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Abstract: Building upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure

of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 (2018), no. 1,

125-184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle

problem in R™*! with obstacle function ¢ (suitably smooth and decaying fast at infinity) up to sets of null

H"-1 measure. In particular, if ¢ is analytic, the problem reduces to the zero obstacle case dealt with in

[M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional

obstacle problem, Arch. Ration. Mech. Anal. 230 (2018), no. 1, 125-184] and therefore we retrieve the same

results:

(i) local finiteness of the (n — 1)-dimensional Minkowski content of the free boundary (and thus of its
Hausdorff measure),

(ii) FH™ I-rectifiability of the free boundary,

(iii) classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most (n — 2) in
the free boundary.

Instead, if ¢ € CK*1(R™), k > 2, similar results hold only for distinguished subsets of points in the free bound-

ary where the order of contact of the solution with the obstacle function ¢ is less than k + 1.

Keywords: Fractional obstacle problem, free boundary, rectifiability

MSC 2010: 35R35, 49Q20

Communicated by: Giuseppe Mingione

1 Introduction

Quasi-geostrophic flow models [10], anomalous diffusion in disordered media [4] and American options with
jump processes [11] are some instances of constrained variational problems involving free boundaries for
thin obstacle problems. In this paper we analyze the fractional obstacle problem with exponent s € (0, 1), a
problem that can be stated in several ways, each motivated by different applications and suited to be studied
with different techniques. We follow here the variational approach: given ¢ : R" — R smooth and decaying
sufficiently fast at infinity, one seeks for minimizers of the HS-seminorm

vix') = v(y")I?

! !
T~y s dx' dy’, se(0,1),

2
[V]Hs =
R"xR"
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on the cone
of i={v e HS(R") : v(x") = p(x")},

where H(R") is the homogeneous space defined as the closure in the H® seminorm of C®°(R") functions.
Existence and uniqueness of a minimizer w follow for all s € (0, 1) if n > 2 (the case n = 1 requires some
care, see [30] and [3]). In addition, defining the fractional laplacian as

vy -vy)

(—A)SV(X’) =Cn,s PV. J m

R
forv e HS(R"), with Cn,s asuitable constant, the Euler-Lagrange conditions characterize w as a distributional
solution to the system of inequalities
wx') = o(x') forx' e R",
(-A)Sw(x') =0 for x' € R" such that w(x') > @(x'), (1.1)
(-A)*w =0 inR".
The most challenging regularity issues are then that of w itself and that of its free boundary
Tp(w):=0o{x" e R" : w(x) = p(x")}.

To investigate the fine properties of the solution w of (1.1) the groundbreaking paper by Caffarelli and
Silvestre [5] introduces an equivalent local counterpart for the fractional obstacle problem in terms of the
so called a-harmonic extension argument. Indeed, it is inspired by the case s = %, in which it is nothing
but the harmonic extension problem. More precisely, setting a = 1 — 2s for s € (0, 1) and m = |xp41]2L™*1,
it turns out that any function w satisfying (1.1) is the trace of a function u € H'(R"*!, dm) solving for

x=(x', Xps1) € RML,

ux',0)= ¢ for (x', 0) € R™ x {0},
u(x’', xpe1) = u(x’, =xp41) forall x e R™1, (1.2)
div(|Xns11Vu(x)) = 0 for x e R™1\ {(x',0) : u(x',0) = p(x")}, '
div(|x,s1]*Vu(x)) < 0 in 2" (R"1).

In particular, note that u is the unique minimizer of the Dirichlet energy

J V72 dm

Br
on the class & := {v € H{(R™!, dm) : ¥(x', 0) = @(x'), Vlop, = ulog,} for every R > 0. Viceversa, the trace
u(x', 0) on the hyperplane {x,.; = 0} of the solution u to (1.2) is the solution to (1.1), as for all x' € R" (cf. [5])

Hm  [Xne1]90pu(x’, Xn1) = ~(=8)°u(x’, 0).

Xn+1—

One then is interested into the regularity of the free boundary I'y,(u) (with a slight abuse of notation we
use the same symbol as for the analogous set for w): the topological boundary, in the relative topology of R”,
of the coincidence set of a solution u

Ap(u) == {(x',0) e R”™! : u(x', 0) = p(x')}.

