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Abstract: In this paper, we consider the BV least gradient problemwith Dirichlet condition on a part Γ ⊂ ∂Ω and
Neumann boundary condition on its complementary part ∂Ω\Γ. We will show that in the plane this problem is
equivalent to an optimal transport problem with import/export taxes on ∂Ω\Γ. Thanks to this equivalence, we
will be able to show existence and uniqueness of a solution to thismixed least gradient problem andwewill also
prove some Sobolev regularity on this solution. We note that these results generalize those in [S. Dweik, W1,p

regularity on the solution of the BV least gradient problem with Dirichlet condition on a part of the boundary,
Nonlinear Anal. 223 (2022), Article ID 113012], where we studied the pure Dirichlet version of this problem.
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1 Introduction

The least gradient problem with Dirichlet condition consists in minimizing the total variation of the vector
measure Du among all BV functions u on an open domain Ω ⊂ ℝd such that the trace of u on the boundary is
given by a function g ∈ L1(∂Ω) (see, for instance, [2, 16, 18, 27]):

inf{∫
Ω

|Du| : u ∈ BV(Ω), u|∂Ω = g}. (1.1)

The author of [15] proves existence of a solution to problem (1.1) in the casewhere g is in BV(∂Ω) and Ω is strictly
convex.While the authors of [26] showed by a counter-example that problem (1.1) may have no solutions as soon
as g ∉ BV(∂Ω). In addition, a solutionmay not exist if Ω is not strictly convex. In [27], the authors prove existence
and uniqueness of a solution u to problem (1.1) provided that g ∈ C(∂Ω). On the other hand, the authors of
[10, 23, 24] have studied problem (1.1) but in the case where Ω is just convex. More precisely, they proved under
some strong assumptions on the boundary datum g, that problem (1.1) reaches a minimum.

Now, we assume that g ∈ BV(∂Ω) and d = 2. Then, in [13, 16], the authors prove that problem (1.1) is equiv-
alent to the following minimal flow formulation:

inf{∫
Ω

|v| : v ∈M(Ω̄,ℝ2), ∇ ⋅ v = 0 and v ⋅ n = f := ∂τg on ∂Ω}, (1.2)

where ∂τg denotes the tangential derivative of g and the divergence condition ∇ ⋅ v = 0 and v ⋅ n = f on ∂Ω
(where n := R π

2
τ is the outward normal vector to ∂Ω and R π

2
denotes the rotation with angle π

2 around the
origin) should be understood in the weak form ∫Ω ∇ϕ ⋅ dv = ∫∂Ω ϕ df for all ϕ ∈ C

1(Ω). More precisely, one can
show that inf (1.1) = inf (1.2). Moreover, if u is a solution for problem (1.1), then v := R π

2
Du solves problem (1.2).
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On the other hand, if v is an optimal flow for problem (1.2) such that |v| gives zero mass to the boundary, then
the function u such that v = R π

2
Du turns out to be a solution for problem (1.1). It is also well known (see, for

instance, [25]) that problem (1.2) is equivalent to the following Monge–Kantorovich problem:

min{ ∫
Ω×Ω

|x − y| dγ : γ ∈M+(Ω × Ω), (Πx)#γ = f + and (Πy)#γ = f −}, (1.3)

where f + and f − are the positive and negative parts of f . In addition, we note that problem (1.3) has a dual
formulation, which is the following:

sup{∫
Ω

w d(f + − f −) : w ∈ Lip1(Ω)}. (1.4)

If γ is an optimal transport plan for problem (1.3), then the vector measure vγ defined as

⟨vγ , ξ⟩ = ∫
Ω×Ω

1

∫
0

ξ((1 − t)x + ty) ⋅ (x − y) dt dγ(x, y) for all ξ ∈ C(Ω,ℝ2) (1.5)

is a minimizer for problem (1.2). We note also that vγ = |vγ| ∇w, where w is a Kantorovich potential (i.e. a max-
imizer of the dual problem (1.4)), since one can show that for any pair (x, y) ∈ spt(γ), w is differentiable in
the interior of the transport ray [x, y] and its gradient ∇w is given by the opposite unit direction of [x, y]. In
particular, this means that transport rays cannot intersect at an interior point. In addition, any minimizer v of
problem (1.2) is exactly of this form v = vγ , for some optimal transport plan γ (we refer the reader to [25] for
detailed proofs of these results).

Themeasure σγ := |vγ| is called a transport density and it plays a special role in the optimal transport theory,
since it represents the amount of transport taking place in each region of Ω. In other words, we have

⟨σγ , φ⟩ = ∫
Ω×Ω

1

∫
0

φ((1 − t)x + ty)|x − y| dt dγ(x, y) for all φ ∈ C(Ω). (1.6)

The properties of this transport density σγ have been studied in several works. In [14, 25], the authors proved
that σγ is unique (which means that it does not depend on the choice of the optimal transport plan γ) and it
is in L1(Ω) as soon as f + or f − is absolutely continuous with respect to the Lebesgue measure. On the other
hand, the authors of [3–5, 25] proved that the transport density σ belongs to Lp(Ω) as soon as f + and f − are both
in Lp(Ω), for all p ∈ [1,∞].

On the other hand, the least gradient problem with Neumann boundary condition has been considered
in [20, 22]. In other words, the authors studied the following minimization problem:

inf{∫
Ω

|Du| − ∫
∂Ω

ψ u dH1 : u ∈ BV(Ω)}, (1.7)

where ψ ∈ L∞(∂Ω) with ∫∂Ω ψ = 0. More precisely, problem (1.7) reaches a minimum (which has to be clearly
equal zero) as soon as the datum ψ is small enough, that is, ‖ψ‖⋆ ≤ 1 where the norm ‖ ⋅ ‖⋆ is equivalent to
‖ ⋅ ‖L∞(∂Ω) and it is defined as follows:

‖ψ‖⋆ := sup{
∫∂Ω ψ u
∫Ω |Du|

: u ∈ BV(Ω)}.

To be more precise, if ‖ψ‖⋆ < 1, then u = 0 is the unique solution for problem (1.7) while if ‖ψ‖⋆ = 1, then there
are infinitely many minimizers. If ‖ψ‖⋆ > 1, the minimal value will be −∞ and so, a solution u does not exist.
However, given a bounded function ψ on ∂Ω then it is not clear how to check whether the assumption ‖ψ‖⋆ ≤ 1
is well satisfied or not! We see that

‖ψ‖⋆ ≤ Λ‖ψ‖∞ ,

where Λ is the best constant of the Sobolev trace embedding BV(Ω) 󳨅→ L1(∂Ω) for functions with vanishing
mean value over Ω. But again, this constant Λ is unknown.
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In this paper, we are mainly concerned in studying the least gradient problem with Dirichlet condition
imposed on an open connected arc Γ ⊂ ∂Ω and Neumann boundary condition on its complementary part ∂Ω\Γ:

inf{∫
Ω

|Du| − ∫
∂Ω\Γ

ψ u dH1 : u ∈ BV(Ω), u|Γ = g}, (1.8)

where ψ is a bounded function on ∂Ω\Γ, g ∈ BV(Γ) and u|Γ = g is in the sense that there is an L1 extension g̃
of g to ∂Ω such that u|∂Ω = g̃. Notice that if u is a solution for problem (1.8), then u formally solves the following
1-Laplacian PDE with mixed Dirichlet and Neumann boundary conditions (see [17, Definition 3.4]):

{{{{{{
{{{{{{
{

∇ ⋅ [
Du
|Du| ] = 0 in Ω,

u = g on Γ,
Du
|Du|
⋅ n = ψ on ∂Ω\Γ.

On the other hand, we note that the relaxed version of problem (1.8) is given by the following (see [18]):

inf{∫
Ω

|Du| + ∫
Γ

|u − g| − ∫
∂Ω\Γ

ψ u dH1 : u ∈ BV(Ω)}. (1.9)

However, it is not easy to show existence of a solution to (1.9) since for an arbitrary bounded function ψ on ∂Ω\Γ,
the functional may not be lower semicontinuous and so, a solution may not exist. Yet, problem (1.8) has been
already studied in [8] but in the particular case when ψ = 0. But we note that it is not immediate to extend the
results of [8] to the case of a general bounded function ψ. Inspired by [8, 16], we will show that problem (1.8) is
equivalent to the following minimal flow formulation:

inf{∫
Ω

|v| + ∫
∂Ω\Γ

ϕ dχ : v ∈M(Ω,ℝ2), χ ∈M(∂Ω\Γ), ∇ ⋅ v = 0, v ⋅ n = f + χ on ∂Ω}, (1.10)

where f = ∂τg and ϕ is a Lipschitz function on ∂Ω\Γ such that ψ = ∂τϕ. On the other hand, we will also show
that problem (1.10) is equivalent to the following import/export optimal transport problem:

inf{ ∫
Ω×Ω

|x − y| dγ + ∫
∂Ω\Γ

ϕ d[(Πx)#γ] − ∫
∂Ω\Γ

ϕ d[(Πy)#γ] : γ ∈ Π(f + , f −)}, (1.11)

where
Π(f + , f −) := {γ ∈M+(Ω × Ω) : (Πx)#γ = f + + χ+ , (Πy)#γ = f − + χ− , χ± ∈M+(∂Ω\Γ)}.

In [12], the authors have studied the transport problem from a diffuse measure f + ∈M+(Ω) to the boundary
∂Ω. More generally, the import/export transport problem from/to ∂Ω has been already considered in [6, 19].
Here, we study the mass transportation problem between two masses f + and f − on Γ ⊂ ∂Ω (which do not have
a priori the same total mass) with the possibility of transporting some mass from/to the arc ∂Ω\Γ, paying the
transport cost |x − y| for each unit of mass that moves from a point x to another one y plus an import tax ϕ(x)
for each unit of mass that enters at the point x ∈ ∂Ω\Γ and −ϕ(y) for each unit of mass that comes out from
a point y ∈ ∂Ω\Γ. This means that we can use ∂Ω\Γ as an infinite reserve/repository, we can take as muchmass
as we wish from ∂Ω\Γ or send back as much mass as we want provided we pay the import/export taxes.

