],

where U = Ω − E.
Now we employ the implicit function theorem to show that λ 󳨃→ vλ is C1. This can be readily deduced from

the fact that
∂vF|λ=0 : W1,2

0 (U) → W−1,2(U)

is invertible, since we have

∂vF|λ=0 ⋅ =
d
ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨s=0

F[v + s ⋅ , 0] = d
ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨s=0

Δ(v + s ⋅ ) = Δ ⋅ .

Therefore, vλ = u + λu0 + o(λ) inW1,2(U), where u0 ∈ W1,2
0 (U) solves

0 = d
dλ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨λ=0

F[viλ , λ] = ∂vFu
i
0 + ∂λF.
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In other words
Δui0 = −∂λF|v=ui , λ=0 .

Note that we also have ∇vλ = ∇u + λ∇u0 + o(λ), since λ 󳨃→ vλ is a C1 map intoW1,2(U); so λ 󳨃→ ∇vλ is a C1 map
into L2(U).

Now let hi be the solution of Δhi = 0 in U = Ω − E with boundary data hi = ∂ξiΓ(x, ∂νu) on ∂Ω and hi = 0
on ∂E. Then for small λ > 0 we have (note that for p = 2 we have Aν = ∂ν)

∫
∂Ω

Γ(x, ∂νvλ) − Γ(x, ∂νu) dσ = ∫
∂Ω

∑
i
∂iΓ(x, ∂νu)(∂νviλ − ∂νu

i) dσ + o(λ)

= λ ∫
∂Ω

∑
i
∂iΓ(x, ∂νu)∂νui0 dσ + o(λ)

= λ ∫
∂Ω

∑
i
hi∂νui0 dσ + o(λ)

= λ∑
i
∫
U

∇hi ⋅ ∇ui0 + h
iΔui0 dx + o(λ)

= −λ∑
i

∫
(Br(x1)∪Br(x2))−E

hi∂λF|v=ui , λ=0 dx + o(λ).

Note that in the last line we have used the facts that Δhi = 0 in U and ui0 = 0 on ∂U = ∂Ω ∪ ∂E. Also, we have
∂λF|v=ui , λ=0 = 0 outside Br(x1) ∪ Br(x2), because in that region F = Δ for all λ.

Now let us extend wλ to all of Ω by setting it equal to 0 on Eλ . Note that wi
λ is positive on Ω − Eλ by the

maximum principle. Hence
{|wλ| > 0} = Ω − Eλ .

Furthermore, similarly to the proof of Theorem 4.3, we obtain

fε(|{|wλ| > 0}|) − fε(|{|u| > 0}|) ≤
1
ε (|E| − |Eλ|)

=
λ
ε( ∫

Br(x2)∩{|u|>0}

ρ󸀠(|x − x2|)
⟨x − x2 , ν(x2)⟩
|x − x2|

dx

− ∫
Br(x1)∩{|u|>0}

ρ󸀠(|x − x1|)
⟨x − x1 , ν(x1)⟩
|x − x1|

dx)

=
λ
ε o(r

n).

Therefore if we compare the energy of u with wλ (it is easy to see that wλ ∈ V) we get (in the second equality
below we use the fact that vλ = wλ near ∂Ω)

0 ≤ Jε(wλ) − Jε(u) = ∫
∂Ω

Γ(x, ∂νwλ) − Γ(x, ∂νu) dσ + fε(|{|wλ| > 0}|) − fε(|{|u| > 0}|)

= ∫
∂Ω

Γ(x, ∂νvλ) − Γ(x, ∂νu) dσ +
λ
ε o(r

n)

= −λ∑
i

∫
(Br(x1)∪Br(x2))−E

hi∂λF|v=ui , λ=0 dx + o(λ) +
λ
ε o(r

n).

Hence if we divide by λ and let λ → 0 we obtain

0 ≤ −∑
i

∫
(Br(x1)∪Br(x2))−E

hi∂λF|v=ui , λ=0 dx + o(rn). (5.2)

So we need to compute ∂λF|v=ui , λ=0.
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Next let us compute F explicitly. Set x = T−1r,λ(y) so that y = Tr,λ(x). To simplify the notation we suppress the
λ or r in the indexes. We have vi(T(x)) = vi(y) = wi(x).

Hence
∂xkwi = ∑

j
∂yj vi∂xkT j ,

∂2xkxkw
i = ∑

j
∂xk (∂yj vi∂xkT j)

= ∑
j,ℓ
∂2yjyℓv

i∂xkT j∂xkTℓ +∑
j
∂yj vi∂2xkxkT

j .

Therefore
0 = Δwi = ∑

j,ℓ,k
∂2yjyℓv

i∂xkT j∂xkTℓ +∑
j,k
∂yj vi∂2xkxkT

j .

