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Abstract: In this paper, we consider the BV least gradient problem with Dirichlet condition on a partT' ¢ 0Q and
Neumann boundary condition on its complementary part 0Q\I'. We will show that in the plane this problem is
equivalent to an optimal transport problem with import/export taxes on 9Q\I'. Thanks to this equivalence, we
will be able to show existence and uniqueness of a solution to this mixed least gradient problem and we will also
prove some Sobolev regularity on this solution. We note that these results generalize those in [S. Dweik, WP
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1 Introduction

The least gradient problem with Dirichlet condition consists in minimizing the total variation of the vector
measure Du among all BV functions u on an open domain Q c R such that the trace of u on the boundary is
given by a function g € L1(3Q) (see, for instance, [2, 16, 18, 27]):

inf«“ [Du| : u € BV(Q), ujpe = g]». €1
Q
The author of [15] proves existence of a solution to problem (1.1) in the case where g isin BV(9Q) and Q is strictly
convex. While the authors of [26] showed by a counter-example that problem (1.1) may have no solutions as soon
as g ¢ BV(0Q).In addition, a solution may not exist if Q is not strictly convex. In [27], the authors prove existence
and uniqueness of a solution u to problem (1.1) provided that g € C(dQ). On the other hand, the authors of
[10, 23, 24] have studied problem (1.1) but in the case where Q is just convex. More precisely, they proved under
some strong assumptions on the houndary datum g, that problem (1.1) reaches a minimum.
Now, we assume that g € BV(9Q) and d = 2. Then, in [13, 16], the authors prove that problem (1.1) is equiv-
alent to the following minimal flow formulation:

inf<“ V[ :veME@QR?),V-v=0andv-n=f:=ad,gon 69}, (1.2)

Q
where d.g denotes the tangential derivative of g and the divergence condition V-v=0and v-n = f on dQ
(where n := Rz 7 is the outward normal vector to 0Q and Rz denotes the rotation with angle 7 around the
origin) should be understood in the weak form j'§V¢ -dv = f 50 @ df forall ¢ € C'(Q). More precisely, one can
show that inf (1.1) = inf (1.2). Moreover, if u is a solution for problem (1.1), then v := RgDu solves problem (1.2).
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On the other hand, if v is an optimal flow for problem (1.2) such that |v| gives zero mass to the boundary, then
the function u such that v = Rz Du turns out to be a solution for problem (1.1). It is also well known (see, for
instance, [25]) that problem (1.2) is equivalent to the following Monge-Kantorovich problem:

mintj Ix-yldy:y e M"(QxQ), (IL)sy = f* and (II)sy =f}, (1.3)
oxQ
where f* and f~ are the positive and negative parts of f. In addition, we note that problem (1.3) has a dual
formulation, which is the following:

sup<“ wd(ff-f):we Lipl(ﬁ)]». 1.4)
Q
If y is an optimal transport plan for problem (1.3), then the vector measure v, defined as
1
(), &) = J J E(1— tx+ ty)- (x—y)dtdy(x,y) forall € ¢ C(@, R?) (15)
oxQ 0

is a minimizer for problem (1.2). We note also that v, = |v,| Vw, where w is a Kantorovich potential (i.e. a max-
imizer of the dual problem (1.4)), since one can show that for any pair (x,y) € spt(y), w is differentiable in
the interior of the transport ray [x, y] and its gradient Vw is given by the opposite unit direction of [x, y]. In
particular, this means that transport rays cannot intersect at an interior point. In addition, any minimizer v of
problem (1.2) is exactly of this form v = v,, for some optimal transport plan y (we refer the reader to [25] for
detailed proofs of these results).

The measure gy, := |v)|is called a transport density and it plays a special role in the optimal transport theory,
since it represents the amount of transport taking place in each region of Q. In other words, we have

1
(0y,0) = J J o((1-tx+ty)lx-yldtdy(x,y) forallg e C(Q). (1.6)
oxQ 0
The properties of this transport density o}, have been studied in several works. In [14, 25], the authors proved
that o), is unique (which means that it does not depend on the choice of the optimal transport plan y) and it
is in L1(Q) as soon as f* or f~ is absolutely continuous with respect to the Lebesgue measure. On the other
hand, the authors of [3-5, 25] proved that the transport density o belongs to L?(Q) as soon as f* and f~ are both
in LP(Q), for all p € [1, co].
On the other hand, the least gradient problem with Neumann boundary condition has been considered
in [20, 22]. In other words, the authors studied the following minimization problem:

inf«“ \Dul - j Yudi :ue BV(Q)}, A7)
Q L)
where ¢ € L*°(0Q) with Iag ¥ = 0. More precisely, problem (1.7) reaches a minimum (which has to be clearly
equal zero) as soon as the datum t is small enough, that is, [|§|. < 1 where the norm || - |, is equivalent to
| -z (ag) and it is defined as follows:
1§, = sup{M ue BV(Q)}.
Jo 1Dul

To be more precise, if ||+ < 1, then u = 0 is the unique solution for problem (1.7) while if |||, = 1, then there
are infinitely many minimizers. If ||¢||, > 1, the minimal value will be —co and so, a solution u does not exist.
However, given a bounded function ¢ on dQ then it is not clear how to check whether the assumption |||, < 1
is well satisfied or not! We see that

1Yl < AlYlloo,

where A is the best constant of the Sobolev trace embedding BV(Q) — L1(9Q) for functions with vanishing
mean value over Q. But again, this constant A is unknown.
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In this paper, we are mainly concerned in studying the least gradient problem with Dirichlet condition
imposed on an open connected arc I' ¢ 0Q and Neumann boundary condition on its complementary part 0Q\I':

inf“ |Du| - j YudH:ueBV(Q), ur = g}, (1.8)
Q dO\T
where 1 is a bounded function on dQ\T, g € BV(I') and ur = g is in the sense that there is an L' extension &

of g to 0Q such that ujse = g. Notice that if u is a solution for problem (1.8), then u formally solves the following
1-Laplacian PDE with mixed Dirichlet and Neumann boundary conditions (see [17, Definition 3.4]):

Du .

. [m] =0 iInQ,

u=g onl,
Du
m-n_w on 0Q\T.
On the other hand, we note that the relaxed version of problem (1.8) is given by the following (see [18]):
inf«“lDuHJlu—gl— J lpudﬂ-fl:ueBV(Q)}. 1.9)
Q r AO\T

However, it is not easy to show existence of a solution to (1.9) since for an arbitrary bounded function ¢ on 0Q\T,
the functional may not be lower semicontinuous and so, a solution may not exist. Yet, problem (1.8) has been
already studied in [8] but in the particular case when ¥ = 0. But we note that it is not immediate to extend the
results of [8] to the case of a general bounded function . Inspired by [8, 16], we will show that problem (1.8) is
equivalent to the following minimal flow formulation:

inf{j [v] + j ddy:veMQR?, y e M(Q\I), V-v=0,v-n=f+yon 69}, (1.10)
a AO\T

where f = d.g and ¢ is a Lipschitz function on 0Q\T such that ¥ = 9,¢. On the other hand, we will also show
that problem (1.10) is equivalent to the following import/export optimal transport problem:

inftJ Ix —yldy + J ¢ d[(Tx)zy] - J ¢d[(Hy)#V]:VeH(f+,f‘)}, 1.11)

Ox0 AQ\T AQ\T

where
I ) = {y e MT(Qx Q) : (IL)gy = f* +x*, sy =f~ +x7, x* e MH(dQ\D)}.

In [12], the authors have studied the transport problem from a diffuse measure f* € M*(Q) to the boundary
0Q. More generally, the import/export transport problem from/to dQ has been already considered in [6, 19].
Here, we study the mass transportation problem between two masses f* and f~ on I' ¢ 0Q (which do not have
a priori the same total mass) with the possibility of transporting some mass from/to the arc Q\TI, paying the
transport cost |[x — y| for each unit of mass that moves from a point x to another one y plus an import tax ¢(x)
for each unit of mass that enters at the point x € 0Q\I' and —¢(y) for each unit of mass that comes out from
apoint y € 9Q\I. This means that we can use 0Q\TI as an infinite reserve/repository, we can take as much mass
as we wish from 0Q\T or send back as much mass as we want provided we pay the import/export taxes.

