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Abstract: We identify effective models for thin, linearly elastic and perfectly plastic plates exhibiting a micro-
structure resulting from the periodic alternation of two elastoplastic phases. We study here both the case in
which the thickness of the plate converges to zero on a much faster scale than the periodicity parameter and
the opposite scenario in which homogenization occurs on a much finer scale than dimension reduction. After
performing a static analysis of the problem, we show convergence of the corresponding quasistatic evolutions.
The methodology relies on two-scale convergence and periodic unfolding, combined with suitable measure-
disintegration results and evolutionary I'-convergence.
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1 Introduction

The main goal of this paper is to complete the study of limiting models stemming from the interplay of homo-
genization and dimension reduction in perfect plasticity which we have initiated in [7], as well as to show how
the stress-strain approach introduced in [26] for the homogenization of elasto-perfect plasticity can be used to
identify effective theories for composite plates. In our previous contribution, we considered a composite thin
plate whose thickness h and microstructure-width &, were asymptotically comparable, namely, we assumed

lim £ =1y € (0, +00).
h—0 Ep
In this work, instead, we analyze the two limiting regimes corresponding to the settings y = 0 and y = +oo.
These can be seen, roughly speaking, as situations in which homogenization and dimension reduction happen
on different scales, so that the behavior of the composite plate should ideally approach either that obtained via
homogenization of the lower-dimensional model or the opposite one in which dimension reduction is performed
on the homogenized material.

To the authors’ knowledge, apart from [7] there has been no other study of simultaneous homogenization
and dimension reduction for inelastic materials. In the purview of elasticity, we single out the works [8, 14] (see

also the book [44]) where first results were obtained in the case of linearized elasticity and under isotropy or
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additional material symmetry assumptions, as well as [5] for the study of the general case without further con-
stitutive restrictions and for an extension to some nonlinear models. A T'-convergence analysis in the nonlinear
case has been provided in [4, 10, 36, 43, 48], whereas the case of high-contrast elastic plates is the subject of [6].

We briefly review below the literature on dimension reduction in plasticity and that on the study of compos-
ite elastoplastic materials. Reduced models for homogeneous perfectly plastic plates have been characterized
in [21, 22, 31, 40] in the quasistatic and dynamic settings, respectively, whereas the case of shallow shells is the
focus of [41]. In the presence of hardening, an analogous study has been undertaken in [38, 39]. Further results
in finite plasticity are the subject of [15, 16].

Homogenization of the elastoplastic equations in the small strain regime has been studied in [34, 35, 45]. We
also refer to [28, 30] for a study of the Fleck and Willis model, and to [33] for the case of gradient plasticity. Static
and partial evolutionary results for large-strain stratified composites in crystal plasticity have been obtained
in [11, 12, 17, 20], whereas static results in finite plasticity are the subject of [18, 19]. Inhomogeneous perfectly
plastic materials have been fully characterized in [27], an associated study of periodic homogenization is the
focus of [26].

The main result of the paper, Theorem 6.2, is rooted in the theory of evolutionary I'-convergence (see [42])
and consists in showing that rescaled three-dimensional quasistatic evolutions associated to the original com-
posite plates converge, as the thickness and periodicity simultaneously go to zero, to the quasistatic evolution
corresponding to suitable reduced effective elastic energies (identified by static I'-convergence) and dissipation
potentials, cf. Section 5.4. As one might expect, for y = 0 the limiting driving energy and dissipation potential
are homogenized versions of those identified in [21] where only dimension reduction was considered. In the
y = oo setting, instead, the key functionals are obtained by averaging the original ones in the periodicity cell.

Essential ingredients to identify the limiting models are to establish a characterization of two-scale lim-
its of rescaled linearized strains, as well as to prove variants of the principle of maximal work in each of the
two regimes. These are the content of Theorem 4.14, as well as Theorem 5.31 for the case y = 0, and of Theo-
rem 5.33 for y = +o0, respectively. A very delicate point consists in the identification of the limiting space of
elastoplastic variables, for a fine characterization of the correctors arising in the two-scale limit passage needs
to be established by delicate measure-theoretic disintegration arguments, cf. Section 4.

We finally mention that, for the regimes analyzed in this contribution, we obtain more restrictive results
than in [7], for an additional assumption on the ordering of the phases on the interface, cf. Section 3.1 needs to
be imposed in order to ensure lower semicontinuity of the dissipation potential, cf. Remark 3.3.

We briefly outline the structure of the paper. In Section 2 we introduce our notation and recall some prelim-
inary results. Section 3 is devoted to the mathematical formulation of the problem, whereas Section 4 tackles
compactness properties of sequences with equibounded energy and dissipation. In Section 5 we characterize the
limiting model, we introduce the set of limiting deformations and stresses, and we discuss the duality between
stress and strain. Eventually, in Section 6 we prove the main result of the paper, i.e., Theorem 6.2, where we show
convergence of the quasistatic evolution of 3d composite thin plates to the quasistatic evolution associated to
the limiting model. Similarly as in [7, 26], in the limiting model a decoupling of macroscopic and microscopic
variables is not possible and both scales contribute to the description of the limiting evolution.

2 Notation and preliminary results

Points x € R? will be expressed as pairs (x', x3), with x’ € R? and x3 € R, whereas we will write y € Y to identify
points on a flat 2-dimensional torus. We will denote by I the open interval I := (—%, %). The notation Vy will
describe the gradient with respect to x'. Scaled gradients and symmetrized scaled gradients will be similarly

denoted as follows:
Viv = [ Vv ' 305,V ] Epv = symVyv, .1

for h > 0, and for maps v defined on suitable subsets of R3. For N = 2, 3, we use the notation M™*¥ to iden-
tify the set of real N x N matrices. We will always implicitly assume this set to be endowed with the classical
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Frobenius scalar product A : B := Z,»Jj AjjB;j and the associated norm |A| := VA : A, for A,B € MY*N The sub-

spaces of symmetric and deviatoric matrices will be denoted by MQ{,THN and Mﬁ’e’;N , respectively. For the trace

and deviatoric part of a matrix A € MV*¥ we will adopt the notation tr A, and
1
Agey =A - v trA.

Given two vectors a, b € RY, we will adopt standard notation for their scalar product and Euclidean norm,
namely a - b and |a|. The dyadic (or tensor) product of a and b will be identified as by a ® b; correspondingly,
the symmetrized tensor product a ® b will be the symmetric matrix with entries (a © b);; := M We recall
thattr (a®b) = a- b, and |a © b|* = }|al?|b|* + }(a- b)?, so that

1
V2

In analogy with the notation used for points x € R3, given a vector v € R3, we will use the notation v’ to denote
the 2-dimensional vector having its same first two components

v
vi=( 1),
V2

In the same way, for every A € M®*3, we will use the notation A" to identify the minor

AII . (All A12>
Ay Ap

The natural embedding of R? into R® will be given by ¢ : R?> — R? defined as

lal|b| < la® b| < |al|bl.

V1
(v) =1 vy
0

We will adopt standard notation for the Lebesgue and Hausdorff measure, as well as for Lebesgue and Sobolev
spaces, and for spaces of continuously differentiable functions. Given a set U ¢ R, we will denote its closure
by U and its characteristic function by 1.

Let E be an Euclidean space. We will distinguish between the spaces CX(U; E) (C* functions with compact
support contained in U) and C’g (U; E) (C* functions “vanishing on 0U"). The notation C(Y; E) will indicate the
space of all continuous functions which are [0, 1]?-periodic. Analogously, we will define

CX(Y; E) := CK(R% E) n C(Y; E).

With a slight abuse of notation, C*(Y; E) will be identified with the space of all C¥ functions on the 2-dimensional
torus.
We will frequently make use of the standard mollifier p € C*°(RY), defined by

1 .
p(x) = {CeXp(mTl) if x| < 1,

otherwise,

where the constant C > 0is selected so that f]RN p(x) dx = 1, as well as of the associated family {p¢}eso ¢ CP(RY)
defined with

pe(X) = %P(%)

Throughout the text, the letter C stands for generic positive constants whose value may vary from line
to line.

A collection of all preliminary results which will be used throughout the paper can be found in [7, Sec-
tion 2]. For an overview on basic notions in measure theory, functions of bounded variation (BV), as well as
functions of bounded deformation (BD) and bounded Hessian (BH), we refer the reader to, e.g., [1, 2, 25], to the
monograph [46], as well as to [23].
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2.1 Convex functions of measures

Let U be an open set of RY and X a finite-dimensional vector space and denote by M (U; X) the set of finite
X-valued Radon measures on the set U. For every p € My(U; X) let == dl | £ be the Radon-Nikodym derivative of u
with respect to its variation |u|. Let H : X — [0, +00) be a convex and positively one-homogeneous function such
that

r|é| < H(§) < R|¢| forevery¢ € X, 2.2)

where r and R are two constants, with 0 < r < R.
Using the theory of convex functions of measures (see [32] and [24]) it is possible to define a nonnegative

Radon measure H(u) € M;;(m as p
Hu @) = [ B g ) dud
A

for every Borel set A c U, as well as an associated functional H : My (U; X) — [0, +00) given by

3 = B () = [ #( ;|H| ) dlui
U

and being lower semicontinuous on Mp(U; X) with respect to weak* convergence, cf. [1, Theorem 2.38]).
Let a, b € [0, T) with a < b. The total variation of a function u : [0, T] — M (U; X) on [a, b] is defined as

n-1

V(u; a, b) = SUP{ Z lu(tive) —u(tla,ux s a=t1 <tz <---<tp=b, ne N}-
i=1

Analogously, the H-variation of a function y : [0, T] — M(U; X) on [a, D] is given by

n-1

Dy (u; a, b) := sup { N Hu(tin) - p(t)):a=t1<ty<---<ty=h,ne IN}.
i=1

From (2.2) it follows that
rV(u; a, b) < Dac(u; a,b) < RV(u; a, b). 2.3

2.2 Generalized products

Let Sand T be measurable spaces and let ¢ be a measure on S. Given a measurable functionf: S — T, we denote
by fuu the push-forward of u under the map f, defined by

fau(B) = y(f’l(B)) for every measurable set B ¢ T.

In particular, for any measurable function g : T — R we have

| gerau-[sagm.

N T

Note that in the previous formula S = (7).
Let S; c RM, Sy ¢ RM, for some Ny, N, € N, be open sets, and let n € M;(Sl). We say that a function
X1 € §1 - Ux, € Mp(Sy; RM) is n-measurable if x1 € S1 — iy, (B) is n-measurable for every Borel set B ¢ Sz
Given a - -measurable function x; + uy, such that Is |tx,| dn < +00, then the generalized product n ® Ux,
satisfies ® Uy, € Mp(S1 x S2; RM) and is such that

N'® Ux,, @) = J ( J 0(x1, X2) dﬂxl(xz)> dn(x1)

S1 S

for every bounded Borel function ¢ : S x S — R.



DE GRUYTER M. BuZancic et al., Periodic homogenization of elastoplastic plates == 1403

2.3 Traces of stress tensors

In this last subsection we collect some properties of classes of maps which will include our elastoplastic stress
tensors.

We suppose here that U is an open bounded set of class C* in R. If ¢ € L*(U; M) and div o € L*(U; RY),
then we can define a distribution [ov] on U by

[ov](Y) = J Y-divodx + j o:EYdx 2.9
U U
for every y € H'(U; RY). It follows that [ov] € H™Y2(aU; RN) (see, e.g., [47, Chapter 1, Theorem 1.2]). If, in addi-
tion, 0 € L°(U; MY;Y) and div o € LY (U; RY), then (2.4) holds for ) € W!(U; RY). By Gagliardo’s extension
theorem [29, Theorem 1.I], in this case we have [gV] € L®(U; RY), and

[oxv] = [ov] weakly* in L®(8U; RY),

whenever oy = ¢ weakly* in L®(U; MY;Y) and div oy — div o weakly in LY (U; RY).
We will consider the normal and tangential parts of [ov], defined by

[ov]y = ([ov] - v)v, [oV]y := [av] - ([aV] - v)V.

Since v € C(aU; RY), we have that [ov],, [ov]} € HV2(aU; RV). If, in addition, 0gey € L®(U; MYXY), then it
was proved in [37, Lemma 2.4] that [ov]} € L*®(dU; RY) and

1
1
I{ov]y e auryy < @"Udev”Lm(U;MQ’;/N)-

More generally, if U has Lipschitz boundary and is such that there exists a compact set S ¢ oU with
HN-1(S) = 0 such that dU \ S is a C?>-hypersurface, then arguing as in [27, Section 1.2] we can uniquely deter-
mine [ov]} as an element of L°(dU; RY) through any approximating sequence {g,} c C®(U; M) such
that

on — 0 strongly in L*(U; M),
divo, — dive strongly in L?(U; RY),

||(Un)dev||Loo(U;Mé"ele) < "Gdev"Loo(U;Mé":vN)-

3 Setting of the problem

We describe here our modeling assumptions and recall a few associated instrumental results. Unless otherwise
stated, w ¢ R? is a bounded, connected, and open set with c? boundary. Given a small positive number h > 0,
we assume

Q" := w x (hI)

to be the reference configuration of a linearly elastic and perfectly plastic plate.

We consider a nonzero Dirichlet boundary condition on the whole lateral surface, i.e., the Dirichlet bound-
ary of Q" is given by I'! := dw x (hI).

We work under the assumption that the body is only submitted to a hard device on Ff, and that there are no
applied loads, i.e., the evolution is only driven by time-dependent boundary conditions. More general boundary
conditions, together with volume and surface forces have been considered, e.g., in [13, 21, 27] but for simplicity
of exposition will be neglected in this analysis.

3.1 Phase decomposition

We recall here some basic notation and assumptions from [26].
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Recall that Y = R?/Z? is the 2-dimensional torus, let Y := [0, 1)? be its associated periodicity cell, and denote
by J:Y — Y their canonical identification. For any Z c Y, we define

2ei= {xe R 2 e 224920}, 3.1
and to every function F : Y — X we associate the e-periodic function F, : R? — X, given by
Fe(x) = F(ye) for ’—; - {’—;J —I(ye) € V.

With a slight abuse of notation we will also write F.(x) = F (%).

The torus Y is assumed to be made up of finitely many phases Y; together with their interfaces. We assume
that those phases are pairwise disjoint open sets with Lipschitz boundary. Then we have Y = | J; Y;and we denote
the interfaces by

I:=|JaYinay,.
L

.= U Tij,

i#]

We will write

where I';j stands for the interface between Y; and Y;.

Correspondingly, w is composed of finitely many phases (Y;). and that ¢ is chosen small enough so that
HY(J;(8Y1)e N dw) = 0. Additionally, we assume that Q" is a specimen of a linearly elastic-perfectly plastic
material having periodic elasticity tensor and dissipation potential.

We are interested in the situation when the period ¢ is a function of the thickness h, i.e., € = €, and we
assume that the limit

= lim h
V=R &

exists in {0, +oo}. We additionally impose the following condition: there exists a compact set 8 ¢ I' with
H'(8) = 0 such that each connected component of T'\ § is either a closed curve of class C? or an open curve
with endpoints {a, b} which is of class C? (excluding the endpoints).

We say that a multi-phase torus Y is geometrically admissible if it satisfies the above assumptions.

Remark 3.1. Notice that under the above assumptions, J(!-almost every y € T'is at the intersection of the bound-
aries of exactly two phases.