The locality of the operator
La(v) := div(|xps1|*Vv(x)) (1.3)

in (3.1) is the main advantage of the new formulation to perform the analysis of [y (u). Indeed, being
['y(u) = Ty(w) it permits the use of (almost) monotonicity-type formulas analogous to those introduced
by Weiss and Monneau for the classical obstacle problem (cf. [6, 7, 27, 31]).

Optimal interior regularity for u has been established Caffarelli, Salsa and Silvestre in [9, Theorem 6.7
and Corollary 6.8] for any s € (0, 1) (see also [8]). The particular case s = % had previously been addressed
by Athanasopoulos, Caffarelli and Salsa in [1]. Instead, despite all the mentioned progresses, the current
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picture for free boundary regularity theory is still incomplete. In this paper we go further on in this direction
and deal with the nonzero obstacle case following the recent achievements in [17-19]. Drawing a parallel
with the theory in the zero-obstacle case, the free boundary I'y (1) can be split as a pairwise disjoint union of
sets

Iy (u) = Reg(u) U Sing(u) U Other(u), (1.4)

termed in the existing literature as the subset of regular, singular and nonregular/nonsingular points, respec-
tively. These sets are defined via the infinitesimal behavior of appropriate rescalings of the solution itself. More
precisely, for xo € T'y(u) a function ¢y, related to ¢ can be conveniently defined (cf. (3.46) and (3.48)) in a
way that if

r' (u(xo +1y) = ¢x, (X0 + 1)

(faB,(“ — Qo) IXns1|* dHT)?

then the family of functions {uy,,r}r-0 is pre-compact in Hlloc(]R“+ 1 dm) (see [9, Section 6]). The limits are
called blowups of u at xg, they are homogeneous solutions of a fractional obstacle problem with zero obstacle.
The set of all such functions is denoted by BU(x). Their homogeneity A(xo) depends only on the base point
Xo and not on the extracted subsequence, and it is called infinitesimal homogeneity or frequency of u at xq. It
is indeed the limit value, as the radius vanishes, of an Almgren’s-type frequency function related to u which
turns out to be non-decreasing in the radius. Given this, one defines

uXo,Y(y) =

Reg(u) := {x € Typ(u) : A(xo) = 1 + s},
Sing(u) := {x € Ty(u) : A(xp) = 2m, m € N},
Other(u) := T'y(u) \ (Reg(u) U Sing(u)).

According to the regularity of ¢ different results are known in literature:

(i) Regular points: in [9] (see also [16, 22] for alternative proofs) for ¢ € C%>1(IR") optimal one-sided C*S-
regularity of solutions is established. Moreover, Reg(u) is shown to be locally a C1*%-submanifold of
codimension 2 in R"*1,

(ii) Singular points: for ¢ analytic and a = 0 it is proved in [20] that Sing(u) is (n — 1)-rectifiable. The latter
result has been very recently extended to the full range a € (-1, 1) and to ¢ € CK*1(R"), k > 2, in [21].
Furthermore, fine properties of the singular set have been studied very recently by Fernandez-Real and
Jhaveri [14].

It is also worth mentioning the paper by Barrios, Figalli and Ros-Oton [3], in which the authors study the

fractional obstacle problem (1.1) with nonzero obstacle ¢ having compact support and satisfying suitable

concavity assumptions. Under these assumptions, they are able to fully characterize the free boundary, show-
ing that Other(u) = 0 and that at every point of Sing(u) the blowup is quadratic, i.e. the only admissible value
of m is 1. In addition, they are able to show that the singular set Sing(u) is locally contained in a single

C'-regular submanifold (see also [8] for the case of less regular obstacles, [13, 24-26] for higher regularity

results on Reg(u) and [19] for the nonlinear case of the area functional).

For ease of expositions we start with the simpler case in which the obstacle function ¢ is analytic, actually
the slightly milder assumption (1.5) below suffices (see Section 3 for related results in the case ¢ € C¥*1(R™)).
Indeed, after a suitable transformation (see Section 2.1) such a framework reduces to the zero obstacle. Thus,
in view of [18, Theorems 1.1-1.3] we may deduce the following result.