It is easy to see that inside Br(xa) (a = 1, 2) we have

∂xkT j = δjk + (−1)aλρ󸀠(|z|)
zk
|z|
νj(xa), z = x − xa

r
,

∂2xkxkT
j = (−1)aλ∂xk(ρ󸀠(|z|)

zk
|z| )ν

j(xa).

Thus
F[v, λ] = ∑

j,ℓ,k
∂2yjyℓv∂xkT

j∂xkTℓ +∑
j,k
∂yj v∂2xkxkT

j

= ∑
j,ℓ,k
[δjk + (−1)aλρ󸀠(|z|)

zk
|z| ν

j(xa)][δℓk + (−1)aλρ󸀠(|z|)
zk
|z| ν
ℓ(xa)]∂2yjyℓv

+∑
j,k
[(−1)aλ∂xk(ρ󸀠(|z|)

zk
|z| )ν

j(xa)]∂yj v

in Br(xa) for a = 1, 2, and F[v, λ] = Δv elsewhere. Now note that

∑
k
∂xk(ρ󸀠(|z|)

zk
|z| )
= ∑

k
(ρ󸀠󸀠(|z|)

z2k
r|z|2
+ ρ󸀠(|z|) 1r|z| − ρ

󸀠(|z|)
z2k
r|z|3
) =

1
r ρ
󸀠󸀠(|z|).

Hence we get
∂λF|v=ui , λ=0 = (−1)a(2ρ󸀠(|z|)∑

j,k

zk
|z| ν

j(xa)∂2jku
i +

1
r ρ
󸀠󸀠(|z|)∑

j
νj(xa)∂jui)

in Br(xa) for a = 1, 2. Note that although a priori z, ui in the above equation are functions of y, at λ = 0 we have
y = x, and thus we can regard them as functions of x too.

Let ur(z) = 1
ru(xa + rz) =

1
ru(x) and h

i
r(z) = 1

r h
i(xa + rz) = 1

r h
i(x). Putting all these in (5.2), we get (note

that in the following integration by parts the boundary term is zero, since ρ is 0 for z near ∂B1 and hi is 0 on
∂E)

0 ≤ −∑
i

∫
(Br(x1)∪Br(x2))−E

hi∂λF|v=ui , λ=0 dx + o(rn)

= ∑
a,i
(−1)a+1 ∫

Br(xa)−E

hi(2ρ󸀠(|z|)∑
j,k

zk
|z| ν

j(xa)∂2jku
i +

1
r ρ
󸀠󸀠(|z|)∑

j
νj(xa)∂jui)dx + o(rn)

= ∑
a,i
(−1)a+1 ∫

Br(xa)−E

(−2∑
k
∂k[hiρ󸀠(|z|)

zk
|z| ]∑j

νj(xa)∂jui +
1
r h

iρ󸀠󸀠(|z|)∑
j
νj(xa)∂jui)dx + o(rn)

= ∑
a,i
(−1)a+1 ∫

Br(xa)−E

(−2∑
k
[∂khiρ󸀠(|z|)

zk
|z| + h

i∂k(ρ󸀠(|z|)
zk
|z| )] +

1
r h

iρ󸀠󸀠(|z|))∑
j
νj(xa)∂jui dx + o(rn)

= ∑
a,i
(−1)a+1 ∫

Br(xa)−E

(−2∑
k
[∂khiρ󸀠(|z|)

zk
|z| ] −

1
r h

iρ󸀠󸀠(|z|))∑
j
νj(xa)∂jui dx + o(rn)

= ∑
a,i
(−1)a+1rn ∫

B1∩{|ur |>0}

(−2∑
k
[∂khirρ󸀠(|z|)

zk
|z| ] −

1
r rh

i
rρ󸀠󸀠(|z|))∑

j
νj(xa)∂juir dz + o(rn).
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Now note that ∂juir(z) → qi(xa)νj(xa) = ∂jui(xa) when z ⋅ ν(xa) > 0 by the results of [5]. Next note that hi is
Lipschitz continuous, since ui is Lipschitz and we have 0 ≤ hi ≤ cui for some constant c. To see this note that
the function ∂ξiΓ(x, ∂νu) is positive and continuous on the compact set ∂Ω, so it is bounded there, and thus for
some c > 0 we have hi = ∂ξiΓ(x, ∂νu) ≤ cφi = cui on ∂Ω. Hence the claim follows by the maximum principle.
Therefore, by Lemma B.1 in [9], we also have ∂khir(z) → pi(xa)νk(xa) = ∂khi(xa) for some function pi , and
hir(z) → ∇hi(xa) ⋅ z as hi(xa) = 0. Thus if we divide the above expression by rn and let r → 0 we obtain