Thanks to the equivalence between problems (1.8), (1.10) and (1.11), we will show existence and uniqueness
of a solution u to problem (1.8) and we will also study itsW1,p regularity. In the particular case ψ = 0, we have
already proved in [8] existence of a solution u for this problem (1.8) provided that Γ is strictly convex and
g ∈ BV(Γ). Moreover, the solution u is unique as soon as g ∈ C(Γ). In addition, there are several Sobolev estimates
on this solution u, under some geometric assumptions on ∂Ω. In this paper, we extend these results to some
class of bounded functions ψ. To the best of our knowledge, all these results of existence, uniqueness, andW1,p

regularity (with ψ ̸= 0) are completely new, in the sense that in the literature there are no results concerning at
least the existence of a solution to themixed least gradient problem (1.8). As a last interesting point, wemention
that most of the proofs in the general case ψ ̸= 0 are not a mere translation of those given in [8] where ψ = 0.
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This paper is organized as follows. In Section 2, we will prove existence and uniqueness of a solution u
to another (equivalent) version of problem (1.8) (see problem (2.1) below) by showing equivalence with the
import/export transport problem from/to ∂Ω\Γ. In Section 3, we will study the Sobolev regularity of this solu-
tion by studying the summability of the transport density in the import/export transport problem. Finally,
Section 4 summarizes the applications of these results to the least gradient problemwithDirichlet andNeumann
boundary conditions (1.8).

2 On the existence and uniqueness of a solution to the mixed least
gradient problem

Throughout the paper, Ω ⊂ ℝ2 is assumed to be an open bounded contractible set (i.e., it can be continuously
shrunk to a point within Ω) with Lipschitz boundary and Γ is an open connected subset of ∂Ω. Let g be a BV
function on Γ and ϕ± be two continuous functions on ∂Ω\Γ. Then we consider the following problem:

inf{∫
Ω

|Du| + ∫
∂Ω\Γ

ϕ+ d[∂τu]+ − ∫
∂Ω\Γ

ϕ− d[∂τu]− : u ∈ BV(Ω), u|∂Ω ∈ BV(∂Ω), u|Γ = g}, (2.1)

where ∂τu denotes the tangential derivative of the trace of u (so, ∂τu is a measure on ∂Ω since we assume
that u|∂Ω ∈ BV(∂Ω), which is of course not satisfied by any function u ∈ BV(Ω) but here it is an additional con-
straint on u), [∂τu]+ and [∂τu]− are the positive and negative parts of ∂τu. The aim of this section is to prove
existence and uniqueness of a solution u to this problem (2.1). The idea is similar to the one used in [8].We prove
some equivalence between problem (2.1) and an optimal transport problem. More precisely, we will show that
problem (2.1) is equivalent to the following minimal flow formulation:

inf
v∈M(Ω,ℝ2), χ∈M(∂Ω\Γ)

{∫

Ω

|v| + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− : ∇ ⋅ v = 0, v ⋅ n = f + χ on ∂Ω}, (2.2)

where f = ∂τg, M(Ω,ℝ2) is the set of vector measures over Ω and M(∂Ω\Γ) is the set of measures on ∂Ω\Γ.
On the other hand, we show that problem (2.2) is also equivalent to the following optimal transport problem
with import/export taxes on ∂Ω\Γ (we note that in [8], ∂Ω\Γ was assumed to be a “free” Dirichlet region which
is equivalent to say that ϕ± = 0, while here we have to pay some taxes ϕ± in order to import/export masses
from/to ∂Ω\Γ):

inf{ ∫
Ω×Ω

|x − y| dγ + ∫
∂Ω\Γ

ϕ+ d[(Πx)#γ] − ∫
∂Ω\Γ

ϕ− d[(Πy)#γ] : γ ∈ Π(f + , f −)}. (2.3)

We recall that in [6, 7, 19] the authors have already studied this import/export transport problem but in the
case where the import/export region is the whole boundary ∂Ω and f ± are two densities in the interior of Ω. In
the sequel, we will analyze problem (2.3) in details. More precisely, we will decompose problem (2.3) into three
classical transport problems: a transport problem from Γ to Γ, an export transport problem with tax ϕ− from Γ
to ∂Ω\Γ and an import transport problem with tax ϕ+ from ∂Ω\Γ to Γ.

First of all, we need to assume that the pair (ϕ+ , ϕ−) satisfies the following condition:

ϕ−(y) − ϕ+(x) ≤ |x − y| for all x, y ∈ ∂Ω\Γ. (2.4)

In fact, this is a natural assumption on (ϕ+ , ϕ−) since it means that we do not need to transport mass from ∂Ω\Γ
onto ∂Ω\Γ. Thanks to this condition, one can show existence of a solution to problem (2.3).

Proposition 2.1. Under condition (2.4), problem (2.3) has an optimal transport plan γ. In addition, we either have
γ(∂Ω\Γ × ∂Ω\Γ) = 0 or ϕ−(y) − ϕ+(x) = |x − y| for γ-a.e. (x, y) ∈ ∂Ω\Γ × ∂Ω\Γ. In particular, there is always an
optimal transport plan γ such that γ(∂Ω\Γ × ∂Ω\Γ) = 0.

Proof. First, we note that the proof of this proposition is quite similar to the one in [6, Proposition 2.1] but we
introduce it here just for the sake of completeness. Let (γk)k be a minimizing sequence in problem (2.3). We
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define γ̃k := γk ⋅ 1(∂Ω\Γ×∂Ω\Γ)c . It is easy to check that γ̃k ∈ Π(f + , f −). Moreover, we have

∫

Ω×Ω

|x − y| dγk + ∫
∂Ω\Γ

ϕ+ d[(Πx)#γk] − ∫
∂Ω\Γ

ϕ− d[(Πy)#γk]

= ∫

Ω×Ω

|x − y| dγ̃k + ∫
∂Ω\Γ

ϕ+ d[(Πx)# γ̃k] − ∫
∂Ω\Γ

ϕ− d[(Πx)# γ̃k] + ∫
∂Ω\Γ×∂Ω\Γ

[|x − y| + ϕ+(x) − ϕ−(y)] dγk .
(2.5)

Thanks to (2.4), we infer that (γ̃k)k is also a minimizing sequence in problem (2.3). Since γ̃k ∈ Π(f + , f −) and
γ̃k(∂Ω\Γ × ∂Ω\Γ) = 0, it follows that

γ̃k(Ω × Ω) ≤ f +(Γ) + f −(Γ).

Hence, up to a subsequence, γ̃k ⇀ γ for some γ ∈ Π(f + , f −). In fact, (Πx)# γ̃k = f + + χ+k and (Πy)# γ̃k = f − + χ−k ,
where χ±k ∈M

+(∂Ω\Γ). We obtain χ±k ⇀ χ±, where χ± ∈M+(∂Ω\Γ). Then (Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ−.
This yields that γ minimizes problem (2.3) since

∫

Ω×Ω

|x − y| dγ̃k + ∫
∂Ω\Γ

ϕ+ dχ+k − ∫
∂Ω\Γ

ϕ− dχ−k → ∫
Ω×Ω

|x − y| dγ + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− .

Finally, the second statement follows directly from (2.5), the fact that γ̃ := γ ⋅ 1(∂Ω\Γ×∂Ω\Γ)c is always admissible
in (2.3) and the optimality of γ.

Let γ be an optimal transport plan in problem (2.3) with γ(∂Ω\Γ × ∂Ω\Γ) = 0. Let χ+ and χ− be the two nonneg-
ative measures on ∂Ω\Γ such that (Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ−. It is clear that γ also minimizes

min{ ∫
Ω×Ω

|x − y| dγ : (Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ−}.

Set
γ(Γ, Γ) = γ|Γ×Γ , γ(Γ, ∂Ω\Γ) = γ|Γ×∂Ω\Γ , γ(∂Ω\Γ, Γ) = γ|∂Ω\Γ×Γ

and
ν+ = (Πx)#[γ(Γ, ∂Ω\Γ)], ν− = (Πy)#[γ(∂Ω\Γ, Γ)].

Then we consider the following problems:

min{ ∫
Ω×Ω

|x − y| dΛ : (Πx)#Λ = f + − ν+ and (Πy)#Λ = f − − ν−}, (2.6)

min{ ∫
Ω×Ω

|x − y| dΛ − ∫
∂Ω\Γ

ϕ− d(Πy)#Λ : (Πx)#Λ = ν+ and spt[(Πy)#Λ] ⊂ ∂Ω\Γ}, (2.7)

min{ ∫
Ω×Ω

|x − y| dΛ + ∫
∂Ω\Γ

ϕ+ d(Πx)#Λ : spt[(Πx)#Λ] ⊂ ∂Ω\Γ and (Πy)#Λ = ν−}. (2.8)

Similarly to [8, Proposition 3.3], it is not difficult to prove that the transport plans γ(Γ, Γ), γ(Γ, ∂Ω\Γ) and
γ(∂Ω\Γ, Γ) minimize problems (2.6), (2.7) and (2.8) respectively (this follows directly from the linearity of the
functional and the fact that γ = γ(Γ, Γ) + γ(Γ, ∂Ω\Γ) + γ(∂Ω\Γ, Γ)). In order to characterize these two optimal
transport plans γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ, Γ), we define the following multivalued map T̃± (notice that T̃± is the
classical projection map onto ∂Ω\Γ as soon as ϕ± = 0):

T̃±(x) = argmin{|x − y| ± ϕ±(y) : y ∈ ∂Ω\Γ} for every x ∈ ℝ2 .

Now, we introduce the following:

Definition 2.1. Let Ω be an open bounded domain and Γ ⊂ ∂Ω be an open arc. We say that Γ is strictly convex
if for all x, y ∈ Γ, we have ]x, y[ ⊂ Ω.

Definition 2.2. Assume that Γ ⊂ ∂Ω. Then we say that ∂Ω\Γ is visible from the arc Γ if for every x ∈ Γ and
y ∈ T̃±(x) ⊂ ∂Ω\Γ such that ]x, y[ ∩ ∂Ω\Γ = 0, we have ]x, y[ ⊂ Ω.
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In the sequel, we will say that assumption (H) holds if and only if we have the following statement:

Γ is strictly convex (H)

and
∙ Ω is convex or the convex hull of Γ is contained in Ω,
∙ ∂Ω\Γ is visible from Γ,
∙ ϕ± are λ-Lip with λ < 1.