Remark 3.2. We point out that we assume greater regularity than that in [26], where the interface I' \ § was
allowed to be a C'-hypersurface. Under such weaker assumptions, in fact, the tangential part of the trace of an
admissible stress [oVv]; at a point x on I'\ 8 would not be defined independently of the considered approx-
imating sequence, cf. Section 2.3. By requiring a higher regularity of T'\ 8, we will avoid dealing with this
situation.

The set of admissible stresses. We assume that there exist convex compact sets K; € JMfi:s’ associated to each
phase Y; which will provide restrictions on the deviatoric part of the stress. We work under the assumption that

there exist two constants rx and Rg, with 0 < rg < Rk, such that for every i,

{Ee M3 |8 < i} < Ki < {E e MY 1 [€] < Ry}

dev dev

Finally, we define
K(y):=K; foryelY;.

We will require an ordering between the phases at the interface. Namely, we assume that at the pointy € T
where exactly two phases Y; and Y; meet we have that either K; ¢ K or K; ¢ K;.
We will call this requirement the assumption on the ordering of the phases.

Remark 3.3. The restrictive assumption on the ordering between the phases will allow us to use Reshetnyak’s
lower semicontinuity theorem to obtain lower semicontinuity of the dissipation functional, cf. the proof of Theo-
rem 6.2. Notice that in the regime y € (0, +00), see [7], we did not rely on such assumption (see also [26, 27]) and
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thus were able to prove the convergence to the limit model in the general case. In the regimes y € {0, co} the
general geometrical setting where no ordering between the phases is assumed remains an open problem.

The elasticity tensor. For every i, let (Cgey); and k; be a symmetric positive definite tensor on Mflg“j’

a positive constant, respectively, such that there exist two constants r. and R, with 0 < r. < R, satisfying

and

relél? < (Caev)i€ : E < Re|E>  for every & e MPS3 (3.2)

dev’

re < ki <R (3.3

Let C be the elasticity tensor, considered as a map from Y taking values in the set of symmetric positive

definite linear operators, C : Y x M35 — M35, defined as

C(Y)E := Caey(y)Eaev + (k) tr E)I3x3  foreveryy € Y and & e M>3,

where Cgey(¥) = (Cgey)i and k(y) = k; for every y € Y;.
LetQ:Yx Mg’}ﬁ — [0, +00) be the quadratic form associated with C, and given by

1
Q. &) = 3CWE: ¢ foreveryy eYand§ e M-
It follows that Q satisfies
relél? < Q(v, &) < Rc|&*> foreveryy e Yand ¢ € ngﬁ (3.4)
The dissipation potential. For each i, let H; : Mgg‘? — [0, +00) be the support function of the set Kj, i.e.,

Hi(§) =supt:¢.

TekK;

It follows that H; is convex, positively 1-homogeneous, and satisfies

ril€l < Hi(§) < Rl for every & € M35 (3.5)

dev*
The dissipation potential H : Y x Mflzg — [0, +00] is defined as follows:
(i) Foreveryyel,
H(y, &) := Hi(%).

(ii) Forapointy e I' thatis at interface of exactly two phases Y; and Y; we define
Hy, ¢ = nlﬁjn{Hi()/; &), Hi(y, O}

(iii) For all other points we take

H(y: E) = ml_inHi(ys f)

Remark 3.4. We point out that H is a Borel, lower semicontinuous function on Y x Mg’gg. Furthermore, for each
y €Y, the function ¢ — H(y, ¢) is positively 1-homogeneous and convex.

Admissible triples and energy. On 1“;') we prescribe a boundary datum being the trace of amap w" ¢ H'(Q"; R®)
with the following Kirchhoff-Love structure:

wh(z) = <17v1(z’) - Z—;all/_V3(Zl), Wy(2') - %”azwg(z’), %Wg(Z’)) forae.z= (2,23 € QY  (36)
where W, € HY(w), a = 1,2, and w5 € H%(w). The set of admissible displacements and strains for the boundary
datum w" is denoted by A(Q", w") and is defined as the class of all triples (v, f, ) € BD(Q") x L(Q"; M33) x
My (QF; M33) satisfying
Ev=f+q in Q"
q=W"-v)oveH?* onTh.

The function v represents the displacement of the plate, while f and q are called the elastic and plastic strain,
respectively.
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For every admissible triple (v, f, q) € A(Q", wh) we define the associated energy as

!

Env, £, Q) :=jo(j—h,f<z))dz+ | H(Z' ﬂ)dlm.

en’ d|ql
Qn Qhurh

The first term represents the elastic energy, while the second term accounts for plastic dissipation.

3.2 The rescaled problem

DE GRUYTER

As usual in dimension reduction problems, it is convenient to perform a change of variables in such a way
to rewrite the system on a fixed domain independent of h. To this purpose, we consider the open interval

I=(-1,1)andset
Qi =wxI, Tp=0wxlI.

We consider the change of variables 1, : @ — Qh, defined as
Yn(x', x3) == (X', hx3) forevery (x', x3) € Q,
and the linear operator Ap : M35 — M3 given by

fn & R
Ai=| &1 & & for every § € M3

1 1 1
7631 %632 52833

(3.7

(3.8

To any triple (v, f, q) € A(Q", w") we associate a triple (u, e, p) € BD(Q) x L%(; ngxr%) x Mp(Q U FD;ME’;,}%)

defined as follows: 1
wi= (v, v, hvs) o, e:=Ay'fotp, pi= EAglwﬁ(q).

Here the measure l,b‘;l(q) € Mp(Q; M>?3) is the pull-back measure of g, satisfying
J @ dyi(q) = J (poy;!):dq forevery ¢ e Co(Q UTp; M>3).
QuTp Qhurh
According to this change of variable we have
En(v, f, @) = hQn(Ane) + h3(n(Anp),

where ,

Qn(Ape) = j Q(X—,Ahe) dx
En
Q
and

!
P i

Tn(Anp) = j H(a’ i

Qul'p

We also introduce the scaled Dirichlet boundary datum w € H'(Q; R3), given by

w(x) := (W1 (x") = x301w3(x"), Wa(x") = x30w3(x"), ws(x")) forae. x e Q.

By the definition of the class A(Q", wh) it follows that the scaled triple (u, e, p) satisfies

Eu=e+p in Q,

p=W-u)ovegH? onTp,

1 .
P11+p22+ﬁp33 =0 inQuTlp.

(3.9

(3.10)

(3.11)
(3.12)

(3.13)
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We are thus led to introduce the class Ay (w) of all triples (u, e, p) € BD(Q) x L*(Q; M33) x Mp(Q U Tp; M353)
satisfying (3.11)—(3.13), and to define the functional

In(u, e, p) := Qn(Ape) + Hp(Arp) (3.14)

for every (u, e, p) € Ap(w). In the following we will study the asymptotic behavior of the quasistatic evolution
associated with Jp, as h — 0 and €5 — 0.
Notice that if W, € HY(@), a = 1, 2, and w5 € H*(@), where w ¢ @, then we can trivially extend the triple
(u,e,p)to Q := @ x I by
u=w, e=Ew, p=0 onQ\Q.

In the following, with a slight abuse of notation, we will still denote this extension by (u, e, p), whenever such
an extension procedure will be needed.

Kirchhoff-Love admissible triples and limit energy. We consider the set of Kirchhoff-Love displacements,
defined as
KL(Q) := {u e BD(Q) : (Eu);3 =0fori=1,2,3}.

We note that u € KL(Q) if and only if us € BH(w) and there exists it € BD(w) such that

Ug = Ug — X30x, U3, a=1,2. (3.15)
In particular, if u € KL(Q), then
0
Eil — x3D?
Eu=[ 70T (3.6)
0 0 0

If, in addition, u € WHP(Q; R®) for some 1 < p < oo, then it € WP (w; R?) and u3 € W>P(w). We call i, us the
Kirchhoff-Love components of u.

For every w € H'(Q; R%) n KL(Q) we define the class Ag(w) of Kirchhoff-Love admissible triples for the
boundary datum w as the set of all triples (u, e, p) € KL(Q) x L2(Q; ME;I%) x Mp(Q U Tp; ME;I%) satisfying

Eu=e+p inQ, p=@Ww-u)ovegH® onlp, (3.17)
ei3=0 inQ, pi=0 inQurlp, i=1,23. (3.18)

Note that the space
{Ee My &i3=0fori=1,2,3}

is canonically isomorphic to ME;I% Therefore, in the following, given a triple (u, e, p) € Ak (w) we will usually

identify e with a function in L?(Q; M%) and p with a measure in Mjp(Q U Tp; MZ5%). Note also that the class
Agr(w) is always nonempty as it contains the triple (w, Ew, 0).

To provide a useful characterization of admissible triplets in Axg(w), let us first recall the definition of
zero-th and first order moments of functions.

Definition 3.5. For f € L2(Q; M%) we denote by f, felw; M33) and f* € L*(Q;Mg57) the following
orthogonal components (with respect to the scalar product of L%(Q; Mg}i}%)) of f:

fx'y = Jf(X',Xs) dxs, f(x'):=12 j x3f(x', x3) dxs (3.19)

1 I
fora.e. x’ € w, and
fH00 = f00 = F(x) = xsf (x)

for a.e. x € Q. We name f the zero-th order moment of f and f the first order moment of f. More generally, we
will also use the expressions (3.19) for any integrable function over I.
The coefficient in the definition of f is chosen from the computation L xg dxs = 11—2 It ensures that if f is of the
form f(x) = x3g(x") for some g € L%(w; Mgﬁ%), then f = g.

Analogously, we have the following definition of zero-th and first order moments of measures.
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Definition 3.6. For u € My(Q U T'p; M3z) we define i, il € Mp(w U yp; M355) and u* € Mp(Q U Tp; MES) as
follows:
J(DZd[l!z J(p:du, J(p:dﬁ:zlzjxw:d‘u
wUyp QuTp wUyp QUI'p

for every ¢ € Co(w U yp; M3%), and

pr=p-pely —Aexsly,

where ® is the usual product of measures, and L}Q is the Lebesgue measure restricted to the third component
of R3. We call jz the zero-th order moment of u and fi the first order moment of .

We are now ready to recall the following characterization of Ay (w), given in [21, Proposition 4.3].

Proposition 3.7. Let w € H'(Q; R®) n KL(Q) and let (u, e, p) € KL(Q) x L2(Q; M3:3) x My(Q U Tp; M%), Then
(u, e, p) € AxL(w) if and only if the following three conditions are satisfied:

() Ei=ée+pinwandp = (W - it) © vauH' on yp,

(i) D*u3 =—(€+P)inw, u3 =wsonyp, andp = (Vuz — Vws) ® va,H' on yp,

(iii) p* = et inQ and p* =0 onTp.

3.3 The reduced problem

For afixedy € Y, let A, : M3 — M2 be the operator given by
: x1(9)
AyE = (8 for every & € M,
KO 1O KO

where for every ¢ € ]ME;I% the triple (/1)1/ %), A{ %), )%(E)) is the unique solution to the minimum problem

g M
gni]IR1 Qf vy A2 . (3.20)
i M A A

We observe that for every ¢ € IME;I%, the matrix A ¢ is given by the unique solution of the linear system

0 0 A
CyY)Aye:[ 0 0 Ay | =0 foreveryAs, Az, 43 € R
A Ay Az

This implies, in particular, for every y € Y that A is a linear map.
Let Qr : Y x ]ME;I% — [0, +00) be the map

Qr(y, &) = Q,Ay§) foreveryée ]Mg;rﬁ

By the properties of Q, we have that Q,(y, -) is positive definite on symmetric matrices.
We also define the tensor C; : Y x M35 — M3, given by

Cr(y)€ = C(y)A,& for every § € Mi.

We remark that by (3.20) it holds
"

0

sym> sym>

Cr(y)€: (= CYAE: ( g) for every & e M22, ¢ e M2

and

¢

1
Qr()’a E) = Ecr()’)f (0

0 2x2
0) for every ¢ € Mg
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The reduced dissipation potential. The set K.(y) JME;I% represents the set of admissible stresses in the
reduced problem and can be characterized as follows (see [21, Section 3.2]):

&1 é O
EeKi(y) &= | &2 &n 0 |- §(U’f)13><3 € K(y), (3.21)
0 0 0

where I3,3 is the identity matrix in M3,
The plastic dissipation potential Hy : Y x ngxrg — [0, +00) is given by the support function of K(y), i.e.,

Hy(y, &)= sup o:& foreveryé e Mg
oeK,(y)

It follows that H,(y, -) is convex and positively 1-homogeneous, and there are two constants 0 < ry < Ry such
that
rulél < Hy(y, &) < Ryl for every & e M55

Therefore H,(y, - ) satisfies the triangle inequality

Hy(y, &1+ &) < Hr(y, &) + Hy(y, &) forevery &, & € M52,

Finally, for a fixed y € Y, we can deduce the property

Kr()’) = aHr(y; O):

i.e, Kr(y) is the convex subdifferential of the function H,(y, -) at the point 0 € M2x2

sym-

3.4 Definition of quasistatic evolutions

For every ¢ € [0, T] we prescribe a boundary datum w(t) € H1(Q; R3) n KL(Q) and we assume the map t — w(t)
to be absolutely continuous from [0, T] into H(Q; R3).

Definition 3.8. Let h > 0. An h-quasistatic evolution for the boundary datum w(t) is a function
te W"(0), e"(0), p" (1)

from [0, T] into BD(Q) x L*(Q; M) x Mp(Q U Tp; M33) that satisfies the following conditions:
(qs1)n for every t € [0, T] we have (u(t), e"(t), p"(t)) € Ap(w(t)) and

Qp(Ane™(0)) < Qu(Ann) + Hn(Ap — App"(t))

for every (v, n, m) € Ap(w(t)),
(gs2)n the functiont — ph(t) from [0, T] into M (Q U I'p; ]MS;%) has bounded variation and for every ¢ € [0, T],

F /

Qn(Anel () + Dac, (Arp";0, £) = Qn(Are"(0)) + J J (C(;(—h)Aheh(s) : Ev(s) dx ds.
0Q

The following existence result of a quasistatic evolution for a general multi-phase material can be found in
[27, Theorem 2.7].

Theorem 3.9. Assume (3.2), (3.3), and (3.5). Let h > 0 and let (ul, el!, pl') € An(w(0)) satisfy the global stability
condition (qs1)y. Then there exists a two-scale quasistatic evolution t — (uh(t), eh(e), ph(t)) for the boundary
datum w(t) such that u"(0) = uo, e"(0) = ef!, and p"(0) = p.

Our goal is to study the asymptotics of the quasistatic evolution when h goes to zero. The main result is given
by Theorem 6.2.
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3.5 Two-scale convergence adapted to dimension reduction

We briefly recall some results and definitions from [26].

Definition 3.10. Let Q c R® be an open set. Let {yh}h>0 be a family in M} (Q) and consider u € Mp(Q x Y). We
say that

u" Z5 u two-scale weakly* in M (Q x Y),

if for every y € Co(Q x Y),

lim J)((x X—’) duh(x) = J X(x,y) du(x, y)
h—)OQ ) Sh y b E) .
Qx

The convergence above is called two-scale weak* convergence.

Remark 3.11. Notice that the family {yh}h>0 determines the family of measures (VM s0 € Mp(Q x Y) obtained
by setting
XI
I x(x,y) dv" = J)((x, E> du"(x)
oxY Q
for every y € Cg(sz x Y). Thus u is simply the weak* limit in Mj(Q x Y) of {v} 0.

We collect some hasic properties of two-scale convergence in the proposition below (the first one is a direct
consequence of Remark 3.11 and the second one follows from the definition). Before stating the proposition
recall (3.1).

