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1 Introduction

We maintain the previous work in [1] and prove the boundary properties of solutions to fractional p-Laplacian
equations.

The first result is a generalized Hopf’s Lemma. To bring the result, we need the notion of Wiener regular
boundaries, 6-neighborhoods, and the torsion function. Let @ c R" be a bounded openset, p > 1,and 0 < s < 1.
Denote (-A,)’ as the s-fractional p-Laplacian, which satisfies

|u() - u@)PuX) - u®)) dy

|x — y|n+ps

(-Ap)’u(x) =2 lir[(l) J
€—

R™"\B(x,€)
pointwise for x € R". We say that Q has regular boundary for the s-fractional p-Laplacian if for every f € L*°(Q),
g € C(R"), and every weak solution u of (-Ap)°u=f in Q with u=g in R"\ Q, we have u € C(R"), see
Section 3 for more details. Now, assume that Q c R" is a bounded open set, which has Wiener regular
boundary for the s-fractional p-Laplacian. For § > 0, the §-neighborhood of Q, denoted by Qs, is defined
by {x € R" : dist(x, Q) < 8}. The torsion function u; € L?;l(IR”) N C(R™) satisfies

Uor =0 InR"\Q,
(-0p)’Uor =1 inQ,
in the viscosity sense, see Proposition 2.8 and Proposition 2.7 for the existence of uy,. We say that K € QifK c Q.

Lemma1.1. Letu € ngl(lR") N C(Qs) be a non-negative functionfora§ > 0 and K € Q. Assume that =0p)uz=f
in Q in the viscosity sense, where f € C(Q) satisfies

up-1 .
flxo) > -2 J ﬁ dy ifxo € Q, u(xo) =0,
]R'l
p-1
lim supf(x) = -2 J u—(y) dy ifxp € 0, u(xp) =0.
Q3x—Xg e |X0 _y|n+ps
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Then u > 0in Q and
U>Clyy inQ

for a constant C > 0.
Setting f = g(u), we arrive at the following result:

Corollary 1.2. Letu € ngl(lR") N C(Qs) be a non-negative viscosity supersolution of (=0p)Su = g(u) in Q, where
§>0,vg € C([0,00)), vg(0) = 0. Then either u = 0 a.e. inR™, or u > 0in Q and u > Cuoy for a constant C > 0.

If Q hasa CV! boundary, then, by [16, Lemma 2.3], u(x) > Cdist(x, Q)% for x € Q, where C > 0 is a constant.
Hence, the above result generalizes the previous versions of Hopf’s lemma for the s-fractional p-Laplacian in
[8,9, 13, 14, 20, 25].

We remark that we could not verify the argument in [9, Lemma 4.1], which considers the case that
g(u) = clulP~?u in a ball B ¢ R" of radius R, where c ¢ C(Q)is negative. To elaborate on the issue, the authors
take the set B, := {x € B : dist(x, 0B) < p} and a compact subset K c B\ B, where p is taken small enough such
that (-Ap)* dist(x, 0Q)% € L°°(B,), see [15, Theorem 2.3]. They choose a large enough such that (-A,)*(d® + alg)
becomes very small in compare to clulP~u in Bp, where d is the function dist(x, dB). Then they consider
0 < € <1 small enough such that e(R® + a) < infB\Bp u and define v := e(d® + alk). Finally, they claim that,
since v < u in R"\ B, and (-Ap)°v < (-Ap)°u in By, one can apply comparison principle to obtain v < u
in B,. However, (-A,)%v = el"l(—Ap)s(ds + alk) and the decrease of € > 0 increases the value of (-Ap)’v, since
d® + alg < clulP~lu < 0 by the maximum principle, see [15, Theorem 1.2]. Hence, it is not clear that (-A,)Sv
remains below (-A,)%u in B,,.

Note that as it is mentioned in [1] and [14, Remark 2.8], Corollary 1.2 does not hold for the local p-Laplacian,
see [24, 28] for the necessary assumptions on g to have strong maximum property. Hence, the nonlocal property
of fractional p-Laplacian plays a key role in the proof.

We observe that unlike [1, Lemma 1.2], to prove Lemma 1.1, we need a stronger continuity of u around
a neighborhood of Q.

The second result is a global boundary Harnack theorem. We briefly mention that Vz,’p (QIR") is the frac-
tional Sobolev space on R" with the boundary value g in the trace space VS?(Q|R"), see Section 2.1 for more
details.

Theorem 1.3. Let § > 0, u € C(Qs) N V" (QIRM), v € C(Qs) N V7 (QURM) satisfy

u>0, v>0 inQ,

1
0< Egvsgungst inR"\ Q,
for B> 0,vM >0, and
_2(diam Q)"+ J Wl dy < (-0 u<l inQ,
K
_2(diam Q)"+ I Vly)dy < (-Ap)°v<1 ing,
K
in the locally weak sense, where K e Q. If either u(xo) = D, v(xo) = D or |ullysq\k) = D, [IVlLe@\k) = D for a fixed
point xo € Q \ K and some constants D > 0, 1 < q < oo, then

u .
C < m <Cy InQ,
where C1, C, are positive constants depending on Q, §,K, n, s, p, D, B, M, Xg or q.

Up to the knowledge of the author, there are several results for the boundary Harnack theorem for the linear
fractional Laplacian, see [1-3, 26, 27], but there is none for the fractional p-Laplacian. In the case of g, =0,
V = Uior in Theorem 1.3, we derive the following corollary:

Corollary 1.4. Let § > 0, u € C(Qs) N Vg”’(szuR") satisfy u > 0in Q and

—2(diam Q)" J wly)dy < (-0 u<1 ing,
K
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in the locally weak sense, where K e Q. If either u(xo) > D or ||ullLeo\x) = D, where xo € Q \ K is a fixed point and
D > 0,1 < q < oo are fixed constants, then
supu < Cinfu,
B B

for every subset B € Q, where C is a positive constant, which depends on Q, 8, K, n, s, p, D, Xo or q.

In the last result, we prove the isolation of the first (s, p)-eigenvalue.
Define the Sobolev exponent

pn ifps <n,
pii=qn-Ps
%} ifps>n,
and consider the following minimization problem:
S lp(x) — pIP . _
Ap,q = ¢E%:Iglof(g)‘[ J-J’ W dx dy . ||¢||L‘1(Q) =1 , (11)
R*xRR?

for1l<q<p;.

Theorem 1.5. If 1 < q < p and Q has regular boundary for the s-fractional p-Laplacian, then there exist no
sequences A; > Ap g, Ui € Vg’p (Q|R™), which satisfy

luillLa) =1,
lim 4; = Np,q»
1—00

(=8p)°ui = Ailuil“*u;  weakly in Q.