Lemma 2.2. Assume that (H) holds. Then we have ]x, y[ ⊂ Ω for all y ∈ T̃±(x). Moreover, there is a countable set
D± ⊂ Γ such that T̃± is single valued on Γ\D±.

Proof. Let D ⊂ Γ be the set of points x such that T̃−(x) is not a singleton. For every x ∈ D, let us denote by T1(x)
and T2(x) two different elements of T̃−(x). Let Δx be the interior of the region delimited by [x, T1(x)], [x, T2(x)]
and ∂Ω\Γ. First, we claim that Δx ⊂ Ω with L2(Δx) > 0, where L2 denotes the Lebesgue measure on ℝ2. If Ω is
convex, then we clearly have Δx ⊂ Ω and L2(Δx) > 0 since Γ is an open strictly convex arc of ∂Ω. Now, assume
that ∂Ω\Γ is visible from Γ and ϕ− is λ − Lip with λ < 1. Assume there is a point z ∈ [x, T1(x)[ ∩ ∂Ω\Γ. Then
we have |x − T1(x)| − ϕ−(T1(x)) ≤ |x − z| − ϕ−(z). Hence, |z − T1(x)| ≤ ϕ−(T1(x)) − ϕ−(z) which is a contradic-
tion since ϕ− is λ-Lip with λ < 1. This implies that [x, T1(x)[ ∩ ∂Ω\Γ = 0. Since ∂Ω\Γ is visible from Γ, one has
]x, T1(x)[ ⊂ Ω (and ]x, T2(x)[ ⊂ Ω). This yields again that Δx ⊂ Ω and L2(Δx) > 0.

On the other hand, we claim that these sets {Δx}x∈D are disjoint. To this end, we just need to show that
T̃(z) = {T1(x)} for every z ∈ ]x, T1(x)[ and x ∈ Γ. Assume that Ω is convex. For all y ∈ ∂Ω\Γ, one has

|z − T1(x)| − ϕ−(T1(x)) = |x − T1(x)| − |x − z| − ϕ−(T1(x)) ≤ |x − y| − |x − z| − ϕ−(y) < |z − y| − ϕ−(y),

where the last inequality comes from the fact that x, z and y are not aligned. Now, assume that ϕ− is λ-Lip with
λ < 1. If x, z and y are aligned, then we clearly have

|x − T1(x)| − ϕ−(T1(x)) < |x − y| − ϕ−(y).

But this implies again that
|z − T1(x)| − ϕ−(T1(x)) < |z − y| − ϕ−(y).

Assume that x, x󸀠 ∈ Γ and Δx ∩ Δx󸀠 ̸= 0. Then there is a point z ∈ ]x, T1(x)[ ∩ ]x󸀠 , T1(x󸀠)[. But T̃(z) = {T1(x)} =
{T1(x󸀠)}, which is a contradiction since Δx ∩ Δx󸀠 ̸= 0. Hence, the second claim is also proved. Consequently, the
set D is at most countable.

On the other hand, it is clear that the graph of T̃± is closed (thanks to the continuity of ϕ±) and so, T̃± admits
a Borel selector functionwhichwill be denoted by T±. Now,we are ready to give a characterization of γ(Γ, ∂Ω\Γ)
and γ(∂Ω\Γ, Γ). More precisely, we have the following:

Proposition 2.3. The transport plans (Id, T−)#ν+ and (T+ , Id)#ν− minimize problems (2.7) and (2.8), respectively.
Moreover, for γ(Γ, ∂Ω\Γ)-a.e. (x, y), y ∈ T̃−(x) and for γ(∂Ω\Γ, Γ)-a.e. (x, y), x ∈ T̃+(y). In addition, if (H) holds
and f ± are atomless (i.e. f ±({x}) = 0, for all x ∈ Γ), then γ(Γ, ∂Ω\Γ) = (Id, T−)#ν+ and γ(∂Ω\Γ, Γ) = (T+ , Id)#ν−.

Proof. Let us prove that for γ(Γ, ∂Ω\Γ)-a.e. (x, y), y ∈ T̃−(x) (in the same way, we prove that for γ(∂Ω\Γ, Γ)-a.e.
(x, y), x ∈ T̃+(y)). To this end, assume that this is not the case. Then we get

∫

Ω×Ω

|x − y| d[γ(Γ, ∂Ω\Γ)] − ∫
∂Ω\Γ

ϕ− d[(Πy)#γ(Γ, ∂Ω\Γ)]

= ∫

Ω×Ω

[|x − y| − ϕ−(y)] d[γ(Γ, ∂Ω\Γ)] > ∫
Ω×Ω

[|x − T−(x)| − ϕ−(T−(x))] d[γ(Γ, ∂Ω\Γ)]

= ∫

Ω×Ω

|x − y| d[(Id, T−)#ν+] − ∫
∂Ω\Γ

ϕ− d[(Πy)#[(Id, T−)#ν+]].

But this is a contradiction since γ(Γ, ∂Ω\Γ) minimizes problem (2.9) and (Id, T−)#ν+ is admissible in (2.9). This
shows at the same time that (Id, T−)#ν+ is a minimizer in (2.9). Now, assume that f + is atomless. Then, by
Lemma 2.2, for γ(Γ, ∂Ω\Γ)-a.e. (x, y), we have y ∈ T̃−(x) = {T−(x)} and so, γ(Γ, ∂Ω\Γ) = (Id, T−)#ν+.
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In particular, under the assumption that f ± are atomless, we see that γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ, Γ) minimize the
following Kantorovich problems, respectively:

min{ ∫
Ω×Ω

|x − y| dΛ : (Πx)#Λ = ν+ and (Πy)#Λ = T−# ν
+}, (2.9)

min{ ∫
Ω×Ω

|x − y| dΛ : (Πx)#Λ = T+# ν
− and (Πy)#Λ = ν−}. (2.10)

On the other hand, the key point in the proof of existence of a solution to problem (2.3) is to show that there are
no transport rays gliding on the boundary. More precisely, we have the following:

Proposition 2.4. Assume that (H) holds. Then, for γ-a.e. (x, y), we have ]x, y[ ⊂ Ω. In particular, the transport
density σγ associated with γ (see (1.6)) is well defined and it gives zero mass to ∂Ω (i.e. σγ[∂Ω] = 0).

Proof. Thanks to (H), it is clear that ]x, y[ ⊂ Ω for γ(Γ, Γ)-a.e. (x, y). From Lemma 2.2, we also have ]x, y[ ⊂ Ω for
γ(Γ, ∂Ω\Γ) (resp. γ(∂Ω\Γ, Γ))-a.e. (x, y). Hence, ]x, y[ ⊂ Ω for γ-a.e. (x, y). Recalling (1.6), this implies that σγ is
well defined and we have

σγ[∂Ω] = ∫
∂Ω×∂Ω

H1(∂Ω ∩ [x, y]) dγ(x, y) = 0.

It is also possible to show that there is at least one special optimal transport plan γ such that the corresponding
transport density σγ is well defined and has zero mass on ∂Ω, without assuming that the convex hull of Γ is
contained in Ω but we need instead to reinforce the assumptions on ϕ±. In the sequel, we will say that the
assumption (H’) holds if we have the following statement:
(H’) Γ is strictly convex, ∂Ω\Γ is visible from Γ and ϕ+ = ϕ− is 1 − Lip on ∂Ω\Γ.

Proposition 2.5. Assume that (H’) holds. Then there is an optimal transport plan γ for problem (2.3) such that for
γ-a.e. (x, y), we have ]x, y[ ⊂ Ω. In particular, σγ[∂Ω] = 0.

Proof. Set E := {(x, y) ∈ Γ × Γ : ]x, y[ ⊂ Ω}. Let γ be an optimal transport plan in (2.3) with (Πx)#γ = f + + χ+

and (Πy)#γ = f − + χ−. Then we define γ⋆ := γ(Γ, Γ)|E + P+# [γ(Γ, Γ)|Ec ] + P
−
# [γ(Γ, Γ)|Ec ] + γ(Γ, ∂Ω\Γ) + γ(∂Ω\Γ, Γ),

where the maps P+ and P− are defined on Ec as follows:

P+(x, y) = (x, y󸀠) such that y󸀠 ∈ ]x, y[ ∩ ∂Ω\Γ and ]x, y󸀠[ ⊂ Ω

and
P−(x, y) = (x󸀠 , y) such that x󸀠 ∈ ]x, y[ ∩ ∂Ω\Γ and ]x󸀠 , y[ ⊂ Ω.

First, it is not difficult to check that γ⋆ ∈ Π(f + , f −). Moreover, thanks to the fact that ϕ+ = ϕ− is 1 − Lip, we have
the following:

∫

Ω×Ω

|x − y| dγ⋆ + ∫
∂Ω\Γ

ϕ+ d[(Πx)#γ⋆] − ∫
∂Ω\Γ

ϕ− d[(Πy)#γ⋆]

= ∫
E

|x − y| d[γ(Γ, Γ)] + ∫
Ec
[|x − y󸀠| + |x󸀠 − y| + ϕ+(x󸀠) − ϕ−(y󸀠)] d[γ(Γ, Γ)] + ∫

Ω×Ω

|x − y| dγ(Γ, ∂Ω\Γ)

+ ∫

Ω×Ω

|x − y| dγ(∂Ω\Γ, Γ) + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−

≤ ∫
E

|x − y| d[γ(Γ, Γ)] + ∫
Ec
[|x − y󸀠| + |x󸀠 − y| + |x󸀠 − y󸀠|] d[γ(Γ, Γ)] + ∫

Ω×Ω

|x − y| dγ(Γ, ∂Ω\Γ)

+ ∫

Ω×Ω

|x − y| dγ(∂Ω\Γ, Γ) + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−

≤ ∫

Ω×Ω

|x − y| dγ + ∫
∂Ω\Γ

ϕ+ d[(Πx)#γ] − ∫
∂Ω\Γ

ϕ− d[(Πy)#γ].
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Yet, we recall that γ is an optimal transport plan in problem (2.3) and so, γ⋆ is also a minimizer. By definition,
we have that ]x, y[ ⊂ Ω, for γ⋆-a.e. (x, y). But this yields that σγ⋆ [∂Ω] = 0.
Thanks to Propositions 2.4 and 2.5, one can always find a “good” optimal transport plan γ such that ]x, y[ ⊂ Ω, for
γ-a.e. (x, y) (so, σγ is well defined and σγ[∂Ω] = 0), provided that one of assumptions (H) or (H’) is well satisfied.
Now, we are ready to prove some equivalence between problems (2.2) and (2.3).

