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1 Introduction

Wemaintain the previous work in [1] and prove the boundary properties of solutions to fractional p-Laplacian
equations.

The first result is a generalized Hopf’s Lemma. To bring the result, we need the notion of Wiener regular
boundaries, δ-neighborhoods, and the torsion function. Let Ω ⊂ ℝn be a bounded open set, p > 1, and 0 < s < 1.
Denote (−Δp)s as the s-fractional p-Laplacian, which satisfies

(−Δp)su(x) = 2 lim
ϵ→0
∫

ℝn\B(x,ϵ)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+ps dy,

pointwise for x ∈ ℝn .We say that Ω has regular boundary for the s-fractional p-Laplacian if for every f ∈ L∞(Ω),
g ∈ C(ℝn), and every weak solution u of (−Δp)su = f in Ω with u = g in ℝn \ Ω, we have u ∈ C(ℝn), see
Section 3 for more details. Now, assume that Ω ⊂ ℝn is a bounded open set, which has Wiener regular
boundary for the s-fractional p-Laplacian. For δ > 0, the δ-neighborhood of Ω, denoted by Ωδ , is defined
by {x ∈ ℝn : dist(x, Ω) < δ}. The torsion function utor ∈ L

p−1
ps (ℝn) ∩ C(ℝn) satisfies

utor = 0 in ℝn \ Ω,
(−Δp)sutor = 1 in Ω,

in the viscosity sense, see Proposition 2.8 and Proposition 2.7 for the existence of utor. We say that K ⋐ Ω if K ⊂ Ω.

Lemma 1.1. Let u ∈ Lp−1ps (ℝn) ∩ C(Ωδ) be a non-negative function for a δ > 0 and K ⋐ Ω. Assume that (−Δp)su ≥ f
in Ω in the viscosity sense, where f ∈ C(Ω) satisfies

f(x0) > −2 ∫
ℝn

up−1(y)
|x0 − y|n+ps

dy if x0 ∈ Ω, u(x0) = 0,

lim sup
Ω∋x→x0

f(x) ≥ −2∫
K

up−1(y)
|x0 − y|n+ps

dy if x0 ∈ ∂Ω, u(x0) = 0.
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Then u > 0 in Ω and
u ≥ Cutor in Ω

for a constant C > 0.

Setting f = g(u), we arrive at the following result:

Corollary 1.2. Let u ∈ Lp−1ps (ℝn) ∩ C(Ωδ) be a non-negative viscosity supersolution of (−Δp)su = g(u) in Ω, where
δ > 0, vg ∈ C([0,∞)), vg(0) = 0. Then either u = 0 a.e. in ℝn , or u > 0 in Ω and u ≥ Cutor for a constant C > 0.

If Ω has a C1,1 boundary, then, by [16, Lemma 2.3], utor(x) ≥ C dist(x, ∂Ω)s for x ∈ Ω, where C > 0 is a constant.
Hence, the above result generalizes the previous versions of Hopf’s lemma for the s-fractional p-Laplacian in
[8, 9, 13, 14, 20, 25].

We remark that we could not verify the argument in [9, Lemma 4.1], which considers the case that
g(u) = c|u|p−2u in a ball B ⊂ ℝn of radius R, where c ∈ C(Ω) is negative. To elaborate on the issue, the authors
take the set Bρ := {x ∈ B : dist(x, ∂B) < ρ} and a compact subset K ⊂ B \ Bρ , where ρ is taken small enough such
that (−Δp)s dist(x, ∂Ω)s ∈ L∞(Bρ), see [15, Theorem 2.3]. They choose α large enough such that (−Δp)s(ds + α1K)
becomes very small in compare to c|u|p−1u in Bρ , where d is the function dist(x, ∂B). Then they consider
0 < ϵ < 1 small enough such that ϵ(Rs + α) ≤ infB\Bρ u and define v := ϵ(ds + α1K). Finally, they claim that,
since v ≤ u in ℝn \ Bρ and (−Δp)sv ≤ (−Δp)su in Bρ , one can apply comparison principle to obtain v ≤ u
in Bρ . However, (−Δp)sv = ϵp−1(−Δp)s(ds + α1K) and the decrease of ϵ > 0 increases the value of (−Δp)sv, since
ds + α1K ≤ c|u|p−1u ≤ 0 by the maximum principle, see [15, Theorem 1.2]. Hence, it is not clear that (−Δp)sv
remains below (−Δp)su in Bρ .

Note that as it is mentioned in [1] and [14, Remark 2.8], Corollary 1.2 does not hold for the local p-Laplacian,
see [24, 28] for the necessary assumptions on g to have strongmaximum property. Hence, the nonlocal property
of fractional p-Laplacian plays a key role in the proof.

We observe that unlike [1, Lemma 1.2], to prove Lemma 1.1, we need a stronger continuity of u around
a neighborhood of Ω.

The second result is a global boundary Harnack theorem. We briefly mention that V s,p
g (Ω|ℝn) is the frac-

tional Sobolev space on ℝn with the boundary value g in the trace space V s,p(Ω|ℝn), see Section 2.1 for more
details.

Theorem 1.3. Let δ > 0, u ∈ C(Ωδ) ∩ V
s,p
gu (Ω|ℝn), v ∈ C(Ωδ) ∩ V

s,p
gv (Ω|ℝn) satisfy

u > 0, v > 0 in Ω,

0 ≤ 1B gv ≤ gu ≤ Bgv ≤ M in ℝn \ Ω,
for B > 0, vM ≥ 0, and

−2(diamΩ)−(n+ps) ∫
K

up−1(y) dy ≤ (−Δp)su ≤ 1 in Ω,

−2(diamΩ)−(n+ps) ∫
K

vp−1(y) dy ≤ (−Δp)sv ≤ 1 in Ω,

in the locally weak sense, where K ⋐ Ω. If either u(x0) ≥ D, v(x0) ≥ D or ‖u‖Lq(Ω\K) ≥ D, ‖v‖Lq(Ω\K) ≥ D for a fixed
point x0 ∈ Ω \ K and some constants D > 0, 1 ≤ q < ∞, then

C1 ≤
u
v ≤ C2 in Ω,

where C1 , C2 are positive constants depending on Ω, δ, K, n, s, p, D, B,M, x0 or q.

Up to the knowledge of the author, there are several results for the boundary Harnack theorem for the linear
fractional Laplacian, see [1–3, 26, 27], but there is none for the fractional p-Laplacian. In the case of gu = 0,
v = utor in Theorem 1.3, we derive the following corollary:

Corollary 1.4. Let δ > 0, u ∈ C(Ωδ) ∩ V
s,p
0 (Ω|ℝn) satisfy u > 0 in Ω and

−2(diamΩ)−(n+ps) ∫
K

up−1(y) dy ≤ (−Δp)su ≤ 1 in Ω,
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in the locally weak sense, where K ⋐ Ω. If either u(x0) ≥ D or ‖u‖Lq(Ω\K) ≥ D, where x0 ∈ Ω \ K is a fixed point and
D > 0, 1 ≤ q < ∞ are fixed constants, then

sup
B

u ≤ C inf
B
u,

for every subset B ⋐ Ω, where C is a positive constant, which depends on Ω, δ, K, n, s, p, D, x0 or q.

In the last result, we prove the isolation of the first (s, p)-eigenvalue.
Define the Sobolev exponent

p∗s :=
{{
{{
{

pn
n − ps

if ps < n,

∞ if ps ≥ n,
and consider the following minimization problem:

Λp,q := inf
ϕ∈C∞0 (Ω){ ∬

ℝn×ℝn

|ϕ(x) − ϕ(y)|p

|x − y|n+ps dx dy : ‖ϕ‖Lq(Ω) = 1}, (1.1)

for 1 < q < p∗s .

Theorem 1.5. If 1 < q ≤ p and Ω has regular boundary for the s-fractional p-Laplacian, then there exist no
sequences λi > Λp,q , ui ∈ V

s,p
0 (Ω|ℝn), which satisfy

‖ui‖Lq(Ω) = 1,
lim
i→∞

λi = Λp,q ,

(−Δp)sui = λi|ui|q−2ui weakly in Ω.
This generalizes previous results in [1, 5, 11]. Moreover, we bring a shorter proof for the case of C1,1 boundary
condition and p ≥ 2, see Remark 5.5. We remark that the range 1 < q ≤ p is used in two major parts, which play
key roles in the proof of Theorem 1.5. First, we derive that the minimizes of Λp,q are unique, up to a multipli-
cation by a constant, and strictly positive or negative on Ω, see Proposition 5.3. Second, we imply that the only
(s, p)-eigenvalue λ > 0 with non-negative (s, p)-eigenfunction u, i.e., a non-negative function u ∈ V s,p

0 (Ω|ℝn)
which satisfies (−Δp)su = λ|u|q−2u weakly in Ω and ‖u‖Lq(Ω) = 1, is Λp,q , see Proposition 5.4. Notice that in the
case of q = p in [5], the isolation of the first (s, p)-eigenvalue is proved without the assumption of Wiener
regularity on the boundary of Ω.