Thanks to the equivalence between problems (1.8), (1.10) and (1.11), we will show existence and uniqueness
of a solution u to problem (1.8) and we will also study its W'? regularity. In the particular case ¥ = 0, we have
already proved in [8] existence of a solution u for this problem (1.8) provided that T' is strictly convex and
g € BV(T'). Moreover, the solution u is unique as soon as g € C(I'). In addition, there are several Sobolev estimates
on this solution u, under some geometric assumptions on 9Q. In this paper, we extend these results to some
class of bounded functions 1. To the best of our knowledge, all these results of existence, uniqueness, and WP
regularity (with ¢ # 0) are completely new, in the sense that in the literature there are no results concerning at
least the existence of a solution to the mixed least gradient problem (1.8). As a last interesting point, we mention
that most of the proofs in the general case 1 # 0 are not a mere translation of those given in [8] where = 0.
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This paper is organized as follows. In Section 2, we will prove existence and uniqueness of a solution u
to another (equivalent) version of problem (1.8) (see problem (2.1) below) by showing equivalence with the
import/export transport problem from/to dQ\T. In Section 3, we will study the Sobolev regularity of this solu-
tion by studying the summability of the transport density in the import/export transport problem. Finally,
Section 4 summarizes the applications of these results to the least gradient problem with Dirichlet and Neumann
boundary conditions (1.8).

2 On the existence and uniqueness of a solution to the mixed least
gradient problem

Throughout the paper, @ ¢ R? is assumed to be an open bounded contractible set (i.e., it can be continuously
shrunk to a point within Q) with Lipschitz boundary and I is an open connected subset of Q. Let g be a BV
function on T and ¢* be two continuous functions on dQ\TI'. Then we consider the following problem:

inf{] |Du| + J ¢t dloult - I ¢~ d[o-u]” : u € BV(Q), ujaq € BV(dRQ), ur = g}, 2.1
Q AO\T A\l

where d.u denotes the tangential derivative of the trace of u (so, 0;u is a measure on 9Q since we assume
that u;po € BV(0Q), which is of course not satisfied by any function u € BV(Q) but here it is an additional con-
straint on u), [0.u]* and [d.u]~ are the positive and negative parts of d.u. The aim of this section is to prove
existence and uniqueness of a solution u to this problem (2.1). The idea is similar to the one used in [8]. We prove
some equivalence between problem (2.1) and an optimal transport problem. More precisely, we will show that
problem (2.1) is equivalent to the following minimal flow formulation:

_inf <“|v|+ J ot dyt - J ¢‘d)(‘:V-v:0,v-n:f+)(on6£2]», (2.2)
VeM(@,R?), yeM(Q\D) | J
Q a0\l a0\T

where f = 9.4, M(Q, R?) is the set of vector measures over Q and M(Q\TD) is the set of measures on 0Q\T.
On the other hand, we show that problem (2.2) is also equivalent to the following optimal transport problem
with import/export taxes on dQ\I' (we note that in [8], dQ\I' was assumed to be a “free” Dirichlet region which
is equivalent to say that ¢* = 0, while here we have to pay some taxes ¢* in order to import/export masses
from/to 0Q\I):

inf{J Ix -yldy + j ¢ d[(Iy)xy] - j ¢d[(Hy)#V]:VeH(f*,f)}. 2.3)

axQ OQ\T AQ\T

We recall that in [6, 7, 19] the authors have already studied this import/export transport problem but in the
case where the import/export region is the whole boundary 0Q and f* are two densities in the interior of Q. In
the sequel, we will analyze problem (2.3) in details. More precisely, we will decompose problem (2.3) into three
classical transport problems: a transport problem from I' to I, an export transport problem with tax ¢~ from I’
to 0Q\I' and an import transport problem with tax ¢* from oQ\TI' to T

First of all, we need to assume that the pair (¢*, ¢~) satisfies the following condition:

O () -0 (x)<|x-y| forallx,y e dQ\T. (2.4)

In fact, this is a natural assumption on (¢*, ¢~) since it means that we do not need to transport mass from dQ\T'
onto 0Q\I'. Thanks to this condition, one can show existence of a solution to problem (2.3).

Proposition 2.1. Under condition (2.4), problem (2.3) has an optimal transport plan y. In addition, we either have
Y(OQ\T x 0Q\T) =0 or ¢~ (y) — ¢*(x) = [x - y| for y-a.e. (x,y) € 0Q\T x 0Q\I. In particular, there is always an
optimal transport plan y such that y(0Q\I' x 0Q\T) = 0.

Proof. First, we note that the proof of this proposition is quite similar to the one in [6, Proposition 2.1] but we
introduce it here just for the sake of completeness. Let (yx)x be a minimizing sequence in problem (2.3). We
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define yx = yk - Laa\rxaq\ryc. It is easy to check that yx € II(f*, f~). Moreover, we have

j X -yl dy + j o+ d[(M)syi] - j 6 d[(TL,)syi]

0Ox0 0Q\T 0Q\T'
QxQ (25)

- | @ [ oramom- [ d@mome | ix-ye 670 - 60N e
axa aO\T dO\T dQ\TXQ\T
Thanks to (2.4), we infer that (yx)x is also a minimizing sequence in problem (2.3). Since yx € II(f*,f~) and
Yk(@Q\T x 0Q\T) = 0, it follows that
Pr(Q x Q) < f*(I) + f~(I).
Hence, up to a subsequence, yx — y for some y € II(f*, f7). In fact, (Ix)sVk = f* + x5 and (IL)sVk = f~ + X
where y; € M*(0Q\T). We obtain y; — x*, where y* € M*(0Q\T). Then (I)#y = f* + x* and (I)sy = f~ + x .
This yields that y minimizes problem (2.3) since
| eyiame [ orag- | oran— | weyiays [ otar - | omar
axa aO\T aO\T oxa aO\T dO\T

Finally, the second statement follows directly from (2.5), the fact that y := y - 1(a0\rxaq\r)c is always admissible
in (2.3) and the optimality of y. O

Let y be an optimal transport plan in problem (2.3) with y(dQ\I' x 0Q\T') = 0. Let y* and y~ be the two nonneg-
ative measures on 0Q\I' such that (ITy)zy = f* + x* and (Iy)4y = f~ + x~. Itis clear that y also minimizes

mintj Ix-yldy : Mgy = f* +x" and (Iy)sy = f~ +)(}.
QxQ
Set
Y(ILT) = yirxrs, - Y5, 0Q\D) = yirxaavr,  Y(OQ\L T) = Yjao\rxr
and
v = ()g[p(T, 0Q\D)], v~ = (Ty)[y(0Q\T, T)].

Then we consider the following problems:

min{ J- Ix —yldA : (IL)¢A = f* —v" and (Ily)4A = f~ — v‘]», (2.6)
OxQ

min { J [x —y|dA - J ¢~ d(Iy)sA : (IL)gA = v and spt[(ITy)sA] C ag\r}, 2.7
oxa oQ\r

min - j [x —yldA + J ¢F d(ILy)A : spt[(Ty)zA] ¢ 0Q\T and (TIy)gA = v‘]». 2.8)
oxQ 0Q\T'

Similarly to [8, Proposition 3.3], it is not difficult to prove that the transport plans y(T,T), y(I, 0Q\TI') and
y(0Q\I, T) minimize problems (2.6), (2.7) and (2.8) respectively (this follows directly from the linearity of the
functional and the fact that y = y(I, T') + p([, 0Q\T') + y(0RQ\L, I')). In order to characterize these two optimal
transport plans (I, dQ\T) and y(dQ\T, T), we define the following multivalued map T* (notice that 7+ is the
classical projection map onto dQ\T as soon as ¢* = 0):

T*(x) = argmin{|x — y| + ¢*(y) : y € Q\T'} for every x € R%.
Now, we introduce the following:

Definition 2.1. Let Q be an open bounded domain and I' c dQ be an open arc. We say that T' is strictly convex
iffor all x,y € T, we have ]x, y[ c Q.