Proposition 3.12. The following statements hold:

(1) Any sequence that is bounded in Mp(RQ) admits a two-scale weakly* convergent subsequence.

(i) Let D c Y and assume that supp(u") c @ N (D, x I). If u" e u two-scale weakly* in Mp(Q x Y), then
supp(u) € @ x D.

4 Compactness results

In this section, we provide a characterization of two-scale limits of symmetrized scaled gradients. We will con-
sider sequences of deformations {v} such that v € BD(Q") for every h > 0, their L'-norms are uniformly
bounded (up to rescaling), and their symmetrized gradients Ev" form a sequence of uniformly bounded Radon
measures (again, up to rescaling). As already explained in Section 3.2, we associate to the sequence {v"} above
a rescaled sequence of maps {u"} c BD(Q), defined as u" := (v, v, hv!") o yj,, where ¢y, is defined in (3.7). The
symmetric gradients of the maps {v"} and {u"} are related as follows:

FEV = () (AnE"), )
The boundedness of %llEthIMb(gh;ngﬁ ) is equivalent to the boundedness of | A, Eu” e, (@) We will express
our compactness result with respect to the sequence U 0.

We first recall a compactness result for sequences of non-oscillating fields (see [21]).

Proposition 4.1. Let { uMpso ¢ BD(Q) bea sequence such that there exists a constant C > 0 for which
lu" Iz @ume) + IAREU" g, oz < C-
Then, there exist functions u = (U1, Uy) € BD(w) and us € BH(w) such that, up to subsequences, there holds
ul — @ty — X309, U3 strongly in LY(Q), « € {1, 2},

ull — us strongly in L}(Q),

« (Eit—x3D%uz 0 -
Euh*< 0 0) weakly* in Vp(Q; M.

Now we turn to identifying the two-scale limits of the sequence Ay Eu”.
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4.1 Corrector properties and duality results

In order to define and analyze the space of measures which arise as two-scale limits of scaled symmetrized
gradients of BD functions, we will consider the following general framework (see also [3]).

Let V and W be finite-dimensional Euclidean spaces of dimensions N and M, respectively. We will consider
kth order linear homogeneous partial differential operators with constant coefficients

A CR(RY; V) — COMR™Y; W).
More precisely, the operator A acts on functions u : R" — V as
Au = z Aql0%,
lal=k

where the coefficients A, € W ® V* = Lin(V; W) are constant tensors, a = (ay,..., ) € ]Ng is a multi-index
and 0% := 6?1 ... d5" denotes the distributional partial derivative of order |a| = a; + -+ + ay,.
We define the space
BVA(U) = {u e LY(U; V) : Au € My(U; W)}
of functions with bounded A-variations on an open subset U of R". This is a Banach space endowed with the
norm
”u"BVA(U) = ||u||L1(U;V) + |Aul(D).

Here, the distributional A-gradient is defined and extended to distributions via the duality

J(p-d/lu = JA*(p cudx, @eCX(U W),
U U
where A* : C®(R™; W*) — CP(R"™; V*) is the formal L2-adjoint operator of A
At = (-DF Y Az
|al=k

The total A-variation of u € L}OC(U; V) is defined as

[Au|(0) = sup“’A*(p cudx:¢e C’C‘(U; W), lo| < 1}.
U
Let {u,} ¢ BVA(U) and u € BV (U). We say that {u,} converges weakly* to u in BV if u, — u in L*(U; V) and
Aup = Auin My (U; W).

In order to characterize the two-scale weak* limit of scaled symmetrized gradients, we will generally
consider two domains Q1 ¢ RV, Q, ¢ RNz, for some Ny, Ny € N and assume that the operator Ay, is defined
through partial derivatives only with respect to the entries of the ny-tuple x;. In the spirit of [26, Section 4.2],
we will define the space

X (Q1) 1= {1 € Mp(Q1 x Qo V) 1 Ay, € Mp(Q1 x Qa3 W), u(F x Q) = 0 for every Borel set F € Q4}.
We will assume that BV/2 (Q,) satisfies the following weak* compactness property:

Assumption 1. If {u,} c BV (Q,) is uniformly bounded in the BV“Ax-norm, then there exists a subsequence
{Um} < {uy} and a function u € BV/** (Q,) such that {u,,} converges weakly* to u in BV/*2(Q,), i.e.,

Up — u in LYQy V) and Ay Uum = Axu  in Mp(Qq; W).

Furthermore, there exists a countable collection {UX} of open subsets of R™ that increases to Q; (i.e., Uk ¢ gk
forevery k € N,and Q; = J, U¥) such that BV (UK) satisfies the weak* compactness property above for every
k e IN.

The following theorem is our main disintegration result for measures in XA (21), which will be instrumental
to define a notion of duality for admissible two-scale configurations. The proofis an adaptation of the arguments
in [26, Proposition 4.7] (see [7, Proposition 4.2]).
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Proposition 4.2. Let Assumption 1 be satisfied. Let u € X**x2(Q1). Then there exist nj € M} (Q1) and a Borel map
(X1, X2) € Q1 x Qa — Uy, (X2) € V such that, for n-a.e. x1 € Qq,

oy €BVA(@), [ i 0) e =0, Wi |(@2) #0 (42)
Q
and
U=, ()N ® L33 4.3)
Moreover; the map x1 — Ay, Ux, € Mp(Qz; W) is n-measurable and
Al =18 A ;.
Lastly, we give a necessary and sufficient condition with which we can characterize the Ay,-gradient of

a measure, under the following two assumptions.

Assumption 2. Forevery y € Co(Qq x Qa; W) with AS y = 0 (in the sense of distributions), there exists a sequence
of smooth functions {y»} ¢ C2°(RQq x Qa; W) such that A}y, = 0 for every n, and yn, — y in L(Qq x Qa; W).

Assumption 3. The following Poincaré—Korn-type inequality holds in BV (Qy):

< CMAy,ul(Qy) forall u € BV (Qy).
LY(Qa;V)

u—judxz

The proof of the following result is given in [7, Proposition 4.3].

Proposition 4.3. Let Assumptions 1, 2 and 3 be satisfied. Let A € Mp(Q1 x Q2; W). Then the following items are
equivalent:
() Forevery y € Co(Q1 x Qa; W) with A3 y = 0 (in the sense of distributions) we have

X(X1, X2) - dA(x1, X2) = 0.
Q1xQy
(i) There exists u € X*x(Qq) such that A = Ay, u.

Next we will apply these results to obtain auxiliary claims which we will use to characterize two-scale limits of
scaled symmetrized gradients.

411 Casey =0

We consider Ay, = Ey, Ay, = divy, Q1 = w, and Q; = Y (it can be easily seen that Proposition 4.2 and Proposi-
tion 4.3 are also valid if we take Q, = Y). Then BVv*% (Q,) = BD(Y) and we denote the associated corrector space
by

Xo(w) = {u € Mp(w x Y; R?) : By € Mp(w x Y; MEs3), u(F x Y) = 0 for every Borel set F € w}.
Remark 4.4. We note that Xy(w) is the 2-dimensional variant of the set introduced in [26, Section 4.2], where
its main properties have been characterized.

Analogously, let Ay, = D§, Ay, = divy divy, Q1 = w, and Q, =Y, then BVAx(Q,) = BH(Y) and we denote the
associated corrector space by

Yo(w) = {k € Mp(w x Y) : Dyk € Mp(w x Y; MG53), K(F x Y) = 0 for every Borel set F € w}.

sym
Remark 4.5. It is known that Assumption 1 and Assumption 2 are satisfied in BH(Y), so we only need to justify
Assumption 3. Owing to [23, Remarque 1.3], there exists a constant C > 0 such that
lu - pwlsuey) < CIDjul(Y),
where p(u) is given by
p(u) = vaudy-y+Judy—JVyudy-Jydy.
Y Y Y Y
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However, since integrating first derivatives of periodic functions over the periodicity cell provides a zero con-
tribution, we precisely obtain the desired Poincaré—Korn-type inequality.

As a consequence of Proposition 4.2 and Proposition 4.3, we infer the following results.

Proposition 4.6. Let i € Xo(w) and k € Yo(w). Then there exist n € M;(w) and Borel maps (X', y) € w xY
Ux () € R?and (x',y) € w x Y — Ky (y) € R such that, for n-a.e. X' € w,

we €BDY), [ ie)dy=0, [Eypel() #0,
Y
kv €BHW), [ r00)dy=0, ID3al(s) #0,
Y
and
U=ueMNeL;, K=rke)n ®L)Zz-
Moreover; the maps X' — Eyity € Mp(4; ME%) and x' +— Diky € Mp(Y; ME3) are n-measurable and
Eyit =1 '® Eylty, D2k =n'® Diky.
Proposition 4.7. Let A € Mp(w x Y; ngﬁ%). The following items are equivalent:
(1) Forevery y € Co(w xY; ME;I%) with divy y(x', y) = 0 (in the sense of distributions) we have
J X', y) 1 dA(X,y) = 0.
wxY
(ii) There exists u € Xo(w) such that A = Eyp.
Proposition 4.8. Let A € Mp(w x Y; ngxr%l). The following items are equivalent:
(i) Forevery y € Co(w xY; IMSYXI%) with divy divy, y(x', y) = 0 (in the sense of distributions) we have
[ xoc sy axe ) <o,
wxY

(ii) There exists k € Yo(w) such that A = D)Z, K.

4.1.2 Casey = +o0
In this scaling regime, we consider Ay, = Ey, Ay, = divy, 1 = Q, and Q; = Y. Then BV/x (R2) = BD(Y) and we
denote the associated corrector space by

Xoo(Q) = {1 € Mp(Q x Y;R?) : Eyp € Mp(Q x Y; M), u(F x Y) = 0 for every Borel set F < Q},

Further, we choose Ay, = Dy, A}, =divy, Q1 = Q, and Q; =Y, so that BV#2 (Q,) = BV(Y) and the associated
corrector space is given by

Yoo(Q) == {k € Mp( xY) : Dyk € Mp(Q x Y; R?), k(F x Y) = 0 for every Borel set F ¢ Q}.

Clearly Assumption 1, Assumption 2 and Assumption 3 are satisfied in BD(Y) and BV(Y). Thus, we can state
the following propositions as consequences of Proposition 4.2 and Proposition 4.3.

Proposition 4.9. Let u € Xo(Q) and Kk € Yoo (RQ). Then there exist n € M;(Q) and Borel maps (x,y) € Q x Y —
Ux(y) € R? and (x,y) € Q x Y — ky(y) € R? such that, for n-a.e. x € Q,

ity € BD(Y), jux(y)dy=0, |Eyi1x|(Y) # 0,
Y

Ky € BU(Y), jxx(y)dy=0, IDyKl(Y) 0,
Y
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and
L=mne Lt k=rdyneL
Moreover; the maps x — Ey iy € My(Y; M33) and X — Dyky € My(Y; R?) are n-measurable and

Eytt=1n'® Eylty, Dyk=n'® Dyky.

Proposition 4.10. Let A € M(Q x Y; JME;I%I). The following items are equivalent:
(i) Forevery y € Co(R x Y; MEs%) with divy x(y) = 0 (in the sense of distributions) we have

j){(x,y) 1 dA(x,y) = 0.
Y
(ii) There exists i € Xoo() such that A = Eyu.

Proposition 4.11. Let A € Mp(Q x Y; R?). The following items are equivalent:
(i) Forevery y € Co(R x Y; R?) with divy y(y) = 0 (in the sense of distributions) we have

j){(x,y) 1dA(x,y) =0.
Y
(ii) There exists k € Yo (Q) such that A = Dyk.

4.2 Additional auxiliary results

421 Casey =0

In order to simplify the proof of the structure result for the two-scale limits of symmetrized scaled gradients,
we will use the following lemma.

Lemma 4.12. Let {u"}-0 be a bounded family in M(2; M252) such that

w5 p two-scale weakly™ in Mp(Q x Y; ME2).

for some u € Mp(Q xY; IMEYXI%) as h — 0. Assume that
(i) @ % Ay two-scale weakly* in My(w x Y; MZ2), for some A1 € Mp(w x Y; ME2),

(ii) forevery y € C®(w x Y; M%<%) such that divy divy y(x',y) = 0 we have

sym

!
lim J)((X’, X—) cdph(x') = j X, y) s dAs (X, y),
h—0 En

W wxY

for some A, € My(w x Y; ME2),
(iii) there exists an open set T > I which compactly contains I such that

WUhH*t 20 two-scale weakly* in My(w x T x Y; MZ2).

Then, there exists k € Yo(w) such that

=2 8Ly + (A +DjK) @ X3 L),

h

Proof. Every u" determines a measure v on w x T x Y with the relation

Vi(B) := u" (BN (Q xY))
for every Borel set B € w x I x Y. With a slight abuse of notation, we will still write " instead of v".

Let v be the measure such that

u 22y two-scale weakly* in Mp(w x T x Y; ME3).

We first observe that, from assumption (i) and (iii), it follows that ¥ = A; and v* = 0. Furthermore, yh Zi oy

two-scale weakly* in Vp(Q x Y; ME:3).
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Lety € C*(Q x Y; JMZXZ) If we consider the orthogonal decomposition

X00Y) = x(xX',y) + xsy(x', y) + xH(x, ),

then we have

i
1

caim [ :T,) - d(hy ()
Q

e i)
- [ 3oz aned 4 o5 lim [ 7(x =) o).
wxY w

Suppose now that y(x, y) = x3x(x’,y) with divy div, ¥(x’,y) = 0. Then the above equality yields

!
[ 7oy avee ) = tim [7(x, ) ragto = [ 7o) s ddace )
wxY - w h wxY

By a density argument, we infer that

[ 263 doee ) - 2a ) = 0
wxY
for every ¥ € Co(w x Y; ]MS;I%) with divy divy ¥(x’, y) = 0 (in the sense of distributions). From this and Proposi-
tion 4.8 we conclude that there exists k € Yo(w) such that
V- Az = D)Z,K.

Since yu = v on Q x Y, we obtain the claim. O

4.2.2 Casey = +0

The following result will be used in the proof of the structure result for the two-scale limits of symmetrized
scaled gradients. We note, however, that this result is independent of the limit value y.

Proposition 4.13. Let {v1 50 be a bounded family in BD(Q) such that
v 2 v weakly* in BD(Q)
for some v € BD(Q). Then there exists i € X (RQ) such that
(EVY" 25 By ® Ly +Eyu  two-scale weakly* in Mp(Q x Y; Mi).

Proof. The proof follows closely that of [26, Proposition 4.10].
By compactness, the exists A € Mp(Q x Y; ngxg) such that (up to a subsequence)

vt E5 ) two-scale weakly* in My (Q x Y; Mg;g;)
Since v® — v strongly in Ll(Q' R®), we have componentwise
v 2Ly 0L3 e Lz two-scale weakly* in M»(Q x Y), i=1,2,3.

Consider y € C2°(Q x Y; M%) such that divy y(x, y) = 0. Then
!
lim j X(x X—) d(EV")" (x) = lim j x(x, X—) L dEx (V1) (%)
h—0 En En
2 2

= - lim I(vh)’(x) - divyer (X<X’ g‘,i)) dx

Q
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o Mo - dive v x. X ljhr.- X
= ilgq)(l(v ) (x) - divy )((X, £h>dx+eh wH'(x) ley)((X, Sh)dx
Q Q
!