The main difficulty in this work is the proof of a similar version of [1, Lemma 5.1] for solutions to fractional
p-Laplacian. The nonlinearity of the equation causes the argument in [1, Lemma 5.1] to fall down. To resolve the
issue, we apply the method of the proof for the comparison principle for viscosity solutions. Then the argument
follows in the same direction as proof of [13, Lemma 3.1]. One of the interesting aspects of this work is the
simplicity of proofs, although one works with the weakest notion of solutions, namely the viscosity solutions.

The summary of the whole work is as follows: First, we bring the definitions of spaces and notions of solu-
tions in Section 2. Then, in Section 3, we present the Wiener criterion for the s-fractional p-Laplacian with
a nonzero right-hand side. Afterward, the first two results, namely a generalized Hopf’s lemma and global
boundary Harnack inequality are proved in Section 4. Finally, in Section 5, we prove the isolation of the first
(s, p)-eigenvalue.

2 Preliminaries

In the entire work, p > 1, 0 < s < 1, and Ω ⊂ ℝn is a bounded open set.

2.1 Spaces

For every K ⊂ ℝn and x ∈ ℝn , we define K + x := {y ∈ ℝn : y = z + x, z ∈ K}. Let Lp−1loc (ℝ
n) be the space of mea-

surable functions u : ℝn → ℝ such that ‖u‖Lp−1(K) < ∞ for every compact subset K ⊂ ℝn . The space Lp−1ps (ℝn)
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consists of u ∈ Lp−1loc (ℝ
n) satisfying

‖u‖p−1
Lp−1ps (ℝn)

:= ∫
ℝn

|u(x)|p−1

1 + |x|n+ps dx < ∞.

For every measurable function u : ℝn → ℝ, we define the semi-norm

[u]pV s,p(ℝn) := ∫
ℝn×ℝn

|u(x) − u(y)|p

|x − y|n+ps
dx dy.

For the boundary value of solutions, we consider the space of functions

V s,p(Ω|ℝn) := {u : ℝn → ℝ : u|Ω ∈ Lp(Ω),
u(x) − u(y)
|x − y|n/p+s

∈ Lp(Ω × ℝn)},

with the norm
‖u‖pV s,p(Ω|ℝn) := ∫

Ω

|u(x)|p dx + ∫
Ω×ℝn

|u(x) − u(y)|p

|x − y|n+ps
dx dy.

We denote V s,p
loc (Ω|ℝ

n) as functions u : ℝn → ℝ which satisfy

∫
K

|u(x)|p dx + ∫
K×ℝn

|u(x) − u(y)|p

|x − y|n+ps dx dy < ∞,

for every compact set K ⊂ Ω. Note that by fractional Poincaré–Sobolev inequality, see Theorem 2.1, [ ⋅ ]V s,p is
a norm on C∞0 (Ω). The completion of the space C∞0 (Ω) in V s,p(Ω|ℝn) with respect to the norm [ ⋅ ]V s,p(ℝn) is
denoted by V s,p

0 (Ω|ℝn), and the space of functions with boundary g ∈ V s,p(Ω|ℝn) is defined by

V s,p
g (Ω|ℝn) := {u ∈ V s,p(Ω|ℝn) : u − g ∈ V s,p

0 (Ω|ℝ
n)}.

We introduce (V s,p
0 (Ω|ℝn))⋆ as the dual space of V

s,p
0 (Ω|ℝn), and let ‖ ⋅ ‖(V s,p

0 (Ω|ℝn))⋆ denote the natural norm on
(V s,p

0 (Ω|ℝn))⋆. Define the Hölder dual of p by p󸀠, i.e.,
1
p󸀠 + 1

p = 1. For every measurable u : ℝ
n → ℝ and K ⊂ ℝn ,

the norm ‖ ⋅ ‖Cα(K) is defined by
‖u‖Cα(K) := sup

(x,y)∈K×K

|u(x) − u(y)|
|x − y|α .

The set of critical points of a differentiable function u is denoted by Nu . Let D ⊂ Ω be an open subset. For every
β ≥ 1, we define C2β(D) as the space of C

2 functions u on D satisfying

sup
x∈D\Nu

(
min{dist(x, Nu)β−1 , 1}
|∇u(x)| +

|D2u(x)|
dist(x, Nu)β−2

) < ∞.

For example, u(x) = |x − x0|β ∈ C2β(Ω) for every x0 ∈ ℝ
n , β ≥ 2. Note that we need to use the space C2β(D) to

define the notion of viscosity solutions, see [18].

2.2 Fractional Poincaré–Sobolev inequality and fractional Sobolev embedding

We bring the fractional Poincaré–Sobolev inequality.

Theorem 2.1. Let Ω ⊂ ℝn be an open bounded subset. Then, for every u ∈ C∞0 (Ω), we have

‖u‖Lp∗s (Ω) ≤ C1[u]V s,p(ℝn) if ps < n,

‖u‖L∞(Ω) ≤ C2[u]V s,p(ℝn) if ps > n,
‖u‖Lq(Ω) ≤ C3[u]V s,p(ℝn) if ps = n,

for every 1 ≤ q < ∞, where C1 depends on n, s, p, C2 depends on n, s, p, Ω, and C3 depends on n, s, p, q, Ω.

Proof. The proof is essentially contained in [23, Theorems 8.1, 8.2, 9.1]. However, since the norms and spaces
are slightly different, we bring the proof for the reader’s convenience. First, by [6, Propositions 4.1 and 4.5],
we derive that the fractional Sobolev spaces in [23], which are defined via interpolation, are equivalent to
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V s,p(ℝn). Now, for the case ps < n, we refer to [23, Theorem 8.1]. Moreover, the proof of the case ps > n exists
in [4, Propositions 2.9]. For last case ps = n, we first use [23, Theorem 9.1] and Hölder’s inequality to imply that

‖u‖Lq(Ω) ≤ C(‖u‖Lp(ℝn) + [u]V s,p(ℝn)), (2.1)

for every u ∈ C∞0 (Ω) and 1 ≤ q < ∞, where C is a constant depending on n, s, p, q, Ω. Now, by [4, Lemma 2.4], it
is obtained that

‖u‖Lp(Ω) ≤ C󸀠[u]V s,p(ℝn) , (2.2)

for every u ∈ C∞0 (Ω), where C󸀠 is a constant depending on n, s, p, Ω. Hence, by (2.1) and (2.2), we finish the proof
for case of ps = n.

Remark 2.2. By Hölder’s inequality and Theorem 2.1, we have L(p∗s )󸀠 (Ω) ⊂ (V s,p
0 (Ω|ℝn))⋆ if ps ̸= n, where we

define the action of f ∈ L(p∗s )󸀠 (Ω) on u ∈ V s,p
0 (Ω|ℝn) by the paring

∫
ℝn

f u dx.

Moreover, by Hölder’s inequality and Theorem 2.1, Lq(Ω) ⊂ (V s,p
0 (Ω|ℝn))⋆ if ps = n for every 1 < q < ∞.

Note that, for every 1 ≤ q < p∗s , we have

‖u‖pLq(Ω) ≤ C[u]
p
V s,p(ℝn) for u ∈ V s,p

0 (Ω|ℝ
n),

whereweusedTheorem2.1 andHölder’s inequality. Hence, the eigenvalue Λp,q defined in (1.1) is strictly positive,
and the inverse Λ−1p,q is the best constant C in the above inequality.

Theorem 2.3. The space V s,p
0 (Ω|ℝn) is compactly embedded inL

q(Ω) for bounded open setsΩ ⊂ ℝn and 1 < q ≤ p.

Proof. Similar to [1, Theorem 2.2], we consider a large enough ball B ⊂ ℝn such that Ω ⊂ B. Then V s,p
0 (Ω|ℝn) ⊂

V s,p
0 (B|ℝn) and B is an extension domain, see [10, Theorem 5.4]. By [10, Theorem 7.1], V s,p

0 (B|ℝn) is compactly
embedded in Lq(B) for 1 < q ≤ p. In conclusion, V s,p

0 (Ω|ℝn) is compactly embedded in L
q(Ω) for 1 < q ≤ p.