Definition 2.2. Assume that I' c 9Q. Then we say that dQ\T is visible from the arc T if for every x € I' and
ye T*(x) c Q\T such that 1x, y[n 0Q\T = @, we have ]x, y[ c Q.
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In the sequel, we will say that assumption (H) holds if and only if we have the following statement:
T is strictly convex (H)

and

«  Qisconvex or the convex hull of T is contained in Q,
o  0Q\Iis visible from T,

o ¢*areALipwithA < 1.

Lemma 2.2. Assume that (H) holds. Then we have |x, y[ c Q for all y € T*(x). Moreover, there is a countable set
D* c T such that T* is single valued on T'\D*,

Proof. Let D c T be the set of points x such that 7~ (x) is not a singleton. For every x € D, let us denote by Ty (x)
and T, (x) two different elements of 7~ (x). Let A, be the interior of the region delimited by [x, T1(x)], [X, T2(x)]
and aQ\T. First, we claim that A, ¢ Q with £2(Ay) > 0, where £? denotes the Lebesgue measure on R2. If Q is
convex, then we clearly have A, c Q and £%(A,) > 0 since T is an open strictly convex arc of Q. Now, assume
that 0Q\T is visible from I' and ¢~ is A — Lip with A < 1. Assume there is a point z € [x, T1(x)[ N 0Q\I. Then
we have |x — T1(x)| — ¢~ (T1(x)) < |x — z| = ¢~ (z). Hence, |z — T1(x)| < ¢~ (T1(x)) — ¢~ (z) which is a contradic-
tion since ¢~ is A-Lip with A < 1. This implies that [x, T1(x)[ N 0Q\I' = 0. Since 0Q\T is visible from T, one has
Ix, T1(x)[ ¢ Q (and ]x, T2(x)[ c Q). This yields again that Ay ¢ Q and LE(Ay) > 0.

On the other hand, we claim that these sets {Ax}xep are disjoint. To this end, we just need to show that
T(z) = {T1(x)} for every z € ]x, T1(x)[ and x € I. Assume that Q is convex. For all y € dQ\T, one has

1z-Ti(X)| = ¢~ (T100) = Ix = T1(O = Ix = z| - ¢~ (T1(X)) < Ix =yl =[x = z| - ¢~ () < |z -Y| - ¢~ V),
where the last inequality comes from the fact that x, z and y are not aligned. Now, assume that ¢~ is A-Lip with
A< 1.Ifx, z and y are aligned, then we clearly have

IX = T1()| = ¢~ (T1(x)) < Ix =yl = ¢~ (¥).
But this implies again that
1z - T100l = ¢~ (T1(X)) < |z -yl = ¢~ (V).
Assume that x, x' € T and Ay N Ay # 0. Then there is a point z € ]x, T1(x)[ N ]x', T1(x)[. But T(z) = {T1(x)} =

{T1(x")}, which is a contradiction since Ay N Ay # @. Hence, the second claim is also proved. Consequently, the
set D is at most countable. O

On the other hand, it is clear that the graph of T* is closed (thanks to the continuity of ¢*) and so, T* admits
a Borel selector function which will be denoted by T*. Now, we are ready to give a characterization of y(T, 9Q\TI)
and y(0Q\TI, T'). More precisely, we have the following:

Proposition 2.3. The transport plans (1d, T™)v* and (T*,1d)sv~ minimize problems (2.7) and (2.8), respectively.
Moreover; for y(T, 0Q\I')-a.e. (x,y),y € T-(x) and for y(0Q\I, I')-a.e. (x,y), x € T*(y). In addition, if (H) holds
and f* are atomless (i.e. f*({x}) = 0, for all x € T), then y(T, dQ\T) = (Id, T")4v* and y(8Q\L, T) = (T*,Id)sv".

Proof. Letus prove that for y(T, 3Q\I')-a.e. (x, y), y € T~(x) (in the same way, we prove that for y(dQ\T, I')-a.e.
x,y),x € T+ (y)). To this end, assume that this is not the case. Then we get

j Ix - yld[y(T, 9Q\I] - J ¢~ d[(TLy)#y(T, 6Q\I)]

0OxQ 0Q\T'
- j[|x—y|—¢*(y)1 d[y(T, 0Q\T)] > jnx—r(x)l—qr(r(x))] d[y(T, 9Q\T)]
0xQ OxQ
- j X —yl (I, T )sv*] - j ¢~ dL(TL,)[(1d, T)v7]].
OxQ 0Q\T'

But this is a contradiction since y(I, dQ\T') minimizes problem (2.9) and (Id, T~)#v* is admissible in (2.9). This
shows at the same time that (Id, T7)xv" is a minimizer in (2.9). Now, assume that f* is atomless. Then, by
Lemma 2.2, for y(I, dQ\T')-a.e. (x, y), we have y € T-(x) = {T~(x)} and so, YL, 0Q\T) = (Id, T™)sv*. O
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In particular, under the assumption that f* are atomless, we see that y(T, 9Q\I') and y(3dQ\T, I') minimize the
following Kantorovich problems, respectively:

mintl Ix =yl dA : (IL)#A = v* and (ITy )4 A = T;v+}, 2.9)
QxQ

minLJ‘ Ix - yldA : (TI)#A = T, v~ and (ITy)4A = v]». (2.10)
QxQ

On the other hand, the key point in the proof of existence of a solution to problem (2.3) is to show that there are
no transport rays gliding on the boundary. More precisely, we have the following:

Proposition 2.4. Assume that (H) holds. Then, for y-a.e. (x,y), we have |x, y[ c Q. In particular, the transport
density gy, associated with y (see (1.6)) is well defined and it gives zero mass to 9 (i.e. g, [dQ] = 0).

Proof. Thanks to (H), itis clear that ]x, y[ c Q for y(T, I')-a.e. (x, y). From Lemma 2.2, we also have ]x, y[ c Q for
y(T, 0Q\T) (resp. y(aQ\T, I')-a.e. (x,y). Hence, ]x, y[ c Q for y-a.e. (x,y). Recalling (1.6), this implies that gy, is
well defined and we have

oy[0Q] = j HEBQ N [x,y]) dy(x,y) = 0. O

29x9Q

It is also possible to show that there is at least one special optimal transport plan y such that the corresponding
transport density o, is well defined and has zero mass on 0, without assuming that the convex hull of T' is
contained in Q but we need instead to reinforce the assumptions on ¢*. In the sequel, we will say that the
assumption (H’) holds if we have the following statement:
(H’) T is strictly convex, 0Q\T is visible from I' and ¢* = ¢~ is 1 — Lip on 0Q\T.

Proposition 2.5. Assume that (H’) holds. Then there is an optimal transport plan y for problem (2.3) such that for
y-a.e. (x,y), we have |x,y[ c Q. In particular; o,[0Q] = 0.

Proof. Set E:={(x,y) e T xT :]x,y[ c Q}. Let y be an optimal transport plan in (2.3) with (IL,)#y = f* + x*
and (Ily)#y = f~ + x~. Then we define y* := y(I, )|z + P;[y(l“, D)jge] + P, [y(T, D) jge] + p(T, 0Q\T) + y(0Q\I, T),
where the maps P* and P~ are defined on E€ as follows:

P*(x,y) = (x,y") suchthaty’ €]x,y[nadQ\T and]x,y'[ c Q

and
P (x,y) = (x',y) suchthatx’ € ]x,y[ndQ\I'and ]x’, y[ c Q.