Proposition 2.6. Assume that (H) or (H’) holds. Let γ be a “good” optimal transport plan in (2.3) with

(Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ− .

Then we have the following:
(1) The minimal values of (2.2) and (2.3) coincide, i.e.min (2.2) = min (2.3).
(2) Let vγ be the vector measure in (1.5). Then (vγ , χ) solves problem (2.2) and |vγ|[∂Ω] = 0.
(3) If (v, χ) is a minimizer for problem (2.2), then there is an optimal transport plan γ in (2.3) such that vγ is well

defined and v = vγ with (Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ−.

Proof. Wewill show statements (1) and (2) simultaneously. Since γ is a “good” optimal transport plan, the vector
measure vγ (see (1.5)) is well defined. Moreover, (vγ , χ) is admissible in (2.2) since, for all φ ∈ C1(Ω), we have

⟨vγ , ∇φ⟩ = ∫
Ω×Ω

1

∫
0

∇φ((1 − t)x + ty) ⋅ (x − y) dt dγ(x, y) = ∫
Ω×Ω

[φ(x) − φ(y)] dγ(x, y)

= ∫
∂Ω

φ d[(f + + χ+) − (f − + χ−)].

Moreover, we have

∫

Ω

|vγ| + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− = σγ(Ω) + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−

= ∫

Ω×Ω

|x − y| dγ + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− = min (2.3).
(2.11)

But we claim that
min (2.2) ≥ min (2.3).

Similarly to [6, Proposition 2.2], one can show that problem (2.3) has a dual formulation which is the following:

sup{∫
Ω

φ d(f − − f +) : φ ∈ Lip1(Ω), ϕ− ≤ φ ≤ ϕ+ on ∂Ω\Γ}. (2.12)

If φ is a smooth admissible function in problem (2.12) and (v, χ) is admissible in problem (2.2), then we have

∫

Ω

|v| ≥ −∫
Ω

∇φ ⋅ dv = − ∫
∂Ω

φ d[f + χ] = −∫
Γ

φ df − ∫
∂Ω\Γ

φ dχ+ + ∫
∂Ω\Γ

φ dχ−

≥ −∫
Γ

φ df − ∫
∂Ω\Γ

ϕ+ dχ+ + ∫
∂Ω\Γ

ϕ− dχ− .

Hence,
min (2.2) ≥ sup (2.12) = min (2.3).

Recalling (2.11), we infer that min (2.2) = min (2.3) and (vγ , χ) solves problem (2.2).
Now, let us prove statement (3). Let (v, χ) be a minimizer in (2.2). In particular, we see that v solves

min{∫
Ω

|v| : v ∈M(Ω,ℝ2), ∇ ⋅ v = 0 and v ⋅ n = f + χ on ∂Ω}. (2.13)
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In order to show that there is an optimal transport plan γ such that v = vγ with

(Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ− ,

the idea will be to adapt the proofs of [25, Theorem 4.13] or [12, Proposition 2.4]. First of all, we need to introduce
some objects that generalize both σγ and vγ . Let C be the set of absolutely continuous curves w : [0, 1] 󳨃→ Ω.
We call traffic plan any positive measure Q on C such that (e0)#Q = f + + χ+ and (e1)#Q = f − + χ−, where
e0(w) := w(0) and e1(w) = w(1). Following [12, 25], we define the traffic intensity iQ ∈M+(Ω) and the traffic
flow vQ ∈M(Ω,ℝ2) as follows:

⟨iQ , φ⟩ = ∫
C

1

∫
0

φ(w(t))|w󸀠(t)| dt dQ(w) for all φ ∈ C(Ω)

and

⟨vQ , ξ⟩ = −∫
C

1

∫
0

ξ(w(t)) ⋅ w󸀠(t) dt dQ(w) for all ξ ∈ C(Ω,ℝ2).

It is easy to see that |vQ| ≤ iQ , ∇ ⋅ vQ = 0 and vQ ⋅ n = f + χ. Moreover, by [12, Lemma 2.2], if v ∈M(Ω,ℝ2) is
such that ∇ ⋅ v = 0 and v ⋅ n = f + χ, then there is a traffic plan Q such that |v − vQ|(Ω) + iQ(Ω) = |v|(Ω). Since v
minimizes (2.13), we have

∫

Ω

|v| ≤ ∫
Ω

|vQ| ≤ ∫
Ω

iQ .

Hence, v = vQ and |v| = iQ . Thanks to the fact that the pair (v, χ)minimizes (2.2) and (Πx)#[(e0 , e1)#Q] = f + + χ+
and (Πy)#[(e0 , e1)#Q] = f − + χ−, one has

min (2.2) = ∫
Ω

|v| + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− = ∫
Ω

iQ + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−

= ∫
C

1

∫
0

|w󸀠(t)| dt dQ(w) + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−

≥ ∫
C

|w(0) − w(1)| dQ(w) + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−

= ∫

Ω×Ω

|x − y| d[(e0 , e1)#Q] + ∫
∂Ω\Γ

ϕ+ d[(Πx)#[(e0 , e1)#Q]] − ∫
∂Ω\Γ

ϕ− d[(Πy)#[(e0 , e1)#Q]]

≥ min (2.3).

Yet, statement (1) implies that the above inequalities are actually equalities. In particular, Q must be con-
centrated on line segments and the transport plan γ := (e0 , e1)#Q minimizes (2.3). Consequently, we have
v = vQ = vγ .

On the other hand, one can also show some equivalence between problems (2.1) and (2.2). Before that, we intro-
duce the following definition of functions of bounded variation on an open Lipschitz arc Γ of the boundary of
a two-dimensional domain Ω.

Definition 2.3. Assume that α : [0, L) → Γ is an arc-length parametrization of Γ ⊂ Ω with positive orientation.
For a Lipschitz function h : Γ → ℝ, we set

∂τh(x0) =
d
ds h(α(s))|s=s0 , (2.14)

where x0 = α(s0). By the Rademacher theorem, this derivative is well-defined H1-a.e. Then we will say that
g ∈ BV(Γ), if g ∈ L1(Γ) and ∂τg understood in a distributional sense is a measure, i.e. there exists a measure
denoted ∂τg such that

∫
Γ

h d(∂τg) = −∫
Γ

g ⋅ ∂τh dH1

for all functions h ∈ Lip(Γ). Here, ∂τh is understood pointwiseH1-a.e. using (2.14).
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Then we have the following:

Proposition 2.7. Assume that g ∈ BV(Γ) and let f be the tangential derivative of g (i.e. f = ∂τg). Then we have the
following statements:
(1) The minimal values of (2.1) and (2.2) coincide, i.e.min (2.1) = min (2.2).
(2) Let u be a solution for problem (2.1) with u|∂Ω = g̃. Set v := R π

2
Du and χ := [∂τ g̃]|∂Ω\Γ . Then (v, χ) solves

problem (2.2).
(3) Moreover, if (v, χ) is a minimizer in problem (2.2)with |v|[∂Ω] = 0, then there exists a BV function u such that

v = R π
2
Du and u turns out to be a solution for problem (2.1).

Proof. First, we prove statement (1). For every h ∈ BV(∂Ω\Γ), we denote by g̃h a BV extension of g to ∂Ω such
that g̃h = h on ∂Ω\Γ. Then we have

inf{∫
Ω

|Du| + ∫
∂Ω\Γ

ϕ+ d[∂τu]+ − ∫
∂Ω\Γ

ϕ− d[∂τu]− : u ∈ BV(Ω), u|∂Ω ∈ BV(∂Ω), u|Γ = g}

= inf
h∈BV(∂Ω\Γ)

{inf{∫
Ω

|Du| : u ∈ BV(Ω), u|∂Ω = g̃h} + ∫
∂Ω\Γ

ϕ+ d[∂τ g̃h]+ − ∫
∂Ω\Γ

ϕ− d[∂τ g̃h]−}.

But, by [11, Theorem3.4] and the fact that Ω is assumed to be contractible and g̃h ∈ BV(∂Ω), wehave the following
equality:

inf{∫
Ω

|Du| : u ∈ BV(Ω), u|∂Ω = g̃h} = inf{∫
Ω

|v| : v ∈M(Ω,ℝ2), ∇ ⋅ v = 0 and v ⋅ n = ̃fh on ∂Ω},

where ̃fh := ∂τ g̃h . Yet, it is clear that ̃fh = f + χ, for some χ ∈M(∂Ω\Γ). Then we get the following:

inf (2.1) = inf
χ∈M(∂Ω\Γ)

{inf{∫
Ω

|v| : v ∈M(Ω,ℝ2), ∇ ⋅ v = 0 and v ⋅ n = f + χ on ∂Ω}

+ ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ−}

= inf (2.2).

Now, we prove statement (2). Let u be a minimizer in (2.1) with u|∂Ω = g̃. First, let us check that the pair
(v, χ), where v = R π

2
Du and χ = [∂τ g̃]|∂Ω\Γ , is admissible in (2.2). For all φ ∈ C1(Ω), we have

∫
Ω

R− π2 ∇φ ⋅ Du = ∫
∂Ω

[R− π2 ∇φ ⋅ n]u dH
1 = − ∫

∂Ω

u ∂τφ dH1 = ∫
∂Ω

φ d[∂τu].

Yet, ∂τu = f + χ. Then we get

∫
Ω

∇φ ⋅ dv = ∫
∂Ω

φ d[f + χ] for all φ ∈ C1(Ω).

Moreover, we have

∫

Ω

|v| + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− = ∫
Ω

|Du| + ∫
∂Ω\Γ

ϕ+ d[∂τu]+ − ∫
∂Ω\Γ

ϕ− d[∂τu]− = min (2.1) = min (2.2).