Theorem 1.1. Let u be a solution to the fractional obstacle problem (1.2) with obstacle function ¢ : R" — R
such that
{@ >0} cc R", @ isreal analytic on {¢ > O}. (1.5)

Then:
(i) The free boundary ['y(u) has finite (n - 1)-dimensional Minkowski content: more precisely, there exists
a constant C > 0 such that
LT (Typ(w) < Cr* forallr € (0, 1), (1.6)

where T, (I'y(u)) := {x € R™1 : dist(x, Tp(u) <}



326 —— M. Focardiand E. Spadaro, The free boundary of the fractional obstacle problem DE GRUYTER

(ii) The free boundary T, (u) is (n — 1)-rectifiable, i.e. there exist at most countably many C*-regular submani-
folds M; c R" of dimension n — 1 such that

%”-1<rq,(u) U M,-) =0. (1.7)
ieN

Moreover, there exists a subset X(u) c I'y(u) with Hausdorff dimension at most n— 2 such that for every

Xo € T'p(u) \ Z(u) the infinitesimal homogeneity A(xo) of u at xo belongs to {2m, 2m — 1 + s, 2m + 2S}neny(0}-

The analysis is more involved in case ¢ is not analytic, since one cannot in principle avoid contact points
of infinite order between the solution and the obstacle, and the free boundary can be locally an arbitrary
compact set K ¢ R" (explicit examples are provided in [15]). In view of this, we follow the existing literature
and we consider obstacles ¢ € C¥*1(IR") and only those points in the free boundary in which u has order of
contact with ¢ less than k + 1: given u a solution to the fractional obstacle problem (1.2) and given a constant
6 € (0,1) we set

Typo(u) := {xo eTy(u): lir?ui)nf r‘("+“+z("“‘9))Hux0 (r) > 0}, (1.8)

where H, is defined in the sequel and it is related to the L?(0By, dm’) norm of uy, , (cf. Section 3 for more
details). For this subset of points of the free boundary we can still prove some of the results stated in Theo-
rem 1.1.

Theorem 1.2. Let u be a solution to the fractional obstacle problem (1.2) with obstacle function ¢ € CHL(RM),
k=2,andlet 6 € (0, 1). Then Ty g(u) is (n — 1)-rectifiable. Moreover, there exists a subset g(u) C I, g(u) with
Hausdorff dimension at most n — 2 such that for every xo € I'y g(u) \ Zg(u) the infinitesimal homogeneity A(xo)
of u at xo belongs to {2m, 2m — 1 + s, 2m + 2S}menyjo}-

This note extends the results of [18] to the case of nonconstant obstacles. It is clear by the examples of arbi-
trary compact sets as contact sets of suitable solutions of the problem, that in general the free boundary for
nonconstant smooth obstacles does not possess any structure and that the key ingredient for the analysis
of the free boundary is the analyticity of the obstacles as shown in Theorem 1.1. Nevertheless, for a distin-
guished of the free boundary, characterized as those points of finite order of contact, e.g. the points I', g(u)
already considered in the literature (see [21]), a partial regularity result still holds even in the framework of
non-analytic obstacles, as proven in Theorem 1.2. The main novelty of this paper with respect to [18] consists
in the analysis of the spatial dependence of the frequency for nonconstant obstacles: indeed, in this case the
frequency is defined differently from point to point, by taking into account the geometry of the obstacle itself.
It is not at all evident to which extent the oscillation of the frequency can be controlled. The results of Sec-
tion 4 show that this kind of estimates are not completely rigid and extend to nonflat obstacles. Hence, this
paper contributes to the program of broadening the results initially proven for the Signorini problem with
zero obstacles to the case of the obstacle problem for the fractional Laplacian (see e.g. [1, 21, 22]), providing
a generalization of the known results on the structure of the free boundary firstly proven in [18].

2 Analytic obstacles

In this section we deal with analytic obstacles. We report first on some results related to the Caffarelli-Silvestre
a-harmonic extension argument that will be instrumental to reduce the analytic-type fractional obstacle
problem to the lower-dimensional obstacle problem. We provide then the proof of Theorem 1.1.