First, it is not difficult to check that y* € II(f*, f~). Moreover, thanks to the fact that ¢* = ¢~ is 1 — Lip, we have
the following:

| eyiayrs [ graiamon1- | ¢matan

oxQ 0Q\T 9Q\T
- j X -yl d[y(T, D)] + j[|x—y’| +IX =yl + 6t () - ¢ dIy(T, T)] + j IX -yl dy(T, 0Q\T)
E E¢ oxQ
. j X -yl dy(@Q\L, T) + j 0" dy* - j ¢ dy
oxQ 9Q\T AQ\T
sj|x—y|d[y(r, D)+ j[|x—y’|+|x’—y|+|x’ YAy, T)] + j Ix - y| dy(T, 9Q\I)
E E¢ OxQ
. j X~y dp(@R\L.T) + j o dy* - j ¢ dy
oxQ 0Q\T oQ\T

< j X—yldy + j 6 dl(TLy] - j 6 d(IL)sy].
oxQ 0Q\T 9Q\T
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Yet, we recall that y is an optimal transport plan in problem (2.3) and so, y* is also a minimizer. By definition,
we have that |x, y[ ¢ @, for y*-a.e. (x, y). But this yields that g, [9Q] = 0. O

Thanks to Propositions 2.4 and 2.5, one can always find a “good” optimal transport plan y such that ] x, y[ c Q, for
y-a.e. (x,) (so, g, is well defined and g, [0Q] = 0), provided that one of assumptions (H) or (H’) is well satisfied.
Now, we are ready to prove some equivalence between problems (2.2) and (2.3).

Proposition 2.6. Assume that (H) or (H’) holds. Let y be a “good” optimal transport plan in (2.3) with
(Hx)#y =f+ +X+ and (Hy)#V =f_ +X .

Then we have the following:

(1) The minimal values of (2.2) and (2.3) coincide, i.e. min (2.2) = min (2.3).

(2) Let vy be the vector measure in (1.5). Then (v, ) solves problem (2.2) and |v,|[0Q] = 0.

(3 If (v, ) is a minimizer for problem (2.2), then there is an optimal transport plan y in (2.3) such that v, is well
defined and v = vy with (Iy)zy = f* + y* and (Ily)xy = f~ + x".

Proof. We will show statements (1) and (2) simultaneously. Since y is a “good” optimal transport plan, the vector
measure v, (see (1.5)) is well defined. Moreover, (vy, y) is admissible in (2.2) since, for all ¢ € C1(Q), we have

1
(vy, Vo) = j j Vo((L - x + ) - (x - y) dedy(x, y) = j [0(x) - 9()] dy(x, y)
ox0 0 oxQ

- [ odig+x)- ¢+ 0.
EJe)
Moreover, we have

j|vy|+ j o dy* - j o~ dy = 0,(@) + j 0" dy* - j ¢ dy
Q AO\T AO\T AO\T AO\T

- J X —yldy + I o+ dy* - I ¢ dy~ = min 2.3).
oxa 20\l 20\l
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But we claim that
min (2.2) > min (2.3).

Similarly to [6, Proposition 2.2], one can show that problem (2.3) has a dual formulation which is the following:

sup{[ ed(f~ —f"): 9 eLip;(Q), " <@ < ¢’ on 69\1"}. (2.12)
Q

If ¢ is a smooth admissible function in problem (2.12) and (v, y) is admissible in problem (2.2), then we have

jIVIZ—IW)‘dv?J<pd[f+x]=—f<pdf— J pdy*+ J pdy”

a a EY) r OO\l AO\T
>-[oar- [ orar+ | oar
T 0Q\T 0Q\T

Hence,
min (2.2) > sup (2.12) = min (2.3).

Recalling (2.11), we infer that min (2.2) = min (2.3) and (v, y) solves problem (2.2).
Now, let us prove statement (3). Let (v, y) be a minimizer in (2.2). In particular, we see that v solves

min«“ v :veM®R?), V-v=0andv-n=f+yon 652}. (2.13)

Q
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In order to show that there is an optimal transport plan y such that v = v, with
Mgy =f"+x" and (Iy)gy =f +x,

the idea will be to adapt the proofs of [25, Theorem 4.13] or [12, Proposition 2.4]. First of all, we need to introduce
some objects that generalize both g, and v). Let C be the set of absolutely continuous curves w : [0,1] Q.
We call traffic plan any positive measure Q on C such that (eg)#Q =f* + x* and (e1)#Q = f~ + x~, where
eo(w) := w(0) and e;(w) = w(1). Following [12, 25], we define the traffic intensity ip € M* (Q) and the traffic
flow vg € M(Q, R?) as follows:

1
(ig, 9) = j j ow(e)W' (0] dedQ(w) for all ¢ € C(@)
co

and

1
(vg, &) = - J j Ew() - w'(t)dtdQ(w) forall & e C(Q, R?).
eo
It is easy to see that |vg| < ip, V-vp =0 and vg - n = f + . Moreover, by [12, Lemma 2.2], if v € M(Q, R?) is
such thatV-v=0and v-n = f + y, then there is a traffic plan Q such that |v - VQ|(§) + io(ﬁ) = |v|(Q). Since v

minimizes (2.13), we have
lel < J|vQ| < JiQ.

Q Q Q
Hence, v = vg and |v| = ip. Thanks to the fact that the pair (v, y) minimizes (2.2) and (ITy)#[(eo, e1)#Q] = f* + x*
and (ITy)¢[(eo, e1)#Q] = f~ + x~, one has

min@2 = [v+ [ o7 - [ ¢ar = [io+ [ ¢7ar- [ o7ar

) BO\T AO\T a AO\T AO\T
e

> [ w©) - wiordemw + [ ¢7der - [ 9ar
C

0Q\T 0Q\T

W' (0] dt dQ(w) + j 0" dy* - J ¢ dy
AO\T AO\T

O ——

- j X - yldl(eo, e1)¢0] + j ¢* d[(ILs[(eo, e1)¢01] - j ¢ (T )sl(eo, €1)401]

oxQ 0Q\T aQ\T
> min (2.3).

Yet, statement (1) implies that the above inequalities are actually equalities. In particular, Q must be con-
centrated on line segments and the transport plan y := (e, €1)#Q minimizes (2.3). Consequently, we have
V=V =V O

On the other hand, one can also show some equivalence between problems (2.1) and (2.2). Before that, we intro-
duce the following definition of functions of bounded variation on an open Lipschitz arc I of the boundary of
a two-dimensional domain Q.

Definition 2.3. Assume that a : [0, L) — T is an arc-length parametrization of I' ¢ Q with positive orientation.
For a Lipschitz function h : T — R, we set

d
0:h(xo) = %h(a(s»ls:so, (2.14)

where xo = a(sg). By the Rademacher theorem, this derivative is well-defined J('-a.e. Then we will say that
g € BV(I'), if g e L'(T") and 8.g understood in a distributional sense is a measure, i.e. there exists a measure
denoted 0.g such that

J nd(0.g) = - j g-9chd!

r T
for all functions h € Lip(T'). Here, d.h is understood pointwise J(!-a.e. using (2.14).
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Then we have the following:

Proposition 2.7. Assume that g € BV(T') and let f be the tangential derivative of g (i.e. f = d.g). Then we have the

following statements:

(1) The minimal values of (2.1) and (2.2) coincide, i.e. min (2.1) = min (2.2).

(2) Let u be a solution for problem (2.1) with ujpq = &. Set v := RzDu and x :=[0:8]jaq\r- Then (v, x) solves
problem (2.2).

(3) Moreover; if (v, ) is a minimizer in problem (2.2) with |v|[0Q] = 0, then there exists a BV function u such that
v = Rz Du and u turns out to be a solution for problem (2.1).

Proof. First, we prove statement (1). For every h € BV(6Q\T), we denote by g, a BV extension of g to Q such
that g, = h on 0Q\T. Then we have

inf“ \Dul + I 6" d[d.ul* - j ¢~ d[o.ul™ : u € BV(Q), upg € BV(AQ), ur = g}
Q a0\l A0\T

= inf {inf“wm:uew(g), u|m:gh}+ J ¢* d[8cgn]" - J ¢-d[afgh]-}.
Q

heBV(AQ\T) st s\

But, by [11, Theorem 3.4] and the fact that Q is assumed to be contractible and g, € BV(9Q), we have the following
equality:

inf“ IDul : u € BV(RQ), ujs0 =gh} = mf” V[ :veM®R?), V-v=0andv-n=f;on asz},
3 J

where fj, := 0.25. Yet, it is clear that fj, = f + x, for some y € M(dQ\TI'). Then we get the following:

inf21) = inf {inf{j V| :veM@®R?), V-v=0andv-n=f+yon 69}
YEM(PQ\D)

v [ orar- [ oar)
AO\T AO\T
= inf (2.2).