This generalizes previous results in [1, 5, 11]. Moreover, we bring a shorter proof for the case of C>! boundary
condition and p > 2, see Remark 5.5. We remark that the range 1 < g < p is used in two major parts, which play
key roles in the proof of Theorem 1.5. First, we derive that the minimizes of Ap 4 are unique, up to a multipli-
cation by a constant, and strictly positive or negative on Q, see Proposition 5.3. Second, we imply that the only
(s, p)-eigenvalue A > 0 with non-negative (s, p)-eigenfunction u, i.e., a non-negative function u € Vg’p (QIRM)
which satisfies (-A,)%u = Alu|92u weakly in Q and lullacey = 1, is Ap 4, see Proposition 5.4. Notice that in the
case of g = p in [5], the isolation of the first (s, p)-eigenvalue is proved without the assumption of Wiener
regularity on the boundary of Q.

The main difficulty in this work is the proof of a similar version of [1, Lemma 5.1] for solutions to fractional
p-Laplacian. The nonlinearity of the equation causes the argument in [1, Lemma 5.1] to fall down. To resolve the
issue, we apply the method of the proof for the comparison principle for viscosity solutions. Then the argument
follows in the same direction as proof of [13, Lemma 3.1]. One of the interesting aspects of this work is the
simplicity of proofs, although one works with the weakest notion of solutions, namely the viscosity solutions.

The summary of the whole work is as follows: First, we bring the definitions of spaces and notions of solu-
tions in Section 2. Then, in Section 3, we present the Wiener criterion for the s-fractional p-Laplacian with
a nonzero right-hand side. Afterward, the first two results, namely a generalized Hopf’s lemma and global
boundary Harnack inequality are proved in Section 4. Finally, in Section 5, we prove the isolation of the first
(s, p)-eigenvalue.

2 Preliminaries

In the entire work, p > 1,0 < s < 1, and Q ¢ R" is a bounded open set.

2.1 Spaces

For every K c R" and x € R",wedefine K+ x:={y e R": y =z + X,z € K} Let Lﬁ)_cl(IR") be the space of mea-
surable functions u : R" — R such that [Jull;s-1, < oo for every compact subset K ¢ R". The space ngl(lR”)
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p-1
consists of u € Lige

(R") satisfying

dx < c0.

[ lucoirt
-

Julf, T

IRI[
For every measurable function u : R* — R, we define the semi-norm

po [ w0 -uGIP
[l ysp mmy T Ty dxdy.

For the boundary value of solutions, we consider the space of functions

, ) ) ) u(x) —u(y)
VSP(QIRM) := {u R" - R:ulg e LP(Q), ———~= X |n/P+S e LP(Q x lR")},
with the norm o WP
u(x)—u
”u"I{)/S,P(QHRn) = J |u(x)|P dX + J W dX dy

Q QxR
We denote V.7 (QIR") as functions u : R" — R which satisfy

loc
u(x) — u(y)|?
J lu(x)|P dx + J luto = uy)” lg()_ngy dxdy < oo,

K KxIR"
for every compact set K c Q. Note that by fractional Poincaré-Sobolev inequality, see Theorem 2.1, [-]ys» is
a norm on Cg°(Q). The completion of the space Ci°() in VSP(Q|R") with respect to the norm [ - Jyss(rr) is
denoted hy Vg’p (Q|R™), and the space of functions with boundary g € VSP(Q|R") is defined by

VP (QIRY) = {u e VSP(QIRY) : u - g € VP (QIRM)}.

We introduce (Vs P(QIRM))* as the dual space of V' P (QI]R") and let || - II(Vsp (qrm))~ denote the natural norm on
(Vs P(QIRM))*. Define the Hélder dual ofpbyp/,ie, —, + = = 1. For every measurable u : R® - Rand K ¢ R",
the norm | - ||ce(x) is defined by
e = sup MU0
(x,y)eKxK |X—y|a
The set of critical points of a differentiable function u is denoted by Ny,. Let D c Q be an open subset. For every
B =1, we define C%(D) as the space of C? functions u on D satisfying

(min{dist(x, NOFL 1 . |D2u(x)| )
XeD\N, [Vu(x)| dist(x, N )B-2

For example, u(x) = |x - xq|? € CIZ;(Q) for every xo € R", B > 2. Note that we need to use the space CIZ;(D) to
define the notion of viscosity solutions, see [18].

2.2 Fractional Poincaré-Sobolev inequality and fractional Sobolev embedding

We bring the fractional Poincaré—Sobolev inequality.
Theorem 2.1. Let Q c R" be an open bounded subset. Then, for every u € C3°(Q), we have
Nl s gy < Crlulvsogmey  ifps <n,
lullee) < Calulyserny i ps > n,
lullLagy < Calulvserny Ifps =n,
forevery 1 < q < oo, where Cy depends on n, s, p, C, depends onn, s, p, Q, and C3 depends on n, s, p, q, @

Proof. The proof is essentially contained in [23, Theorems 8.1, 8.2, 9.1]. However, since the norms and spaces
are slightly different, we bring the proof for the reader’s convenience. First, by [6, Propositions 4.1 and 4.5],
we derive that the fractional Sobolev spaces in [23], which are defined via interpolation, are equivalent to
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VSP(R™). Now, for the case ps < n, we refer to [23, Theorem 8.1]. Moreover, the proof of the case ps > n exists
in [4, Propositions 2.9]. For last case ps = n, we first use [23, Theorem 9.1] and Hoélder’s inequality to imply that
lulLa) < Cllullir@ny + [U]vsewrny), 2.1)

foreveryu € CSO(Q) and 1 < q < oo, where C is a constant depending on n, s, p, q, Q. Now, by [4, Lemma 2.4], it
is obtained that

lullr @) < C'ulvserny, (2.2)
for every u € C3°(R), where C' is a constant depending on n, s, p, Q. Hence, by (2.1) and (2.2), we finish the proof
for case of ps = n. O

Remark 2.2. By Hélder’s inequality and Theorem 2.1, we have L(l’;)'(Q) C (Vg’p (QIR™))* if ps # n, where we
define the action of f € L?*)'(Q) on u € V;”(QIR") by the paring

qudx.

R

Moreover, by Holder’s inequality and Theorem 2.1, LY(Q) ¢ (Vg’p (QIR"))* if ps = nforevery 1 < q < co.
Note that, for every 1 < g < p;, we have
Il < Clulyspgn foru € VP (QIRY),

where we used Theorem 2.1 and Holder’s inequality. Hence, the eigenvalue A, 4 defined in (1.1) is strictly positive,
and the inverse Az;,lq is the best constant C in the above inequality.

Theorem 2.3. The space Vg’p (QIR™) is compactly embedded in LY (Q) for bounded open sets @ ¢ R" and1 < q < p.