- _1i Y (x) - di X
= ilzlg})J(v ) (x) leX)((X, eh)dx
Q

== J V' () - dive y(x,y) dx dy
QxY

B RO Gy
QxY
By a density argument, we infer that

[ xtxy) s diicey - Eov' e £h =0
QxY

for every y € Co(Q x Y; Mg;r%) with divy y(x,y) = 0 (in the sense of distributions). In view of Proposition 4.10,
we conclude that there exists y € X, () such that

A-Exv' ® L5 = Eypt.

This yields the claim. O

4.3 Two-scale limits of scaled symmetrized gradients

We are now ready to prove the main result of this section.
Theorem 4.14. Let {u"}50 ¢ BD(Q) be a sequence such that there exists a constant C > 0 for which
Il osme) + IAREU g, @iy < C-
Then there exist
il = (1, Up) € BD(w), us € BH(w), EeMp(QxY; M),
and a (not relabeled) subsequence of {u"} 0 which satisfy

Eit - x3D*us 0

ApEult £
0 0

) ® Ly +E  two-scale weakly*in Mp(Q x Y; M)

(@ Ify =0, then there exist u € Xo(w), kK € Yo(w) and { € Mp(Q x'Y; R3) such that
Fo (EyIJ(X',y) - x3DjK(x', y) (’(x,y)) .

((,(X,)’))T (B(X,Y)
(b) Ify = +oo, then there exist 4 € X, (RQ), K € Yoo (R) and § € Mp(L; R3) such that
P ( Eyu(x,y) 700+ Dyx(x,y))
("0 + Dyx(x, y)T 3(x) '

Proof. Owing to [46, Chapter II, Remark 3.3], we can assume without loss of generality that the maps u” are
smooth functions for every h > 0. Further, the uniform boundedness of the sequence {Ev"} implies that

J |05, Ul + dy,ull| dx < Ch fora =1,2, 4.4)
Q
j |y, ull| dx < Ch?. 45)
Q

In the following, we will consider A € My (Q x Y; IME;I%) such that

ApEu" 2% 1 two-scale weakly* in Mj(Q x Y; M.
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Step 1: We consider the case y = 0, i.e., £ — 0. By the Poincaré inequality in L!(I), there is a constant C indepen-

dent of h such that !
j |ult - U] dxs < cj |0, 1l dxs
I I

for a.e. x' € w. Integrating over w, we obtain that

Jlug’—ﬂ§'|dxsleaxgugﬂdsthz. (4.6)
Q Q
Set )
uj (x) - 3 (x')
h? '
We have that {ﬁg‘} n>0 i uniformly bounded in L(Q). Correspondingly, we construct a sequence of antideriva-
tives {07}150 by

19§‘ (x) =

X3
0% (x) := J (X', 23) dz3 - Cot,

1

2

—h
where we choose Con such that ; = 0. Note that the constructed sequence is also uniformly bounded in L*(Q).
Next, for a € {1, 2}, we construct sequences {92}h>o by

ul(0) = W) + X309, Us (X')
h

0 (x) := +hdy, 02 (x).

Then @, = 0 and

—n
Ay, ul + 0y, s Oy Ul + Oy, Ul
h h ’

since Oy, 9;‘ = 1921. Thus, by the Poincaré inequality in L'(I) and integrating over w, we obtain that

dy, 00 = +hoy O =

J|92|dxscj|ax392|dxsc. @7)
Q Q
From the above constructions, we infer
ul(x) = THX') — X305, Ta(X') + R0, 0100 + hOl(x), a=1,2. (4.8)

For the 2 x 2 minors of the scaled symmetrized gradients, a direct calculation shows

!
J X y) d) (x,y) = ’lliir}) J X(x, :_h) (E@M () = x3D¥u5 (') + h2D2,0%(x) + hEw (0™ (x)) dx  (4.9)
QxY Q

for every y € C°(w; C*(I x Y; IME;I%)). Notice that the last two terms in (4.9) are negligible in the limit. Indeed,
we have
x' x'
lim J x(x 5)  H2D2,000) dx = lim B J 0% 00) divie v (1(x 5» dx
Q Q

] !
. h X 1 X
= ]1111% hz Z J 63 (X)axa(aXﬁXaﬁ(X’ E_h) + aayﬁxaﬁ<x’ 8_h>> dX
a,p=12¢
X' 2 !

. h ) X
:,1112}) Z jeg(x)(h axaxﬁ)(a,B(X,a)+aayaxﬁ)(aﬁ(x,a)
a;ﬁ—l;zg

h? X' h? X'
+ aaxnyﬁ)(aﬁ<x, a) + g—hzayayﬂ)(aﬁ(x, £—h>) dx

- 0. (4.10)
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Similarly, we compute
limj (x X—’)'hE (eh)’(x)dx——lith(Hh)'(x) div ( (x X—,))dx
oo ) X Tep) - o) (X " &

= - lim Z JG"(X)(ha (x X—’)+£a <x X—,>>dx
) =P XX\ gy ) F gy A\ gy

=0. 4.11)
Thus, considering an open set I > I which compactly contains I, we infer
(Eqp(u)* £ 0 two-scale weakly* in Mp(w x T x Y; Mg;gl) 4.12)
Since {(Eh)’ }isbounded in BD(w) with (ﬂh)’ ~. &1 weakly* in BD(w), by [26, Proposition 4.10] ( the result follows
by duality argument, using Proposition 4.7) there exists u € Xo(w) such that
E@Y %5 Fie L3 +Eyu  two-scale weakly* in My (w x Y; Mgsa). (4.13)

From Proposition 4.1 there holds

ul - @ty — x30y,u3 stronglyin L}(Q), a=1,2,

ull — us strongly in L}(Q).
thus we infer that
2 g (x! )L2 ® L5 two-scale weakly* in Mp(w x Y) (4.14)

Further, multiplying (4.8) with x3 and integrating over w, we obtain
Oy, U (X') = —ul(X') + W20y, B0 (xX') + hOR(X'), a=1,2.

Using similar calculations as in (4.10) and (4.11), we obtain that only the first term is not negligible in the limit,
from which we conclude that, for any ¢ € C(w x Y),

!
}llin}] I axaﬁg(x’)go(x’, ;(—) dx' = J A us(xNo(X,y)dx' dy, a=1,2. (4.15)
- h
w wxY

Consider now y € C°(w x Y; M33) such that divy divy x(x', ) = 0. Then

XI
li ( /’_) :Dz_h ! !
hlirbj)(x o Us(x") dx
w
XI
- lim I T (x') divy divy ()((x’, —)) X'
h—0 En
w

i %]
a

! !

het r X 1 r X
3(x )<6xaxﬁ)(aﬂ(x ) g_h) + aayaxﬁ)(aﬁ<x > a)

]|

!

1 X 1 x!
o Onontan(¥ 5 )+ g Oantan(¥. 5 ) Jax
+ o xaypXap| X e + " yaypXap| X en X

=1 Jﬂh(x')<a (x’ X ) + 2 5] (x’ X )) dx’'
= ) 3 xaxpXaB\ X'» e e yaxgXap\ X » en

. —h, 1 P XN wx! P X
- lim Z Jus(x)axaxﬁ)(aﬁ<x,a>dx +Zj<axa(u3(X)axBXaﬁ<X,a)>
a,[Ll,zw w

_ X'\ x'
— 0, T (X)dy, Xaﬁ(x’, 5) — Ty X,,B(x’, 5)) dx’

x' x'
- lim —Jﬂh X')d (x’,—)dx’—zja 7 (x') (x’,—)dx’),
o a’ng( ) 3 (x) xaxpXap €n J X U3 (x) xpXap en
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where in the last equality we used Green’s theorem. Passing to the limit, by (4.14) and (4.15), we have

X’
Ii (',—):Dz_h ") dx'
h%lxx Ep us(X) X

> (— I u3(x")dx,x;Xap(X', y) dx' dy - 2 j x, U3(x")BxXap(x',y) dx' dy)

a,p=1,2 wxY wxY

> (— J us(x")Bxoxs Xap (X', y) dx' dy
a,p=1,2

wxY

-2 J (0, (u3(x")BxXap(X', ¥)) — U3 (X")x s Xap (X', y)) dX' dy)

wxY

> j us(x')0xxsXap(X', y) dx’ dy
a,ﬁ:l,zwxy

J x(',y) - d(D*us ® £3). (4.16)

wxY

From (4.12), (4.13), (4.16) and Lemma 4.12, we conclude that

A" =Ei® L} + Eypt — xsD*u3 ® L — x3D}k,

where u € Xp(w), K € Yo(w). Finally, consider the vector { h(x) given by the third column of ApEum, for every
h > 0. The boundedness of the sequence of functions v € BD(Q") implies that {{"}-¢ is a uniformly bounded
sequence in L1(Q;RR3). Consequently, we can extract a subsequence which two-scale weakly* converges
in Mp(RQ x Y; R3) such that

1
—Eag(uh) LN {a two-scale weakly* in Mp(Q xY), a=1,2,

h
%Eg:;(uh) 2 75 two-scale weakly* in Mp(Q x Y),

for a suitable € M(Q x Y; R®). This concludes the proof in the case y = 0.

Step 2: Consider the case y = +oo, i.e., % — 0. For the 2 x 2 minors of two-scale limit, by Proposition 4.13 and
the proof of Proposition 4.1, we have that there exists y € X, () such that

A" = (Bt - x3D*u3) ® L5 + Eyu.
Let Y e 2(Q) and x® e € (Y; M33) such that
JX(Z) dy = 0.
Y
We consider a test function .
X0y = 0e0x® (2
En
such that )
. X
[ ey acey) = Jim [ 2000 (L) - danEut oo,
Q

QxYy
For each i = 1,2, 3, let G; denote the unique solution in C*°(Y) to the Poisson’s equation

-0AyG;i = Xézi)’ J Gidy =0.
Y
Then, observing that
. e 1 h 1) @ X
x33(6Y) 1 dAs(x,y) = ;1115% — | Ox; Uz X (X)x33 P dx,

h2
QxY Q
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we find

J x33(X,y) : dAzs(x,y)

QxY
! X
AT Z I Oxqu5 00X (X)ayayaGs< )dx
h—0 h T
“Q
. 1 5!
= 2 [ 02,0000y () ax
11—1,29
— lim & h 6] X dx— [ un ) X—’d
= lim 2 ug(X)ax,z aXsX (X)ay.zGS X ug(x)axaxg)( (X)aynG3 X
h—0 h a=1,2 o Eh ) o

X' h @ X'
e—h)dx+J6x3u3(x)axa)( (X)ayaG?,(a)dX .

Q Q

Recalling (4.4) and (4.5), we deduce

j x33(X,y) : dAzz(x,y)

QxY
e !
= lim —Z Z Jaxg h(x)ax,x (x)ayaGg< )dx
h—0 h =12
29

. € !
= —lim —’ZI J (30053 XV (X)y, Gg( ) dx

h=0 a=12 ¢

& 2 x' X'

- lim & < j ug(x)axa(ax3x3 X<1>(x)63(—)) dx j U (00 xox XD (%)0y, Gg( ) dx)

h—0 h? T2 En

Q Q

. ept X'
_ lim & Jaxaug(x)ax3x3)((1)(x)63<a)dX
Q

=0. 4.17)

Thus, recalling that

JX 33 &y =0,

Y
and since for arbitrary test function we can subtract their mean value over Y to obtain a function with mean
value zero, we infer that there exists {3 € M(Q) such that

A3z =3 ®L§-

Similarly, from the observation that

1
J X13(X’)’) : d)ll3(X,y) + j X23(X y) dAZ:;(X y) = 1 _h J(ax (X) + 6X3 a(X))X(l)(X)X(Z)( = ) dX)
Q

oxy oxy a=1.2
we deduce
J x13(x,y) 1 dAz(x,y) + J X23(x,y) : dAzs(x,y)
QxY QxY
1 ) x' X'
“lim o Y J 01, W 00YV 003y, - ) dx + J 0, U 00XV (03y5, G ) dx 418)
- ap=12 g Q

Suppose now that divy ng) =0,1ie,

Z Byaysy5Ga = 0.
a,f=1,2
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Then we have

!

1 h X
}llli% ﬁ 2 J dx us XD (0dy,y, Ga(a) dx
29

1 x' 1 X'
“limo— Y j w0025, xV 003y, Ga - ) dx - — j W00V 00y, Ga = )dx
h—0 2h(1ﬂ=12 5 En 5

1 x'
=-lim — J u3 (x)axa)( (x)aymca< )dx
h—0 2h ap12)
e /
- Jim 2 ; 12( J 01, 1l (005, 1 (1)y, Ga< )dx+ j W (00,1 (x)ayﬂca( )dx)
ap= Q Q
!
= lim 2t Jax uh(x)axa)((l)(x)ayﬁGa( )dx
h—0 2h —
a,p=1 2Q
En !
—-tim k3 [ o000y, Ga( 5 ) d
a,f=1 2Q
. € x'
= lim - J g(x)aanSX (x)0y, Ga< )dx
h—0 2 —
a,ﬁ'_lzQ
=0. 419
Furthermore,
tim s 3 [ 00KV 002y,,Ga 5 dx
ot}ELl,ZQ
1 x'
=-lm o Y J W00,V 009y, Ga 3 )dx
- a,p=12
R x'
~lim %1y (Iaxﬂ w09y, 1 (x)ayﬂca( )dx+J W (09,0 (x)ayﬂca( )dx)
a,pf=1,2 0 0
. € x'
“lim Y jaxﬁ U (03,0 (0dy, Ga( )dx
h—0 2h —
a,/S’—l,ZS2
. En x'
= ~Jim 2 p Z ) j 03, U005, x V(02,6 1 = ) dx
2
. En n 1 X' 1
=lim & Y ( I 009, >(x)ayﬁca<a) o J A0 (x)ayayﬁca( )dx)
a,p=12 \ g5 Q
. 1 h 1 X’
i 3 [ehomon ol e
01,/5’71,2Q

. En h 1 X' h
- }11% o aﬁ; 2( j Oy, uB(x)axg)(( )(x)ayaGa(a> dx + J uﬁ(x)axﬁxs)(( (xX)dy, Ga( )dx)
£=12 1 g 2

-0 (4.20)

From (4.18), (4.19) and (4.20), and Proposition 4.11, and recalling that jy )((2) dy = 0 and jy )(%) dy = 0, we con-
clude that there exist k € Yoo (Q) and ¢’ € M, (Q; R2) such that

A13
(/123) ={'® L3 + Dyk.

This concludes the proof of the theorem. O
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5 Two-scale statics and duality

In this section we define a notion of stress-strain duality and analyze the two-scale behavior of our functionals.
The main goal is to prove the principle of maximum plastic work in Section 5.4, which we will use in Section 6
to prove the global stability of the limiting model. In Section 5.1 we characterize the duality between stress and
strain on the torus Y, the admissible two-scale configurations are discussed in Section 5.2, while the admissible
two-scale stresses are the subject of Section 5.3.

5.1 Stress-plastic strain duality on the cell
5.1.1 Casey =0

Definition 5.1. The set X, of admissible stresses is defined as the set of all elements £ € L2(I x Y; ME;I%) satis-
fying:

(D) Zis(xs,y)=0fori=1,2,3,

(i) Zaev(x3,y) € K(y) for £}, ® £5-ae. (x3,y) € I x Y,

(iii) divy £ = 0in Y,

(iv) divy divy £ = 0in Y,

where £, £ € L2(Y; IME;I%) are the zero-th and the first order moments of the 2 x 2 minor of £.