Now, we prove statement (2). Let u be a minimizer in (2.1) with ujaq = &. First, let us check that the pair
(v, ), where v = RzDu and y = [0:8]jao\r, is admissible in (2.2). For all ¢ € C1(Q), we have

J’R_%V(p-Du = J[R_%qu-n]udﬂ-(1 =- J ud pdr! = I @ d[o.ul.
2 a0 a0 a0

Yet, 0-u = f + y. Then we get

[ S—

Vo-dv = j 0d[f +y] forallg e C\(@).
0Q

Moreover, we have

J|v|+ j ¢+ dy* - J ¢‘d)(‘:J|Du|+ J ¢+ d[o.ul* - j ¢~ d[8,u]” = min (2.1) = min (2.2).
a AO\T AO\T Q AO\T AO\T

Then (v, y) solves problem (2.2).
It remains to prove statement (3). Let (v, y) be a solution to problem (2.2) with [v|[[0Q] = 0. Let us extend
v by 0 outside Q. Set v, = v = p., where p, is a sequence of mollifiers. First, it is clear that V - v = 0. Let u, be
a smooth function such that Vu, = R_g ve. Up to adding a constant, one can assume that jg us = 0 and then,
we have
J lug] dx < cj Vatg] dx < cj V] dx.
Q Q Q
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Then we get
luelwie < (C+ 1) j vl
Q

Hence, up to a subsequence, (i), converges weakly* in BV(Q) to some function u. And, we have Du = R_zv.
Moreover, u, — u strictly in BV since |v;| — |v|. Thanks to the continuity of the trace map with respect to the
strict convergence in BV, we get that

jV(p +d[Rz Du] = lim j Rz Vu, - Vo dx = lim J [RzVue - n]odi’ = lim j dcue @ dH!
E— E— E—
2 2 09 09

= —%111(1] J U 9,0 dH* = - J ud.pdrt = J pd[o;u] forallg e CY(Q).
a9 a9 a9
Yet,v=RzDu,V-v=0andv-n=f+y. Thisimplies that d-u = f + y. Hence, up to adding a constant, one can
assume that u;r = g. In addition, u solves problem (2.1) since

JIDu|+ J ¢+ d[.ul* - J ¢_d[6fu]_=j|v|+ j 6% dy* - J ¢~ dy” =min(22) = min21). O

Q A0\T AQ\T 2 Q\T AQ\T

Consequently, we get equivalence between problems (2.1), (2.2) and (2.3). Finally, we are in a position to prove
existence of a solution for problem (2.1). To be more precise, we have the following existence result (always
under the assumption that (2.4) is well satisfied):

Theorem 2.8. Assume that (H) or (H’) holds. Then there exists a function u € BV(Q) which attains the infimum in
problem (2.1).

Proof. Let y be a “good” optimal transport plan in (2.3) with (II)sy = f* + x* and (IIy)#y = f~ + y~. Thanks to
Proposition 2.6, we know that (v, ) solves problem (2.2) and |v,|[0Q] = g,,[0Q] = 0 (recall Propositions 2.4
and 2.5). Hence, by Proposition 2.7, we infer that there is a BV function u such that vy, = R%Du and this u is in
fact a solution to problem (2.1). O

Now, we study the uniqueness of the solution u in (2.1). To this end, we need to restrict our assumption (2.4). Let
us assume that there exists A < 1 such that

O () -0 (x) <Ax-y| forallx,ye 0Q\l. (2.15)

Under the assumption (2.15), one can prove uniqueness of the optimal transport plan in (2.3). Then we have the
following:

Proposition 2.9. Assume that (H) or (H’) holds and that f* and f~ are atomless. Then there is a unique “good”
optimal transport plan y in problem (2.3). In addition, problem (2.2) has a unique minimizer.

Proof. Let y be an optimal transport plan in (2.3). Thanks to Proposition 2.1, it is easy to see that the condition
(2.15) yields that y(0Q\T x Q\I') = 0. Let us decompose again y into y(I, I') := yrxr, Y(I, 0Q2\I) := Y|rxaee\r and
Y(OR\L,T) = yjao\rxr- Moreover, we set vt = (ILy)x[p(I, Q\I)] and v~ = (ITy)x[y(0Q\T, I')]. First of all, one can
show that there are two sets A* ¢ T such that A* are two countable union of connected arcs and v* = f* . y,=.
This follows from the fact that 0 < v* < f* while the set of points which are transported at the same time to I and
0Q\T'is at most countable; we refer the reader to [8, Lemma 3.8] for more details. In order to show uniqueness of
the optimal transport plan y, we proceed as in [8, Proposition 3.9] and so, it is sufficient to show that these three
parts of y are all induced by maps. Indeed, the functional in (2.3) is linear in y and the constraint II(f*, f~) is
convex. This means thatif y; and y, minimize (2.3), then % is also a minimizer in (2.3); but this yields to a con-
tradiction as soon as we prove that the three corresponding parts of any optimal transport plan y are induced
by maps. From Proposition 2.3 and the fact that f* and f~ are atomless, we know that y(T, dQ\T) = (Id, T™)sv"*
and y(0Q\L,T) = (T*,Id)xv". It remains to show that y(T, I') is also induced by a map. Let D c T be the set of
points that belong to two different transport rays. For every x € D, let us denote by R two different transport
rays from x to T'. Let Ay ¢ Q be the region delimited by R}, R} and I'. Since transport rays cannot intersect at an
interior point, we see that these sets {Ax}x must be disjoint with L%(Ay) > 0. This implies that the set D is at most
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countable. Hence, thanks again to the fact that f* is atomless, we get that f*(D) = 0. In other words, for f*-a.e.
x €T, there is a unique transport ray R, starting at x and intersecting I' at exactly one point (recall that T is
strictly convex). But this means that y(T, T') is also induced by a map. The second statement follows immediately
from Proposition 2.6. O

Finally, we are ready to state our result on the uniqueness of the solution u in problem (2.1). Hence, we conclude
this section by the following (we always assume that (2.15) is well satisfied):

Theorem 2.10. Assume that (H) or (H’) holds. Then the solution u of problem (2.1) is unique provided that g € C(T).

Proof. Let u be a minimizer in (2.1). Thanks to Proposition 2.7, we know that the pair (v, x), where v = Rz Du
and y = [0u]jse\r, IS @ minimizer in problem (2.2). On the other hand, since g € C(T'), it follows that f = 9.g is
atomless. But so, by Proposition 2.9, (v, y) is the unique minimizer in (2.2). This implies that the solution u of
problem (2.1) is also unique. O

3 Sobolev regularity on the solution of the mixed least gradient
problem

In this section, we study the WP regularity of the solution u in problem (2.1). Thanks to Proposition 2.7, this is
equivalent to study the LP summability of the optimal flow v in (2.2) or equivalently, the LP summability of the
transport density ¢ in problem (2.3) (i.e. between f* + y* and f~ + y~, where y* represent the import/export
masses on 9Q\I'). We recall that studying the L? summability of ¢ between two singular measures (i.e. if
f* ¢ LP(Q)) is a delicate question! However, the authors of [13] proved that the transport density g, between
two measures f* on 0Q, is in LP(Q) as soon as f* € LP(9Q) with p < 2 and Q is uniformly convex. Moreover,
they introduced a counter-example to the LP summability of o for p > 2. Yet, they also showed some L? esti-
mates on o for p > 2 provided that f* are smooth enough. Anyway, in problem (2.3), the measures y* and y~ are
unknown and so, it is not clear whether y* € LP(9Q\T) or not. Before proving our L? estimates on g, we need
to introduce the following:

Definition 3.1. We say that T' c 9Q is uniformly convex if there exists R < co such that, for every x e I' and
every unit vector n in the exterior normal cone to Q at x, we have I ¢ B(z, R) with z = x — Rn.