0 ≤ ∑
a,i
(−1)a+1 ∫

B1∩{z⋅ν(xa)>0}

(−2∑
k
[∂khi(xa)ρ󸀠(|z|)

zk
|z| ]

z)ρ󸀠󸀠(|z|))∑
j
νj(xa)∂jui(xa) dz

= ∑
a,i
(−1)a+1 ∫

B1∩{z⋅ν(xa)>0}

(−2∑
k
[pi(xa)νk(xa)ρ󸀠(|z|)

zk
|z| ]
− pi(xa)(ν(xa) ⋅ z)ρ󸀠󸀠(|z|))∂νui(xa) dz

= ∑
a,i
(−1)a ∫

B1∩{z⋅ν(xa)>0}

(
2
|z|
ρ󸀠(|z|) + ρ󸀠󸀠(|z|))(ν(xa) ⋅ z)pi(xa)∂νui(xa) dz

= ∑
a,i
(−1)a∂νhi(xa)∂νui(xa) ∫

B1∩{z⋅ν(xa)>0}

(
2
|z|
ρ󸀠(|z|) + ρ󸀠󸀠(|z|))(ν(xa) ⋅ z) dz

= Cρ(∑
i
∂νhi(x2)∂νui(x2) −∑

i
∂νhi(x1)∂νui(x1)),

where
Cρ = ∫

B1∩{z⋅ν(xa)>0}

(
2
|z|ρ
󸀠(|z|) + ρ󸀠󸀠(|z|))(ν(xa) ⋅ z) dz

does not depend on xa; we have also used the fact that pi(xa) = ∂νhi(xa). By switching the role of x1 , x2 we
conclude that

∑
i
∂νhi(x2)∂νui(x2) −∑

i
∂νhi(x1)∂νui(x1)

must be zero, as desired.

The main idea to show the regularity of the free boundary lies in utilizing the boundary Harnack principle,
which allows us to reduce the system into a scalar problem. The key tool in employing this approach is non-
tangential accessibility of the domain; for the definition of non-tangentially accessible (NTA) domains we refer
to [3].

Lemma 5.2. Let u be a solution of the minimization problem (1.1) for p = 2. Then U = {x : |u(x)| > 0} is a non-
tangentially accessible domain.

Proof. This result follows from the same analysis as of [3, Theorem 4.8] for the function U = u1 + ⋅ ⋅ ⋅ + um . Note
that U is harmonic in {|u| > 0} = {U > 0} (these two sets are equal due to Lemma 3.2), and the function U is also
Lipschitz continuous and satisfies the nondegeneracy property by Corollary 3.3.

Theorem 5.3. Let x0 ∈ R be a regular point of the free boundary. Then there is r > 0 such that Br(x0) ∩ ∂{|u| > 0}
is a C1,α hypersurface for some α > 0.

Proof. Wemay assume that u1 > 0 in Br0 (x0) ∩ {|u| > 0} for some r0 > 0. First we show that for some 0 < r ≤ r0
there is a Hölder continuous function g defined on Br(x0) ∩ ∂{|u| > 0}, such that in the viscosity sense we have

∂νh1∂νu1 = g on ∂E,

where h1 is defined in Lemma 5.1. Since Br0 (x0) ∩ {|u| > 0} is an NTA domain, the boundary Harnack inequality
implies that Gi := ui

u1 and H
i = hi

h1 are Hölder continuous functions in Br(x0) ∩ {|u| > 0} for some 0 < r ≤ r0. Now
if we consider a one-sided tangent ball at some point y ∈ Br(x0) ∩ ∂{|u| > 0}, we have asymptotic developments
(see [9, Lemma B.1], noting that hi is Lipschitz as we have shown in the proof of Lemma 5.1)

ui(y + x) = qi(y)(x ⋅ ν(y))+ + o(|x|),
hi(y + x) = pi(y)(x ⋅ ν(y))+ + o(|x|).
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Therefore Gi(y) = qi(y)
q1(y) and H

i(y) = pi(y)
p1(y) . Thus from (5.1) we can infer that

p1(y)q1(y)(1 +∑
i>1
Gi(y)H i(y)) = ∑

i
pi(y)qi(y) = ∑

i
∂νhi∂νui

is constant for every y ∈ Br(x0) ∩ ∂{|u| > 0}. Note that Gi , H i > 0 at y as pi , qi > 0. Hence by applying [13, Theo-
rem 3.1] we get the desired result.

Corollary 5.4. Let u be a solution of the minimization problem (1.1) for p = 2. Then the regular part of the free
boundary, R, is analytic.

Proof. Suppose 0 ∈ R and u1 > 0 in Br ∩ {|u| > 0}. Then we apply the hodograph-Legendre transformation
x 󳨃→ y = (x1 , . . . , xn−1 , u1). Next we define the partial Legendre functions

v1(y) := xn , vi(y) := ui(x) for i = 2, . . . ,m,
wi(y) := hi(x) for i = 1, . . . ,m.

As R is C1,α , it follows that ui and hi are in C1,α(Br ∩ {|u| > 0}). So, vi and wi are C1,α in a neighborhood of the
origin in {yn ≥ 0}. Nowwe have verified all the hypothesis of Theorem 7.1 in [3], and through a similar argument
we can obtain the analyticity of R.
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