2.1 Extension results

We start off with a lemma in which it is proved that there exists a canonical a-harmonic extension of a poly-
nomial in the class of polynomials (see [21, Lemma 5.2]). We denote by £7;(R") the finite-dimensional vector
space of homogeneous polynomials of degree [ € N in R".
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Lemma 2.1. Foreveryl € N, there exists a unique linear extension operator & : Z;(R") — 2)(R™1) such that
forevery p € 221(R") we have

- div(|xn+11*Véi[p]) = 0 in 2'(R™1),
&lplix', 0) = p(x") forallx' € R",

alp)(x', —xns1) = APIX', xne1)  forall (x', xn41) € R,
Proof. Let p € 2;(R") and set
L3) )
AP, Xna1) = Y. P2 (X)X,
j=0
with poj(x') := —mApz,-,z(x’) ifje{l,..., L%J} and po := p. Itis then easy to verify that & satisfies all the
stated properties. O

Remark 2.2. In particular, &j is a continuous operator. We will use in what follows that there exists a constant
C = C(n, ) > 0 such that for every p € 2;(R") and for every r > 0,

I61lp]lle(B,) < ClpllLeo(sry- (2.1)

We provide next the main result that reduces locally the analytic case to the zero obstacle case (cf. [21,
Lemma 5.1]).

Lemma 2.3. Let ¢ : Q — R be analytic, Q c R" open. Then for all K cc Q x {0} there exists r > 0 such that, for
every xo € K, there exists a function &, (@] : B/(xo) — R even symmetric with respect to xn.1 such that

(D) —div(|xn1119Véx, [@]) = 0in 2" (By(x0)),

(il) &, [p](x',0) = p(xX) for all (x', 0) € By(xo),

(iii) &x, (] is analytic in B,(xo).

Proof. For every X as in the statement, we can locally expand ¢ in power series as ¢(x') = Ya Ca(X' = x0)%.
Then we set &, [@](x) := ¥, Cadia[Pal(X — X0) Where pa(x') := (x')*. From the explicit formulas in the proof
of Lemma 2.1 it is easily verified that the power series defining &, [¢] is converging in B,(xo) and gives an
analytic a-harmonic extension even symmetric with respect to x,,1 in B;(xp) with r > O uniform on com-
pact sets. O

2.2 Proof of Theorem 1.1

Theorem 1.1 follows straightforwardly from [18, Theorems 1.1-1.3]. As explained in the introduction
w(x") = u(x', 0) solves the fractional obstacle problem (1.1). By the maximum principle u(x’, 0) > 0 for
all x' € R". Therefore, I'y(u) C {¢ > 0} cc R". Let r > 0 be the radius in Lemma 2.3 corresponding to the
compact set T'y(u). By compactness we cover I'y,(u) with a finite number of balls B, (x;), with x; € T'y(u).
In each ball B,(x;) we consider the corresponding function u - &, [¢], with &, [¢] provided by Lemma 2.3,
and note that it solves a zero lower-dimensional obstacle problem (1.2). Hence, we can conclude by the
quoted [18, Theorems 1.1-1.3].

3 Ck*1 obstacles

In this section we deal with the more demanding case of C*+1 obstacles, k > 2. It is convenient to reduce the
analysis of (1.2) to that of the following localized problem:

u(x',0) = @) for (x', 0) € B,
u(x’', xns1) = u(x', ~xps1)  forx = (x', xp41) € By, (3.1)
div(|xps1]%Vu(x)) = 0 forx € B; \ {(x',0) € B} : u(x', 0) = p(x")}, '

div(]xns1|*Vu(x)) <0 in 2'(By),
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for @ e Ck* 1(B)). In what follows, we shall assume that "(p"ck+1(3’1 y < 1. This assumption can easily be
matched by a simple scaling argument (cf. the proof of Theorem 1.2).
For any xg € B'l we denote by T x, [¢] the Taylor polynomial of ¢ of order k at xo:

D%p(x
Tenlolod) = Y 2200, 0y,
la|<k
where a = (a1, ..., &y) € N?, D¥=0%) -+ 05", pa(x') 1= (X)% = xT" - xp", |l := @1+ + &y, @ 1= a1+ ap).
We will repeatedly use that (recall that lliceay) < 1)
1
T [0 = 90 < gy ' - Xl (3.2)
and that
| Th o [0e] (') = 9ep ()] < 21x" = xo* (3.3)

for all unit vectors e € R™! such that e - ep1 = 0.
Let then &[Tk x,[¢@]] be the a-harmonic extension of T x,[¢], namely,

‘P( Xo)