In the sequel, we will always assume that (H) or (H’) holds, f* are atleastin L(T) (so, f* are atomless) and (2.15)
is well satisfied. Hence, by Proposition 2.9, we know that the optimal transport plan y in (2.3) is unique. Let us
decompose again ) into three parts: y(I, I'), (I, 0Q\T') and y(0Q\TI, I'). In addition, let o(T, T), o(T, 9Q\T') and
0(0Q\T, I') be the transport densities associated with y(T, T'), y(I, 0Q\T') and y(0Q\T, I'), respectively. If o is the
transport density associated with y, then it is clear that o = o(T, ') + o(T, 0Q\TI') + o(0Q\T, I'). Thanks to [13], we
have the following:

Proposition 3.1. Assume that T is uniformly convex. Then the transport density o(T,T) belongs to LP(Q) pro-
vided that f* € LP(T') with p < 2 or f* € C*%(T) with 0 < a <1 and p = 72, (with p = co for a = 1). Moreover,
o(T, 0Q\I) (resp. o(dQ\[,T)) is in LP(Q) as soon as f* € LP(T) (resp. f~ € LP(T)) and p < 2. In particular,
o€ LP(Q)assoonasf* e LP(T)andp < 2.

Proof. First, we recall that o(T, I') is the transport density between f* —v* =f* .y and f~-v™ =f" - ya-
(where A* ¢ T are two countable union of connected arcs). Hence, thanks to [13, Proposition 3.3], a(T, I') belongs
to LP(Q) provided that f* € LP(T') and p < 2. Moreover, by [13, Proposition 3.5 and Remark 5.10], one can show
that o(T, T) isin LP(Q) for p > 2assoonas f* € Co%(ywitha =1 - %. On the other hand, o(T, 0Q\TI') is the trans-
portdensity between v* and T, v*. So, again by [13, Proposition 3.2 and Remark 5.10], (T, 0Q\T') belongs to L?(Q)
assoonas f* € LP(I') and p < 2. Similarly, we have g(0Q\I, T') € LP(Q) provided that f~ € LP(T)and p < 2. [

Now, we will try to extend our LP estimates on the transport density o to the case p > 2. Recalling Proposi-
tion 3.1, we just need to study the L? summability of a(T, 9Q\T) (it will be the same for a(dQ\T[, I')). We recall
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that o(T', 9Q\T) is the transport density between v* and T, v*. In the sequel, we will denote by I'* c T the set of
points x such that T%(x) is not an endpoint of dQ\I'. Then we have the following:

Proposition 3.2. Assume that spt(v*) c T+, dQ\T' is C'1, ¢* is A-Lip with A < 1 and ¢* € CH1(0Q\T). Then the
transport density (T, Q\T) is in LP (Q) provided that v* € LP(T) for all p € [1, co].

Proof. First of all, we mention that the proof of this proposition is similar to the one in [8, Proposition 4.7].
Recalling the definition of the transport density (1.6), we have by Proposition 2.3 that
1
(oI, 0Q\D), @) = J j (1 -tx+tT~(X)|x - T~ (x)|dtdv*(x) forallg e c(Q).

To
Fix xg € spt(v*). Let Iy c T'* be an arc around xp. Let a(s) := (s, a(s)), s € [-¢, €], be a parametrization of
the image of Ty by T~ and let B(s) := (B1(s), B2(s)) be a parametrization of Iy such that a(0) = a’(0) = 0 and
T=(B(s)) = a(s) for every s € [—¢, €]. Now, let A be the set of all the transport rays [3(s), a(s)], s € [-¢, €]. For
all y € A, we see that there exists a unique pair (s, t) € [-¢, €] x [0, 1] such that

Y= (1 -0)p1(s) + ts, (1 - t)B2(s) + ta(s)).
For all ¢ € C(A), we have

(o, 0Q\D), ) =

—_—

1
J (1= O)P1(s) +ts, (1 — O)Ba(s) + ta(s)) I(s) IB' ()| v (B(s)) dt ds,
0

™

where
I(s):=|B(s)—a(s)| foralls e [-¢,¢].
Hence,
(a(T, 8Q\T), 9) = ! o P ’]((Szl ‘t’;(ﬁ ) 4y forall g € c(a),
where
J(s,8) =1 det[Dis,o(y1, y2)]l = (B1(5) = 8, Ba($) = a(s)) - [(1 = )(=B5(8), B1(9)) + t(=a' (), D].
Then

1(s) 1B’ (s)| v* (B(S))
J(s, 0)

Now, we claim that there is a uniform constant C (which does not depend on ¢) such that %St))' < C. Thanks to

[9, Lemma 2.1], we have

BGs)-als) _ 5 . - - _\/ﬁ N
BG) —aGs)] a:0*(a(s)) t(a(s)) — y1 - a.p*(a(s))” n(a(s)), (3.1

where n(a(s)) is the unit exterior normal vector to 0Q\T at @(s) and 7(a(s)) := R_z [n(a(s))] is the unit tangent
vector to 0Q\T at a(s). Hence, it is easy to see that we have the following inequality:

(B1(s) = 8, Ba(s) — a(s)) - (-a'(s), 1) = V1 - A2 dist(spt(v*), dQ\T). (3.2)

Let B(r) := (B1(r), B2(r)), r € [-8, 8], be a smooth parametrization of Ty such that |3’| = 1 and B} > 0. For every
s € [-¢, €], let r(s) € [-8, 8] be such that T~(B(r(s))) = a(s). Thanks to the fact that (H) or (H’) holds, it is not
difficult to see that there is a uniform geometric constant ¢ > 0 such that

(B1(S) = 5, B2(5) — a(s)) - (=B (r(s)), By(r(s))) = c. (33)

Assume that I'y as well as its image by T~ and ¢* are smooth. Then we claim that the map s — r(s) is Lipschitz.
Hence, combining (3.2) and (3.3), we infer that

o, 0\ [y] = forae.y € A.

J(s,t) = c[(1=0)r'(s) + t].

Consequently,
Bl _ 1 1O

760 S Ao LS 2¢ max{r'(s), 1}. (34)
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On the other hand, thanks to [6, Proposition 2.2], it is well known that the dual problem of (2.9) is the following:

sup«“ wdv*: w e Lip;(Q), w = ¢* on 69\1‘}. (3.5)
r

We recall that y = (Id, T7)4v* is the unique optimal transport plan in (2.9). Moreover, the Kantorovich potential
w in (3.5) is clearly given by the following:

w(x) = min{|x - y| + ¢*(y) : y € 0Q\I'} foreveryx € T.

Now, we see that
(B(r(s)) —a(s)) - Rz [Dw(a(s))] =0 foralls e [-¢,¢&]. (3.6)

Thanks to [9, Proposition 2.2, Lemma 2.1 and Lemma 2.3], w is C 2 on 0Q\T and we have the following:
Dw(a(s)) = Dw(@(0)) + D*w(@(0))(a(s) - a(0)) + o(la(s) — a(0)|)
and
Dw(@(0)) = (9:6* (@), V1 - 0:¢*(@(0))?).

Let us denote by k the curvature on 9Q\I'. Then, by [9, Proposition 2.2], we also have the following:

~ 4= 2 +( +(A 2
D)) - - K@) [ 1-0:9"(@(©) -0 @ON\1 - 9. (@0) ]

1-0:¢*(@©))” | ~9.¢*(@(0))\1 - 0:¢*(@(0))’ d:¢*(@(0))*

where
K(@(0)) = \1 - 8:¢*(@(0))°k(@(0)) - 0%.¢*(@(0)) + dn¢* (@(0))k(@(0)).

Hence, one has

Dw(a(s)) =

9:¢* (@(0)) K(@(0)) [1-8:¢*(@(0)*s ©
- + 0(S
| \1-0:07@0)? | 1-0:0"@O) | -0,9" @)1 - 0:6*(@(0)? s

[ 0:¢*(@(0)) - K(@(0))s + o(s) ]

= _ (A2 K(@(0)) P
_\/1 0:9*(a(0))” + ma@ (@(0))s + o(s)

(s - Bu(r(s))] [ V1 - 0.0+ (@(0))? + ﬂawb*(a(ons]
V1 - 0:9+(@(0)

+ [Ba(r(s)) - a(9)][0:¢* (@(0)) - K(@(0))s] + o(s) = 0.