Then (v, χ) solves problem (2.2).
It remains to prove statement (3). Let (v, χ) be a solution to problem (2.2) with |v|[∂Ω] = 0. Let us extend

v by 0 outside Ω. Set vε = v ∗ ρε , where ρε is a sequence of mollifiers. First, it is clear that ∇ ⋅ vε = 0. Let uε be
a smooth function such that ∇uε = R− π2 vε . Up to adding a constant, one can assume that ∫Ω uε = 0 and then,
we have

∫
Ω

|uε| dx ≤ C∫
Ω

|∇uε| dx ≤ C∫
Ω

|v| dx.
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Then we get
‖uε‖W1,1(Ω) ≤ (C + 1) ∫

Ω

|v|.

Hence, up to a subsequence, (uε)ε converges weakly⋆ in BV(Ω) to some function u. And, we have Du = R− π2 v.
Moreover, uε → u strictly in BV since |vε| ⇀ |v|. Thanks to the continuity of the trace map with respect to the
strict convergence in BV, we get that

∫
Ω

∇φ ⋅ d[R π
2
Du] = lim

ε→0
∫
Ω

R π
2
∇uε ⋅ ∇φ dx = lim

ε→0
∫
∂Ω

[R π
2
∇uε ⋅ n]φ dH1 = lim

ε→0
∫
∂Ω

∂τuε φ dH1

= − lim
ε→0
∫
∂Ω

uε ∂τφ dH1 = − ∫
∂Ω

u ∂τφ dH1 = ∫
∂Ω

φ d[∂τu] for all φ ∈ C1(Ω).

Yet, v = R π
2
Du, ∇ ⋅ v = 0 and v ⋅ n = f + χ. This implies that ∂τu = f + χ. Hence, up to adding a constant, one can

assume that u|Γ = g. In addition, u solves problem (2.1) since

∫
Ω

|Du| + ∫
∂Ω\Γ

ϕ+ d[∂τu]+ − ∫
∂Ω\Γ

ϕ− d[∂τu]− = ∫
Ω

|v| + ∫
∂Ω\Γ

ϕ+ dχ+ − ∫
∂Ω\Γ

ϕ− dχ− = min (2.2) = min (2.1).

Consequently, we get equivalence between problems (2.1), (2.2) and (2.3). Finally, we are in a position to prove
existence of a solution for problem (2.1). To be more precise, we have the following existence result (always
under the assumption that (2.4) is well satisfied):

Theorem 2.8. Assume that (H) or (H’) holds. Then there exists a function u ∈ BV(Ω)which attains the infimum in
problem (2.1).

Proof. Let γ be a “good” optimal transport plan in (2.3) with (Πx)#γ = f + + χ+ and (Πy)#γ = f − + χ−. Thanks to
Proposition 2.6, we know that (vγ , χ) solves problem (2.2) and |vγ|[∂Ω] = σγ[∂Ω] = 0 (recall Propositions 2.4
and 2.5). Hence, by Proposition 2.7, we infer that there is a BV function u such that vγ = R π

2
Du and this u is in

fact a solution to problem (2.1).

Now, we study the uniqueness of the solution u in (2.1). To this end, we need to restrict our assumption (2.4). Let
us assume that there exists λ < 1 such that

ϕ−(y) − ϕ+(x) ≤ λ|x − y| for all x, y ∈ ∂Ω\Γ. (2.15)

Under the assumption (2.15), one can prove uniqueness of the optimal transport plan in (2.3). Then we have the
following:

Proposition 2.9. Assume that (H) or (H’) holds and that f + and f − are atomless. Then there is a unique “good”
optimal transport plan γ in problem (2.3). In addition, problem (2.2) has a unique minimizer.

Proof. Let γ be an optimal transport plan in (2.3). Thanks to Proposition 2.1, it is easy to see that the condition
(2.15) yields that γ(∂Ω\Γ × ∂Ω\Γ) = 0. Let us decompose again γ into γ(Γ, Γ) := γ|Γ×Γ , γ(Γ, ∂Ω\Γ) := γ|Γ×∂Ω\Γ and
γ(∂Ω\Γ, Γ) := γ|∂Ω\Γ×Γ . Moreover, we set ν+ = (Πx)#[γ(Γ, ∂Ω\Γ)] and ν− = (Πy)#[γ(∂Ω\Γ, Γ)]. First of all, one can
show that there are two sets A± ⊂ Γ such that A± are two countable union of connected arcs and ν± = f ± ⋅ χA± .
This follows from the fact that 0 ≤ ν± ≤ f ±while the set of pointswhich are transported at the same time to Γ and
∂Ω\Γ is atmost countable; we refer the reader to [8, Lemma 3.8] formore details. In order to showuniqueness of
the optimal transport plan γ, we proceed as in [8, Proposition 3.9] and so, it is sufficient to show that these three
parts of γ are all induced by maps. Indeed, the functional in (2.3) is linear in γ and the constraint Π(f + , f −) is
convex. Thismeans that if γ1 and γ2minimize (2.3), then γ1+γ2

2 is also aminimizer in (2.3); but this yields to a con-
tradiction as soon as we prove that the three corresponding parts of any optimal transport plan γ are induced
by maps. From Proposition 2.3 and the fact that f + and f − are atomless, we know that γ(Γ, ∂Ω\Γ) = (Id, T−)#ν+
and γ(∂Ω\Γ, Γ) = (T+ , Id)#ν−. It remains to show that γ(Γ, Γ) is also induced by a map. Let D ⊂ Γ be the set of
points that belong to two different transport rays. For every x ∈ D, let us denote by R±x two different transport
rays from x to Γ. Let Δx ⊂ Ω be the region delimited by R+x , R−x and Γ. Since transport rays cannot intersect at an
interior point, we see that these sets {Δx}x must be disjoint withL2(Δx) > 0. This implies that the set D is at most
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countable. Hence, thanks again to the fact that f + is atomless, we get that f +(D) = 0. In other words, for f +-a.e.
x ∈ Γ, there is a unique transport ray Rx starting at x and intersecting Γ at exactly one point (recall that Γ is
strictly convex). But this means that γ(Γ, Γ) is also induced by amap. The second statement follows immediately
from Proposition 2.6.

Finally, we are ready to state our result on the uniqueness of the solution u in problem (2.1). Hence, we conclude
this section by the following (we always assume that (2.15) is well satisfied):

Theorem 2.10. Assume that (H) or (H’) holds. Then the solution u of problem (2.1) is unique provided that g ∈ C(Γ).

Proof. Let u be a minimizer in (2.1). Thanks to Proposition 2.7, we know that the pair (v, χ), where v = R π
2
Du

and χ = [∂τu]|∂Ω\Γ , is a minimizer in problem (2.2). On the other hand, since g ∈ C(Γ), it follows that f = ∂τg is
atomless. But so, by Proposition 2.9, (v, χ) is the unique minimizer in (2.2). This implies that the solution u of
problem (2.1) is also unique.

3 Sobolev regularity on the solution of the mixed least gradient
problem

In this section, we study theW1,p regularity of the solution u in problem (2.1). Thanks to Proposition 2.7, this is
equivalent to study the Lp summability of the optimal flow v in (2.2) or equivalently, the Lp summability of the
transport density σ in problem (2.3) (i.e. between f + + χ+ and f − + χ−, where χ± represent the import/export
masses on ∂Ω\Γ). We recall that studying the Lp summability of σ between two singular measures (i.e. if
f ± ∉ Lp(Ω)) is a delicate question! However, the authors of [13] proved that the transport density σ, between
two measures f ± on ∂Ω, is in Lp(Ω) as soon as f ± ∈ Lp(∂Ω) with p ≤ 2 and Ω is uniformly convex. Moreover,
they introduced a counter-example to the Lp summability of σ for p > 2. Yet, they also showed some Lp esti-
mates on σ for p > 2 provided that f ± are smooth enough. Anyway, in problem (2.3), the measures χ+ and χ− are
unknown and so, it is not clear whether χ± ∈ Lp(∂Ω\Γ) or not. Before proving our Lp estimates on σ, we need
to introduce the following:

Definition 3.1. We say that Γ ⊂ ∂Ω is uniformly convex if there exists R < ∞ such that, for every x ∈ Γ and
every unit vector n in the exterior normal cone to Ω at x, we have Γ ⊂ B(z, R) with z = x − Rn.

In the sequel, we will always assume that (H) or (H’) holds, f ± are at least in L1(Γ) (so, f ± are atomless) and (2.15)
is well satisfied. Hence, by Proposition 2.9, we know that the optimal transport plan γ in (2.3) is unique. Let us
decompose again γ into three parts: γ(Γ, Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ, Γ). In addition, let σ(Γ, Γ), σ(Γ, ∂Ω\Γ) and
σ(∂Ω\Γ, Γ) be the transport densities associated with γ(Γ, Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ, Γ), respectively. If σ is the
transport density associated with γ, then it is clear that σ = σ(Γ, Γ) + σ(Γ, ∂Ω\Γ) + σ(∂Ω\Γ, Γ). Thanks to [13], we
have the following:

Proposition 3.1. Assume that Γ is uniformly convex. Then the transport density σ(Γ, Γ) belongs to Lp(Ω) pro-
vided that f ± ∈ Lp(Γ) with p ≤ 2 or f ± ∈ C0,α(Γ) with 0 < α ≤ 1 and p = 2

1−α (with p = ∞ for α = 1). Moreover,
σ(Γ, ∂Ω\Γ) (resp. σ(∂Ω\Γ, Γ)) is in Lp(Ω) as soon as f + ∈ Lp(Γ) (resp. f − ∈ Lp(Γ)) and p < 2. In particular,
σ ∈ Lp(Ω) as soon as f ± ∈ Lp(Γ) and p < 2.

Proof. First, we recall that σ(Γ, Γ) is the transport density between f + − ν+ = f + ⋅ χA+ and f − − ν− = f − ⋅ χA−
(where A± ⊂ Γ are two countable union of connected arcs). Hence, thanks to [13, Proposition 3.3], σ(Γ, Γ) belongs
to Lp(Ω) provided that f ± ∈ Lp(Γ) and p ≤ 2. Moreover, by [13, Proposition 3.5 and Remark 5.10], one can show
that σ(Γ, Γ) is in Lp(Ω) for p > 2 as soon as f ± ∈ C0,α(Γ)with α = 1 − 2

p . On the other hand, σ(Γ, ∂Ω\Γ) is the trans-
port density between ν+ and T−# ν+. So, again by [13, Proposition 3.2 andRemark 5.10], σ(Γ, ∂Ω\Γ)belongs to Lp(Ω)
as soon as f + ∈ Lp(Γ) and p < 2. Similarly, we have σ(∂Ω\Γ, Γ) ∈ Lp(Ω) provided that f − ∈ Lp(Γ) and p < 2.