ElTix @0 = ) ailPal- = X0)100),

lal<k

where &7 are the extension operators in Lemma 2.1. By the translation invariance of the operator, we point
out that

Sl [Pal- = x0)1(X) = Elg[Pal(x = Xx0). (3.4)

Set
Ox, (0 1= P(X') = Trxo [@1(X") + &[T o [911(%) (3.5)

and
Uy (X) 2= UX) = Py (X). (3.6)

Recalling that &[T x, [@]1(x", 0) = Tk x, [@](x"), we have Ay(u) = {(x’,0) € B} : uy,(x’,0) = 0}, and thus in
particular Ty (u) = anl{(x' ,0) € B} : uy,(x',0) = 0}, where dp, is the relative boundary in the hyperplane
{xn+1 = O}. We note that u,, is not a solution of a fractional obstacle problem as in (3.1) with null obstacle,
but rather of a related obstacle problem with drift as discussed in the sequel (cf. (3.14)).

First, from the regularity assumption on ¢, from Lemma 2.1 and from estimate (3.2) we infer that L, (¢, )
is a function in L(B;) (recall the definition of the operator L, given in (1.3)). Moreover, estimate (3.2) gives
forall x € By \ B},

ILa(@x, CO) = 1div(|xn+11°V(@ = T xo [ (X))
= X1 [UA@O) = T [@1CEN] < It 40X = x0/%72. (3.7)

In turn, this yields that the distribution L (uy,) is given by the sum of a function in L1(B,) and of a nonpositive
singular measure supported on B!, namely,

La(ux, (%)) = div(Ixn+11Vu(x)) = La(px, (X)) L™ L By. (3.8)
The following result resumes the regularity theory developed in [9, Proposition 4.3].

Theorem 3.1. Let u be a solution to the fractional obstacle problem (3.1) in B, xo € B, r € (0, 1), then
Uy, € COMN2SL(By_ (x0)), OxUx, € CO5(B1-4(x0)) fori=1,...,n, and [Xpe1]*Ox,,, Ux, € CO*(B1—(x0)) for
all a € (0, 1 — s). Moreover, there exists a constant C3.1 = C3.1(n, a, a, r) > O such that

! .
llux, ||c0vmin(zsv1>(3%(xo)) + IV uy, ”COvS(B%(XO);R") + lIsign(Xne1) I Xne11% 0x,r Uno ||c0ya(3%(x0))
< C3.allux 2By (x0),dm) » (3.9

where V'uy, = (0x, Uxys - - - » Ox, Ux,) IS the horizontal gradient.
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In particular, the function u is analytic in {x,;; > 0} (see, e.g., [23]) and the following boundary conditions
holds:

anirﬂy X8, 10nu(x’, xne1) =0 forx’ € B\ Ayp(u), (3.10)
anil}lm X2, 0ns1u(x', xne1) <0 forx’ € B. (3.11)

In particular,
(u(x',0) - px") X”1+i11{10+ X2, 0ns1u(x', xns1) =0 forx’ e BY. (3.12)

Furthermore, for B,(xo) ¢ B1 and xo € B, an integration by parts implies that

j V2 X1 | dx — j 1V 219 dx
B,(X()) Br(XO)

= J |Vuxo|2|xn+1|a dx +2 J Vi, V§0x0|xn+1|a dx

B, (x0) By (xo)
= J |Vux0|2|xn+1|a dx -2 J uxoLa((Pxo) dx + 2 J uxoav(px0|xn+l|a dx, (3.13)
By (x0) By (xo0) 0B, (xo)

where in the second equality we have used that &[T x,(¢)] is even with respect to the hyperplane {x,,1 = 0}
to deduce that

lim 0 On+1Px, (X)|xns1]“ = 0.

Xn+1—

In particular, since the last addend in (3.13) only depends on the boundary values of uy,, it follows that uy,
is a minimizer of the functional

J IVV|?|Xner|@ dx = 2 J VLa(@y,) dx (3.14)
BY(XO) Br(XO)

among all functions v € uy, + Hcl)(B,(xo), dm) and satisfying v(x’, 0) > 0 on B!(xo). Equivalently, we will say
that uy, is a local minimizer of the functional in (3.14) subject to null obstacle conditions.