Recalling (3.21), by conditions (i) and (i) we may identify X € K, with an element of L (I x Y; JMEYXI%) such that

L(x3,y) € Kr(y) for L}Q ® L)Z,-a.e. (x3,y) € I xY. Thus, in this regime it will be natural to define the family of

admissible configurations by means of conditions formulated on Mz,

Definition 5.2. The family A, of admissible configurations is given by the set of quadruplets

i €BD(Y), useBH(Y), EeL*UxY;Mgn), PeMplxY; M)

such that
Eyli — x3Djus = ECy ® L3+ P inIxY. G1)

Recalling the definitions of zero-th and first order moments of functions and measures (see Definition 3.5 and
Definition 3.6), we introduce the following analogue of the duality between moments of stresses and plastic
strains.

Definition 5.3. Let £ € Ko and let (i1, u3, E, P) € Ao. We define the distributions [£ : P] and [Z : P] on Y by

[£:P)(p) :=—J(p2:E‘dy—Ji:(a®Vy(p)dy, (5.2)
Y Y

[Z:Pl(p) = - J 0% : Edy+zjf : (Vyus © Vyo) dy + J usL : V3o dy (5.3)
Y Y Y

for every ¢ € C*(Y).

Remark 5.4. Note that the second integral in (5.2) is well defined since BD(Y) is embedded into L?(Y; R?). Simi-
larly, the second and third integrals in (5.3) are well defined since BH(Y) is embedded into H'(Y). Moreover, the
definitions are independent of the choice of (u, E), so (5.2) and (5.3) define a meaningful distributions on Y (this
is valid for arbitrary £, ¥ € L*(Y; IME;I%) that satisfy the properties (iii) and (iv) of Definition 5.1). Arguing as in
[21, Section 7], one can prove that [£ : P] and [i : 13] are bounded Radon measures on Y. For £ of class C! and £
of class C? it can be shown by integration by parts (see, e.g., [27] and [22, Remark 7.1, Remark 7.4] that

J od[E : P = J o%db, j od[S : ] = j o%db. (5.4)
Y Y Y Y
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From this it follows that for £ of class C! and ¥ of class C* we have
I[£:P]| < |Zlg|Pl, 1[Z: Pl <IZllPl, @ € CY). (5.5)

Through the approximation by convolution (5.4) then extends to arbitrary continuous £, ¥ and (5.5) applies to
arbitrary £, % € L(Y; ]ME;I%) satisfying the properties (iii) and (iv) of Definition 5.1).

Remark 5.5. If a is a simple C? curve in Y, then
[£:P]=2vl (g - )3, (5.6)

where v}z is a unit normal on the curve a while it; and i1, are the traces on a of it (it; is from the side toward
which normal is pointing, &, is from the opposite side). This can be obtained from (5.4) and approximation by
convolution, see, e.g., [27, Lemma 3.8].

From (2.4) it follows that if U is an open set in Y whose boundary is of class C? and %, € L®(U; M%;I%)
abounded sequence such that £, — X almost everywhere (and thus in LP(U), for every p < co) and divy X, — 0
strongly in L?(U), then £,v} = Zvl, weakly* in L (K n ) for any compact set K ¢ U.

Remark 5.6. It can be shown thatif a c Y is simple C? closed or non-closed C? curve with endpoints {a, b}, then
there exists b1(Z) € L (a) such that

[£:P] = b1(2)dy,uy’H"  ona, G.7)

where v, is a unit normal of a and 9,, ué’z is a jump in the normal derivative of us (from the side in the opposite
direction of the normal), which is an Llloc(a) function. This is a direct consequence of (5.3) and [23, Théoreme 2],
see also [22, Remark 7.4] and the fact that |[Z : P]|{a, b} = 0 (see (5.5)).

From [23, Théoreme 2 and Appendice, Théoreme 1] it follows that if U is an open set in Y whose boundary is
of class C2 and £, € L®(U:; M%;I%) a bounded sequence such that £, — £ almost everywhere (and thus in LP(U),
for every p < c0) and divy divy £, — 0 strongly in L?(U), then by(Z,) = by(Z), weakly* in L®(K n a) for any
compactset K c U.

We are now in a position to introduce a duality pairing between admissible stresses and plastic strains.

Definition 5.7. Let X € X, and let (i1, us, E, P) € Ap. Then we can define a bounded Radon measure [X : P]
on I x Y by setting

_ 1 ~ =
[z:p]:=[z:p]®5§3+ﬁ[z:p]®5§3—2l;EL,

so that
J @dX:P]=- J (pZ:Edmdy—li:(ﬂ@Vygo)dy+%J§:(Vyugovygo)dy+%lugfzvf,(pdy (5.8)
IxY IxY k2 Y Y

for every ¢ € C(Y).
Remark 5.8. Notice that "
[Z:P]:= [2:P1+ﬁ[§:ﬁ]—m:£i.
The following proposition will be used in Section 5.4 to prove the main result of this section.

Proposition 5.9. Let X € Ky and (u, us, E, P) € Ay. If Y is a geometrically admissible multi-phase torus, under
the assumption on the ordering of the phases we have

ap
Hr(y, ﬁ)”" > 7. (5.9

Proof. The proof is divided into two steps.

Step 1. In this step we consider a phase Y; for arbitrary i. Regularizing X just by convolution with respect to y,
we obtain a sequence {X,} satisfying

Sn — I strongly in L*(I x Y; ME), divy £, =0, divy divy Z, = 0.
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We also have that for every ¢ > 0 there exists n(e) large enough such that (£,(xs, y))gev € K; for a.e. x3 € I and
everyy € Y; that are distanced from 8Y; more than ¢, for every n > n(e). Consider the orthogonal decomposition

P=Po L) +PexsL) +P

where P, P € Mjp(Y; M%2) and P+ € LA(I x Y; M2%). We infer that |P| is absolutely continuous with respect to
the measure

=|Pl® Ly, + Pl Ly, + L3 .

As a consequence, for |IT]-a.e. (x3,y) € I x Y; such that dist(y, 0Y;) > € we have

dp dp

H ( s ) R —

N\ am ) = a

for every n > n(¢g). Thus for every ¢ € C.(Y;), such that ¢ > 0, we obtain

| oo (y. o) awei= [ oy, d|H|>d|H|

IxY; IxY;
> J OLp: —— d|H| d|II| = J QLp —— d|P| d|P| J ©d[Z,: P]
IxY; IxY; IxY;

for n large enough. Since Z,, ¥, and (Z,)* are smooth with respect to y, from (5.2), (5.3) and (5.5) we conclude
that

[£,:P] = [E£:P] weakKly* in Mp(Y),
[En:P] = [2:P] weakly*in Mp(Y),
J O(En)" : P-dxs dy — j o()* : PL dxs dy.
IxY; IxY;

Passing to the limit, we have

J w(y)Hr< ,jp|>d|P|> j pd[Z:P].

IxY; IxY;

This proves (5.9) on every phase.

Step 2. In this step we consider a curve a that is of class C? (together with its possible endpoints) and that
is the connected component of T' \ S. The points on a (with the exception of the possible endpoints) belong to
the intersection of the boundary of exactly two phases dY; N 8Y;. From the assumption on the ordering of the
phases, without loss of generality we can assume that K; c K. By (5.1) (cf. Proposition 3.7) as well as by the
continuity of us, we find

P=(@-u)ovik!, P=ul-vu)ovis=0,u’viovik' ona (5.10)
and
P=P+x3P ona, (5.11)

where &;, @i; are traces of &t on a from Y; and J; respectively and 0, u;’j is a jump in the normal derivative of us.
From (5.6) and (5.7) (cf. Remark 5.8) we deduce

[Z:P] = (vl - (@ - @) + bi(D)d,; us)H' ona. (5.12)

Since, for each i, Y; is a bounded open set with piecewise C? boundary (in particular, with Lipschitz boundary),
by [9, Proposition 2.5.4] there exists a finite open covering {U, )} of Hl such that Y; n ug is (strongly) star-shaped
with Lipschitz boundary (the construction is simple and those u that intersect the boundary have cylindrical
form up to rotation). We take only those members of the covering that have nonempty intersection with a.
We can easily modify these cylindrical sets Y; n U, @ to be of class CZ. Let {wkl)} be a partition of unlty of a
subordinate to the covering {U{"}, i.e., ¥\ € C(a), w1th 0 <\ <1, such that supp(y\”) c U and ¥, p
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on a and let ¢ € Cc(a) be an arbitrary nonnegative function. For each k we define an approximation of the
stress Z on Y; N u;" by
) (5,) = ((Z o d)(xs,) * p 1)), (5.13)

where d\'y (x3,) = (63, 75 0 - y{) +y) and y}
Obviously one has for every k,

is the point with respect to which Y; n u§j’ is star shaped.

ng,)k € (Ki)r for |IT|-a.e. (x3,y) € I x (Y; nug)),
I < Nl oy a0
Z;i)k — X, 20’) 53 g(i) — % stronglyin L*(Y; n u;{’), JM?;I% ),

divy, is’)k =0, divy divy £ k =0.

From these and by using Remark 5.4, Remark 5.5 and (5.12) we conclude for every k,

[ vioro0m(v. o) @

Ixa
ar i oo
- [ wiwewtn(y. gr)dint> [ wiesd,: oo am
Ixa Ixa
= J l/);'(@(zify)k"fz (W - ;) + b1(fg’)k)avg u;’j) dHt - J r,bﬁ{go(val (@ — o) + bl(i)avaug’j) dH?.
a a

By summing over k we infer (5.9) on a.
The final claim goes by combining Step 1 and Step 2 and using the fact that both measures in (5.9) are zero
on § as a consequence of (5.1) and (5.5). O

5.1.2 Casey = +00

We first define the set of admissible stresses and configurations on the torus.

Definition 5.10. The set K, of admissible stresses is defined as the set of all elements X € L2(Y; ]MS;%) satisfy-
ing:
(i) divyZ=0in}Y,
(i) Zaev(y) € K(y) for L3-ae.y €Y.
Notice that in (i) we neglect the third column of X.
Definition 5.11. The family A, of admissible configurations is given by the set of quintuplets
aeBD(Y), uzeBV(Y), veR®, EecL’YMI3), PeMp(Y; ML)

such that
( Eyut v/ + Dyus

=EL2+P inVY. 5.14
(v' + Dyus)T Vs ) y T d (5.14)

We also define a notion of stress-strain duality on the torus.

Definition 5.12. Let X € X, and let (i, us, v, E, P) € Ay. We define the distribution [Z4ey : P] on Y by

_ z
(Zaew: PI@) == [ 02 : Edy - [ 2" @oVyprdy -2 [ ug (Zg) Vyo dy
Y Y Y

+20 . j ) (22) dy + v3 J @L33 dy (5.15)
Y Y

for every ¢ € C*(Y).
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Remark 5.13. Note that the integrals in (5.15) are well defined since BD(Y) and BV(Y) are both embedded
into L2(Y; R?). Moreover, the definition is independent of the choice of (i, us, v, E), so (5.15) defines a meaningful
distribution on Y.

The following proposition provides an estimate on the total variation of [Z4ey : P]. AS a consequence, we find
that [Zgev : P] depends indeed only on the deviatoric part of £.

Proposition 5.14. Let ¥ € K, and (i1, us, v, E, P) € Ax. Then [Egey : P] can be extended to a bounded Radon
measure on Y, whose variation satisfies

I[Zaev : PII < IZdevlpooqyspzey P 1 M (Y).
Proof. Using a convolution argument we construct a sequence {Z,} c C*®(Y; JMSYX%) such that
%, — L stronglyin Lz(‘j;Mg;rﬁ),
divyZ, =0 inY,
IZn)devilLooy;mz2y < 1 Zdevllpeoynzs)-
According to the integration by parts formulas for BD(Y) and BV(Y), we have for every ¢ € C'(Y)

J @ divy(Z,)" - @ dy + J @(Zp)" : dEyut + J(Zn)” (Lo Vyp)dy =0,
9 K

Y
. [ (Zn)13 (Zn)13 (Zn)13 3
;J Qus divy, ((an) dy + (j 0] ((an) - dDyus + J us ((Zn)zg) -Vypdy = 0.

From these two equalities, together with the above convergence and the expression in (5.15), we compute

. " - Zn
[Zaev : PI(0) = h,rp[— [oz:Eay- [0 : @ovy0)ay-2 [ g (EZ ;“) V0 dy
9 4 9 n)23
, (Zn)13
e[0T} aye v oz )
Y Y
. . - n - . (Zn)
= hrrln[— J 0L, :Edy + J @ divy(Z,)" - ady + J @(Zp)" 1 dEyu+2 J ous divy ((Zn)z) dy
Y Y Y Y
(Zn)13 ) (Zn)13
+ 2! 0] <(Zn)23> ~dDyus +2Vv" - J (0] ((Zn)23> dy +v3 J 0(Zn)s3 dy]

= lim“ @ divy(Zy) - ( u ) dy + I () dP]
n us
Y Y
=lim j O(Zn)dey : dP.
Y

In view of the L*-bound on {(X,)gev}, passing to the limit yields

[[Zaev : PlI(@) < ||Zdev||Loo(y;M3X3 j lo| d|P],

sym )

Y

from which the claims follow. O
The following proposition characterizes [Lgey : P] on the interface. Before the statement we recall Remark 3.1

Proposition 5.15. Let X € Ko,. Assume that Y is a geometrically admissible multi-phase torus. Then, for 3('-a.e.
Yy e€adyYinay, _ ‘
[Ze(v)] ) ) € (i 0 Kpuvh)y, (5.16)

((vi)*
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Furthermore, if (i1, us, v, E, P) € A, then for every i # j,
. . . h . ; ;
[Zdev : P]LTj = <[Z”Vl]ti (' - w) + 2( (213) : Vl)(ué - ujg))f}flll"ij, (517
23
where ii', ué and W, u’3 are the traces on I';j of the restrictions of i1, us to Y; and Y; respectively, assuming that Vi

points from Y; to Y.

Proof. Toprove (5.17),let ¢ € C'(Y) be such that its support is contained in Y; U Y j U Ty LetU cc Y be acompact
set containing supp(¢), and consider any smooth approximating sequence {£,} ¢ C*®(U; Mgﬁ;) such that

%, — & stronglyin L*(W; M3), (5.18)
divyZ, =0 inU, (5.19)
||(En)dev||Loo(u;1Mg:3) < "Zdev"Loo(u;]Mg:‘f)- (5.20)

Note that ((£,)" V)% = ((En) ey V)5 and
(Zn) Vs = [Eh, V15 weakly* in L°(Ty; R?).
Since ¢pu € BD(Y) and pus € BD(Y), with
Ey(pu) = pEyli + 10 Vy0,
Dy(gus) = pDyus + u3Vyg,

we compute using (5.14)

. _ PN
[zdw:m«p):h,gn[— | omiEay- | @":@ove)ay-2 | ug(gz"ilz).qu;dy
YiuY; YiuY; YiuY; !
+2v' J ‘P<(Zn)13> dy +vs3 J (P(Zn):«;ad)’]
(Zn)23
YiuY; YiuY;
=li£n[— J @, : Edy - J (Zp)" : dEy(om) + J ()" Eyll
9ivY; 9ivY; YivY;
(Zn)ls) J ((Zn)w)
-2 J -dDy(ou 2 -dDyu
((Zn)zs y(PUs) + ¢ (Zn)23 S
9ivY; 9iVY;
v | rp<(2")“> ayvvs | ¢<2n>33dy]
(Zn)23
YivY; YivY;
T ". - (Zn)13 .
=lim| - (Zn)" : dEy(ou) - 2 -dDy(ou3) + @L, :dP|.
n (Zn)23
YivY; YivY;j YivY;j

Owing to the assumption on supp(¢), we have that the only relevant part of the boundary of Y; U Y; is I';;. Thus,
an integration by parts yields

[Zgev : P1(@) = lim [ [ O((Zp)"VY) - (@ - W) dH* +2 j <p((g";z) : vi)(ug — )yt + J O(Zn)dev dP].