Proof. Similar to [1, Theorem 2.2], we consider a large enough ball B c R" such that @ c B. Then Vg’p (QIRM) ¢
Vg’p (BJR™) and B is an extension domain, see [10, Theorem 5.4]. By [10, Theorem 7.1], Vg’p (B|R") is compactly
embedded in LY(B) for 1 < g < p. In conclusion, Vg’p(QllR") is compactly embedded in LY(Q) for1 < g < p. O

2.3 Notions of solutions

In this subsection, we bring the different notions of solutions for fractional p-Laplacian equations.
The first notion is pointwise solutions.

Definition 2.4. For every f € C(Q), we say that u € ngl(]R”)ﬂC(Sz) satisfies (-Ap)°u = f pointwise in Q if
_ -2 _ _ -2 _
[u(x) — u)P~*(u(x) - u(y)) dy := 21im j [u(x) — u)P~*(u(x) - u(y))

2P.V. j
|X—y|”+ps 650 |X _y|n+ps
R® R™\B(x,€)

dy = filx) forx e Q.

For simplicity, we remove the notation P.V. in the rest of the work.

The following is the definition of the locally weak and weak solutions.
Definition 2.5. Let f € L}OC(Q). We say that u € ngl(IR") n Vlso’f (Q|R") is locally weak subsolution (supersolu-
tion) of the equation (-A,)*u = f in , or equivalently we say that (-Ap)’u < (=) f'in Q in the locally weak sense
if
- p-2 — —
) — u()l ﬁi(f)y |nfp(sy)) @00 =800 4. 4y < (o) [ o600, 03

R"xR" Q

for all non-negative ¢ e C;°(Q). Note that, if ¢ is supported in K € Q, we have

[u(x) — u)IP~2(ux) - u)) ($(x) - p(y)) dxdy +2 j lu(x) = u@)IP-2(ux) - u)) (P(x) - p(y)) dxdy
|X _y|n+ps IX _leH-pS
KxK KxR"
[u(x) — u)IP-2(u(x) - u®)) (P(x) - ¢()) dxdy
|X _y|n+ps 4

RPxR?



260 —— A. Ataei, Boundary behavior of solutions DE GRUYTER

so the left-hand-side of (2.3) is well-defined for u € Lﬁ;l(IR”) n Vls(;f (QIR™). If u is a locally weak subsolution
and supersolution of (-Ap)*u = f in , then we say that (—Ap)°u = f locally weakly in Q. In the case that
ue Vj,”’(szuR") for a function g € VP (Q|R"), f € (Vg’p(QHR”))*, and (—Ap)*u = f locally weakly in Q, we call u

a weak solution of (-Ap)u = fin Q.
The following is the definition of viscosity solutions.

Definition 2.6. Wesaythatu € Lﬁ;l(IR”) N C(Q) is a viscosity subsolution (supersolution) of (-Ap)Su = f'in Q for
f € C(Q), or equivalently we say that (-A,)’u < (>) fin Qin the viscosity sense, if for every xo € Q, B(xo,7) C Q,
and a function ¢ € C2(B(xp, r)) which touches u from above (below) at Xy, i.e.,

d(xo) = u(xo),
¢ > (<) u inB(xo, 1)\ {xo},
and satisfies at least one of the following:
(@ Vo(xo) #00rp > 5%,

(b) Vo(xo) =0, xp is an isolated critical point of @, ¢ € Cé(B(xo, r)) for some 8 > %, andl<p< %
we have

_ -2 -
ZJ|W(X0) WO o) = W) dy < (2) fixo),

|X0 _y|n+ps
R?

where

w=¢ inB(xp,1),

w=u inR"\B(xg,r).
We define (-Ap)°u = fin Q in the viscosity sense if u is a viscosity subsolution and supersolution of (-A,)’u = f
in Q.

Now, we prove the weak supersolutions with right-hand sides are viscosity supersolutions, see [18] for zero
right-hand side.

Proposition 2.7. Letu e ngl(]R") NC(R)N Vf(;f(szuR") be alocally weak subsolution (supersolution) of (-Ap)’u =

finQ, where f € C(Q). Then u is a viscosity subsolution (supersolution) of (-Ap)Su = f in Q.

Proof. We prove the case of subsolutions and the other one follows immediately by replacing u with —u. Assume
that x € Q,r > 0 satisfy B(x,r) c Q, and ¢ € C2(B(x, r)) touches u from above at the point x, which satisfies
either the condition (a) or (b) in Definition 2.6. Define

w:=¢ InB(x,r),

w:=u inR"\B(x,r).
Assume that (-Ap)Sw(x) > f(x). Then, by the continuity of f and (-A,)w in B(x,r), see [18, Lemma 3.8],
we have (-A,)’w > f + § pointwise and locally weakly in B(x, r') for some small enough § >0,0 <1’ <.
By [18, Lemma 3.9], for small enough € >0 and n € C%(B(x, r")) satisfying n(x) =1 and 0 < n < 1, we have
(-Ap)S(-w + €n) < —f pointwise in B(x, r’), and -w + en is a locally weak subsolution of (-0p)s(-w+en) =-f
in B(x, r'"). Hence, (-Ap)*(w — en) > f pointwise, and w — en is alocally weak supersolution of (-A,)*(w — en) = f
in B(x, r"). Now, define another function

w' :=¢ inB(x,r"),

w':=u IinR"\B(x,1").

Then ! ! p=2((y! !
ZJ |(w” —en)(z) - (W —en@)IP“((W’ - en)(z) — (W’ - en)(y)) dy
2= ymes
]R'l
- —(w - -2 — —(w -
ZZJ |(w—en)(z) - (w—en)WIP*((w - en)(2) - (W - en)(y)) dy
2 - y[rees

R

= (=0p)*(w —en) 2 fz),
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pointwise for z € B(x, r'). Hence, w’ — en = uonR" \ B(x, r') and and w’ - en is alocally weak supersolution of
(-4p)® (w' - €n) = fin B(x, r"). Then, by [15, Propostion 2.10], we have w’ — en > uin R™. This is in contradiction
with

w'(x) - en(x) = p(0) — en(x) = u(x) - € < u(x).

In conclusion, (-A,)’w(x) < f(x) for every x e Q, which implies that u is a viscosity subsolution of (-A,)%u = f
in Q. O

The following proposition can be proved along the lines of [21, Theorem 8] and [18, Theorem 2.4].
Proposition 2.8. Foreveryf ¢ (Vg’p(QllR"))*, g € VSP(QIRM), there exists a weak solution u € Vg,’p(QllR") to
(-0p)u=f inQ.

Proposition 2.9. Let g € VSP(QIR") nL®(R"\ Q) and let u € Vg’p(QllR") be a locally weak subsolution of
(-Ap)’u =1in Q. Then
us<M inQ,

for a constant M depending onn, s, p, Q, gl ®rm\).