2.3 Notions of solutions

In this subsection, we bring the different notions of solutions for fractional p-Laplacian equations.
The first notion is pointwise solutions.

Definition 2.4. For every f ∈ C(Ω), we say that u ∈ Lp−1ps (ℝn)∩C(Ω) satisfies (−Δp)su = f pointwise in Ω if

2P.V. ∫
ℝn

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+ps dy := 2 lim

ϵ→0
∫

ℝn\B(x,ϵ)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+ps dy = f(x) for x ∈ Ω.

For simplicity, we remove the notation P.V. in the rest of the work.
The following is the definition of the locally weak and weak solutions.

Definition 2.5. Let f ∈ L1loc(Ω). We say that u ∈ Lp−1ps (ℝn) ∩ V
s,p
loc (Ω|ℝ

n) is locally weak subsolution (supersolu-
tion) of the equation (−Δp)su = f in Ω, or equivalently we say that (−Δp)su ≤ (≥) f in Ω in the locally weak sense
if

∫
ℝn×ℝn

|u(x) − u(y)|p−2(u(x) − u(y)) (ϕ(x) − ϕ(y))
|x − y|n+ps dx dy ≤ (≥) ∫

Ω

f(x) ϕ(x) dx, (2.3)

for all non-negative ϕ ∈ C∞0 (Ω). Note that, if ϕ is supported in K ⋐ Ω, we have

∫
K×K

|u(x) − u(y)|p−2(u(x) − u(y)) (ϕ(x) − ϕ(y))
|x − y|n+ps dx dy + 2 ∫

K×ℝn

|u(x) − u(y)|p−2(u(x) − u(y)) (ϕ(x) − ϕ(y))
|x − y|n+ps dx dy

= ∫
ℝn×ℝn

|u(x) − u(y)|p−2(u(x) − u(y)) (ϕ(x) − ϕ(y))
|x − y|n+ps dx dy,
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so the left-hand-side of (2.3) is well-defined for u ∈ Lp−1ps (ℝn) ∩ V
s,p
loc (Ω|ℝ

n). If u is a locally weak subsolution
and supersolution of (−Δp)su = f in Ω, then we say that (−Δp)su = f locally weakly in Ω. In the case that
u ∈ V s,p

g (Ω|ℝn) for a function g ∈ V s,p(Ω|ℝn), f ∈ (V s,p
0 (Ω|ℝn))⋆, and (−Δp)su = f locally weakly in Ω, we call u

a weak solution of (−Δp)su = f in Ω.

The following is the definition of viscosity solutions.

Definition 2.6. Wesay that u ∈ Lp−1ps (ℝn) ∩ C(Ω) is a viscosity subsolution (supersolution) of (−Δp)su = f in Ω for
f ∈ C(Ω), or equivalentlywe say that (−Δp)su ≤ (≥) f in Ω in the viscosity sense, if for every x0 ∈ Ω, B(x0 , r) ⊂ Ω,
and a function ϕ ∈ C2(B(x0 , r)) which touches u from above (below) at x0, i.e.,

ϕ(x0) = u(x0),

ϕ > (<) u in B(x0 , r) \ {x0},

and satisfies at least one of the following:
(a) ∇ϕ(x0) ̸= 0 or p > 2

2−s ,
(b) ∇ϕ(x0) = 0, x0 is an isolated critical point of ϕ, ϕ ∈ C2β(B(x0 , r)) for some β >

ps
p−1 , and 1 < p ≤

2
2−s ,

we have
2 ∫
ℝn

|w(x0) − w(y)|p−2(w(x0) − w(y))
|x0 − y|n+ps

dy ≤ (≥) f(x0),

where
w = ϕ in B(x0 , r),
w = u in ℝn \ B(x0 , r).

We define (−Δp)su = f in Ω in the viscosity sense if u is a viscosity subsolution and supersolution of (−Δp)su = f
in Ω.

Now, we prove the weak supersolutions with right-hand sides are viscosity supersolutions, see [18] for zero
right-hand side.

Proposition 2.7. Let u ∈ Lp−1ps (ℝn) ∩ C(Ω) ∩ V
s,p
loc (Ω|ℝ

n) be a locallyweak subsolution (supersolution) of (−Δp)su =
f in Ω, where f ∈ C(Ω). Then u is a viscosity subsolution (supersolution) of (−Δp)su = f in Ω.

Proof. Weprove the case of subsolutions and the other one follows immediately by replacing uwith−u. Assume
that x ∈ Ω, r > 0 satisfy B(x, r) ⊂ Ω, and ϕ ∈ C2(B(x, r)) touches u from above at the point x, which satisfies
either the condition (a) or (b) in Definition 2.6. Define

w := ϕ in B(x, r),
w := u in ℝn \ B(x, r).

Assume that (−Δp)sw(x) > f(x). Then, by the continuity of f and (−Δp)sw in B(x, r), see [18, Lemma 3.8],
we have (−Δp)sw ≥ f + δ pointwise and locally weakly in B(x, r󸀠) for some small enough δ > 0, 0 < r󸀠 < r.
By [18, Lemma 3.9], for small enough ϵ > 0 and η ∈ C20(B(x, r󸀠)) satisfying η(x) = 1 and 0 ≤ η ≤ 1, we have
(−Δp)s(−w + ϵη) ≤ −f pointwise in B(x, r󸀠), and −w + ϵη is a locally weak subsolution of (−Δp)s(−w + ϵη) = −f
in B(x, r󸀠). Hence, (−Δp)s(w − ϵη) ≥ f pointwise, andw − ϵη is a locallyweak supersolution of (−Δp)s(w − ϵη) = f
in B(x, r󸀠). Now, define another function

w󸀠 := ϕ in B(x, r󸀠),
w󸀠 := u in ℝn \ B(x, r󸀠).

Then
2 ∫
ℝn

|(w󸀠 − ϵη)(z) − (w󸀠 − ϵη)(y)|p−2((w󸀠 − ϵη)(z) − (w󸀠 − ϵη)(y))
|z − y|n+ps dy

≥ 2 ∫
ℝn

|(w − ϵη)(z) − (w − ϵη)(y)|p−2((w − ϵη)(z) − (w − ϵη)(y))
|z − y|n+ps dy

= (−Δp)s(w − ϵη) ≥ f(z),
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pointwise for z ∈ B(x, r󸀠). Hence,w󸀠 − ϵη = u onℝn \ B(x, r󸀠) and andw󸀠 − ϵη is a locally weak supersolution of
(−Δp)s(w󸀠 − ϵη) = f in B(x, r󸀠). Then, by [15, Propostion 2.10], we havew󸀠 − ϵη ≥ u inℝn . This is in contradiction
with

w󸀠(x) − ϵη(x) = ϕ(x) − ϵη(x) = u(x) − ϵ < u(x).

In conclusion, (−Δp)sw(x) ≤ f(x) for every x ∈ Ω, which implies that u is a viscosity subsolution of (−Δp)su = f
in Ω.

The following proposition can be proved along the lines of [21, Theorem 8] and [18, Theorem 2.4].

Proposition 2.8. For every f ∈ (V s,p
0 (Ω|ℝn))⋆, g ∈ V s,p(Ω|ℝn), there exists a weak solution u ∈ V s,p

g (Ω|ℝn) to

(−Δp)su = f in Ω.

Proposition 2.9. Let g ∈ V s,p(Ω|ℝn) ∩ L∞(ℝn \ Ω) and let u ∈ V s,p
g (Ω|ℝn) be a locally weak subsolution of

(−Δp)su = 1 in Ω. Then
u ≤ M in Ω,

for a constant M depending on n, s, p, Ω, ‖g‖L∞(ℝn\Ω).
Proof. By Remark 2.2 and Proposition 2.8, there exists a weak solution v ∈ V s,p

0 (Ω|ℝn) of (−Δp)sv = 1 in Ω. Then,
by the comparison principle, see [15, Proposition 2.10], we have v ≥ 0 and

u ≤ v + ‖g‖L∞(ℝn\Ω) in Ω.

This together with [5, Theorem 3.1] concludes the proof.

Finally, we prove the stability of viscosity solutions.

Proposition 2.10. Let ui ∈ L
p−1
ps (ℝn) ∩ C(Ω) be a uniformly bounded sequence of viscosity supersolutions of

(−Δp)sui = fi in Ω for fi ∈ C(Ω). Assume that ui converges locally uniformly in Ω to u ∈ Lp−1ps (ℝn), fi converges
locally uniformly in Ω to f , and ui converges pointwise a.e. in ℝn to u. Then u is a viscosity supersolutions of
(−Δp)su = f in Ω.