Ly Ly YivY;

Now

Eyii  Dyus @ -wyovi (-
P|T; = y Yy T = ) / ’ 3 3 31
T ((Dyua)T 0 )L / ((u'3 — )T 0 )

and tr P = 0 imply that a'(y) - @(y) L vi(y) for 3('-a.e. y € Ty;. The above computation then yields

[Zdev : P)(0) = J p[Z"VIL - (@ - W) ddt + 2 J ¢<<§Z> : vi>(u; —ul) drt + lim J 0(En)dev : dP. (5.21)

ij i Vo)
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By defining A, € Mp(Y; UY; UTy) as
An(@) = j ®(Xn)dev : dP,
YivY;

the L°°-bound on {(X,)qev} ensures that it satisfies
[Anl < CIPIL(Yi U Y)),

and we infer from (5.21) that
A 22 weakly* in Mp(Y; UY; U Ty)

for a suitable A € Mp(Y; U Y; U Tyj) with

1Al < CIPIL(Y: U Y)), (5.22)
and

o Y . . ;
[Zev : P1(9) = j [Z"V]E,, - (@ - @) do" +2 j 0 ((ij) - v') (U - u) dH' + A(9).
ij ij
Since (5.22) implies A|I';; = 0, the result directly follows. To prove (5.16), we first notice that as a consequence of
[27, Section 1.2] there holds [Z¢(v)]* iy € L°(T'). We locally approximate X at every point y € dY; by dilation and
vy

convolution as in the proof of Proposition 5.9, see (5.13), so that the approximating sequence {X,} consequently
satisfies (5.18)—(5.20) and also £, € K;. Since we have that [E,t(V)]*. . = [Zu(v)]*. . the claim follows from the

(i) (i)
convexity of K;. O

The following proposition is analogous to Proposition 5.9 and will also be used in Section 5.4 to prove the main
result of this section.

Proposition 5.16. Let X € K, and (i1, us, v, E, P) € Awo. If Y is a geometrically admissible multi-phase torus and

the assumption on the ordering of the phases is satisfied, we have

dp .
H(y, 57 1P = (Zaes P in My (9).

Proof. To establish the stated inequality, we consider the behavior of the measures on each phase Y; and inter-
face I';j respectively. First, consider an open set U such that U ¢ Y; for some i. Regularizing by convolution, we
obtain a sequence %, € C®(U; IME';I%) such that

I, —> % strongly in L*(U; M3y53),

Furthermore, (£,(y))gev € K; for every y € U. As a consequence, for |P|-a.e. y € U we have

dp AP dp
(2 sy, 42
(’lel) l<d|P|)2 Ty

Thus for every ¢ € C(U) such that ¢ > 0, we obtain

dapP
jq)H(y, dlpl)d|P|_Jcozn. T AP = j d[z, : Pl.
u u u

Since X, is smooth, we conclude that
[Z,:P] = [Z:P] weakly* in M (W).

Passing to the limit we have
dp
j (DH()’: ﬁ) d|P| = J pd[L:P].
u U
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The inequality on the phase Y; now follows by considering a collection of open subsets that increases to Y;. Next,
for every i # J,

1 (y, 2V piiry = mine, 1) (((‘_‘] ahov (- “§)V>> 31|ry,

d|P| ;- ulp’ 0
where i, ué and @, u]3 are the traces on I';; of the restrictions of &1, us to Y; and Y; respectively, assuming that v
points from Y; to Y;. The claim then directly follows in view of Proposition 5.15. O

5.2 Disintegration of admissible configurations

Let @ ¢ R? be an open and bounded set such that w ¢ @ and @ N dw = yp. We also denote by Q = @ x I the
associated reference domain. In order to make sense of the duality between the two-scale limits of stresses and
plastic strains, we will need to disintegrate the two-scale limits of the kinematically admissible fields in such
a way to obtain elements of Ay and A, respectively.

5.2.1 Casey =0

Definition 5.17. Letw € H'(Q; R®) n KL(Q). We define the class A}°™ (w) of admissible two-scale configurations
relative to the boundary datum w as the set of triplets (u, E, P) with

ueKL@), EeL*QxY;Myn), PeMp@xY; M7
such that
u=w, E=Ew, P=0 on(Q\Q)x}Y,
and also such that there exist u € Xo(w), k € Yo(w) with
Eu® L+ Eyut - xsDjk = ELY® L +P inQxY. (5.23)
The following lemma gives the disintegration result that will be used in the proof of Proposition 5.30.

Lemma5.18. Let (u,E,P) € Ag"m(w) with the associated u € Xo(®), k € Yo(®), let &t € BD(w) and us € BH(®)
be the Kirchhoff-Love components of u. Then there exists n € M; (w) such that the following disintegrations hold
true:

Eue L3 = (A1(X') + x3Az(X')n ® L, ® L, (5.24)
EL}® L) = C(XE(X,y)n e Ly, ® L (5.25)
P=n'® Py. (5.26)

Above, A,Ay i 0 — JMEYXI% and C : w — [0, +oo] are respective Radon-Nikodym derivatives of Ei, -D*us and L)Z(,
with respect to n, E(x, y) is a Borel representative of E, and Py € Mp(I x Y; IMS;I%I) for n-a.e. X' € @. Furthermore,
we can choose Borel maps (x',y) € @ xY — uy(y) € R? and (x',y) € @ x Y Ky (y) € R such that, for n-a.e.
x' e @,

U=uen®L:, Eyu=n'e Eyy, (5.27)
K=Kke()N®LS, Dik=0n'® Diky, (5.28)
where i, € BD(Y), jy Ux (¥) dy = 0 and k, € BH(Y), jy Ky (y) dy = 0.
Proof. The proof is a consequence of Proposition 4.6 and follows along the lines of [7, Lemma 5.8]. O

Remark 5.19. From the above disintegration, we have that, for n-a.e. x' € @,
Eytixr - x3Djky = [COX)E(X,y) - (A1(X) + X3A2(X"))] L}, ® £ + Py inIx Y.

Thus, the quadruplet
(Uxr, Ky, [COXNE(X, Y) = (A1(x") + X3A2(X"))], Pxr)
is an element of Ay.
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5.2.2 Casey = +00

Definition 5.20. Letw € H(Q; R3) n KL(Q). We define the class Afo‘gm(w) of admissible two-scale configurations
relative to the boundary datum w as the set of triplets (u, E, P) with

ueKL@), EcL*@xYMn), PeMp@xY;My)

dev

such that
u=w, E=Ew, P=0 on(Q\Q)xVY,

and also such that there exist y € X (Q), k € Xoo(Q), { € Mp(Q; R?) with
Eyu {' + Dyk
Eue L%+ ( Y Y
Y\ +DyK)T (3

The following lemma provides a disintegration result in this regime and will be instrumental for Proposi-
tion 5.32.

>=5L§®L§+p inQx Y. (5.29)

Lemma 5.21. Let (u, E, P) € AR™(w) with the associated i1 € Xoo(Q), K € Xoo(Q), { € Mp(Q; R?), let it € BD(@)
and us € BH(w) be the Kirchhoff-Love components of u. Then there exists n € M;(fi) such that the following
disintegrations hold true:

Eue L) = (A1(X') + xsA (X)) ® L3, (5.30)
(&Ly=z(0neL;, (5.31)
ELy®L; = COOE(X,y)n® L) (5.32)
P=n'® P, (5.33)

Above, A1, Ay — ]MEYXI%I z:@— R and C:Q — [0, +00] are the respective Radon—Nikodym derivatives
of Eit, -D?us, { and L3 with respect to n, E(x,y) is a Borel representative of E, and Py € Mp(Y; ]Mfi:j) for n-a.e.
X € Q. Furthermore, we can choose Borelmaps (X, y) € @ x Y - uy(y) € R* and (x,y) € Q x Y — Kky(y) € Rsuch

that, for n-a.e. x € Q,

U=umn®Ll Eyu=n's Eypu, (5.34)
k=K ®LS, Dik=n'® Diky, (5.35)
where iy € BD(Y), jy tx(y) dy = 0 and ky € BV(Y), Iy Kkx(y) dy = 0.
Proof. The proof builds upon Proposition 4.9 and follows along [7, Lemma 5.8]. O

Remark 5.22. From the above disintegration, we have that, for n-a.e. x € Q,

! ! !
((Z,?gx,( oo +ZDYK”)=[c(x)E(x,y)—(Al(X”OXSAZ(X) 8)]L§+Px iny.
yhRx 3

Thus, the quintuplet

(ux, K 2, [ax)E(x,y) . (Al(x') +0X3A2(X') g)] ,Px)

is an element of A,.

5.3 Admissible stress configurations and approximations

For every e € L?(Q; M3y3) we define o”(x) := C(g—;)Aheh(x). We introduce the set of stresses for the rescaled
h problems:

. . . - X
Kn = {oh e LA(Q; Mg;rfl) ‘divao" =0in Q, o"v=0in 89\ Tp, ogev(x',)q) € K<€—> forae . x' e w, x3 € I}.
h

We recall some properties of the limiting stress that can be found in [21].
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If we consider the weak limit o € L%(Q; Mg;gl) of the sequence 6" € K ash — 0, then g3 = 0fori=1,2,3.

Furthermore, since the uniform boundedness of the sets K(y) implies that the deviatoric part of the weak
limit, i.e., Ogev = 0 — % tr ol3y3, is bounded in L (Q; Mﬁ;ﬁ), we have that the components g,z are all bounded
in L*°(Q). Lastly,

divy 6 =0in w, and divy divy 6 = 0in w.

In the following, we further characterize the sets of two-scale limits of sequences of elastic stresses {a™},
depending on the regime.

5.3.1 Casey =0

We first introduce the set of limiting two-scale stress.

Definition 5.23. The set X{°™ is the set of all elements £ € L®(Q x Y; ]MS’;I%) satisfying:

) Zis(y)=0fori=1,2,3,

(i) Zgev(x,y) € K(y) for £3 ® Lfv-a.e. (x,y) e QxY,

(iii) divy £(x’,-) =0in Y fora.e. X’ € w,

(iv) divy divy Z(x’,-) = 0in Y for a.e. x' € w,

(v) divy 6 =01in w,

(vi) divy divy 6 = 01in w,

where £, £ € L®(w x Y; Mﬁ;,}%l) are the zero-th and first order moments of the 2 x 2 minor of X, o := Ig Z(-,y)dy,
and 5,6 € L°(w; ]Mg;rﬁ) are the zero-th and first order moments of the 2 x 2 minor of .

The following proposition motivates the above definition.

Proposition 5.24. Let {o"} be a bounded family in L*(Q; M33) such that o" € Xy and

o' 25 two-scale weakly in L>(Q x Y; ]ME’;I?I)

Then L e Ko™,

Proof. Properties (v) and (vi) follow from Section 5.3.
To prove (i), let p € CX(w; C* (I x Y; R®)) and consider the test function hy(x, %). We find that
x' x' h X' x'
T ) = [rmen(o )+ ool ) oo )
converges strongly in L%(Q x Y; M3*®). Hence, taking such a test function in div, o” = 0 and passing to the limit,
we get

0 0 6X3 l/)l(x,)’)
Z(x,y): 0 0 Ox, Y2(x,y) | dxdy =0,
oxy O, V1(X,Y)  Ox,¥2(X,y) Ox,¥3(X,y)

which is sufficient to conclude that X;3(x,y) =0fori =1, 2, 3.
To prove (i), we define
shay) = ) dg (X)o"(eni+ end), xs), (5.36)

iel., (@)

and consider the set

S={8 e LX(Qx Y;MI3) : Eaev(x,y) € K(y) for L} ® Lj-ae. (x,y) € @ x Y}

The construction of £" from o™ € K, ensures that £" € S and that £" — £ weakly in L%(Q x Y; M33). Proper-
ties (1) and (ii) imply that £ € L.

Since compactness of K(y) implies that S is convex and weakly closed in L?(Q x Y; ]Mg;ﬁl) we have that
L € S, which concludes the proof.
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Finally, to prove (iii) and (iv), let ¢ € C°(w; C*(Y; R3)) and consider the test function

$1(x, E ~X30x, $3(x, Eh) — 20y, ¢3(x, E
e) =¢en| ¢ax', ) |+ en’ | —x30x,¢3(x, gh) - ayz¢3(X '
0 h¢3 X , é‘h

By a direct computation we infer

Tes! v 2 '
Ey9'(x\3) = xaDyga(xy) strongly in L2(Q x Y; MZ3).

Eno(x) — sym
0 0 0

Hence, taking such a test function in div, o" = 0 and passing to the limit, we get

)
J Z(x,y): (Ey¢ ;3Dy¢3 8) dxdy = 0.
QxY

Suppose now that ¢(x’, y) = pD(x")p@ (y) for p® € CP(w) and p@ € C®(Y; R?). Then

[N _ (2)
w IxY

from which we deduce that, for a.e. x’ € w,

) _ 2 (2)
0= J E(X,y):<Ey<w )’(y)oxSD ) 8) dxs dy
IxY
- |23 BW 0y dy - jm ) : D22 (y) dy
Y ‘zi

Jley £, y) - @) () dy - — dey div, £0¢', ) - 2(y) dy
Y Y

Thus, divy £(x’,-) = 0 in Y and divy divy £(x,-) = 0in Y. O

The following lemma approximates the limiting stresses with respect to the macroscopic variable and will be
used in Proposition 5.30. It is proved under the assumption that the domain is star-shaped.

Lemma 5.25. Let w c R? be an open bounded set that is star-shaped with respect to one of its points and let
Ye Kgom. Then there exists a sequence L, € LO(R2 xIxY; ngxrﬁ) such that the following holds:

@ Ip € CO(R%LO(I x Y; M33)) and £, — X strongly in LP (w x I x Y; M33) for 1 < p < +oo,

(d) (En)is(x,y)=0fori=1,2,3,

© (Zn(X6Y))dev € K(y) for every X' € R* and £}, ® L5-a.e. (x3,y) € I x Y,

(d) divy Zp(x',-) =0inY forevery x' € w,

(e) divydivy Zn(x',+) = 0in'Y for every x' € w,

where £, 5n € L®(w x Y; ]Mgﬁ) are the zero-th and first order moments of the 2 x 2 minor of L,. Further; if we set

on(X) = JZn(X,y) dy,
Y
and 6y, 0y, € L (w; JMZXZ) are the zero-th and first order moments of the 2 x 2 minor of o, then:
() ope C®(R?*xI; ngxrg) and o, — o strongly in LP(w x I, M33) for 1 < p < +0o,
(&) divy o, =0inw,
(h) divy divy 6, =01in w.

Proof. The approximation is done by dilation and convolution and is analogous to [7, Lemma 5.13]. O
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5.3.2 Casey = +00

In this regime, the set of limiting two-scale stresses is defined as follows.

Definition 5.26. The set X19™ is the set of all elements £ € L*(Q x Y; M33) satisfying:

(i) divyZ(x,-)=0inYforae x €,

(i) Zgev(x,y) € K(y) for £3 ® Lﬁ-a.e. (x,y) e QxY,

(iii) g300) = 0 fori = 1,2,3,

(iv) divy 0 = 0in w,

(v) divy divy 6 =01in w,

where g := j‘d %(-,y)dy,and 6,6 € L*(w; ngﬁ) are the zero-th and first order moments of the 2 x 2 minor of g.