Proof. By Remark 2.2 and Proposition 2.8, there exists a weak solution v € Vg’p (QIR™) of (-Ap)°v = 1in Q. Then,
by the comparison principle, see [15, Proposition 2.10], we have v > 0 and

u<v+ ||g||L0°(]Rn\Q) in Q.
This together with [5, Theorem 3.1] concludes the proof. O
Finally, we prove the stability of viscosity solutions.

Proposition 2.10. Let u; € ngl(lR") N C(Q) be a uniformly bounded sequence of viscosity supersolutions of
(=0p)¥u; = fi in Q for f; € C(Q). Assume that u; converges locally uniformly in Q to u € ngl(lR”), fi converges
locally uniformly in Q to f, and u; converges pointwise a.e. in R" to u. Then u is a viscosity supersolutions of
(-Ap)u=finQ.

Proof. The proof follows the argument in [7, Lemma 4.5]. Let x € Q and ¢ € C%(B(x, r)) touch u from below at x

and satisfy either (a) or (b) in Definition 2.6, where B(x, r) ¢ Q. Take a point x; € B(x, r) such that

ui(x;) — ¢(x;) = inf u; - ¢.
B(x,r)

Since x is the minimum point of u - ¢ in B(x,r) and u; converges uniformly to u in B(x,r), the points x;
converges to x and x; is a local minimum for u; — ¢ in B(x, r). Define

e e 19T Uix) = 9(x) in B(x, 1),
B Uj in R"\ B(x, r).
Then w; touches u; from below at x; and

zj lwi(xi) = wi)IP2(wi(x;) — wi(y))

X —y[Ps dy > fi(xi)

Rn
Now, letting i — oo and using Lebesgue dominated convergence theorem, we obtain

ZJ lw(x) = w) P2 (w(x) - w(y))

= ypeps

dy > f(x),

]RI[
where
in B
. ¢ inB(x,r),
u inR"™\ B(x,r).

This completes the proof. O
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3 Wiener criterion

In this section, we bring the proof of the Wiener criterion for weak solutions to the s-fractional p-Laplacian
with a nonzero right-hand side. We mention that in [17, Theorem 1.1] the Wiener criterion for zero right-hand
side is proved, and in [19, A.4.] the sufficiency part of the results in [17] has been extended to include equations
with bounded right-hand sides. We derive the same result as [19, A.4.] by using the case of zero right-hand side,
[17, Theorem 1.1], and a perturbation argument.

Definition 3.1. Define
[v(x) - v(y)I?

[x — y|m+ps dxdy,

cap, , (B, 1)\ @, B(Zo, 2r)) =inf ||
RM*xIR?
where the infimum is taken over allv € C3°(B(&o, 2r)) suchthatv > 1on B(&, r) \ Q. We say thata point &y € 0Q
satisfies the Wiener criterion for the s-fractional p-Laplacian if
1 —_—
J( cap; ,(B(So, 1) \ Q, B(§o, 2)) )ﬁ dr
r

rn-ps

= 0Q.

Now, we define the notion of regular boundaries and the Wiener criterion.

Definition 3.2. A point {; € 0Q is said to be regular for the s-fractional p-Laplacian if for every f € L®(Q),
g€ CR") N VSP(QIR"), u € Vz’p(QllR") satisfying (—-Ap)°u = f weakly in Q, we have limg_¢ u(¢) = g(&). We
say that Q has Wiener regular boundary for the s-fractional p-Laplacian if all the points on 9Q are regular for
the s-fractional p-Laplacian.

Proposition 3.3. A point &y € 9Q is regular for the s-fractional p-Laplacian if and only if it satisfies the Wiener
criterion for the s-fractional p-Laplacian.

Proof. Our argument is similar to [21, Lemma 29]. By [17, Theorem 1.1], it follows that if &, is regular, then it
satisfies the Wiener criterion for the s-fractional p-Laplacian. Now, assume that & € 9Q satisfies the Wiener
criterion for the s-fractional p-Laplacian. Let f € L®(Q) and u € V;’p (QIR™) be a weak solution of (-Ap)*u = f
with boundary value g € C(R") n VSP(Q|R"). Assume that B is large ball such that Q ¢ B, 2B is the ball with the
same center as B and double radius, and n € C;°(R" \ B) is a non-negative function, where n = 1 on R" \ 2B.
Then, by Lemma [15, Lemma 2.8], (-Ap)%(u + Mn) = f + hy; weakly in Q, where

lu(x) - u(y) - Mp)P~2(u(x) - u(y) - Mn(y)) - [u(x) - u@)IP-2(ux) - u(y)) dy

|x — y|n+ps

hp(x) =2 J
R™\B
for M € R and a.e. Lebesgue point x € R" of u. Hence, for M > 0 large enough, we have
(=0p)°(u—Mn) =02 (-Ap)’(u+Mn) locally weakly in Q.
Now, by Proposition 2.8, there exist weak solutions u; € V;’_p M,](QllR"), Uy € V;qu(m]Rn)’ such that
(-Ap)°us = (-Ap)°up =0 weakly in Q.
Then, by the comparison principle [15, Proposition 2.10], we obtain

up<u-Mn, uzzu+Mn inQ.

In conclusion, by the Wiener criterion for the s-fractional p-Laplacian and [17, Theorem 1.1], u1, u, take their
boundary values continuously and

lim sup u(§) = lim sup u() + M() < lim w(§) = g(&) = lim w1()

§—% §—%o

< liminf - Mn(§) = liminf u(¥).
<1g1g()1 u(&) - Mn(&) 2522{} u(é)

This completes the proof. O
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4 Hopf’s lemma and Global boundary Harnack inequality

In this section, we prove Hopf’s lemma and global boundary Harnack inequality for solutions to fractional
p-Laplacian equations.
First, we need the following two preliminary lemmas.

Lemma4.1. Let§ >0, >0andu,v € C(Qs). Assume that 0 < u < Bvin R" \ Q for a constant B > 0 and
u
sup—=-v>0
o C

for a constant C > B. Then, for every €y > 0, there exist 0 < € < €, (X¢, Ye) € Q X Q such that

_vy.|B
X — u(x
wp Y90 yI _ (e)_ sye) - eyl @
(X,y)€QsxQs €

Proof. Let us define (x, y¢) for every e > 0, which satisfies (4.1). Then

u(xe) —v(ye) - yel > sup L _vso. (4.2)

o C
Hence,
u(xe)
[Xe _ye|ﬁS ( - V(Ye) )
Letting € — 0, we arrive at, up to a subsequence, X, y. converge to z € Qs. Hence, by (4.2), we get
u(z)

T—v(z)>sup——v>0

In conclusion, we obtain z € Q since C > Band 0 < u < Bvin R"\ Q. In particular, for small 0 < € < €y, we have

Xe, Ve € Q. O
Lemma4.2. Letry € R,xp € R", yg € R", and > max(p 1,2). Then
—xnlB = Vo = x0lP1P=2(1v = xa|P = [V — x0lB
[ly = Xol” = [yo — Xol”IP™“(ly — xo0l” - |yo — X0l )dy <C, .
[y _y0|n+ps 0

B(y0,70)\B(Yo,€)
for every 0 < € < ro such that rg < X Ho ol ol if Xo # Yo, where Cr, is independent of y, and satisfies lim,,_,o Cr, = 0.
Proof. If xg = yo, then

Iy - Xol? — X0 — xolPIP=2(ly — X0l — |x0 — XolP)

n|B0, )|  pp-1)-ps
|_)’ _ X0|n+ps :

Bp-1)-ps 0

dy‘ =
B(x0,r0)\B(xo,€)

If xo # Yo, then the result follows by [18, Lemma 3.6, Lemma 3.7]. O

The following two lemmas are the main tools for the proof of Hopf’s lemma, global boundary Harnack theorem,
and the isolation of the first fractional (s, p)-eigenvalue.