Now, we will try to extend our Lp estimates on the transport density σ to the case p ≥ 2. Recalling Proposi-
tion 3.1, we just need to study the Lp summability of σ(Γ, ∂Ω\Γ) (it will be the same for σ(∂Ω\Γ, Γ)). We recall
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that σ(Γ, ∂Ω\Γ) is the transport density between ν+ and T−# ν+. In the sequel, we will denote by Γ± ⊂ Γ the set of
points x such that T∓(x) is not an endpoint of ∂Ω\Γ. Then we have the following:

Proposition 3.2. Assume that spt(ν+) ⊂ Γ+, ∂Ω\Γ is C1,1, ϕ+ is λ-Lip with λ < 1 and ϕ+ ∈ C1,1(∂Ω\Γ). Then the
transport density σ(Γ, ∂Ω\Γ) is in Lp(Ω) provided that ν+ ∈ Lp(Γ) for all p ∈ [1,∞].

Proof. First of all, we mention that the proof of this proposition is similar to the one in [8, Proposition 4.7].
Recalling the definition of the transport density (1.6), we have by Proposition 2.3 that

⟨σ(Γ, ∂Ω\Γ), φ⟩ = ∫
Γ

1

∫
0

φ((1 − t)x + tT−(x))|x − T−(x)| dt dν+(x) for all φ ∈ C(Ω).

Fix x0 ∈ spt(ν+). Let Γ0 ⊂ Γ+ be an arc around x0. Let α̃(s) := (s, α(s)), s ∈ [−ε, ε], be a parametrization of
the image of Γ0 by T− and let β(s) := (β1(s), β2(s)) be a parametrization of Γ0 such that α(0) = α󸀠(0) = 0 and
T−(β(s)) = α̃(s) for every s ∈ [−ε, ε]. Now, let Δ be the set of all the transport rays [β(s), α̃(s)], s ∈ [−ε, ε]. For
all y ∈ Δ, we see that there exists a unique pair (s, t) ∈ [−ε, ε] × [0, 1] such that

y = ((1 − t)β1(s) + ts, (1 − t)β2(s) + tα(s)).

For all φ ∈ C(Δ), we have

⟨σ(Γ, ∂Ω\Γ), φ⟩ :=
ε

∫
−ε

1

∫
0

φ((1 − t)β1(s) + ts, (1 − t)β2(s) + tα(s)) l(s) |β󸀠(s)| ν+(β(s)) dt ds,

where
l(s) := |β(s) − α̃(s)| for all s ∈ [−ε, ε].

Hence,

⟨σ(Γ, ∂Ω\Γ), φ⟩ = ∫
Ω

φ(y) l(s) |β
󸀠(s)| ν+(β(s))
J(s, t) dy for all φ ∈ C(Δ),

where

J(s, t) := | det[D(s,t)(y1 , y2)]| = (β1(s) − s, β2(s) − α(s)) ⋅ [(1 − t)(−β󸀠2(s), β
󸀠
1(s)) + t(−α

󸀠(s), 1)].

Then
σ(Γ, ∂Ω\Γ)[y] = l(s) |β

󸀠(s)| ν+(β(s))
J(s, t) for a.e. y ∈ Δ.

Now, we claim that there is a uniform constant C (which does not depend on ε) such that |β
󸀠(s)|
J(s,t) ≤ C. Thanks to

[9, Lemma 2.1], we have
β(s) − α̃(s)
|β(s) − α̃(s)| = ∂τϕ

+(α̃(s)) τ(α̃(s)) − √1 − ∂τϕ+(α̃(s))2 n(α̃(s)), (3.1)

where n(α̃(s)) is the unit exterior normal vector to ∂Ω\Γ at α̃(s) and τ(α̃(s)) := R− π2 [n(α̃(s))] is the unit tangent
vector to ∂Ω\Γ at α̃(s). Hence, it is easy to see that we have the following inequality:

(β1(s) − s, β2(s) − α(s)) ⋅ (−α󸀠(s), 1) ≥ √1 − λ2 dist(spt(ν+), ∂Ω\Γ). (3.2)

Let β̃(r) := (β̃1(r), β̃2(r)), r ∈ [−δ, δ], be a smooth parametrization of Γ0 such that |β̃󸀠| = 1 and β̃󸀠1 > 0. For every
s ∈ [−ε, ε], let r(s) ∈ [−δ, δ] be such that T−(β̃(r(s))) = α̃(s). Thanks to the fact that (H) or (H’) holds, it is not
difficult to see that there is a uniform geometric constant c > 0 such that

(β1(s) − s, β2(s) − α(s)) ⋅ (−β̃󸀠2(r(s)), β̃
󸀠
1(r(s))) ≥ c. (3.3)

Assume that Γ0 as well as its image by T− and ϕ+ are smooth. Then we claim that the map s 󳨃→ r(s) is Lipschitz.
Hence, combining (3.2) and (3.3), we infer that

J(s, t) ≥ c[(1 − t)r󸀠(s) + t].

Consequently,
|β󸀠(s)|
J(s, t) ≤ c

−1 r󸀠(s)
(1 − t)r󸀠(s) + t ≤ 2c

−1max{r󸀠(s), 1}. (3.4)
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On the other hand, thanks to [6, Proposition 2.2], it is well known that the dual problem of (2.9) is the following:

sup{∫
Γ

w dν+ : w ∈ Lip1(Ω), w = ϕ+ on ∂Ω\Γ}. (3.5)

We recall that γ = (Id, T−)#ν+ is the unique optimal transport plan in (2.9). Moreover, the Kantorovich potential
w in (3.5) is clearly given by the following:

w(x) = min{|x − y| + ϕ+(y) : y ∈ ∂Ω\Γ} for every x ∈ Γ.

Now, we see that
(β̃(r(s)) − α̃(s)) ⋅ R π

2
[Dw(α̃(s))] = 0 for all s ∈ [−ε, ε]. (3.6)

Thanks to [9, Proposition 2.2, Lemma 2.1 and Lemma 2.3], w is C2 on ∂Ω\Γ and we have the following:

Dw(α̃(s)) = Dw(α̃(0)) + D2w(α̃(0))(α̃(s) − α̃(0)) + o(|α̃(s) − α̃(0)|)

and
Dw(α̃(0)) = (∂τϕ+(α̃(0)),√1 − ∂τϕ+(α̃(0))2).

Let us denote by κ the curvature on ∂Ω\Γ. Then, by [9, Proposition 2.2], we also have the following:

D2w(α̃(0)) = − K(α̃(0))
1 − ∂τϕ+(α̃(0))2

[

[

1 − ∂τϕ+(α̃(0))2 −∂τϕ+(α̃(0))√1 − ∂τϕ+(α̃(0))2

−∂τϕ+(α̃(0))√1 − ∂τϕ+(α̃(0))2 ∂τϕ+(α̃(0))2
]

]
,

where
K(α̃(0)) = √1 − ∂τϕ+(α̃(0))2κ(α̃(0)) − ∂2ττϕ+(α̃(0)) + ∂nϕ+(α̃(0))κ(α̃(0)).

Hence, one has

Dw(α̃(s)) = [
[

∂τϕ+(α̃(0))

√1 − ∂τϕ+(α̃(0))2
]

]
−

K(α̃(0))
1 − ∂τϕ+(α̃(0))2

[

[

[1 − ∂τϕ+(α̃(0))2]s

−∂τϕ+(α̃(0))√1 − ∂τϕ+(α̃(0))2 s
]

]
+ o(s)

= [[

[

∂τϕ+(α̃(0)) − K(α̃(0))s + o(s)

√1 − ∂τϕ+(α̃(0))2 + K(α̃(0))
√1−∂τϕ+(α̃(0))2 ∂τϕ+(α̃(0))s + o(s)

]]

]

.

By (3.6), we get

[s − β̃1(r(s))][√1 − ∂τϕ+(α̃(0))2 +
K(α̃(0))

√1 − ∂τϕ+(α̃(0))2
∂τϕ+(α̃(0))s]

+ [β̃2(r(s)) − α(s)][∂τϕ+(α̃(0)) − K(α̃(0))s] + o(s) = 0.
But

β̃(r) = β̃(0) + β̃󸀠(0)r + o(r) = (∂τϕ+(α̃(0)),√1 − ∂τϕ+(α̃(0))2)l(0) + β̃󸀠(0)r + o(r).

Therefore,

[s − ∂τϕ+(α̃(0)) l(0) − β̃󸀠1(0) r(s)][√1 − ∂τϕ+(α̃(0))
2 +

K(α̃(0))

√1 − ∂τϕ+(α̃(0))2
∂τϕ+(α̃(0))s]

+ [√1 − ∂τϕ+(α̃(0))2 l(0) + β̃󸀠2(0)r(s) − α(s)][∂τϕ
+(α̃(0)) − K(α̃(0))s] + o(s) = 0.

Then we get

[√1 − ∂τϕ+(α̃(0))2(1 − K(α̃(0))l(0)) −
K(α̃(0))

√1 − ∂τϕ+(α̃(0))2
∂τϕ+(α̃(0))2l(0)]s

− [β̃󸀠1(0)√1 − ∂τϕ+(α̃(0))
2 − β̃󸀠2(0)∂τϕ

+(α̃(0)) +
β̃󸀠1(0)∂τϕ+(α̃(0))K(α̃(0))

√1 − ∂τϕ+(α̃(0))2
s + K(α̃(0))β̃󸀠2(0)s]r(s)

+ o(s) = 0.
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Hence, we have

r(s) = 1 − ∂τϕ+(α̃(0))2 − K(α̃(0)) l(0)

β̃󸀠1(0)√1 − ∂τϕ+(α̃(0))
2 − β̃󸀠2(0)∂τϕ+(α̃(0))

s + o(s).