By (3.6), we get

But
B(r) = BO) + B'O)r + o(r) = (0:¢*(&(0)), \1 - 3:¢*(@(0))*)1(0) + B'(O)r + o(r).
Therefore,
[s = 0:47(@(0) 1(0) - By (0) r(s) [ V1 0:97(@0)? + &am*(a(ons]
V1= 9:4*(@(0))’
+[V1-9:0"(@0)” 10) + By O)r(s) - a(s)|[0:67 (@(0)) - K(@(©))s] + o(s) = 0.
Then we get

K(@(0))
\1 - 0.6+ (a(0))?

. - B1(0)0-¢" (@(0))K((0
- | Broni=0 @0 - oo  HOZLEOHAD)

V1 - 0:¢+(a(0))?

1-0:¢*(@(0)*(1 - K(@(0))1(0)) -

af¢*<a<0))21<0)]s

s + K(@(0))B5(0)s | (s)

+0(s) =0.
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Hence, we have
1- 0.0 (@(0))* - K(@(0)) 1(0)

BL(0)\1 - 3,9+ (@(0))* - By(0)a-¢*(&(0))

r(s) = s+ 0(s).

By (3.3), we have

BL(0)\1 - 0:6*(@(0))* - B5(0)0:6" (@(0) = (96" (@(0)), \1 - 8:6*(@(0))? ) - (-5(0), B} (0)
= Dw(@(©)) - Ry [F'(0)] = c.
Recalling (3.4), we get that
B©) _ 201( 1-9:¢" (@)’ -K@O) o) 1)

< <C.
JGs,0) BL(0)\1 - 9:*(@(0))? - B3(0) d:4* (&(0))

Therefore, we get

(s)PIB' )PV (B(s))”

J(s, typ1 deds

la(T, 8Q\D)I3 () =

th —

1B ()l

p-1
J(s,t) ) Vi (B()PIB (s)|dtds

l(s)p<

Il
h —
Ot s O

<CP J VI (B))PIB'(s)1ds = CPIVHIE, r,)-

Hence,

lo(T, 0Q\D)llzr (@) < Cllf*llze(r)- O
Consequently, under the assumption that (H) or (H’) holds and (2.15) is well satisfied, we have the following:
Proposition 3.3. Assume that T is uniformly convex, spt(f*) c I'*, dQ\T is Cb!, ¢* are A-Lip with A < 1 and

¢* € CV1(@Q\T). Then the transport density o is in L%(Q) as soon as f* € L*(T) and o € LP(Q) for p > 2 provided
that f* e CO%(T') withp = ﬁ In particular, o belongs to L (Q) if f* are Lipschitz on T.

Proof. This follows immediately from Propositions 3.1 and 3.2. O

Finally, we conclude this section by the following Sobolev regularity on the solution u of the mixed least gradient
problem (2.1).

Proposition 3.4. Assume that T is uniformly convex. Then the solution u of problem (2.1) belongs to W"“P(Q) as
soon as g € WHP(T') with p < 2. In addition, assume that spt([9.£]%) c T*, dQ\T is CL, ¢* are A-Lip with A < 1
and ¢* € CV1(0Q\T). Then u € W%(Q) provided that g € W"“*(T'). Forp > 2, u € W"P(Q) as soon as g € C-%(T)
with p = 2. And, u is Lipschitz as soon as g € CV(T).

Proof. Thanks to Proposition 2.7, the pair (v := RzDu, x = [O0cu]jae\r) s a solution to problem (2.2). Yet, by
Proposition 2.6, |v| is nothing else than the transport density o in problem (2.3). Hence, Propositions 3.1 and 3.3
conclude the proof. O

4 Applications to the least gradient problem with Dirichlet and
Neumann boundary conditions

In this section, we apply all the results of the previous sections to prove existence and uniqueness of a solution
u to problem (1.8) and to give WP estimates on this solution u. First, we consider the following problem:

inf{j |Du| — j V) wdH': u e BV(Q), Ujag € BV(OQ), ur = g}. 4.1
Q AQ\T
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This is exactly problem (1.8) but with the additional constraint ujge € BV(9Q). Let y : [0, L] — 0Q\TI be a unit
parametrization of 9Q\T and ¥ € L*°(9Q\I'). Then we introduce the following constant:
!
N { [y yoends L}
=sup{ ———+—:0< 1<l <L¢.
V= @) -yl 1o
Hence, we have the following results:

Theorem 4.1. Assume that T is strictly convex, 0Q\I is visible from I, g € BV(T') and ¥ is a bounded function on
0Q\T with Ay < 1. Then problem (4.1) reaches a minimum.

Proof. First of all, we define the Lipschitz function ¢ on dQ\T such that ¢ = 9,¢ as follows:

l
o(y(D) := Jl/)(y(s))ds foralll € [0, L].
0

Then we see that Ay < 1implies that ¢ is a 1-Lip function on 0Q\I'. Indeed, we have the following:

)

j By(s)) ds

[

lp(y(11)) - d(y(l))l = < Ayly(ly) - y(l2)l.

By integration by parts, we have
inf“ |Dul - j YudH:ueBV(RQ), ujgg € BV(AQ), ur = g}
Q o\T

= inf«“ |Du| + J ¢ o-udH! — d(y(L)) g(y(L)7) : u € BV(Q), Ujag € BV(OQ), ur = g}.
Q A9\l

4.2)

Thanks to Theorem 2.8, we see that problem (4.2) has a solution u, which turns out to be clearly a solution to
problem (4.1). O

In the following example, we will show that if the assumption that Ay < 1 is not well satisfied, then a solution
to problem (1.8) does not exist. More precisely, the minimal value is not finite!

Example 4.1.1. Let Q be the bounded domain with T := {(x1, X2) : X3 + x5 = 1, xz = 0}, dQ\T := [-1,1] x {0} and
g=0onT.Fix e > 0, then we set { := (1 + €)x|(0,1x(0; and let ¢ be such that ¢ = 9,¢. Itis clear that Ay = 1 + €.
For every n € N, we define v, := n(-1,0) - :}Cll[O,l]x{O}' Then we see that v, is admissible in problem (2.2) since
we have

[va-vo=n | vo00-(-1,00a9 00 = nip(0,0) - 90101 = [ pdiii - 1]

Q [0,1]x{0} aQ

for all p € C1(Q), where x}; := n 80,0y and x5 := n 8(1,0). Moreover, we have the following:
J [Vnl + J o dlxn —xnl =n[1+¢(0,0) - ¢(1,0)] = -en — —oco.
2 AQ\T

Then inf (2.2) = —co. Recalling Proposition 2.7, this also implies that inf (2.1) = —co. In particular, inf (1.8) = —co
and so, a solution u for problem (1.8) does not exist!

On the other hand, we have the following uniqueness result:

Theorem 4.2. Assume that T is strictly convex, 0Q\T is visible from T and ¢ € L*°(0Q\T) with Ay < 1. Then
problem (4.1) has a unique solution provided that g € BV(T') n C(T).

Proof. This follows immediately from Proposition 2.10. O

In addition, we get the following Sobolev regularity on the solution u.
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Proposition 4.3. Assume that T is uniformly convex, 0Q\T is visible from T and ¢ € L*°(dQ\T') with Ay < 1.
Then the solution u of problem (4.1) is in W“P(Q) as soon as g € WHP(T) with p < 2. In addition, assume
that spt([d.g]*) c T*, dQ\T is CY' and y is Lipschitz. Then u € WH%(Q) provided that g € WY“*(T"). For p > 2,
ue WP (Q) as soonas g € C%(T) witha =1 - z%' In particular; u is Lipschitz as soon as g € CV1(T).