Lemma4.3. Let§ > 0andv; € Lt ps (R™) N C(Qs) be a sequence of functions which are viscosity supersolution of

(=0p)%v; = fiin Q for f; € C(Q). Assume that v; converges uniformly to v on compact subsets of Q, v > 0in Q, and
. vPly)

lim sup f;(x;) > -2 I Xy

i—oo |
K

dy ifx;eQ, lim x; =x € 0Q, limsupv;(x;) <0,
=00 i—o00
where K € Q. Moreover, u; € LZ;l(lR") N C(Qs) is a sequence of non-negative uniformly bounded functions which
satisfy
0<u;j<Bv; inR"\Q,
(-0p)’u; <D inQ,
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in the viscosity sense for every i, where B, D are positive constants. Then
ui < Cv; inR",
for i > N, where N, C are positive constants.

Proof. We prove the lemma in several steps. By taking K € Q a bit larger and using v > 0, we assume that

p-1
J VO) 4y i Tim x; = x € 89, lim sup vi(x) < 0. 43)

[x — y|tps i—00 00

lim sup fi(x;) > -2

1—00
Assume that by contradiction, there is a sequence of C; > B increasing to infinity, such that

Ui
m; :=sup = —v; > 0.
rt Ci

Since C; > Band 0 < u; < Bv; in R" \ Q, we have

Ui
m; =sup — —v; > 0.
1 0 Ci 1
Let us choose f > max(£
that

2). Then, by Lemma 4.1, there exist 0 < €; < and (x;,y;) € Q x Q such

p- 1 ’ (T+[villLeo (o))

ui(x) Ix - ylP uixi) yt'ﬁ

0<m;<  sup -vi(y) - =— z()’)—

(4.4)
(X,y)€QsxQs i €i Ci €i

Without loss of generality, up to a subsequence, we assume lim;_,, X; = X, lim;_,o, y; = y. Then, by (4.4), we get
ui(xi)
==+ iyl
|X — 9| = lim sup |x; P <limsup ———— " =
R o T Y
Hence, X = J € Q. If X = § € Q, then we arrive at the following contradiction:

0 < liminf m; < liminf '( l)

1—00 1—00

vi(yi) = -v() < 0.

In conclusion, X = § € dQ. Also, by (4.4) and uniform boundedness of the sequence u;, we derive

0 < liminf lé —vi(y;) = liminf —v;(y;) = - lim sup v;(y;).
i—o0 i—oo i—0o
Thus,
lim sup vi(y;) < 0. (4.5)
i—oo

Taking i large enough, we assume that |x; — y;| < § and x;, y; belong to Q \ K. Let r; > 0 be small enough, such
that B(x;, 7)) UB(yi, i) € @\ K, ri < X yl if x; # y;, and

p 1
Cr < ——, (4.6)

where Cy, is the constant in Lemma 4.2, replacing Xo, yo with x;, y;, respectively. Then, by (4.4), the following
inequalities are deduced:
(i) Ifwe set x = xj, then

- xilP -xilf .
Vi(y) = vi(yi) D’ "y -xil in Q.
€i €i
(i) Ifwesetx =y +x;—Yy;,then
ui(y+xi—yi)  ui(xi
vi(y) = vi(yi) 2 s Cil ) _ ’éil) nQ;.

Notice that we used the fact that |x; - y;| < g in the above inequality.
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(iii) If we set y = y;, then

w0 wit) _ Ix-yilf  xi-yilf

< in Qs.
Ci C; €i €i n s
Now, define the functions
yi-xilf ly-xilf .
. . _ B . .
Wi(y) = vi(yi) + e e in B(y;, ),
vi(y) in R" \ B(y;, 1),
(xs _v:|B . _v:|B
ulgn) L X yll LS yll in B, 1),
wi(x) = u-(;l() €i €i
—’C in R™\ B(x;, 1y).
i

Hence, by (i), (iii), w; touches v; from below at y;, and ; touches g—i from above at x;. In conclusion,

[wi(y) = wi(y) P2 (wi(y) — wi(yi)) .
2 J; D) —yi|"+ps dy < fl(yl))
) [Wi(y) - wiy) P2 (Wi(y) - Wi(y:)) @7
2 j ly - yil"ps b= ot
R 3

Now, the rest of the proof aims at deriving a contradiction from the inequalities above and (4.3). By the first
inequality in (4.7), it is obtained that

Y (0N P2 (11 (V) — 1 (1
h}ﬂglf—ﬁ()’i)zzuminfj- wiy) = wi)IP“(wi(y) - wiyi)) dy

1—00 Ly _yi|n+ps
]R"
o viy) = vi) P2 (vi(y) - viyi))
2211111_1“1)21? Ly —y s dy
]R"\Qg
—x:1B — v — x:1B1P2(1v — x:1B — |v; — x:|B
—Zlimsup% J [y - xil i X[lyl _|y|£,|;}]ps Xil i = xil?) dy
oo € B(yi,ri) l
o viy) = viy)P2(vi(y) - vi(yi))
+21111ng[ Y~y dy
o viy) - viy) P 2(vi(y) - vi(yi))
+ 2liminf dy
i _ vy |n+ps
o 24 \BOLr)UK) =il
>J1+ 2+ )3+ s
For the left-hand side, by (4.3), we obtain
p-1
timinf ~fi(y,) = - lim sup fiy) < 2 | O g,
=00 i—o00 % [y _)’| p

For the term J;, we use 0 < u; < By; in R" \ Q, (4.5), and Lebesgue dominated convergence to obtain

—viy)IP~2vi(yi) q

> 2 liminf > 0.
Jiz2limint | Oy

RMQ s

2
By Lemma 4.2 and (4.6), we get
J2 = 0.
For the term J3, we use that v; converges uniformly to v on K, together with (4.5), to derive
vPl)
]3 >2 J m dy