Proof. The proof follows the argument in [7, Lemma 4.5]. Let x ∈ Ω and ϕ ∈ C2(B(x, r)) touch u from below at x
and satisfy either (a) or (b) in Definition 2.6, where B(x, r) ⊂ Ω. Take a point xi ∈ B(x, r) such that

ui(xi) − ϕ(xi) = inf
B(x,r)

ui − ϕ.

Since x is the minimum point of u − ϕ in B(x, r) and ui converges uniformly to u in B(x, r), the points xi
converges to x and xi is a local minimum for ui − ϕ in B(x, r). Define

wi :=
{
{
{

ϕ + ui(xi) − ϕ(xi) in B(x, r),
ui in ℝn \ B(x, r).

Then wi touches ui from below at xi and

2 ∫
ℝn

|wi(xi) − wi(y)|p−2(wi(xi) − wi(y))
|xi − y|n+ps

dy ≥ fi(xi)

Now, letting i →∞ and using Lebesgue dominated convergence theorem, we obtain

2 ∫
ℝn

|w(x) − w(y)|p−2(w(x) − w(y))
|x − y|n+ps dy ≥ f(x),

where

w :=
{
{
{

ϕ in B(x, r),
u in ℝn \ B(x, r).

This completes the proof.
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3 Wiener criterion

In this section, we bring the proof of the Wiener criterion for weak solutions to the s-fractional p-Laplacian
with a nonzero right-hand side. We mention that in [17, Theorem 1.1] the Wiener criterion for zero right-hand
side is proved, and in [19, A.4.] the sufficiency part of the results in [17] has been extended to include equations
with bounded right-hand sides. We derive the same result as [19, A.4.] by using the case of zero right-hand side,
[17, Theorem 1.1], and a perturbation argument.

Definition 3.1. Define

caps,p(B(ξ0 , r) \ Ω, B(ξ0 , 2r)) := infv ∬
ℝn×ℝn

|v(x) − v(y)|p

|x − y|n+ps dx dy,

where the infimum is taken over all v ∈ C∞0 (B(ξ0 , 2r)) such that v ≥ 1 on B(ξ0 , r) \ Ω.We say that a point ξ0 ∈ ∂Ω
satisfies the Wiener criterion for the s-fractional p-Laplacian if

1

∫
0

(
caps,p(B(ξ0 , r) \ Ω, B(ξ0 , 2r))

rn−ps )
1

p−1 dr
r
= ∞.

Now, we define the notion of regular boundaries and the Wiener criterion.

Definition 3.2. A point ξ0 ∈ ∂Ω is said to be regular for the s-fractional p-Laplacian if for every f ∈ L∞(Ω),
g ∈ C(ℝn) ∩ V s,p(Ω|ℝn), u ∈ V s,p

g (Ω|ℝn) satisfying (−Δp)su = f weakly in Ω, we have limξ→ξ0 u(ξ) = g(ξ0). We
say that Ω has Wiener regular boundary for the s-fractional p-Laplacian if all the points on ∂Ω are regular for
the s-fractional p-Laplacian.

Proposition 3.3. A point ξ0 ∈ ∂Ω is regular for the s-fractional p-Laplacian if and only if it satisfies the Wiener
criterion for the s-fractional p-Laplacian.

Proof. Our argument is similar to [21, Lemma 29]. By [17, Theorem 1.1], it follows that if ξ0 is regular, then it
satisfies the Wiener criterion for the s-fractional p-Laplacian. Now, assume that ξ0 ∈ ∂Ω satisfies the Wiener
criterion for the s-fractional p-Laplacian. Let f ∈ L∞(Ω) and u ∈ V s,p

g (Ω|ℝn) be a weak solution of (−Δp)su = f
with boundary value g ∈ C(ℝn) ∩ V s,p(Ω|ℝn). Assume that B is large ball such that Ω ⊂ B, 2B is the ball with the
same center as B and double radius, and η ∈ C∞0 (ℝn \ B) is a non-negative function, where η = 1 on ℝn \ 2B.
Then, by Lemma [15, Lemma 2.8], (−Δp)s(u + Mη) = f + hM weakly in Ω, where

hM(x) = 2 ∫
ℝn\B

|u(x) − u(y) − Mη(y)|p−2(u(x) − u(y) − Mη(y)) − |u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+ps dy,

for M ∈ ℝ and a.e. Lebesgue point x ∈ ℝn of u. Hence, for M > 0 large enough, we have

(−Δp)s(u − Mη) ≥ 0 ≥ (−Δp)s(u + Mη) locally weakly in Ω.

Now, by Proposition 2.8, there exist weak solutions u1 ∈ V
s,p
g−Mη(Ω|ℝn), u2 ∈ V

s,p
g+Mη(Ω|ℝn), such that

(−Δp)su1 = (−Δp)su2 = 0 weakly in Ω.

Then, by the comparison principle [15, Proposition 2.10], we obtain

u1 ≤ u − Mη, u2 ≥ u + Mη in Ω.

In conclusion, by the Wiener criterion for the s-fractional p-Laplacian and [17, Theorem 1.1], u1 , u2 take their
boundary values continuously and

lim sup
ξ→ξ0

u(ξ) = lim sup
ξ→ξ0

u(ξ) + Mη(ξ) ≤ lim
ξ→ξ0

u2(ξ) = g(ξ0) = lim
ξ→ξ0

u1(ξ)

≤ lim inf
ξ→ξ0

u(ξ) − Mη(ξ) = lim inf
ξ→ξ0

u(ξ).

This completes the proof.
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4 Hopf’s lemma and Global boundary Harnack inequality

In this section, we prove Hopf’s lemma and global boundary Harnack inequality for solutions to fractional
p-Laplacian equations.

First, we need the following two preliminary lemmas.

Lemma 4.1. Let δ > 0, β > 0 and u, v ∈ C(Ωδ). Assume that 0 ≤ u ≤ Bv in ℝn \ Ω for a constant B > 0 and

sup
Ω

u
C
− v > 0

for a constant C > B. Then, for every ϵ0 > 0, there exist 0 < ϵ < ϵ0 , (xϵ , yϵ) ∈ Ω × Ω such that

sup
(x,y)∈Ωδ×Ωδ

u(x)
C
− v(y) − |x − y|

β

ϵ
=
u(xϵ)
C
− v(yϵ) −

|xϵ − yϵ|β

ϵ
. (4.1)

Proof. Let us define (xϵ , yϵ) for every ϵ > 0, which satisfies (4.1). Then

u(xϵ)
C
− v(yϵ) −

|xϵ − yϵ|β

ϵ
≥ sup

Ω

u
C
− v > 0. (4.2)

Hence,
|xϵ − yϵ|β ≤ ϵ(

u(xϵ)
C − v(yϵ)).

Letting ϵ → 0, we arrive at, up to a subsequence, xϵ , yϵ converge to z ∈ Ωδ . Hence, by (4.2), we get

u(z)
C − v(z) ≥ supΩ

u
C − v > 0.

In conclusion, we obtain z ∈ Ω since C > B and 0 ≤ u ≤ Bv inℝn \ Ω. In particular, for small 0 < ϵ < ϵ0, we have
xϵ , yϵ ∈ Ω.

Lemma 4.2. Let r0 ∈ ℝ, x0 ∈ ℝn , y0 ∈ ℝn , and β > max( psp−1 , 2). Then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

B(y0 ,r0)\B(y0 ,ϵ)

||y − x0|β − |y0 − x0|β|p−2(|y − x0|β − |y0 − x0|β)
|y − y0|n+ps

dy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cr0 ,

for every 0 < ϵ < r0 such that r0 < |x0−y0|2 if x0 ̸= y0, where Cr0 is independent of y0 and satisfies limr0→0 Cr0 = 0.

Proof. If x0 = y0, then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

B(x0 ,r0)\B(x0 ,ϵ)

||y − x0|β − |x0 − x0|β|p−2(|y − x0|β − |x0 − x0|β)
|y − x0|n+ps

dy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

n|B(0, 1)|
β(p − 1) − ps r

β(p−1)−ps
0 .

If x0 ̸= y0, then the result follows by [18, Lemma 3.6, Lemma 3.7].

The following two lemmas are themain tools for the proof of Hopf’s lemma, global boundary Harnack theorem,
and the isolation of the first fractional (s, p)-eigenvalue.