The previous definition is motivated by the following.

Proposition 5.27. Let {a"} be a bounded family in L*(Q; M353) such that o" € K and

2 .
o" £ % two-scale weakly in L*(Q x Y; Mi‘yﬁi).

Then ¥ € Khom,

Proof. Properties (iii), (iv) and (v) follow in view of Section 5.3. To prove (i), we consider the test function
eng(x, ;‘—;) for ¢ € C°(w; (I x Y; R?)). We see that

(o5 5)) - [ esmeo( )+ (s ) Shons(s )]

converges strongly in L2(Q x Y; M3*3). Hence, taking such a test function in divy, o” = 0 and passing to the limit,
we get
J L(x,y) : Eyp(x,y)dx dy = 0.
QxY
Suppose now that ¢(x, y) = pP ()@ (y) for p» e € (w; C* (1)) and p? e € (Y; R®). Then

J w‘”m( j £(x,y) : Eyp®(y) dy) dx =0,
Q Y

from which we can deduce that divy, Z(x,-) =0in Y for a.e. x € Q.
To conclude the proof, it remains to show the stress constraint Xgey (X, y) € K(y) for L;’; ® L}Z,-a.e. (x,y)eQxY.
To do this, we can define the approximating sequence (5.36) and argue as in the proof of Proposition 5.24. [

The following lemma is analogous to Lemma 5.25.

Lemma 5.28. Let w c R? be an open bounded set that is star-shaped with respect to one of its points and let
% € Khom, Then, there exists a sequence L, € L*(R? x I x Y; ngxgl) such that the following holds:
@) Zp e CO(R%LA(Y; M) and By — X strongly in L*(w x I x Y; M),
(b) divy Za(x,-) =00nY forevery x € R,
(© (Zn(6Y))dev € K() for every x € R® and L}-ae.y €Y.
Further; if we set

on(x) = J Zn(x,y) dy,

Y

and Gy, G, € L*(w; M%:2) are the zero-th and first order moments of the 2 x 2 minor of ay, then:
(@) on € C°(R? x ; M333) and o, — o strongly in L*(w x I; M353),
(e) divy 0, =0in w,
(f) divy divy 0, = 0 in w.

Proof. The proof is again analogous to [7, Lemma 5.13]. The only difference is that the convolution and dilation
used to define X, are taken in R3 instead of R O
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5.4 The principle of maximum plastic work

We introduce the following functionals: Let y € {0, +oco}. For (u, E, P) € A{,“’m(w) we define

QhoM(E) = J Qr(y, E)dxdy, QM™(E):= J Q(y, E) dx dy (5.37)
QxY QxY
and

3@ = [ oy, jﬁl)dm s ey= | (.

QxY QxY
The aim of this subsection is to prove the following inequality between two-scale dissipation and plastic
work, which in turn will be essential to prove the global stability condition of two-scale quasistatic evolutions.
It is used in Step 2 of the proof of Theorem 6.2 and its proofis a direct consequence of Theorem 5.31 for the case
¥ = 0, and of Theorem 5.33 for the case y = +oo.

apr

il ) dip|. (5.38)

Corollary 5.29. Lety € {0, +oo}. Then

3n®) > [ ziEdxay+ o pwax '—%jA:Dszdx’
QxY w w

for every ¥ € KKI°™ and (u, E, P) € AY™(w).

The proof relies on the approximation argument given in Lemmas 5.25 and 5.28 and on two-scale duality, which
can be established only for smooth stresses by disintegration and duality pairings between admissible stresses
and plastic strains (given by (5.8) and (5.15)). The problem is that the measure i defined in Lemmas 5.18 and 5.21
can concentrate on the points where the stress (which is only in L?) is not well-defined. The difference with
respect to [26, Proposition 5.11] is that one can rely only on the approximation given by Lemmas 5.25 and 5.28,
which are given for star-shaped domains. To prove the corresponding result for general domains we rely on
the localization argument (see Step 2 of the proof of Proposition 5.30 and the proof of Theorem 5.31, as well as
Proposition 5.32 and Theorem 5.33).

5.4.1 Casey =0

The following proposition defines the measure A through two-scale stress-strain duality based on the approx-
imation argument.

Proposition 5.30. Let X ¢ Kgom and (u, E, P) ¢ Agom(w) with the associated p € Xo(@), k € Yo(@). There exists
an element A € My(Q x Y) such that forevery ¢ € C%(ZJ)
1
A @) =- J o(x)x :dedy+Jg06:El7vdx’— —j(p&:DZW3dx’—J6: (1 - w) © Vo) dx’

12
QxY w w

- % J :(V(uz - w3) 0 Vo) dx' - 11—2 J(ug - w3)G: Vo dx'.

w

Furthermore, the mass of A is given by

A@ xY) = J 5 dedy+J (539)

QxY w

Q|
h
=
u
><\
|

o T—
Q
=}
Do
<
™)
Q.
=

Proof. The proof is divided into two steps.

Step 1. Suppose that w is star-shaped with respect to one of its points. Let {Z,} ¢ C®°(R% L%(I x Y; M353)) be the
sequence given by Lemma 5.25. We define the sequence

A= ® [Za(X, ) Py] € Mp(@x Y),
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where 7 is given by Lemma 5.18 and the duality [Z,(x’,-) : Py ] is a well defined bounded measure on I x Y for
n-a.e. x' € . Further, in view of Remark 5.19, (5.8) gives

J Yd[Za(X',-) Pyl =~ J Y(Zn(x,y) : [COXE(X, y) — (A1(x) + X345(x"))] dxs dy
IxY IxY

S ' 114 ]
- [ 200030 (e 0) 0¥ dy + ¢ [ Ead ) (V0 9) © Wy 90) dy
Y Y

1
v 15 | ReOIEOC ) : Vi) ay
Y
for every i € C%(Y), and
|[Zn(X’, 2) i Py]l < ||Zn(X’; : )||Loo(1><g;M§;n2‘)|Px’| < C|Py|,
where the last inequality stems from item (c) in Lemma 5.25. This in turn implies that
IAnl =0 ® |[Zn(X',+) : Pull < Cp'® [Py] = CIP],

from which we conclude that is {4,} is a bounded sequence.

Let now I > I be an open set which compactly contains I. We extend these measures by zero on @ x I x Y.
Let & be a smooth cut-off function with & = 1 on I, with support contained in . Finally, we consider a test function
d(x,y) = p(x")&(x3), for ¢ € CL(W). Then, since Vy¢(x,y) = 0and V§¢(x,y) =0, we have

Ans 9) = [( j O(6,y) d[Zn(X', ) : Px']>dn(X’)
w IxY
- J P()Za(x,y) : [CKXNE(X, ) = (A1(X) + x3A2(x")] d(n ® L}, ® L)
ﬁx’j
- j 0O Ea(x, ) 1 E(x,y) dx dy + j 0 )an(x) : (A1 (X') + X3A(x)) d( ® £1,)
oxy Q
—= [ o0z : Euy) axdy + [ otx)ont : dEuo.
Qx‘j Q
Since u € KL(Q), we have

J @(x")an(x) : dEu(x) = J(D(X )on(x") s dEU(X") - — J o(x)8n(x") : dD*us(x"),

Q

el
el

where i € BD(w) and u3 € BH(w) are the Kirchhoff-Love components of u. From the characterization given in
Proposition 3.7, we can thus conclude that

j 0()on(x) : dEU(x) = f o) () : 2(x') dx' + j 0O )on(x') : dp(x')

Q w w

g [ #0030 20 ¢+ 35 [ o) : by
- [o0au0) 20y x4 [ 90y di : p1x)

1
+ 33 | 00030 20y ax' 4 1 [ o) 6 B,

E

gl

w w

where in the last equality we used that 6, and G, are smooth functions. Notice that, since p = 0 and p = 0 outside
of w U yp, we have

[odion:pi= | odoi:p. [odE:p1- [ odw:

w wUyp w wUyp
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Furthermore, since e = E = EW — x3D*ws3 on Q \ Q, we can conclude that

A, @) = — J go(x’)Zn:dedy+J(p6n.edx +1Jgoon.edx’+ J god[&n:p]+ll—2 j @ d[Gy : P)

12
axy @ 7] wUyp wUyp
- j (o(x')Zn:dedy+J(p6n.edx +1lJ(pon.edx'+ J (pd[&n:p]+% j @ d[oy : P].
Qxy ® w wUyp wUyp

Taking into account that divy ¢, = 0 in w, by integration by parts (see also [21, Proposition 7.2]) we have for
every ¢ € Ct(w),

J (pd[an:p]+j(p6n:(é—EW)dx’+J6n:((ﬂ—W)quo)dx’zo.

wUyp 2] 7]

Likewise taking into account that divy divy 6, = 0 in w and us = w3 on yp, by integration by parts (see also
[21, Proposition 7.6]), we have for every ¢ € C*(w),

J @ d[Gn : P] + J @G 1 (@ +D*ws) dx' + ZJBH : (V(uz - w3) 0 Vo) dx' + J(U3 —W3)6p : Vo dx' = 0.

wUyp © 7] ®

Let now A € M (Q x Y) be such that (up to a subsequence)
An = 2 weakly* in M, (Q x Y).
By items (a) and (f) in Lemma 5.25, we have in the limit

(2, 9) = lim(Ay, 9)

j Gn : D*wydx' — J On @ (L — W) © Vo) dx’

—_
NlH

= lirI[’['l[— J o(x")Zp :dedy+Jgoc‘rn cEwdx' -
QxY w w

w
1 1 = 2 )
_EJ n ' (V(us — ws) 0 Vo) dx' —Ej(ug—W3)GnIV @ dx
w

w

12
QxYy w w w

=— j (p(x’)Z‘.:dedy+Jg06:E17vdx’—lj(p&:DZWrgdx’—Jé:((H—Vv)oV(p)dx’

- % J G : (V(us —ws3) @ Vo) dx' - % J(U3 - w3)6: Vi dx'.

w w

Taking ¢ ~ 1, we deduce (5.39).

Step 2. If w is not star-shaped, then since  is a bounded C? domain (in particular, with Lipschitz boundary)
by [9, Proposition 2.5.4] there exists a finite open covering {U;} of w such that w n U; is (strongly) star-shaped
with Lipschitz boundary. Again, since the sets which are intersecting dw are cylindrical up to a rotation, we can
slightly change them such that they become C?.

Let {1;} be a smooth partition of unity subordinate to the covering {U;}, i.e., ; € C®°(w), with0 < ¢; < 1,
such that supp(¥;) c Ujand }; ¥; = 1 on w.

For each i, let

T(y) = L(x,y) ifx' e wnU,
0 otherwise.

Since £! € KB°™, the construction in Step 1yields that there exist sequences {Z}} ¢ C®(R?; L2(I x Y; M33)) and

sym
AL =0 '@ [(ED)aev(X, ) Pyl € Mp((w N Up) x I x Y)

such that
AL 5 AN weakly* in Mp((w N Up) x I x Y)
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with

AL @) = - I o(xX"T : Edxdy + I (oa:Ev‘vdx’—% J 06 : D*wsy dx' - I G:((L-w)oeVe)dx'

(wNU;)xIxY wnU; wnU; wnU;

- % J (V(us - wy) 0 Vo) dx' - % J (uz - w3)g : Vi dx’

wNnU; wnU;

for every ¢ € C%(E N U;). This allows us to define measures on Q x Y by letting, for every ¢ € Co(Q x Y),
A, 9) = Y (A3, i(x") )
i

and
(A, 9) = Y (AL i) ).
i
Then we can see that A, - A weakly* in M, (Q x Y), and A satisfies all the required properties. O
The following theorem provides a two-scale Hill’s principle (cf. [26, Theorem 5.12]).

Theorem 5.31. LetX ¢ 9(30‘“ and (u,E, P) € Ag"m(w) with the associated u € Xo(), k € Yo(@). If Y is a geomet-
rically admissible multi-phase torus, under the assumption on the ordering of phases we have

—
H (v, 357 P12 .
where A € My(Q x Y) is given by Proposition 5.30.

Proof. Take ¢ € C.(@ x Y) nonnegative. Let {.}, {AL} and A’ be defined as in Step 2 of the proof of Proposi-
tion 5.30. Item (c) in Lemma 5.25 implies that

(Z)aev(x,y) € K(y) foreveryx’ € wand £}, ® Li-ae. (x3,y) e IxY.

By Proposition 5.9, we have for n-a.e. x' € @,

j p(x ’)’)Hr(y, Py |)d|Px’| > J o(x',y)d[Z] : Py] forevery g € C(Y), ¢ > 0.
IxY IxY

Since %(x, y) = %(Xg, y) for |Pyr|-a.e. (x3,y) € I x Y by [7, Proposition 2.2], we can conclude that

dP
gen. dP
= H
=19 ( ,d|PX|)| vl

=;¢ng3Hr( i |)| ol

Consequently,
| oCm(y. 1) aw ZZJwi(X’)< [ oo ymn(y, |)Ier|>dn(X’)
Qxy i ] IxY
> J ‘Pi(X')( J o(x',y) d[E), : Px’]) dn(x")
L Ixy

-y j B0 ) i) = [ o din

Qxy Qxy

By passing to the limit, we infer the desired inequality. O
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5.4.2 Casey = +00

The following proposition is the analogue of Proposition 5.30.

Proposition 5.32. Let £ € K™ and let (u, E, P) € AM™(w) with the associated pi € Xoo(Q), k € Xoo(Q), and
{ € Mp(Q; R%). There exists an element A € My(Q x Y) such that for every ¢ € CX(@)

A,0)=- J ¢(X’)Z:dedy+J(p(7:E17vdx’—%J(p&:DZW3dx'—J6:((L't—W)@V(p)dx’
QxY w 2] w

1 1
5 J G : (V(uz —w3) o Vo) dx' - v J(ug —w3)G : Vi dx'.

w w
Furthermore, the mass of A is given by
AQxY) = - J Z:dedy+Jc‘r:Ede’—%J&:D2W3dx’. (5.40)

QxY w w

Proof. Suppose that w is star-shaped with respect to one of its points.
Let {Zn} ¢ C°(R3; L2(Y; M33)) be the sequence given by Lemma 5.28. We define the sequence
Ani=1'® [(Cn)aev(X, ) 1 Py] € Mp(@ % Y),
where 1 is given by Lemma 5.21 and the duality [(X)gev(X, - ) : Px] is a well defined bounded measure on Y for
n-a.e.x e Q. Further, in view of Remark 5.22, (5.15) gives

[ watintn) 2 == [ym: [coof(x,y) - (Al(" )+ Xax{X) 0) ] dy

0 0
Yy Y
. J(zn)”(x,y) (1) © Vy () dy - J Kx ) Endas (%, Y0y, Y ) dy
] a:l,ZH
v Y [ so)Eacny) dy
i=1,2,3 Y

for every ¢ € C'(Y), and
[[En)dev(X, -) * Pxll < 1(En)dev(X Meo(y;mz) | Pxl < CIPxl,
where the last inequality stems from item (c) in Lemma 5.28. This in turn implies that
Al = 08 1[(En)aev(x,-) : Pull < € '® |P4] = CIP),

from which we conclude that is {A,} is a bounded sequence.