K
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The last term requires more work, and this is the place where we need to use the assumption (-Ap)*u < D and
the function ;. By (ii) and integration by substitution, we obtain

0 s ug)
> 2 liminf L : L L~ dy.
Ja i—00 ly — x;|*PS o4
Q s +Xi=yi\(B(X;,I ) UK+X;=y;)

2

Hence, by the second inequality in (4.7), (4.6), and Lemma 4.2, we imply

. D
0 =liminf iy
1—00 Ci
1 Iy - yil® - Ixi - yilPIP2(ly - yilP - Ixi - yilP)
<2lim — dy,
im0 P71 ly — x;|v+Ps
I B(xr)
|ui_(y) _uwilx) |P-2(ui_(y) _ ui(Xi))
+2 lim j G~ G GG gy
iS00 ly — x;|v+Ps
K+xi-yi
|u,_(y) _uix) |P—2(ui_0’) _ ui(Xi))
+2 lim I &G Tqy
i—00 ly _ Xl.|n+ps
]R"\Q%H(i—y,-
|ui_(y) _ ui(xi)|17—2(ui_(y) _ ui(xi))
+2 liminf - GG gy
i—o00 D} — Xi|*ps
Q%+Xi_Yi\(B(Xi:ri)UK"'Xi_yi)
|“z_()’) _wilxq) |P—2(Ui_()’) _ ui(xi))
= 2 liminf j GG G~ G gy
i—o0 |y — x;|ntps
9%+Xi—)/i\(B(Xixri)UK"‘Xi_)/i)
<Js.
In conclusion, J4 > 0 and
vl (y) v l(y)
ijdy >]1+]2+]3+]4221WdY:
K K
which provides the contradiction. O

Lemma4.4. Letu € LZ;l(IR") N C(Q) be a viscosity supersolution of (-Ap)Su = f in Q for f € C(Q). If there exists
a point xo € Q such that u(xp) = infr» u, then

9 j |u(x0) = u@) P~ (u(xo) — u(y))

|X0 _y|n+ps

dy = f(xo).

RrR?

Proof. The proof follows the same argument as [1, Lemma 5.3]. Let xq € Q satisfy u(xp) = infrn u. Since
u(xp) — u(y) <0 for y € R", the integral above is well-defined without P.V. and might be —co. Let us fix
B> max(pst,Z). Define uc(y) = u(xo) — |xo —y|ﬂ for y € B(xy, €), and ue = u in R™\ B(xo, €) for € > 0 small
enough, such that B(xy, €) c Q. Then u, touches u from below at xy and satisfies either condition (a) or (b) in
Definition 2.6. Hence,

2n1BO, D _pp-1)-ps , 4 [u(x0) ~ uIP () ~ u)

B(p-1)-ps [xo — y|m*Ps
R™\B(Xo,€)

[ue(x0) — Ue(W)IP2(Ue(Xo) — Ue(y))

|X0 _y|n+ps

Ixo — ylP®~D

=2 J X0 = Y|P dy + 2
B(xo,€) R™\B(xp,€)
_9 J |ue(X0) — Ue(Y)P~%(Ue(X0) — Ue(Y))

|X0 _y|n+ps

dy

dy > f(xo).

R"
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In conclusion,

lu@) - w0 (uy) —utxo) o 21BO DI gip1)ps

2
Joxo) + o —y[eps B -1 -ps

R™\B(xo,€)
Now, letting € — 0 and using the monotone convergence theorem, it is obtained that

lu(xo) — u)IP~%(u(xo) — u(y)) ay.

|X() _y|n+ps

flxo) <2 J
]Rn
In particular, in the above lemma, if u is non-negative and

p-1
o > -2 [ 0w,

R"

— 267

for any xo € Q satisfying u(xp) =0, then u > 0 in Q. This is the strong maximum principle for fractional

p-Laplacian equations. We bring an example to justify the sharpness of the condition

uP~1(y)

|xo — y|™+ps v-

fo) > -2 |
]Rn
Let f > 75 and
IxIf, xeB(0,1),
u(x) :=
1, x € R"\ B(0,1).
Then u(0) = 0 and
W) o

(-Ap)°u(0) = -2 J MR

R"

Now, we prove Hopf’s lemma.

Proof of Lemma 1.1. By Lemma 4.4 and the condition

wPl(y)

o~y dy ifxg € Q, u(xp) =0,

flxo) > -2 J
IRI[
we obtain u > 0in Q. Finally, if we set u; = Utor, Vi = u in Lemma 4.3 and use

. uP~l(y)
lim sup f(x) > —ZJ —
SZBX—»XIU)f( ) ¥ |X0 —)’|"+ps

dy ifxg € 09, u(xg) =0,
we conclude that u > Cuy, for a positive constant C.
Lemma4.5. Let§ >0,u € ngl(]R") N C(Qs) be a viscosity supersolution of

(~8p)°u = ~2(diam Q)P J W (y)dy ingQ,
K
for a subset K e Q, which satisfies u > 0 in R" \ Q. Then either u =0 a.e.in R"\ K,or u > 0in Q.

Proof. If u > 0in Q, then the proof is complete. Now, assume that u(xg) = infg: u < 0 for a point xq € Q. Then,

by Lemma 4.4,

lu(xo) — u(y)IP*(u(xo) — u(y)) Py —neps) [ p-1
2| PRTER dy > -2(diam @) "7 [ wl(y) dy

R" K

> 2(diam @)~ P9 j lu(xo) — u@)P~2(u(xo) - u(y)) dy
K
_ J Jutx0) ~ ) - ) o

|X0 _y|n+ps

Hence, u(y) = u(xp) < 0 a.e. in R" \ K. In conclusion, by the assumption u > 0 in R" \ Q, we arrive at u = 0 a.e.

in R"\ K.

O
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Proof of Theorem 1.3. Let § > 0, u; € C(Qs) NV, (QIR™), v; € C(Qs) N V" (QIR™) be positive on Q,
1
0< Egv,- <&y <Bgy, <M InR"\Q,

and
~2(diam Q)+ j ) dy < (<A <1 ingQ,
K
_2(diam Q)"+ j Yl dy < (<41 ing,
K

4.8)

in the locally weak sense, where K e Q. We also assume that
ui(xo) =D, vi(xo) 2D (luille) = D, lIvillLee) = D),

forD > 0,1 < q < 0o.By Proposition 2.9, |ujlli=(q) + [VillLe@) < Cfor a constant C dependingonn, s, p, Q, B, M.
Also, by local Holder regularity, see [15, Theorem 5.4], the Arzéla—Ascoli theorem, and passing to a subsequence,
u;i, v; converge uniformly to u, v, respectively, on compact subsets of Q. Define u = v =0in R" \ Q and

- u; inQ,
u; .=
0 inR")\Q,

. Vv; inQ,
Vi ==
0 inR"\Q.