Lemma 4.3. Let δ > 0 and vi ∈ L
p−1
ps (ℝn) ∩ C(Ωδ) be a sequence of functions which are viscosity supersolution of

(−Δp)svi = fi in Ω for fi ∈ C(Ω). Assume that vi converges uniformly to v on compact subsets of Ω, v > 0 in Ω, and

lim sup
i→∞

fi(xi) ≥ −2∫
K

vp−1(y)
|x − y|n+ps dy if xi ∈ Ω, lim

i→∞
xi = x ∈ ∂Ω, lim sup

i→∞
vi(xi) ≤ 0,

where K ⋐ Ω. Moreover, ui ∈ L
p−1
ps (ℝn) ∩ C(Ωδ) is a sequence of non-negative uniformly bounded functions which

satisfy
0 ≤ ui ≤ Bvi in ℝn \ Ω,
(−Δp)sui ≤ D in Ω,
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in the viscosity sense for every i, where B, D are positive constants. Then

ui ≤ Cvi in ℝn ,

for i > N, where N, C are positive constants.

Proof. We prove the lemma in several steps. By taking K ⋐ Ω a bit larger and using v > 0, we assume that

lim sup
i→∞

fi(xi) > −2∫
K

vp−1(y)
|x − y|n+ps dy if lim

i→∞
xi = x ∈ ∂Ω, lim sup

i→∞
vi(xi) ≤ 0. (4.3)

Assume that by contradiction, there is a sequence of Ci > B increasing to infinity, such that

mi := sup
ℝn

ui
Ci
− vi > 0.

Since Ci > B and 0 ≤ ui ≤ Bvi in ℝn \ Ω, we have

mi = sup
Ω

ui
Ci
− vi > 0.

Let us choose β > max( psp−1 , 2). Then, by Lemma 4.1, there exist 0 < ϵi <
1

i(1+‖vi‖L∞(Ω)) and (xi , yi) ∈ Ω × Ω such
that

0 < mi ≤ sup
(x,y)∈Ωδ×Ωδ

ui(x)
Ci
− vi(y) −

|x − y|β

ϵi
=
ui(xi)
Ci
− vi(yi) −

|xi − yi|β

ϵi
. (4.4)

Without loss of generality, up to a subsequence, we assume limi→∞ xi = x̃, limi→∞ yi = ỹ. Then, by (4.4), we get

|x̃ − ỹ|β = lim sup
i→∞
|xi − yi|β ≤ lim sup

i→∞

ui(xi)
Ci + |vi(yi)|

i(1 + ‖vi‖L∞(Ω)) = 0.
Hence, x̃ = ỹ ∈ Ω. If x̃ = ỹ ∈ Ω, then we arrive at the following contradiction:

0 ≤ lim inf
i→∞

mi ≤ lim inf
i→∞

ui(xi)
Ci
− vi(yi) = −v(ỹ) < 0.

In conclusion, x̃ = ỹ ∈ ∂Ω. Also, by (4.4) and uniform boundedness of the sequence ui , we derive

0 ≤ lim inf
i→∞

ui(xi)
Ci
− vi(yi) = lim inf

i→∞
−vi(yi) = − lim sup

i→∞
vi(yi).

Thus,
lim sup
i→∞

vi(yi) ≤ 0. (4.5)

Taking i large enough, we assume that |xi − yi| ≤ δ
3 and xi , yi belong to Ω \ K. Let ri > 0 be small enough, such

that B(xi , ri) ∪ B(yi , ri) ⊂ Ω \ K, ri < |xi−yi |2 if xi ̸= yi , and

Cri ≤
ϵp−1i
i , (4.6)

where Cri is the constant in Lemma 4.2, replacing x0 , y0 with xi , yi , respectively. Then, by (4.4), the following
inequalities are deduced:
(i) If we set x = xi , then

vi(y) − vi(yi) ≥
|yi − xi|β

ϵi
−
|y − xi|β

ϵi
in Ωδ .

(ii) If we set x = y + xi − yi , then

vi(y) − vi(yi) ≥
ui(y + xi − yi)

Ci
−
ui(xi)
Ci

in Ω δ
2
.

Notice that we used the fact that |xi − yi| ≤ δ
3 in the above inequality.



A. Ataei, Boundary behavior of solutions  265

(iii) If we set y = yi , then
ui(x)
Ci
−
ui(xi)
Ci
≤
|x − yi|β

ϵi
−
|xi − yi|β

ϵi
in Ωδ .

Now, define the functions

wi(y) :=
{{
{{
{

vi(yi) +
|yi − xi|β

ϵi
−
|y − xi|β

ϵi
in B(yi , ri),

vi(y) in ℝn \ B(yi , ri),

w̃i(x) :=
{{{
{{{
{

ui(xi)
Ci
+
|x − yi|β

ϵi
−
|xi − yi|β

ϵi
in B(xi , ri),

ui(x)
Ci

in ℝn \ B(xi , ri).

Hence, by (i), (iii), wi touches vi from below at yi , and w̃i touches ui
Ci from above at xi . In conclusion,

2 ∫
ℝn

|wi(y) − wi(yi)|p−2(wi(y) − wi(yi))
|y − yi|n+ps

dy ≤ −fi(yi),

2 ∫
ℝn

|w̃i(y) − w̃i(yi)|p−2(w̃i(y) − w̃i(yi))
|y − yi|n+ps

dy ≥ − D
Cp−1i

.
(4.7)

Now, the rest of the proof aims at deriving a contradiction from the inequalities above and (4.3). By the first
inequality in (4.7), it is obtained that

lim inf
i→∞
−fi(yi) ≥ 2 lim inf

i→∞
∫
ℝn

|wi(y) − wi(yi)|p−2(wi(y) − wi(yi))
|y − yi|n+ps

dy

≥ 2 lim inf
i→∞

∫
ℝn\Ω δ

2

|vi(y) − vi(yi)|p−2(vi(y) − vi(yi))
|y − yi|n+ps

dy

− 2 lim sup
i→∞

1
ϵp−1i

∫
B(yi ,ri)

||y − xi|β − |yi − xi|β|p−2(|y − xi|β − |yi − xi|β)
|y − yi|n+ps

dy

+ 2 lim inf
i→∞
∫
K

|vi(y) − vi(yi)|p−2(vi(y) − vi(yi))
|y − yi|n+ps

dy

+ 2 lim inf
i→∞

∫
Ω δ

2
\(B(yi ,ri)∪K)

|vi(y) − vi(yi)|p−2(vi(y) − vi(yi))
|y − yi|n+ps

dy

≥ J1 + J2 + J3 + J4 .

For the left-hand side, by (4.3), we obtain

lim inf
i→∞
−fi(yi) = − lim sup

i→∞
fi(yi) < 2∫

K

vp−1(y)
|y − ỹ|n+ps dy.

For the term J1, we use 0 ≤ ui ≤ Bvi in ℝn \ Ω, (4.5), and Lebesgue dominated convergence to obtain

J1 ≥ 2 lim inf
i→∞

∫
ℝn\Ω δ

2

−|vi(yi)|p−2vi(yi)
|y − yi|n+ps

dy ≥ 0.

By Lemma 4.2 and (4.6), we get
J2 = 0.

For the term J3, we use that vi converges uniformly to v on K, together with (4.5), to derive

J3 ≥ 2∫
K

vp−1(y)
|y − ỹ|n+ps dy.
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The last term requires more work, and this is the place where we need to use the assumption (−Δp)su ≤ D and
the function w̃i . By (ii) and integration by substitution, we obtain

J4 ≥ 2 lim inf
i→∞

∫
Ω δ

2
+xi−yi\(B(xi ,ri)∪K+xi−yi)

󵄨󵄨󵄨󵄨
ui(y)
Ci −

ui(xi)
Ci
󵄨󵄨󵄨󵄨
p−2( ui(y)Ci −

ui(xi)
Ci )

|y − xi|n+ps
dy.