Letnow T > I'be an open set which compactly contains I and extend the above measures by zeroon @ x I x Y.
Let & be a smooth cut-off function with £ = 1 on I, with support contained in I. Finally, we consider a test function
P(x) := p(x")&(x3) for ¢ € CX(w). Then, since Vy¢(x) =0, 0y, $(x) = 0 and jy (Zn)is(x,y) dy = 0, we have

Ans 9) = j ( j 600 Y) dI(En)ger(X.) : PXJ) dn(x)
Q

Y
= [ oty [c<x)E(x, »- (Al(x') ) g) ] dn e £2)
oxy
=- j o(X")Zn(x,y) : E(x,y) dx dy + J o(X)on(x) 1 (A1(X') + x342(x")) dn
Qxy Q
=- J o(xX"Zn(x,y) t E(x,y) dx dy + J o(x")on(x) : dEu(x)
axy a

From this point on, the proof is exactly the same as the proof of Proposition 5.30 by defining in the analogous
way Zi, AL, i.e., i, A;. O
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The following theorem is analogous to Theorem 5.31.

Theorem 5.33. Let L € Ko™ and (u, E, P) € AR™(w) with the associated i1 € Xoo(RQ), K € Xoo(Q), { € Mp(Q; R).
IfY is a geometrically admissible multi-phase torus, under the assumption on the ordering of phases we have

(s, g P12

where A € My(Q x Y) is given by Proposition 5.32.
Proof. Let {El}, {A}} and A’ be defined as in the proof of Proposition 5.32. Item (c) in Lemma 5.28 implies that
(Zn)dev(x,y) € K(y) foreveryx e Qand L)Z,-a.e.y €Y.

By Proposition 5.16, we have for n-a.e. x € Q,

H(y ;|P | )lPX| [(Zz)dev(xx *) 1 Px] asmeasures on Y.
dPy

Since & a0 APy y) = dIle(y) for |Py|-a.e. y € Y by [7, Proposition 2.2], we can conclude that

( ’;P|>|P| ( ’d|P|>|PX|_ ( ’d|Px|)|PX|
=T 5y, i I)|Px|
> Z_ $i0)N B [(Eh)aev(x,) : Pyl
= Z YA} = An.

By passing to the limit, we have the desired inequality. O

6 Two-scale quasistatic evolutions

The associated H"°™-yariation of a function P : [0, T] — M(Q x Y; Mfl:g) on [a, b] is then defined as
n-1

Dﬁlywm(P; a,b) = sup{ Z f]f{,‘om(P(tm) —P(t)):a=t1<ty<---<tp=b, ne ]N}.
i=1
In this section we prescribe for every t € [0, T] a boundary datum w(t) € H 1(@; R3) N KL(Q) and we assume the
map t — w(t) to be absolutely continuous from [0, T] into H*(Q; R%).
We now give the notion of the limiting quasistatic elastoplastic evolution.

Definition 6.1. A two-scale quasistatic evolution for the boundary datum w(t) is a function ¢ — (u(t), E(t), P(t))
from [0, T] into KL(Q) x L*(@Q x Y; M33) x Mp(Q x Y; M33) which satisfies the following conditions:

(qsD)j™™ for every t € [0, T] we have (u(t), E(t), P(t)) € AL™(w(1)) and
QROM(E(t)) < QYO™(H) + FH)O™(IT - P(t))
for every (v, H,1I) € A}™(w(1)),
(qu)ly10m the function ¢ — P(t) from [0, T] into M (@ x Y; M3*3) has bounded variation and for every t € [0, TJ,

dev

t
QG ™ (E(1)) + Dggron (P50, 1) = QF°™(E(0)) + j J Cr()E(s) : Ew(s) dx dy ds
0 QxY
fory =0and

t
Qhom(E(¢)) + D4 hom (P; 0, ) = Qhom(E(0)) +J J C(Y)E(s) : Ew(s)dx dy ds
0 QxY
for y = +00.
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Recalling the definition of a h-quasistatic evolution for the boundary datum w(¢) given in Definition 3.8, we are
in a position to formulate the main result of the paper.

Theorem 6.2. Lett — w(t) be absolutely continuous from [0, T] into H L@Q; R3) N KL(Q). Let Y be a geometrically
admissible multi-phase torus and let the assumption on the ordering of phases be satisfied. Assume also (3.2), (3.3)
and (3.5) and that there exists a sequence of triples (u., e, pl') € Ap(w(0)) such that

ul =~ uy weakly*in BD(Q), (6.1)
Anell 2, Ey two-scale strongly in L2(@ x Y; M), (6.2)
Appl £ Py two-scale weakly* in My (Q x Y; M) (6.3)

for (ug, Eo, Po) € AR™(w(0)) if y = +oo, and (uo, Ey, Py) € AN™(w(0)) with Eg = AyE} ify = 0. For every h > 0,
let
t - (1), e"(0), p"(1)

be a h-quasistatic evolution in the sense of Definition 3.8 for the boundary datum w such that u"(0) = u(’)',
e(0) = e(’)’, and ph(O) = pg. Then there exists a two-scale quasistatic evolution

t — (u(t), E(1), P(1))

for the boundary datum w(t) such that u(0) = ug, E(0) = Ey, and P(0) = Py, and such that (up to subsequence) for
every t e [0, T],

u(t) = u(t) weakly* in BD(Q), (6.4)
Apel(t) 2= E(t) two-scale weakly in L*(Q x Y; M3s3), (6.5)
App"(t) 2= P(t)  two-scale weakly* in Mp(Q x Y; M33) (6.6)
in casey = +oo, and
ul(t) == u(t) weakly* in BD(Q), (6.7)
Apel(t) == AyE(t) two-scale weakly in L*(Q x Y; M33), (6.8)
ph(t) 2= (P(()t) 8) two-scale weakly* in My(Q x Y; M3ys) (6.9)

incasey =0.

Proof. The proofis divided into several steps, in the spirit of evolutionary I'-convergence and it follows the lines
of [7, Theorem 6.2]. We present the proof in the case y = 0, while the argument for the case y = +oo is identical
upon replacing the appropriate structures in the statement of Theorem 4.14 and definition of AI}}"’“(W).

Step 1: Compactness. First, we prove that there exists a constant C, depending only on the initial and boundary
data, such that

sup Ane" (Ol z@xymzg) <€ and Dy, (App™0,T) < € (6.10)
te[0,T]

for every h > 0. Indeed, the energy balance of the h-quasistatic evolution (qs2), and (3.4) imply

relAne (Ol @) + Dac, (Arp"; 0,0
T
< RellAne" O)ll 2@z + 2Re sup ||Aheh(t>||Lz@;Mg;nsl)juEW(s>uLz@Mg;ng) ds,
te[0,T]
0

where the last integral is well defined as t — Ew(t) belongs to L1([0, T]; L*(; M33)). In view of the bounded-
ness of Ap, eg that is implied by (6.2), property (6.10) now follows by the Cauchy-Schwarz inequality.
Second, from the latter inequality in (6.10) and (3.5), we infer that

rilAnp" () = Anpg e, @) < Hn(Arp™(0) = Anpg) < D, (Arp";0,8) < €
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for every ¢ € [0, T], which together with (6.3) implies

sup [ARp" Ollye, @iz, < C- (6.11)
te[0,T] v

Next, we note that | - || LI@EMED) is a continuous seminorm on BD(Q) which is also a norm on the set of
rigid motions. Then, using a variant of Poincaré—Korn’s inequality (see [46, Chapter II, Proposition 2.4]) and the
fact (u" (), e"(t), p"(t)) € An(w(t)), we conclude that, for every h > 0 and ¢ € [0, T],

I Ollgp) < CUU" Ol @gme) + EE" Ol @)
< CUWO I @gme) + 1€" Oll@nes) + 10" Ol @nes)
< CUWOl 2 ggey + 18n" Ol 2@z + 1ARD" O, @nzs)-

In view of the assumption w € H'(Q;R%), from (6.11) and the former inequality in (6.10) it follows that the
sequences {u"(t)} are bounded in BD(Q) uniformly with respect to t.
Owing to (2.3), we infer that D4, and V are equivalent norms, which immediately implies

V(Arp™;0,T) < C (6.12)

for every h > 0. Hence, by a generalized version of Helly’s selection theorem (see [13, Lemma 7.2]), there exists
a (not relabeled) subsequence, independent of ¢, and P € BV(0, T; Mp(Q x Y; 1M3X3)) such that

dev
App™(t) 5 P(t)  two-scale weakly* in M, (Q x Y; M33)
for every t € [0, T], and V(P; 0, T) < C. We extract a further subsequence (possibly depending on ¢),
ut(t) = u(t) weakly* in BD(Q),
Ap,eM(t) 2 Et) two-scale weakly in L2(Q x Y; M353)

for every t € [0, T]. From Proposition 4.1, we can conclude for every t € [0, T] that u(¢t) € KL(Q). Furthermore,
according to Theorem 4.14, one can choose the above subsequence in a way such that there exist u(t) € Xo(w),
k(t) € Yo(@) and {(t) € Mp(Q x Y; R3?) such that

2 !
ApEu™(t) £ Eu(t) ® £3 + (Eyu(t) - X3Dyk() ¢ (t)) '

'@’ 3(1)
Since Ap, Eul(t) = Ap,e™(t) + Ap,p"(t) in @ for every h > 0 and t € [0, T], we deduce that
(u(0), E"(6), P" (1)) € AD™(w(0)).

Lastly, we consider for every t € [0, T],

!

e (t) = (C(X—>Ahtehf(t).
Ent
Then we can choose a (not relabeled) subsequence such that
ol () 2 () two-scale weakly in L*(Q x Y; M33), (6.13)

where £(t) := C(y)E(¢). Since ai(t) e Kn, for every ¢t € [0, T, by Proposition 5.24 we can conclude Z(t) € 9(80“‘.
From this it follows that E(t) = AyE"(t).

Step 2: Global stability. From Step 1 we have (u(t), E" (t), P"(t)) € Agom(w(t)) with the associated u(t) € Xo(@),
K(t) € Yo(w). Then for every (v, H,II) € Ag"m(w(t)) with the associated v(t) € Xo(w), A(t) € Yo(w) we have

(v-u(t),H - E"(t), 1 - P""(1)) € AR™(0).
Furthermore, since from the first step of the proof C,(y)E" (t) € Kg(’m, by Corollary 5.29 we have

FHEO™(I - P"(1)) = - J Cr()E" (1) : (H - E" (1)) dx dy = 90°™(E" (1)) + Q¢°™ (H - E" (1)) — Q4™ (H),

wxIxY
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where the last equality is a straightforward computation. From the above, we immediately deduce
FROM(IT - P! (1)) + QBOM(H) = QROM(E" (1)) + QOM(H - E"' (1)) = Qb™(E" (1)),

hence the global stability of the two-scale quasistatic evolution (qsl){}om.

We proceed by proving that the limit functions u(t) and E(t) do not depend on the subsequence. Since
E(t) = AyE" (1), it is enough to conclude that E”(t) is unique. Assume (v(t), H(t), P(t)) € Agom(w(t)) with the
associated v(t) € Xo(w), A(t) € Yo(w) also satisfy the global stability of the two-scale quasistatic evolution. By
the strict convexity of Q5°™, we immediately obtain that

H(t) = E"(b).

Identifying Eu(t), Ev(t) with elements of M (Q; M%) and using (5.23), we have that

sym
Ev(t) ® £} + Eyv(t) - xsDA(t) = H(t)L3 ® L5 + P(1)
= E()L} ® L] + P(t)
= Eu(t) ® L5 + Eyu(t) - xsDyK(1).
Integrating over Y, we obtain
Evu(t) = Eu(t).
Using the variant of Poincaré—Korn’s inequality as in Step 1, we can infer that v(t) = u(t) on Q.
This implies that the whole sequences converge without depending on ¢, i.e.,
ul(t) = u(t) weakly* in BD(Q),
Anel(t) 2 E(t) = AyE"(t)  two-scale weakly in L*(Q x Y; M33).
Step 3: Energy balance. In order to prove the energy balance of the two-scale quasistatic evolution (qu)g,‘Om, itis
enough (by arguing as in, e.g., [13, Theorem 4.7] and [27, Theorem 2.7]) to prove the energy inequality
t
Q™ (E" (1)) + Dageron (P50, £) < Qg™ (E"(0)) + J j Cr()E"(s) : Ew(s) dx dy ds. (6.14)
0 OxY

For a fixed t € [0, T], let us consider a subdivision 0 = t; < t; <--- < t, = t of [0, t]. In view of the lower
semicontinuity of Qlowm and H-Cgom as a consequence of the convexity of Q and Reshetnyak lower-semicontinuity
(see [1, Theorem 2.38] and Remark 3.11, see also [26, Lemma 4.6]) from (qs2), we have

QB + Y I (P(tisa) - P(t)) < lim inf <Qh(Ane"<r)) + ) Ha(Arp" (tiva) - Ahph(tl-)))
i=1 i=1

< limhinf(Qh(Aheh(t)) + Dy, (Arp"; 0, 1))

t

- lim in (Qh(Aheh(O)) N J J C(?—h)Aheh(s) . EW(s) dx ds).
0Q

In view of the strong convergence assumed in (6.2) and (6.13), by the Lebesgue’s dominated convergence theorem
we infer

t , t
lim (Qh(Aheh(O)) + J J(C(:—)Aheh(s) - Evn(s) dx ds) = QlM(E(0)) + J j Cr)E"(s) : Ev(s) dx dy ds.
0Q h 0 QxY
Hence, we have
t

QME(D)) + Y. HGO(P" (1) - P (1) < QQO™(E" (0)) + J J Cr(y)E"(s) : Ew(s) dx dy ds.

i=1 0 oxy

Taking the supremum over all partitions of [0, t] yields (6.14), which concludes the proof, after replacement of E
with E"" and P with P". O
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Remark 6.3. The prevailing effect of dimension reduction for the case y = 0 can be argued in the following way.
The potentials C, and H, are the ones that are obtained by performing a dimension reduction for perfectly
plastic homogeneous plates (see [21]). Note that in our limiting model for y = 0 such quantities, though, depend
on the microscopic variable y, as if to hint that, roughly speaking, a dimension reduction occurred and was
immediately followed by a homogenization procedure. This is also suggested by the result on correctors given
in Theorem 4.14, which is analogous to the one obtained in, e.g., [43]. In the case y € (0, +co) the limit energy
and dissipation potential are not of this type and one cannot obtain them by minimizing third row and column
like in the case y = 0 (see Section 3.3).

The prevailing effect of homogenization in the regime y = +oo is more difficult to explain. However, the
corrector result for the case y = +co is again analogous to the one obtained in, e.g., [43], where it is known that
this regime corresponds to the case when we firstly do the homogenization and then dimension reduction. Also,
part (i) of Definition 5.26, where the two-scale limit stress is defined, suggests this interplay, since xs is kept fixed
and the equation is divergence free in y (see, for comparison, again the case y € (0, +00), analyzed in [7]).

We emphasize the fact that, to the best of our knowledge, neither a homogenization of the plate model in [21]
(the model derived there is for homogeneous material) nor a dimension reduction of the homogenized model
obtained in [26] have been studied in the literature.

Funding: M. Buzanci¢ and I. Vel¢i¢ were supported by the Croatian Science Foundation under Grant Agreement
no. IP-2018-01-8904 (Homdirestroptcm). The research of E. Davoli was supported by the Austrian Science Fund
(FWF) projects F65, V 662, Y1292, and 1 4052. All authors are thankful for the support from the OeAD-WTZ project
HR 08/2020.
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