Remark 3.2. We record here some bounds that shall be employed extensively in what follows. By using the
linearity and continuity of the extension operator & (cf. Remark 2.2), together with estimate (3.2) we get for
all z € By,

[ux, (2) = Ux, (2)| = |9x, (2) = Px, (2)]
< Thoxo [91(2) = Tie, [01(2)] + 16 [ Tr o [911(2) = €[ T x, [911(2)]
S W Tkxo [9] = Ty [ Loy + 16 [ Theyxo [91] = E[ T x [@11 L0 (8,)
L T 0] - Thon, [0t
< CUlp = Tiexo (@Il + 19 = Thoxy [P0 (B7))
(3;) C(ma)’( |z = xo|<*! + max |z—x1|k+1) (3.15)
zeB! zeB!

for some constant C = C(n, a, k) > 0. Since V(T x, [¢]) = Tk-1,[Ve], i € {0, 1}, arguing as above, using (3.3)
rather than (3.2), we conclude that

V(113 (2) = U, (2))] = [9(95,(2) — P, ()] < C(max |z - xo|* + max|z - x; |k) (3.16)

z€B, z€B;

for some constant C = C(n, a, k) > 0.
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3.1 Afrequency-type function

Building upon the approach developed in [18], we consider a quantity strictly related to Almgren’s frequency
function (see [12]) and instrumental for developing the free boundary analysis in the subsequent sections.
Let ¢ : [0, +00) — [0, +00) be defined by

1 foro<t<i,
d(t) :=q2(1-¢) forj<t<1,
0 for1 < t,

then given the solution u to (3.1), a point xg € B’1 and the corresponding function uy, in (3.6), we define for
all0O<r<1-|xol,

Gy, (1)
quo (r) := m,
where L | |
(X —=Xo X — Xo
Gy (1) 5= = [ (P2 b 0ty (00 - T b
and

[Xnse1]® dx. (3.17)

L 1x = xoly Uz, (0)
H = - ( ) u
llxo(r) J¢ r |X—X0|
Here ¢ indicates the derivative of ¢. Clearly, Iy, (r) is well-defined as long as Hy, (r) > O, therefore when
writing I, (r) we shall tacitly assume that the latter condition is satisfied.

For later convenience, we introduce also the notation

Duy )= | &= Wit (07 117

and

L x = xol\ Ix = x X -Xx0 \?
Ey, (1) := J_¢(¥)| > 0|(Vuxo(x)-m) Xns1|® dx.

In particular, note that for all r > 0,
Hy, (1) Ey,, (N - Gf_(1) =0 (3.18)
by Cauchy-Schwarz inequality.

Remark 3.3. In case ¢ = 0, then u,, = u forall xo € B’1 and G, = D,. Thus, quo boils down to the variant of
Almgren’s frequency function used in [18].

Remark 3.4. If u is a solution to the fractional obstacle problem (3.1), then for every ¢ > 0, x¢ € B'1 and
r > 0 such that B,(xo) c By, the function @(y) := cu(xo + ry) solves (3.1) on B; with obstacle function
@) := cp(xo + ry). Therefore, if x; = xog +ry; € B’1 we have

Ty, [@1V) = €T, [9] (X0 + 1Y)

and
Uy, (¥) = Clx, (X0 +1Y).
Thus, Iy, (p) = Ly, (p7) for every p € (0, 1).
In particular, this shows that the frequency function is scaling invariant, in the sequel we will use this
property repeatedly.

3.2 Almost monotonicity of /,, at distinguished points

In this subsection we prove the quasi-monotonicity of I, for a suitable subset of points of the free boundary.
We show first some useful identities in a generic point xy of B’l.
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Lemma 3.5. Let u be a solution to the fractional obstacle problem (3.1) in By. Then, for all xq € B’1 and
t € (0,1 - |xg)), it holds

|x — Xol

Duy (0= Guy (0 - [ ¢ Yot 0O Ltz (0) i, (3.19)

L Huy, (0 + 26y, (0), (3.20)

d n
E(H“m(t)) =

|x — xo|
t

n+a—1

Dy, (0 + 2B, (0 - 5 j 7
Remark 3.6. With an abuse of notation, the integration in the last addends in (3.19) and (3.21) is meant with
respect to the reference measure L (uy,). Actually, we use this notation because from the proofs of (3.19) and
(3.21) it turns out that one can consider equivalently its absolutely continuous part —Lq(¢x, ), see (3.8).