Hence, by the second inequality in (4.7), (4.6), and Lemma 4.2, we imply

0 = lim inf
i→∞
−

D
Cp−1i

≤ 2 lim
i→∞

1
ϵp−1i

∫
B(xi ,ri)

||y − yi|β − |xi − yi|β|p−2(|y − yi|β − |xi − yi|β)
|y − xi|n+ps

dy,

+ 2 lim
i→∞
∫

K+xi−yi

󵄨󵄨󵄨󵄨
ui(y)
Ci −

ui(xi)
Ci
󵄨󵄨󵄨󵄨
p−2( ui(y)Ci −

ui(xi)
Ci )

|y − xi|n+ps
dy

+ 2 lim
i→∞

∫
ℝn\Ω δ

2
+xi−yi

󵄨󵄨󵄨󵄨
ui(y)
Ci −

ui(xi)
Ci
󵄨󵄨󵄨󵄨
p−2( ui(y)Ci −

ui(xi)
Ci )

|y − xi|n+ps
dy

+ 2 lim inf
i→∞

∫
Ω δ

2
+xi−yi\(B(xi ,ri)∪K+xi−yi)

󵄨󵄨󵄨󵄨
ui(y)
Ci −

ui(xi)
Ci
󵄨󵄨󵄨󵄨
p−2( ui(y)Ci −

ui(xi)
Ci )

|y − xi|n+ps
dy

= 2 lim inf
i→∞

∫
Ω δ

2
+xi−yi\(B(xi ,ri)∪K+xi−yi)

󵄨󵄨󵄨󵄨
ui(y)
Ci −

ui(xi)
Ci
󵄨󵄨󵄨󵄨
p−2( ui(y)Ci −

ui(xi)
Ci )

|y − xi|n+ps
dy

≤ J4 .

In conclusion, J4 ≥ 0 and

2∫
K

vp−1(y)
|ỹ − y|n+ps dy > J1 + J2 + J3 + J4 ≥ 2∫

K

vp−1(y)
|ỹ − y|n+ps dy,

which provides the contradiction.

Lemma 4.4. Let u ∈ Lp−1ps (ℝn) ∩ C(Ω) be a viscosity supersolution of (−Δp)su = f in Ω for f ∈ C(Ω). If there exists
a point x0 ∈ Ω such that u(x0) = infℝn u, then

2 ∫
ℝn

|u(x0) − u(y)|p−2(u(x0) − u(y))
|x0 − y|n+ps

dy ≥ f(x0).

Proof. The proof follows the same argument as [1, Lemma 5.3]. Let x0 ∈ Ω satisfy u(x0) = infℝn u. Since
u(x0) − u(y) ≤ 0 for y ∈ ℝn , the integral above is well-defined without P.V. and might be −∞. Let us fix
β > max( psp−1 , 2). Define uϵ(y) = u(x0) − |x0 − y|β for y ∈ B(x0 , ϵ), and uϵ = u in ℝn \ B(x0 , ϵ) for ϵ > 0 small
enough, such that B(x0 , ϵ) ⊂ Ω. Then uϵ touches u from below at x0 and satisfies either condition (a) or (b) in
Definition 2.6. Hence,

2n|B(0, 1)|
β(p − 1) − ps ϵ

β(p−1)−ps + 2 ∫
ℝn\B(x0 ,ϵ)

|u(x0) − u(y)|p−2(u(x0) − u(y))
|x0 − y|n+ps

dy

= 2 ∫
B(x0 ,ϵ)

|x0 − y|β(p−1)

|x0 − y|n+ps
dy + 2 ∫

ℝn\B(x0 ,ϵ)

|uϵ(x0) − uϵ(y)|p−2(uϵ(x0) − uϵ(y))
|x0 − y|n+ps

dy

= 2 ∫
ℝn

|uϵ(x0) − uϵ(y)|p−2(uϵ(x0) − uϵ(y))
|x0 − y|n+ps

dy ≥ f(x0).
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In conclusion,

f(x0) + 2 ∫
ℝn\B(x0 ,ϵ)

|u(y) − u(x0)|p−2(u(y) − u(x0))
|x0 − y|n+ps

dy ≤ 2n|B(0, 1)|
β(p − 1) − ps ϵ

β(p−1)−ps .

Now, letting ϵ → 0 and using the monotone convergence theorem, it is obtained that

f(x0) ≤ 2 ∫
ℝn

|u(x0) − u(y)|p−2(u(x0) − u(y))
|x0 − y|n+ps

dy.

In particular, in the above lemma, if u is non-negative and

f(x0) > −2 ∫
ℝn

up−1(y)
|x0 − y|n+ps

dy,

for any x0 ∈ Ω satisfying u(x0) = 0, then u > 0 in Ω. This is the strong maximum principle for fractional
p-Laplacian equations. We bring an example to justify the sharpness of the condition

f(x0) > −2 ∫
ℝn

up−1(y)
|x0 − y|n+ps

dy.

Let β > ps
p−1 and

u(x) :=
{
{
{

|x|β , x ∈ B(0, 1),
1, x ∈ ℝn \ B(0, 1).

Then u(0) = 0 and
(−Δp)su(0) = −2 ∫

ℝn

up−1(y)
|y|n+ps dy.

Now, we prove Hopf’s lemma.

Proof of Lemma 1.1. By Lemma 4.4 and the condition

f(x0) > −2 ∫
ℝn

up−1(y)
|x0 − y|n+ps

dy if x0 ∈ Ω, u(x0) = 0,

we obtain u > 0 in Ω. Finally, if we set ui = utor , vi = u in Lemma 4.3 and use

lim sup
Ω∋x→x0

f(x) ≥ −2∫
K

up−1(y)
|x0 − y|n+ps

dy if x0 ∈ ∂Ω, u(x0) = 0,

we conclude that u ≥ Cutor for a positive constant C.

Lemma 4.5. Let δ > 0, u ∈ Lp−1ps (ℝn) ∩ C(Ωδ) be a viscosity supersolution of

(−Δp)su = −2(diamΩ)−(n+ps) ∫
K

up−1(y) dy in Ω,

for a subset K ⋐ Ω, which satisfies u ≥ 0 in ℝn \ Ω. Then either u = 0 a.e. in ℝn \ K, or u > 0 in Ω.

Proof. If u > 0 in Ω, then the proof is complete. Now, assume that u(x0) = infℝn u ≤ 0 for a point x0 ∈ Ω. Then,
by Lemma 4.4,

2 ∫
ℝn

|u(x0) − u(y)|p−2(u(x0) − u(y))
|x0 − y|n+ps

dy ≥ −2(diamΩ)−(n+ps) ∫
K

up−1(y) dy

≥ 2(diamΩ)−(n+ps) ∫
K

|u(x0) − u(y)|p−2(u(x0) − u(y)) dy

≥ 2∫
K

|u(x0) − u(y)|p−2(u(x0) − u(y))
|x0 − y|n+ps

dy.

Hence, u(y) = u(x0) ≤ 0 a.e. in ℝn \ K. In conclusion, by the assumption u ≥ 0 in ℝn \ Ω, we arrive at u = 0 a.e.
in ℝn \ K.
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Proof of Theorem 1.3. Let δ > 0, ui ∈ C(Ωδ) ∩ V
s,p
gui (Ω|ℝ

n), vi ∈ C(Ωδ) ∩ V
s,p
gvi (Ω|ℝ

n) be positive on Ω,

0 ≤ 1
B
gvi ≤ gui ≤ Bgvi ≤ M in ℝn \ Ω,

and
−2(diamΩ)−(n+ps) ∫

K

up−1i (y) dy ≤ (−Δp)
sui ≤ 1 in Ω,

−2(diamΩ)−(n+ps) ∫
K

vp−1i (y) dy ≤ (−Δp)
svi ≤ 1 in Ω,

(4.8)

in the locally weak sense, where K ⋐ Ω. We also assume that

ui(x0) ≥ D, vi(x0) ≥ D (‖ui‖Lq(Ω) ≥ D, ‖vi‖Lq(Ω) ≥ D),

for D > 0, 1 < q < ∞. By Proposition 2.9, ‖ui‖L∞(Ω) + ‖vi‖L∞(Ω) ≤ C for a constant C depending on n, s, p, Ω, B,M.
Also, by local Hölder regularity, see [15, Theorem 5.4], the Arzéla–Ascoli theorem, and passing to a subsequence,
ui , vi converge uniformly to u, v, respectively, on compact subsets of Ω. Define u = v = 0 in ℝn \ Ω and

ũi :=
{
{
{

ui in Ω,
0 in ℝn \ Ω,

ṽi :=
{
{
{

vi in Ω,
0 in ℝn \ Ω.

Then, by (4.8) and Definition 2.6, we have

−2(diamΩ)−(n+ps) ∫
K

ũp−1i (y) dy ≤ (−Δp)
s ũi in Ω,

−2(diamΩ)−(n+ps) ∫
K

ṽp−1i (y) dy ≤ (−Δp)
s ṽi in Ω,

in the viscosity sense. Hence, by the Lebesgue dominated convergence, Proposition 2.7, and Proposition 2.10, we
have

u(x0) ≥ D, v(x0) ≥ D (‖u‖Lq(Ω) ≥ D, ‖v‖Lq(Ω) ≥ D),

and
−2(diamΩ)−(n+ps) ∫

K

up−1(y) dy ≤ (−Δp)su in Ω,

−2(diamΩ)−(n+ps) ∫
K

vp−1(y) dy ≤ (−Δp)sv in Ω,

in the viscosity sense. Hence, by Proposition 2.7 and Lemma 4.5, ui , vi satisfy (4.8) in the viscosity sense and
u, v are strictly positive in Ω. Finally, by Lemma 4.3, uivi and

vi
ui are uniformly bounded from below in Ω. This

completes the proof.