By (3.3), we have

β̃󸀠1(0)√1 − ∂τϕ+(α̃(0))
2 − β̃󸀠2(0)∂τϕ

+(α̃(0)) = (∂τϕ+(α̃(0)),√1 − ∂τϕ+(α̃(0))2) ⋅ (−β̃󸀠2(0), β̃
󸀠
1(0))

= Dw(α̃(0)) ⋅ R π
2
[β̃󸀠(0)] ≥ c.

Recalling (3.4), we get that

|β󸀠(s)|
J(s, t) ≤ 2c

−1(
1 − ∂τϕ+(α̃(0))2 − K(α̃(0)) l(0)

β̃󸀠1(0)√1 − ∂τϕ+(α̃(0))
2 − β̃󸀠2(0) ∂τϕ+(α̃(0))

+ 1) ≤ C.

Therefore, we get

‖σ(Γ, ∂Ω\Γ)‖pLp(Δ) =
ε

∫
−ε

1

∫
0

l(s)p|β󸀠(s)|pν+(β(s))p

J(s, t)p−1
dt ds

=
ε

∫
−ε

1

∫
0

l(s)p( |β
󸀠(s)|

J(s, t) )
p−1

ν+(β(s))p|β󸀠(s)| dt ds

≤ Cp
ε

∫
−ε

ν+(β(s))p|β󸀠(s)| ds = Cp‖ν+‖pLp(Γ0) .

Hence,
‖σ(Γ, ∂Ω\Γ)‖Lp(Ω) ≤ C‖f +‖Lp(Γ) .

Consequently, under the assumption that (H) or (H’) holds and (2.15) is well satisfied, we have the following:

Proposition 3.3. Assume that Γ is uniformly convex, spt(f ±) ⊂ Γ±, ∂Ω\Γ is C1,1, ϕ± are λ-Lip with λ < 1 and
ϕ± ∈ C1,1(∂Ω\Γ). Then the transport density σ is in L2(Ω) as soon as f ± ∈ L2(Γ) and σ ∈ Lp(Ω) for p > 2 provided
that f ± ∈ C0,α(Γ) with p = 2

1−α . In particular, σ belongs to L
∞(Ω) if f ± are Lipschitz on Γ.

Proof. This follows immediately from Propositions 3.1 and 3.2.

Finally, we conclude this section by the following Sobolev regularity on the solution u of themixed least gradient
problem (2.1).

Proposition 3.4. Assume that Γ is uniformly convex. Then the solution u of problem (2.1) belongs to W1,p(Ω) as
soon as g ∈ W1,p(Γ) with p < 2. In addition, assume that spt([∂τg]±) ⊂ Γ±, ∂Ω\Γ is C1,1, ϕ± are λ-Lip with λ < 1
and ϕ± ∈ C1,1(∂Ω\Γ). Then u ∈ W1,2(Ω) provided that g ∈ W1,2(Γ). For p > 2, u ∈ W1,p(Ω) as soon as g ∈ C1,α(Γ)
with p = 2

1−α . And, u is Lipschitz as soon as g ∈ C
1,1(Γ).

Proof. Thanks to Proposition 2.7, the pair (v := R π
2
Du, χ := [∂τu]|∂Ω\Γ) is a solution to problem (2.2). Yet, by

Proposition 2.6, |v| is nothing else than the transport density σ in problem (2.3). Hence, Propositions 3.1 and 3.3
conclude the proof.

4 Applications to the least gradient problem with Dirichlet and
Neumann boundary conditions

In this section, we apply all the results of the previous sections to prove existence and uniqueness of a solution
u to problem (1.8) and to giveW1,p estimates on this solution u. First, we consider the following problem:

inf{∫
Ω

|Du| − ∫
∂Ω\Γ

ψ u dH1 : u ∈ BV(Ω), u|∂Ω ∈ BV(∂Ω), u|Γ = g}. (4.1)
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This is exactly problem (1.8) but with the additional constraint u|∂Ω ∈ BV(∂Ω). Let γ : [0, L] 󳨃→ ∂Ω\Γ be a unit
parametrization of ∂Ω\Γ and ψ ∈ L∞(∂Ω\Γ). Then we introduce the following constant:

Λψ = sup{
| ∫

l2
l1
ψ(γ(s)) ds|
|γ(l2) − γ(l1)|

: 0 ≤ l1 < l2 ≤ L}.

Hence, we have the following results:

Theorem 4.1. Assume that Γ is strictly convex, ∂Ω\Γ is visible from Γ, g ∈ BV(Γ) and ψ is a bounded function on
∂Ω\Γ with Λψ ≤ 1. Then problem (4.1) reaches a minimum.

Proof. First of all, we define the Lipschitz function ϕ on ∂Ω\Γ such that ψ = ∂τϕ as follows:

ϕ(γ(l)) :=
l

∫
0

ψ(γ(s)) ds for all l ∈ [0, L].

Then we see that Λψ ≤ 1 implies that ϕ is a 1-Lip function on ∂Ω\Γ. Indeed, we have the following:

|ϕ(γ(l1)) − ϕ(γ(l2))| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

l2

∫
l1

ψ(γ(s)) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Λψ|γ(l1) − γ(l2)|.

By integration by parts, we have

inf{∫
Ω

|Du| − ∫
∂Ω\Γ

ψ u dH1 : u ∈ BV(Ω), u|∂Ω ∈ BV(∂Ω), u|Γ = g}

= inf{∫
Ω

|Du| + ∫
∂Ω\Γ

ϕ ∂τu dH1 − ϕ(γ(L)) g(γ(L)−) : u ∈ BV(Ω), u|∂Ω ∈ BV(∂Ω), u|Γ = g}.
(4.2)

Thanks to Theorem 2.8, we see that problem (4.2) has a solution u, which turns out to be clearly a solution to
problem (4.1).

In the following example, we will show that if the assumption that Λψ ≤ 1 is not well satisfied, then a solution
to problem (1.8) does not exist. More precisely, the minimal value is not finite!

Example 4.1.1. Let Ω be the bounded domainwith Γ := {(x1 , x2) : x21 + x
2
2 = 1, x2 ≥ 0}, ∂Ω\Γ := [−1, 1] × {0} and

g = 0 on Γ. Fix ε > 0, then we set ψ := (1 + ε)χ|[0,1]×{0} and let ϕ be such that ψ = ∂τϕ. It is clear that Λψ = 1 + ε.
For every n ∈ ℕ, we define vn := n ⟨−1, 0⟩ ⋅H1

|[0,1]×{0}. Then we see that vn is admissible in problem (2.2) since
we have

∫

Ω

vn ⋅ ∇φ = n ∫
[0,1]×{0}

∇φ(x) ⋅ ⟨−1, 0⟩ dH1(x) = n[φ(0, 0) − φ(1, 0)] = ∫
∂Ω

φ d[χ+n − χ−n]

for all φ ∈ C1(Ω), where χ+n := n δ(0,0) and χ−n := n δ(1,0). Moreover, we have the following:

∫

Ω

|vn| + ∫
∂Ω\Γ

ϕ d[χ+n − χ−n] = n[1 + ϕ(0, 0) − ϕ(1, 0)] = −εn → −∞.

Then inf (2.2) = −∞. Recalling Proposition 2.7, this also implies that inf (2.1) = −∞. In particular, inf (1.8) = −∞
and so, a solution u for problem (1.8) does not exist!

On the other hand, we have the following uniqueness result:

Theorem 4.2. Assume that Γ is strictly convex, ∂Ω\Γ is visible from Γ and ψ ∈ L∞(∂Ω\Γ) with Λψ < 1. Then
problem (4.1) has a unique solution provided that g ∈ BV(Γ) ∩ C(Γ).

Proof. This follows immediately from Proposition 2.10.

In addition, we get the following Sobolev regularity on the solution u.
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Proposition 4.3. Assume that Γ is uniformly convex, ∂Ω\Γ is visible from Γ and ψ ∈ L∞(∂Ω\Γ) with Λψ < 1.
Then the solution u of problem (4.1) is in W1,p(Ω) as soon as g ∈ W1,p(Γ) with p < 2. In addition, assume
that spt([∂τg]±) ⊂ Γ±, ∂Ω\Γ is C1,1 and ψ is Lipschitz. Then u ∈ W1,2(Ω) provided that g ∈ W1,2(Γ). For p > 2,
u ∈ W1,p(Ω) as soon as g ∈ C1,α(Γ) with α = 1 − 2

p . In particular, u is Lipschitz as soon as g ∈ C
1,1(Γ).

Proof. This follows immediately from Proposition 3.4, using the fact that ψ = ∂τϕ.

Finally, it remains to show that problems (1.8) and (4.1) are completely equivalent. We recall that problem (1.8)
is given by

inf{∫
Ω

|Du| − ∫
∂Ω\Γ

ψ u dH1 : u ∈ BV(Ω), u|Γ = g}.

Let u ∈ BV(Ω) such that u|∂Ω = g̃ where g̃ = g on Γ. Let (g̃n)n ⊂ BV(∂Ω) be such that g̃n = g on Γ and g̃n → g̃
in L1(∂Ω). Thanks to [1], we may find a sequence (wn)n in BV(Ω) satisfying

wn |∂Ω = g̃n − g̃ and ∫
Ω

|Dwn| ≤ ∫
∂Ω

|g̃n − g̃| +
1
n
.

Now, set un := u + wn . It is clear that un ∈ BV(Ω)with un = g̃n on ∂Ω. So, un is admissible in (4.1). Moreover, we
have the following:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

|Dun| − ∫
Ω

|Du|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

Ω

|Dwn| ≤ ∫
∂Ω

|g̃n − g̃| +
1
n .

Then we have
∫
Ω

|Dun| − ∫
∂Ω\Γ

ψ un dH1 → ∫
Ω

|Du| − ∫
∂Ω\Γ

ψ u dH1 .

Hence, we get that

inf{∫
Ω

|Du| − ∫
∂Ω\Γ

ψ udH1 : u ∈ BV(Ω), u|Γ = g} ≤ inf{∫
Ω

|Du| − ∫
∂Ω\Γ

ψ udH1 : u ∈ BV(Ω), u|∂Ω ∈ BV(∂Ω), u|Γ = g}.