Then, by (4.8) and Definition 2.6, we have

1

-2(diam )" | @ (y)dy < (-4,)°%; inQ,

K

J
_2(diam @)~ J Py dy < (-4,)5% i,
K

in the viscosity sense. Hence, by the Lebesgue dominated convergence, Proposition 2.7, and Proposition 2.10, we
have
u(xo) =D, v(xo) =D (lullieg =D, IIVlLig) = D),
and
_2(diam Q)"+ I wl(y)dy < (-Ap)°u inQ,
K
—2(diam Q)"+ J vl(y)dy < (-A,)°v inQ,
K

in the viscosity sense. Hence, by Proposition 2.7 and Lemma 4.5, u;, v; satisfy (4.8) in the viscosity sense and
u, v are strictly positive in Q. Finally, by Lemma 4.3, 3—; and ;—i are uniformly bounded from below in Q. This
completes the proof. O

In the case that K is empty, we obtain the following result:
Corollary 4.6. Let § > 0, u € C(Qs) N V" (QIR"), v € C(Qs) N V" (QIRM) satisfy
u>0, v>0 inQ,

1 .
OsﬁgvsgungVsM inR"\ Q,

for B>0,M >0, and
0<(-0p)Pu<l inQ,

0<(-Ap)Pv<sl inQ,
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in the locally weak sense. If either u(xq) > D, v(xo) > D for a fixed point xo € Q or |ullLe) = D, IVlLeq) = D for
D>0,1<q < oo, then

Ci<—<C inQ,

SHRS

where C1, Cy are positive constants depending on Q, 8, n, s, p, D, B, M, x¢ or q.

5 Eigenvalue problem

In this section, @ c R" is a bounded open set with Wiener regular boundary for the s-fractional p-Laplacian.
Note that, as mentioned in Section 2.2, Ap 4 > 0in (1.1) by fractional Poincaré-Sobolev theorem, see Theorem 2.1.
Now, itis aimed to prove Theorem 1.5. We divide the proof into several steps. First, we prove the following global
boundedness of weak solutions.

Proposition 5.1. Let u € Vg’p (QIR™) be a nonzero weak solution of
s 2 g
( Ap) u= /’{"u”LQ(Qﬂulq n Qa

wherel < q < pi,A > 0. Then
lullLe(o) < €A%,
where 0 is a positive constant depending on n, s, p, q and C is a constant depending on n, s, p, q,

Proof. By Theorem 2.1and Holder’s inequality, we have u € L(Q). Since the problem is scale-invariant, without
loss of generality, we can assume that ||l q) = 1. Now, we consider three cases. First, if ps > n, we can simply
apply Theorem 2.1, together with the equation for u, to derive that

1l gy < Clulbyep ry = CA,

which concludes the proposition for 6 = 17' Now, for ps = n, we have

1

CAr T,

1
@) < CHAWT u )"y
Q)
where we used [22, Lemma 2.3]. This completes the proposition for 8 = ﬁ. Finally, if ps < n, we use [22, Lem-
ma 2.3] multiple times until we get L>°-estimate for u. We note that by Theorem 2.1 and the equation for u, we
derive that .
lullps () < Clulyseny = CAP.

For the case that u € L"(Q) where r > (qpl) we can use [22, Lemma 2.3] once to imply that
2, 7 ! =
lullLeo @) < Cll Alul® uII oy = 7||ullp
@ 5@ L'(@)
which concludes the proof. Now, if u € L"(Q) for r = (¢ - 1) &, we get

ps’
11
lullegy < 1R lullr @)

by Holder’s inequality, where g -1 < t < (q - 1)13. Hence, by [22, Lemma 2.3], we obtain

1

TS
KA

; 1

L 1 _1
||u||Lr'(Q) < Cll Aul2u | l%(g) <car Qe ||u||

where r’ = % Note thatas t converges to(q-1L D5’ r’ goes to infinity. Hence, by choosing t close enough

to (q - 1) ,wearrive at u ¢ L (Q) forr' > (q - 1) L In conclusion, the proof follows from the previous case.
Finally, we clalm thatif p} < ”(Zsl) and we start w1th u € L"(Q) for some p¥ <ry < ”(q Y then u € L"(Q) with
;—f > a > 1, where a depends on n, s, p, g, and

q-1

lullz @) < CAP IIu||U1 @’ 6.1
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where C depends on n, s, p, q, Q. Note that by using the claim finitely many times, we get that u belongs to

L"(Q) for some r > % which, together with previous cases, completes the proof. To prove the claim, we use

[22, Lemma 2.3] as before to obtain (5.1) for
. np-1)n
rg = ——"—
n(q-1) - psrq
Then, by r1 > p; and q < p;, we deduce

rn__np-1 __ np-1)

ri - n(g-1)-psp; ~ n(ps -1)-psp;

; ; _ _ np-1
which concludes the above claim for a = -1 pspT O

>

Remark 5.2. The same proof can be applied to the general equation
(-0p)’u=fu) inQ,
where f: R — R satisfies |[f(u)] < C1 + CzJul9  for1 < q < ps and positive constants C1, C, to derive

lullLo@) < glllulia)),

where g : R — R is a non-negative function depending on n, s, p, g, Q. Moreover, we do not need the Wiener
regular property of Q in the proof of Proposition 5.1.

Second, we demonstrate that the first eigenvalue A, 4 is simple for 1 < g < p, and the first eigenfunction does
not change sign.

Proposition 5.3. For every 1 < q < p, the weak solutions u € Vg’p (QIR™) of
(~Ap)°u = Apglul™u inQ
satisfying llullLeo) = 1, are proportional and strictly positive or negative on Q.
Proof. Assume that u, v € Vg’p (QIR") satisfy |ullLsq) = 1 = [IVllLe(q) and are weak solutions of
(=0p)°u = Apglul®u, (=Ap)°v =ApglvITv inQ. (5.2)

Then, by the triangle inequality,
- p - p
[ B ONPE gy o ([ WOUO g,
R"xR"

|X_y|n+ps IX _y|n+ps

and the equality holds if and only if u does not change sign. Hence, by (1.1), the equality occurs above, and,
without loss of generality, we can assume that u is non-negative on Q. To prove that u is positive in Q, we note
that, by Proposition 3.3 and Proposition 5.1, u € C(2). In conclusion, by Corollary 1.2 and Proposition 2.7, we
derive that u > 0 in Q. Likewise, up to a multiplication with -1, Wle can assu1me thatv > 0in Q.