In the case that K is empty, we obtain the following result:

Corollary 4.6. Let δ > 0, u ∈ C(Ωδ) ∩ V
s,p
gu (Ω|ℝn), v ∈ C(Ωδ) ∩ V

s,p
gv (Ω|ℝn) satisfy

u > 0, v > 0 in Ω,

0 ≤ 1B gv ≤ gu ≤ Bgv ≤ M in ℝn \ Ω,

for B > 0, M ≥ 0, and
0 ≤ (−Δp)su ≤ 1 in Ω,
0 ≤ (−Δp)sv ≤ 1 in Ω,
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in the locally weak sense. If either u(x0) ≥ D, v(x0) ≥ D for a fixed point x0 ∈ Ω or ‖u‖Lq(Ω) ≥ D, ‖v‖Lq(Ω) ≥ D for
D > 0, 1 ≤ q < ∞, then

C1 ≤
u
v
≤ C2 in Ω,

where C1 , C2 are positive constants depending on Ω, δ, n, s, p, D, B,M, x0 or q.

5 Eigenvalue problem

In this section, Ω ⊂ ℝn is a bounded open set with Wiener regular boundary for the s-fractional p-Laplacian.
Note that, as mentioned in Section 2.2, Λp,q > 0 in (1.1) by fractional Poincaré–Sobolev theorem, see Theorem 2.1.
Now, it is aimed to prove Theorem 1.5.We divide the proof into several steps. First, we prove the following global
boundedness of weak solutions.

Proposition 5.1. Let u ∈ V s,p
0 (Ω|ℝn) be a nonzero weak solution of

(−Δp)su = λ‖u‖
p−q
Lq(Ω)|u|

q−2u in Ω,

where 1 < q < p∗s , λ > 0. Then
‖u‖L∞(Ω) ≤ Cλθ ,

where θ is a positive constant depending on n, s, p, q and C is a constant depending on n, s, p, q, Ω.

Proof. By Theorem 2.1 and Hölder’s inequality, we have u ∈ Lq(Ω). Since the problem is scale-invariant, without
loss of generality, we can assume that ‖u‖Lq(Ω) = 1. Now, we consider three cases. First, if ps > n, we can simply
apply Theorem 2.1, together with the equation for u, to derive that

‖u‖pL∞(Ω) ≤ C[u]pV s,p(ℝn) = Cλ,

which concludes the proposition for θ = 1
p . Now, for ps = n, we have

‖u‖L∞(Ω) ≤ C‖ λ|u|q−2u ‖ 1
p−1
L

q
q−1 (Ω) = Cλ 1

p−1 ,
where we used [22, Lemma 2.3]. This completes the proposition for θ = 1

p−1 . Finally, if ps < n, we use [22, Lem-
ma 2.3] multiple times until we get L∞-estimate for u. We note that by Theorem 2.1 and the equation for u, we
derive that

‖u‖Lp∗s (Ω) ≤ C[u]V s,p(ℝn) = Cλ
1
p .

For the case that u ∈ Lr(Ω) where r > (q−1)nps , we can use [22, Lemma 2.3] once to imply that

‖u‖L∞(Ω) ≤ C‖ λ|u|q−2u ‖ 1
p−1
L

r
q−1 (Ω) = Cλ 1

p−1 ‖u‖ q−1p−1
Lr(Ω) ,

which concludes the proof. Now, if u ∈ Lr(Ω) for r = (q − 1) nps , we get

‖u‖Lt(Ω) ≤ |Ω|
1
t −

1
r ‖u‖Lr(Ω)

by Hölder’s inequality, where q − 1 < t < (q − 1) nps . Hence, by [22, Lemma 2.3], we obtain

‖u‖Lr󸀠 (Ω) ≤ C‖ λ|u|q−2u ‖ 1
p−1
L

t
q−1 (Ω) ≤ Cλ 1

p−1 |Ω| q−1p−1 ( 1t − 1r )‖u‖ q−1p−1
Lr(Ω) ,

where r󸀠 = n(p−1)t
n(q−1)−pst . Note that as t converges to (q − 1)

n
ps , r
󸀠 goes to infinity. Hence, by choosing t close enough

to (q − 1) nps , we arrive at u ∈ L
r󸀠 (Ω) for r󸀠 > (q − 1) nps . In conclusion, the proof follows from the previous case.

Finally, we claim that if p∗s <
n(q−1)
ps and we start with u ∈ Lr1 (Ω) for some p∗s ≤ r1 <

n(q−1)
ps , then u ∈ Lr2 (Ω)with

r2
r1 > α > 1, where α depends on n, s, p, q, and

‖u‖Lr2 (Ω) ≤ Cλ
1

p−1 ‖u‖ q−1p−1
Lr1 (Ω) , (5.1)
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where C depends on n, s, p, q, Ω. Note that by using the claim finitely many times, we get that u belongs to
Lr(Ω) for some r ≥ n(q−1)

ps which, together with previous cases, completes the proof. To prove the claim, we use
[22, Lemma 2.3] as before to obtain (5.1) for

r2 :=
n(p − 1)r1

n(q − 1) − psr1
.

Then, by r1 ≥ p∗s and q < p∗s , we deduce

r2
r1
≥

n(p − 1)
n(q − 1) − psp∗s

>
n(p − 1)

n(p∗s − 1) − psp∗s
= 1,

which concludes the above claim for α = n(p−1)
n(q−1)−psp∗s .

Remark 5.2. The same proof can be applied to the general equation

(−Δp)su = f(u) in Ω,

where f : ℝ → ℝ satisfies |f(u)| ≤ C1 + C2|u|q−1 for 1 < q < p∗s and positive constants C1 , C2, to derive

‖u‖L∞(Ω) ≤ g(‖u‖Lq(Ω)),
where g : ℝ → ℝ is a non-negative function depending on n, s, p, q, Ω. Moreover, we do not need the Wiener
regular property of Ω in the proof of Proposition 5.1.

Second, we demonstrate that the first eigenvalue Λp,q is simple for 1 < q ≤ p, and the first eigenfunction does
not change sign.

Proposition 5.3. For every 1 < q ≤ p, the weak solutions u ∈ V s,p
0 (Ω|ℝn) of

(−Δp)su = Λp,q|u|q−2u in Ω

satisfying ‖u‖Lq(Ω) = 1, are proportional and strictly positive or negative on Ω.

Proof. Assume that u, v ∈ V s,p
0 (Ω|ℝn) satisfy ‖u‖Lq(Ω) = 1 = ‖v‖Lq(Ω) and are weak solutions of

(−Δp)su = Λp,q|u|q−2u, (−Δp)sv = Λp,q|v|q−2v in Ω. (5.2)

Then, by the triangle inequality,

∬
ℝn×ℝn

| |u(x)| − |u(y)| |p

|x − y|n+ps dx dy ≤ ∬
ℝn×ℝn

|u(x) − u(y)|p

|x − y|n+ps dx dy,

and the equality holds if and only if u does not change sign. Hence, by (1.1), the equality occurs above, and,
without loss of generality, we can assume that u is non-negative on Ω. To prove that u is positive in Ω, we note
that, by Proposition 3.3 and Proposition 5.1, u ∈ C(Ω). In conclusion, by Corollary 1.2 and Proposition 2.7, we
derive that u > 0 in Ω. Likewise, up to a multiplication with −1, we can assume that v > 0 in Ω.

Now, we show that u and v are proportional. Define χt := (t
1
q u, (1 − t)

1
q v) and ‖ ⋅ ‖lq as the lq-norm in ℝ2.

Since t → t
p
q is a convex function on ℝ+, we have

‖χt(x) − χt(y)‖
p
lq ≤ t|u(x) − u(y)|

p + (1 − t)|v(x) − v(y)|p for x, y ∈ ℝn .