Yet, it is obvious that the other inequality also holds. Then we infer that problems (1.8) and (4.1) have the same
minimal values, i.e. inf (1.8) = inf (4.1). In particular, we get immediately the following existence result:

Theorem 4.4. Under the assumptions of Theorem 4.1, problem (1.8) admits a solution u. Moreover, the trace of u
is in BV(∂Ω).

In addition, we claim that if the assumptions of Theorem 4.2 hold and u solves problem (1.8), then wemust have
u|∂Ω ∈ BV(∂Ω). Thanks to Theorem 4.2, this will imply that the solution u of problem (1.8) is unique as soon as
g ∈ C(Γ). The rest of the paper is dedicated to proving this claim. Fix u a solution in (1.8). Let Ω󸀠 be an open
bounded domain containing Ω such that ∂Ω ∩ ∂Ω󸀠 = ∂Ω\Γ, g̃ ∈ BV(Ω󸀠\Ω) be a function with trace g on Γ and ũ
be the BV extension of u to Ω󸀠 with ũ = g̃ on Ω󸀠\Ω. First, it is easy to see that

∫
Ω󸀠 |Dũ| ≤ ∫Ω󸀠 |D(ũ + v)| − ∫∂Ω\Γ ψ v dH

1

for any function v ∈ BV(Ω󸀠) such that spt(v) ⊂ Ω\Γ. For every s ∈ ℝ, we define the super-level set

Es := {x ∈ Ω󸀠 : ũ(x) ≥ s}.

Then we claim that
∫
Ω󸀠 |DχEs | ≤ ∫Ω󸀠 |D(χEs + v)| − ∫∂Ω\Γ ψ v dH

1 (4.3)

for any function v ∈ BV(Ω󸀠) such that spt(v) ⊂ Ω\Γ. Yet, if (4.3) holds, then we clearly have

Per(Es) − ∫
Es∩∂Ω\Γ

ψ dH1 ≤ Per(E) − ∫
E∩∂Ω\Γ

ψ dH1 (4.4)
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for all E ⊂ Ω󸀠 such that EΔEs ⊂ Ω\Γ. In particular, we have

Per(Es) ≤ Per(E) (4.5)

for all E ⊂ Ω󸀠 such that EΔEs ⊂ Ω. Hence, if α is a connected component of the level set ∂Es in Ω, then by (4.5) α
must be a segment [xs , ys]. Now, assume that ys := γ(l⋆) is an interior point of ∂Ω\Γ (i.e. 0 < l⋆ < L). Let ε > 0
be small enough such that B(ys , ε) ∩ Γ = 0. Set zs := [xs , ys] ∩ ∂B(ys , ε). Recalling (4.4), it is not difficult to see
that depending on the monotonicity of g at the point xs , we either have

|zs − ys| + ϕ(ys) ≤ |zs − γ(l)| + ϕ(γ(l)) for all 0 ≤ l ≤ L,

or
|zs − ys| − ϕ(ys) ≤ |zs − γ(l)| − ϕ(γ(l)) for all 0 ≤ l ≤ L.

Hence, we either have ys = T+(xs) or ys = T−(xs). Since u(ys) = g(xs), this implies that u|∂Ω\Γ ∈ BV(∂Ω\Γ)with
|∂τu|(∂Ω\Γ) ≤ |∂τg|(Γ). Finally, it remains to prove (4.3). To this end, the idea will be to follow the proof of
[2, Theorem 1]. Fix r ∈ ℝ, then we define u1 := max{ũ − r, 0} and u2 := min{ũ, r}. We see that u1 + u2 = ũ and
we have ∫Ω󸀠 |Du1| + ∫Ω󸀠 |Du2| = ∫Ω󸀠 |Dũ|. Hence, we get
∫
Ω󸀠 |Du1| + ∫Ω󸀠 |Du2| = ∫Ω󸀠 |Dũ| ≤ ∫Ω󸀠 |D(ũ + v)| − ∫∂Ω\Γ ψ v dH

1 ≤ ∫
Ω󸀠 |D(u1 + v)| + ∫Ω󸀠 |Du2| − ∫∂Ω\Γ ψ v dH

1

and so,
∫
Ω󸀠 |Du1| ≤ ∫Ω󸀠 |D(u1 + v)| − ∫∂Ω\Γ ψ v dH

1

for any function v ∈ BV(Ω󸀠) such that spt(v) ⊂ Ω\Γ. In the same way, we see that we also have

∫
Ω󸀠 |Du2| ≤ ∫Ω󸀠 |D(u2 + v)| − ∫∂Ω\Γ ψ v dH

1 .

Hence, for s ∈ ℝ and ε > 0, we infer that the function us,ε := 1
ε min{max{ũ − s, 0}, ε} also satisfies

∫
Ω󸀠 |Dus,ε| ≤ ∫Ω󸀠 |D(us,ε + v)| − ∫∂Ω\Γ ψ v dH

1

for any function v ∈ BV(Ω󸀠) such that spt(v) ⊂ Ω\Γ. IfL2({x ∈ Ω󸀠 : ũ(x) = s}) = 0, then it is clear that us,ε → χEs
in L1(Ω󸀠) when ε → 0. Moreover, we see that us,ε |∂Ω\Γ → χEs |∂Ω\Γ in L1(∂Ω\Γ). If L2({x ∈ Ω󸀠 : ũ(x) = s}) > 0,
then there will be a sequence sn → s with sn < s and L2({x ∈ Ω󸀠 : ũ(x) = sn}) = 0 for all n. Yet, it is easy to see
that χEsn → χEs in L1(Ω󸀠) and χEsn |∂Ω\Γ → χEs |∂Ω\Γ in L1(∂Ω\Γ)when n →∞. Butwe also know that usn ,ε → χEsn
in L1(Ω󸀠) and usn ,ε |∂Ω\Γ → χEsn |∂Ω\Γ in L

1(∂Ω\Γ) when ε → 0. Hence, by a diagonal argument, we infer that
there is a sequence of functions {uε}with uε → χEs in L1(Ω), uε |∂Ω\Γ → χEs |∂Ω\Γ in L1(∂Ω\Γ) and such that, for
every ε, we have

∫
Ω󸀠 |Duε| ≤ ∫Ω󸀠 |D(uε + v)| − ∫∂Ω\Γ ψ v dH

1 (4.6)

for any function v ∈ BV(Ω󸀠) such that spt(v) ⊂ Ω\Γ. Now, in order to pass to the limit in (4.6) and get (4.3), we
will adapt the proof of [21, Theorem 3]. Let A be a set such that ∂Ω\Γ ⊂ A, A ⊂ Ω\Γ, A ∩ Ω is open, spt(v) ⊂ A
and such that the following holds:

lim
ε→0
∫

∂A∩Ω󸀠 |uε − χEs | = 0.
For each ε, set vε := [χEs + v − uε]χA . It is clear that vε ∈ BV(Ω󸀠) and spt(vε) ⊂ Ω\Γ. Hence, we have

∫
Ω󸀠 |Duε| ≤ ∫Ω󸀠 |D(uε + vε)| − ∫∂Ω\Γ ψ vε dH

1 . (4.7)
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Yet,
∫
Ω󸀠 |D(uε + vε)| = ∫Ω󸀠 |D(uε + [χEs + v − uε]χA)| = ∫Ω󸀠∩A |D(χEs + v)| + ∫Ω󸀠\A |Duε| + ∫∂A∩Ω󸀠 |χEs − uε|

and
∫

∂Ω\Γ

ψ vε dH1 = ∫
∂Ω\Γ

ψ χEs dH1 + ∫
∂Ω\Γ

ψ v dH1 − ∫
∂Ω\Γ

ψ uε dH1 .

Recalling (4.7), we get

∫
Ω󸀠 |Duε| ≤ ∫Ω󸀠∩A |D(χEs + v)| + ∫Ω󸀠\A |Duε| + ∫∂A∩Ω󸀠 |χEs − uε| − ∫∂Ω\Γ ψ χEs dH

1 − ∫
∂Ω\Γ

ψ v dH1 + ∫
∂Ω\Γ

ψ uε dH1 . (4.8)

Consequently, we have

∫
Ω󸀠∩A |Duε| ≤ ∫Ω󸀠∩A |D(χEs + v)| − ∫∂Ω\Γ ψ v dH

1 + ∫
∂A∩Ω󸀠 |χEs − uε| + ∫∂Ω\Γ ψ (uε − χEs ) dH

1 .

Hence,
lim inf
ε→0
∫

Ω󸀠∩A |Duε| ≤ ∫A∩Ω󸀠 |D(χEs + v)| − ∫∂Ω\Γ ψ v dH
1 .

But uε → χEs in L1(Ω󸀠). Then, by the lower semicontinuity of the total variation, we have

∫
Ω󸀠∩A |DχEs | ≤ lim inf

ε→0
∫

Ω󸀠∩A |Duε|.
So, we get that

∫
Ω󸀠∩A |DχEs | ≤ ∫Ω󸀠∩A |D(χEs + v)| − ∫∂Ω\Γ ψ v dH

1 .

This concludes the proof of our claim (4.3). We finish this paper by recalling then the following results:

Theorem 4.5. Under the assumptions of Theorem 4.2, the solution of problem (1.8) is unique provided that
g ∈ BV(Γ) ∩ C(Γ).

Theorem 4.6. Assume that Γ is uniformly convex. Let u be the unique solution of problem (1.8). Then we have

g ∈ W1,p(Γ) 󳨐⇒ u ∈ W1,p(Ω) for all p < 2.

In addition, assume that ∂Ω\Γ is C1,1, ψ is Lipschitz and spt([∂τg]±) ⊂ Γ±, where Γ± ⊂ Γ is the set of points x such
that T∓(x) is an interior point of ∂Ω\Γ. Then we have the following statements:

{{{
{{{
{

g ∈ W1,2(Γ) 󳨐⇒ u ∈ W1,2(Ω),

g ∈ C1,α(Γ) 󳨐⇒ u ∈ W1, 2
1−α (Ω) for all α ∈ ]0, 1[,

g ∈ C1,1(Γ) 󳨐⇒ u ∈ Lip(Ω).
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