Now, we show that u and v are proportional. Define y; := (t7u, (1 -t)7v) and | - | as the [9-norm in RZ.
Since t — t% is a convex function on R*, we have

e () = xeWly < tu() - u@)IP + (1 - Olv(x) —vy)IP  forx,y € R

Hence,
MxeCOlle = Ixe)llial? lu(x) - u(y)|P V() = v(y) P
J’ J X — y|n*ps dXd)’StJ J—|X—y|”+ps dxdy+(1—t)J dexdy
RERE RTR™ R" R™ (5.3)

< Apg

by the triangle inequality and (5.2). Also, we have

Mxelialforg) = thulfagy + A= OIVIL, g = 1.
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Hence, by (1.1), the inequalities in (5.3) are equalities. In conclusion, we have the equality

xe GOl = el = Ixe() = el for a.e.x,y € R"

in the triangle inequality. It follows that y.(x) = c(x, y)x:(y) for a.e. x, y € R". Hence, we have % = 3—8’; for a.e.

X,y € Q. O
The next proposition shows that only for the first eigenvalue there exists a non-negative eigenfunction.

Proposition 5.4. Let u € Vg’p(mIR”) be a weak solution of (-Ap)Su = AMu|tu, where 1< q<p, A>0, and
lullLaey = 1. If u is non-negative in Q, then A = Ap 4.

Proof. The argument is the same as [12, Theorem 4.1]. Let A > 0 and u € Vg’p (Q|R™) be a non-negative weak
solution of (—Ap)*u = Ap’qqu, where [[ulls(q) = 1. Assume that v € Vg’p (2IR") is a non-negative weak solution
of (-Ap)°v = Ave-l satisfying [[v[La() = 1. Define the functions u. := u + €, ve := v + €, and

o (x) = (tug(x) +(1- t)vg(x))% forx e Q, t €[0,1].

Since t — t¢ is a convex function on R*, by the triangle inequality for | - ||, it is obtained that

lof () - g IP - () - v)IP
[Jﬂ—t L dx dy ]R[]RJ" dx dy

X - y|nps X = y[ps
[u(x) — u(y)P [v(x) - v(y)IP (5.4)
< t([ J —|x—y|”+!’s dxdy - J J —IX s dxdy
]RVI ]Rn Rn IRYl
< t(Dpg—A).

Now, by the convexity of the map, t — t”, we have

0700 =gt o [ ) - vl
JJ TG dx dy JJ X = y[is dxdy
(5.5)
V&) — v P2 () - V()

=P J J (07 (%) = o7 (y) = (v(x) = v(y))) dx dy.

R" R"

|X _y|n+ps

Hence, using (-A,)*v = Av?~! weakly in Q and the test function g - v, we get

_ p-2 _
[ [ Vg)'_ ylﬁfﬁf) " (6500 - 65 9) - (00 - ve ) dxdy = [ A0 (0500 - ve() dx. 66)

R R" Q

In conclusion, by (5.4), (5.5), and (5.6), we arrive at

€ —
900~ Ve 4y < ppa -2, 5.7)

w [0
Q
where we used ve(x) — ve(y) = v(x) — v(y) forall x, y € R™. Since t — t% isaconcave function of t € R*, we have

€
a;-v

vI1Zl € s iy —y) inQ,

and v?1(u - v) e L1(Q) by Proposition 5.1. Then, by applying Fatou’s lemma to (5.7), it is implied that

a7 (X) = ve(X)

; dx < Apgq -4,

A ! . . _
717 i(;e((xx))) (ud(0) - vé(x) < Ap hrtrl}onfi Vi1(x)

for small enough € > 0. Hence, by the assumption v > 0 in Q and Lebesgue dominated convergence, we deduce

0= %p J ul(x) - vy dx < Apg— A
Q

Combining the above inequality with (1.1) implies that A = A 4. O
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Proof of Theorem 1.5. Let A; > Ap g, Vi € Vg’p (QIR™) be a sequence such that

IVillLa) = 1,
lim A; = Apgs
1—00

—2
(=0p)°vi = Aivil 1%y,

weakly in Q. By Proposition 5.1,
villLe) < C)ll-e (5.8)

for some positive constants 8, C, which are independent of i. Also, [vi]f,s,,,(w) = A;. Hence, by Theorem 2.3,
[4, Theorem 2.7], and passing to a subsequence, v; converges strongly in Q to u € Vg’p (Q|R") with respect to
the L%-norm and [|ull gy = 1. Then

(~Ap)’u = Apqlul’u  weakly in Q.

Now, by Proposition 5.3, u > 0 a.e. in Q up to multiplication by a constant. By (5.8), Holder’s regularity for the
s-fractional Laplacian, see [15, Theorem 5.4], and the Arzéla—Ascoli theorem, v; converges uniformly to u on
compact subsets of Q@ up to a subsequence and multiplication by a constant. Since Q has a Wiener regular hound-
ary for the s-fractional p-Laplacian, we derive u, v;, Ui belong to C(R™). Now, we want to apply Lemma 4.3 to
sequences u; = u, v;. Since u > 0, we need to only check that

lim A;[vi(x) % ?vi(x;) = 0
=00

for every sequence x; € Q such that lim;_,, x; € Q. To prove this, define

~ q-1 1
Vi = (Ai”‘}i"LOO(Q))p_l Utor-
Then v; = v; = 0in R"\ Q and
8 -1
(=8p)*Vi = Ailvill{eo g
weakly in Q. Hence, —V; < v; < V; in Q by comparison principle, see [15, Proposition 2.10]. In particulax, by (5.8)
and uyr € C(R™), we obtain

Lm A4vi () T2vi(x) = lim A 9;06)19720i(x;)
1—00 1—00
; -1 &g q-2
= Im (Aillvillge g)) 7 ttor ()1 " teor () = 0,

for every sequence x; € Q satisfying lim;_,, x; € Q. In conclusion, by Lemma 4.3, we obtain v; > Cu in Q for
a constant C > 0 and large enough i. In particular, v; > 0in Q for large enough i, which implies that A; = Ap 4 by
Proposition 5.4. This derives the desired contradiction. O

Remark 5.5. If Q has a C*! boundary and p > 2, then one can simplify the proof of Theorem 1.5 by using
[16, Theorem 1.1]. Indeed, taking a sequence of functions v; as in the above proof, we have, by [16, Theorem 1.1],
Tstocoays 18 uniformly bounded, and

<C
Q)

|,
dist(x, 9Q)$
for some positive constants C, a. By the same argument as proof of Theorem 1.5, up to multiplication by a
constant and passing to a subsequence, we derive that v; is sign-changing on Q and converges pointwise to
a non-negative function u. Hence, by the Arzéla—Ascoli theorem, m converges uniformly to Wum)s up
to a subsequence. Since m is also continuous and sign-changing on Q, we derive that m goes to
zero at a boundary point. This contradicts Corollary 1.2 and [16, Lemma 2.3], since u > C1ur(X) > Cp dist(x, 0Q)°
for x € Q, where C1, C are positive constants.

Acknowledgment: The author wants to thank Alireza Tavakoli for many motivating discussions and comments
on this work.
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