Hence,

∫
ℝn

∫
ℝn

|‖χt(x)‖lq − ‖χt(y)‖lq |p

|x − y|n+ps dx dy ≤ t ∫
ℝn

∫
ℝn

|u(x) − u(y)|p

|x − y|n+ps dx dy + (1 − t) ∫
ℝn

∫
ℝn

|v(x) − v(y)|p

|x − y|n+ps dx dy

≤ Λp,q ,
(5.3)

by the triangle inequality and (5.2). Also, we have

‖‖χt‖lq‖
q
Lq(Ω) = t‖u‖

q
Lq(Ω) + (1 − t)‖v‖

q
Lq(Ω) = 1.
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Hence, by (1.1), the inequalities in (5.3) are equalities. In conclusion, we have the equality

|‖χt(x)‖lq − ‖χt(y)‖lq | = ‖χt(x) − χt(y)‖lq for a.e. x, y ∈ ℝn

in the triangle inequality. It follows that χt(x) = c(x, y)χt(y) for a.e. x, y ∈ ℝn . Hence, we have u(x)
v(x) =

u(y)
v(y) for a.e.

x, y ∈ Ω.

The next proposition shows that only for the first eigenvalue there exists a non-negative eigenfunction.

Proposition 5.4. Let u ∈ V s,p
0 (Ω|ℝn) be a weak solution of (−Δp)su = λ|u|q−1u, where 1 < q ≤ p, λ > 0, and

‖u‖Lq(Ω) = 1. If u is non-negative in Ω, then λ = Λp,q .

Proof. The argument is the same as [12, Theorem 4.1]. Let λ > 0 and u ∈ V s,p
0 (Ω|ℝn) be a non-negative weak

solution of (−Δp)su = Λp,quq−1, where ‖u‖Lq(Ω) = 1. Assume that v ∈ V
s,p
0 (Ω|ℝn) is a non-negative weak solution

of (−Δp)sv = λvq−1 satisfying ‖v‖Lq(Ω) = 1. Define the functions uϵ := u + ϵ, vϵ := v + ϵ, and

σϵt (x) := (tu
q
ϵ (x) + (1 − t)v

q
ϵ (x))

1
q for x ∈ Ω, t ∈ [0, 1].

Since t → t
p
q is a convex function on ℝ+, by the triangle inequality for ‖ ⋅ ‖lq , it is obtained that

∫
ℝn

∫
ℝn

|σϵt (x) − σϵt (y)|p

|x − y|n+ps dx dy − ∫
ℝn

∫
ℝn

|v(x) − v(y)|p

|x − y|n+ps dx dy

≤ t(∫
ℝn

∫
ℝn

|u(x) − u(y)|p

|x − y|n+ps dx dy − ∫
ℝn

∫
ℝn

|v(x) − v(y)|p

|x − y|n+ps dx dy)

≤ t(Λp,q − λ).

(5.4)

Now, by the convexity of the map, t → tp , we have

∫
ℝn

∫
ℝn

|σϵt (x) − σϵt (y)|p

|x − y|n+ps dx dy − ∫
ℝn

∫
ℝn

|v(x) − v(y)|p

|x − y|n+ps dx dy

≥ p ∫
ℝn

∫
ℝn

|v(x) − v(y)|p−2(v(x) − v(y))
|x − y|n+ps (σϵt (x) − σϵt (y) − (v(x) − v(y))) dx dy.

(5.5)

Hence, using (−Δp)sv = λvq−1 weakly in Ω and the test function σϵt − vϵ , we get

∫
ℝn

∫
ℝn

|v(x) − v(y)|p−2(v(x) − v(y))
|x − y|n+ps (σϵt (x) − σϵt (y) − (vϵ(x) − vϵ(y))) dx dy = ∫

Ω

λvq−1(x) (σϵt (x) − vϵ(x)) dx. (5.6)

In conclusion, by (5.4), (5.5), and (5.6), we arrive at

λp∫
Ω

vq−1(x)
σϵt (x) − vϵ(x)

t dx ≤ Λp,q − λ, (5.7)

whereweused vϵ(x) − vϵ(y) = v(x) − v(y) for all x, y ∈ ℝn . Since t → t
1
q is a concave function of t ∈ ℝ+, we have

vq−1
σϵt − vϵ

t ≥ v
q−1(u − v) in Ω,

and vq−1(u − v) ∈ L1(Ω) by Proposition 5.1. Then, by applying Fatou’s lemma to (5.7), it is implied that

λp
q ∫

Ω

(
v(x)
vϵ(x)
)
q−1
(uqϵ (x) − v

q
ϵ (x)) ≤ λp lim inf

t→0
∫
Ω

vq−1(x)
σϵt (x) − vϵ(x)

t dx ≤ Λp,q − λ,

for small enough ϵ > 0. Hence, by the assumption v > 0 in Ω and Lebesgue dominated convergence, we deduce

0 = λpq ∫
Ω

uq(x) − vq(x) dx ≤ Λp,q − λ.

Combining the above inequality with (1.1) implies that λ = Λp,q .
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Proof of Theorem 1.5. Let λi > Λp,q , vi ∈ V
s,p
0 (Ω|ℝn) be a sequence such that

‖vi‖Lq(Ω) = 1,
lim
i→∞

λi = Λp,q ,

(−Δp)svi = λi|vi|q−2vi ,

weakly in Ω. By Proposition 5.1,
‖vi‖L∞(Ω) ≤ Cλθi (5.8)

for some positive constants θ, C, which are independent of i. Also, [vi]
p
V s,p(ℝn) = λi . Hence, by Theorem 2.3,

[4, Theorem 2.7], and passing to a subsequence, vi converges strongly in Ω to u ∈ V s,p
0 (Ω|ℝn) with respect to

the Lq-norm and ‖u‖Lq(Ω) = 1. Then

(−Δp)su = Λp,q|u|q−2u weakly in Ω.

Now, by Proposition 5.3, u > 0 a.e. in Ω up to multiplication by a constant. By (5.8), Hölder’s regularity for the
s-fractional Laplacian, see [15, Theorem 5.4], and the Arzéla–Ascoli theorem, vi converges uniformly to u on
compact subsets of Ω up to a subsequence andmultiplication by a constant. Since Ω has aWiener regular bound-
ary for the s-fractional p-Laplacian, we derive u, vi , utor belong to C(ℝn). Now, we want to apply Lemma 4.3 to
sequences ui = u, vi . Since u > 0, we need to only check that

lim
i→∞

λi|vi(xi)|q−2vi(xi) = 0

for every sequence xi ∈ Ω such that limi→∞ xi ∈ ∂Ω. To prove this, define

ṽi := (λi‖vi‖
q−1
L∞(Ω)) 1

p−1 utor .
Then ̃vi = vi = 0 in ℝn \ Ω and

(−Δp)s ṽi = λi‖vi‖
q−1
L∞(Ω) ,

weakly in Ω. Hence, −ṽi ≤ vi ≤ ṽi in Ω by comparison principle, see [15, Proposition 2.10]. In particular, by (5.8)
and utor ∈ C(ℝn), we obtain

lim
i→∞

λi|vi(xi)|q−2vi(xi) = lim
i→∞

λi|ṽi(xi)|q−2 ṽi(xi)

= lim
i→∞
(λi‖vi‖

q−1
L∞(Ω)) q−1p−1 |utor(xi)|q−2utor(xi) = 0,

for every sequence xi ∈ Ω satisfying limi→∞ xi ∈ ∂Ω. In conclusion, by Lemma 4.3, we obtain vi ≥ Cu in Ω for
a constant C > 0 and large enough i. In particular, vi > 0 in Ω for large enough i, which implies that λi = Λp,q by
Proposition 5.4. This derives the desired contradiction.

Remark 5.5. If Ω has a C1,1 boundary and p ≥ 2, then one can simplify the proof of Theorem 1.5 by using
[16, Theorem 1.1]. Indeed, taking a sequence of functions vi as in the above proof, we have, by [16, Theorem 1.1],

vi
dist(x,∂Ω)s is uniformly bounded, and 󵄩󵄩󵄩󵄩󵄩󵄩󵄩

vi
dist(x, ∂Ω)s

󵄩󵄩󵄩󵄩󵄩󵄩󵄩Cα(Ω̄)
≤ C

for some positive constants C, α. By the same argument as proof of Theorem 1.5, up to multiplication by a
constant and passing to a subsequence, we derive that vi is sign-changing on Ω and converges pointwise to
a non-negative function u. Hence, by the Arzéla–Ascoli theorem, vi

dist(x,∂Ω)s converges uniformly to
u

dist(x,∂Ω)s up
to a subsequence. Since vi

dist(x,∂Ω)s is also continuous and sign-changing on Ω, we derive that u
dist(x,∂Ω)s goes to

zero at a boundary point. This contradicts Corollary 1.2 and [16, Lemma 2.3], since u ≥ C1utor(x) ≥ C2 dist(x, ∂Ω)s
for x ∈ Ω, where C1 , C2 are positive constants.
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