Proof. This follows immediately from Proposition 3.4, using the fact that ¢ = 9, ¢. O
Finally, it remains to show that problems (1.8) and (4.1) are completely equivalent. We recall that problem (1.8)
is given by
inf“ \Dul - I YudK': u e BV(Q), ur = g}.
Q dO\T

Let u € BV(Q) such that ujpq = § where g = g on I'. Let (gn)n ¢ BV(0Q) be such that g, =gonT and g, — &
in L1(8Q). Thanks to [1], we may find a sequence (wy), in BV(Q) satisfying

o 5 - - 1
Wniag = &n—§ and JlDWn|SJ|gn_g|+H.
Q oQ

Now, set up, := u + wp. It is clear that u, € BV(Q) with u, = g, on 0. So, u,, is admissible in (4.1). Moreover, we

have the following:
- o1
|j|Dun| - [1pulf < [1Dwal < [ 18-+ 1
Q

Q Q 0Q

Then we have
J |Duy| - J ¥ up dH — J |Du| - J Y udH?.
Q dQ\T Q aQ\T

Hence, we get that

inf{[ |Du| - J Y udH!:ueBV(Q), ur :g]» < inf{J. |Du| - J 0] udH':u e BV(Q), Ujaq € BV(0Q), urr = g}.
Q OQ\T Q o\

Yet, it is obvious that the other inequality also holds. Then we infer that problems (1.8) and (4.1) have the same

minimal values, i.e. inf (1.8) = inf (4.1). In particular, we get immediately the following existence result:

Theorem 4.4. Under the assumptions of Theorem 4.1, problem (1.8) admits a solution u. Moreover; the trace of u
isin BV(9Q).

In addition, we claim that if the assumptions of Theorem 4.2 hold and u solves problem (1.8), then we must have
Ujaq € BV(0Q). Thanks to Theorem 4.2, this will imply that the solution u of problem (1.8) is unique as soon as
g € C(T). The rest of the paper is dedicated to proving this claim. Fix u a solution in (1.8). Let Q' be an open
bounded domain containing Q such that 8Q N 9Q' = dQ\T, & € BV(Q'\Q) be a function with trace g on T and it
be the BV extension of u to Q" with &t = g on Q' \Q. First, it is easy to see that

J D < I ID(@ + V)| - j v
Q! Q! AQ\T
for any function v € BV(Q') such that spt(v) ¢ Q\T. For every s € R, we define the super-level set
Es:={xeQ :u(x)>s}

Then we claim that
J IDye,| < j DGz, + V)| - j B v dact 43)

Q' Q! AQ\T
for any function v € BV(Q') such that spt(v) c Q\T. Yet, if (4.3) holds, then we clearly have

Per(E,) J ¥ A" < Per(E) - j ¥ A3t (a.4)
E.NAQ\T ENAQ\T
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for all E ¢ Q' such that EAE ¢ §\F. In particular, we have
Per(E;) < Per(E) (4.5)

for all E ¢ @' such that EAE; ¢ Q. Hence, if a is a connected component of the level set 9E; in Q, then by (4.5) a
must be a segment [xs, ys]. Now, assume that ys := y(I*) is an interior point of 9Q\T (i.e.0 < [* < L). Let € > 0
be small enough such that B(ys, €) N T = 0. Set z; := [Xs, ys] N dB(ys, €). Recalling (4.4), it is not difficult to see
that depending on the monotonicity of g at the point x;, we either have

1Zs = Y5l + (s) < |zs — y(DI + ¢(y()) forall0<I<L,

or
|Zs = ys| — 0(ys) < |zs — y(D] - d(y(l)) forallO<I<L.

Hence, we either have y; = T*(xs) or ys = T~ (xs). Since u(y;) = g(xs), this implies that ujgo\r € BV(0Q\I') with
[0.u|(0RQ\T) < |0.g|(T). Finally, it remains to prove (4.3). To this end, the idea will be to follow the proof of
[2, Theorem 1]. Fix r € R, then we define uy := max{it — r, 0} and uy := min{i, r}. We see that u; + uy = it and
we have jg, |Duy| + jg, |Duy| = jg, |Dit|. Hence, we get

JIDu1|+j|Du2|:JID&ISJID(H+V)|— j ¢vd%1SJ|D(u1+v)|+J|Du2|— J 1/)Vd9(1

Q' Q' Q' Q' 0Q\T Q Q' 0Q\T'

and so,
J IDui| < J ID(uy + V)] - I YvdK!
Qf Qf AQ\Tl'

for any function v € BV(Q') such that spt(v) ¢ O\T. In the same way, we see that we also have

JIDuzlsJID(u2+v)|— J v,

Q' Q! AQ\T

Hence, for s € R and ¢ > 0, we infer that the function us := % min{max{ii — s, 0}, €} also satisfies

J|Dus,g|sj|p(us,g+v)|— J B v

Q' Q' AQ\T

for any function v € BV(Q') such that spt(v) ¢ O\ILIfL2(fx € @' : @i(x) = s}) = 0, then it is clear that Use — XE,
in L1(Q") when & — 0. Moreover, we see that s e s — XEjae\r N LY@Q\D). If £L2({x € Q" : fi(x) = s}) > 0,
then there will be a sequence s, — s with s, < s and £L2({x € Q' : @i(x) = s,}) = 0 for all n. Yet, it is easy to see
that yg, — xg, inL'(Q") and Xz, 500 = XEjoo\r i L'(0Q\T') when n — co.Butwe also know that us, . — X,
in L1(Q") and us, e a0\r = XE., oo\r i LY(@Q\T') when & — 0. Hence, by a diagonal argument, we infer that
there is a sequence of functions {ug} with u; — yg, in L1(Q), Usloo\T = XEsjpq\r I L1(8Q\I') and such that, for
every &, we have
J IDug| < J ID(ue + )| - j v da! 4.56)
Q! Q! AQ\T
for any function v € BV(Q') such that spt(v) ¢ O\T. Now, in order to pass to the limit in (4.6) and get (4.3), we

will adapt the proof of [21, Theorem 3]. Let A be a set such that 0Q\T' c A4, AcOQ\lLANQis open, spt(v) c A
and such that the following holds:

lim J lue — xe,l = 0.
£—0

0ANQ!

For each ¢, set v, := [y, +V — Ug]ya. It is clear that v, € BV(Q') and spt(v,) ¢ O\I. Hence, we have

JIDuSISJID(u5+v8)I— J ¥ v, A3, @7)

Q’ Q! 0Q\T
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Yet,
| Dt +ve = [ D+ e+ v-welzl = [ 1D+l + [ Dwels | e - ud
o o Q'nA o dANQ!
and
v d3c! = j Wy A3 + J vdrc - I ¥ e A
0Q\T AQ\T 0Q\T AQ\T
Recalling (4.7), we get

J|Due|3 j ID(x, + V)| + j IDug| + J e, — el - j O ye, Aot — j Yvd + J Y ue a3, (48)

Q' Q'NA QN\A 0ANQ’ 0Q\T' 0Q\T 0Q\T

Consequently, we have

[ 1owets [ o evi- [ uvase e [ s el | g mas

Q'NA Q'NA 0Q\T' 0ANQ’ 0Q\T

Hence,
lim int j Dl < j DGz, + V)] - j B vdact,
E—
Q'NA ANQ' 0Q\T

But ug — yg, in LY(Q"). Then, by the lower semicontinuity of the total variation, we have

j |D)(Eslglimiglf J |Dug|.
£
Q'NA Q'NA
So, we get that

J |Dxe,| < J ID(xg, + V)| — J YvdH!
Q'NA Q'NA 0Q\T

This concludes the proof of our claim (4.3). We finish this paper by recalling then the following results:

Theorem 4.5. Under the assumptions of Theorem 4.2, the solution of problem (1.8) is unique provided that
g € BV(T) n C(T).

Theorem 4.6. Assume that T' is uniformly convex. Let u be the unique solution of problem (1.8). Then we have
geWh () = ueWh(Q) forallp <2.

In addition, assume that dQ\T is C''1, ¥ is Lipschitz and spt([d.£]*) c T*, where T'* c T is the set of points x such
that T*(x) is an interior point of 0Q\I. Then we have the following statements:

geWh(I) = ue WH?(Q),

geC () = uewbra(Q) forallaelo,1],
geChi(I) = uelLip(Q).
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