L Du 1) = Yt 00 (0~ xo)Lalux, () A, (3.21)

Proof. To show (3.19), (3.20) and (3.21), we assume without loss of generality that xo = 0.
For (3.19) we consider the vector field V(x) := ¢:(¥)ug (X)Vup(x)|xn+11%. Clearly, V has compact support
and V € C*(B; \ B}, R"*1). Moreover, for xps1 # 0,

V00 ent = $( 2 uo()om tolnnl?,

so that limy|x,0+) V() - ens1 = 0. Indeed, recalling that &[Ty x,(¢)] is even with respect to the hyperplane
{Xns1 = 0} (cf. Lemma 2.1): if (x’, 0) € Ay (u), we exploit the regularity of u resumed in Theorem 3.1 to con-
clude; instead, if (x', 0) ¢ Ay (u),itsufficestouse (3.10). Thus, the distributional divergence of V is the L1(B;)
function given by

div V(x) = ¢<|t|)uo(X)Vu0(X) |xn+1|“+¢(' ')|Vuo(x)| |Xn+1|a+¢’<|t|)ug(X)La(ug(X))-

Therefore, (3.19) follows from the divergence theorem by taking into account that V is compactly supported.
Next, (3.20) is a consequence of the direct computation

d d; . w2 (ty)
i) = (-t j¢<|y|> Sl dy)

= Ly (0 - 20 j b(IyDuo(ty)Vuo(ty) -

ﬁD’nH'a dy

n+a
= Hyy (£) + 2Gy, (0).

Finally, to prove (3.21) we consider the compactly supported vector field W € C*®(B; \ B}, R"*!) defined by

- o)L

Moreover, conditions (3.10)-(3.12) and Lemma 2.1 imply that limy| x',0y W(y) - €x+1 = 0. Thus, div W has no
singular part in B, and we can compute pointwise the distributional divergence as follows: for x,.1 # 0,

~ (Vup(x) 'X)VUQ(X))|Xn+1|a-

\v/ 2
div W(x) = ¢>( X ) i (%x - (Vup(x) - x)Vug(x))|xn+1|a

+¢(¥)”++H|Vug(x>|2|xnﬂ|“ —qb(' l)(Vuo(X) 3)La(Uo(x)).

Therefore, we infer that

0= J div W(x) dx

= J ¢('—’§')U|v 00O el dx + By (6 + 572Dy 6) - j ¢(|—):|)(VUQ(X)  X)La(ug () dx,

and we conclude (3.21) by direct differentiation since

|x|

d _ y x| a
L1 Pu® == [ $(F )5 IVtoCR | . 0
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As a consequence we derive a first monotonicity formula for Hy, in By.

Corollary 3.7. Let u be a solution to the fractional obstacle problem (3.1). Then, for all xq € B'l and rg, r1 with
0 <rg<ry<1-|xg|suchthat Huxo(t) > O forallt € (ro, r1), we have

Huxo(rl) Huxo(ro) 2'[”@(1[
= e ot .

i i (3.22)
In particular, if A1 < Ty, (t) < A, forevery t € (rg, 1), then
Hy, (r) . .
(ro,r1)>r— m is monotone decreasing, (3.23)
r
Hy, () | . .
(ro,r1)>r— m is monotone increasing. (3.24)
Moreover, for all xo € B} and 0 < r < 1 - |xol,
[txo * X1 |* dx < THy, (7). (3.25)

BT(XO)

Proof. The proof of (3.22) (and hence of (3.23) and (3.24)) follows from the differential equation in (3.20).
The proof of (3.25) is a simple consequence of a dyadic integration argument:

r r
| maPrarac=Y [ Prealtaxs Y 2 Hy, (5) < M, O
By(x0) JENB , (xo)\B_r_(x0) JeN
2 2Jj+1
where in the last inequality we used that Hy,, (s) < Hy,, (r) for s < r by (3.24) (with A; = 0). O

We establish next an auxiliary lemma containing useful bounds for some quantities related to the L?-norm
of uy,, for points x in the contact set.

Lemma 3.8. Let u be a solution to the fractional obstacle problem (3.1) in By. Then there is a positive constant
C3.8 = C3.8(n, a) > 0 such that for every point xo € Ay(u) we have forall r € (0, 1 - |xol),

Hy, (1) < C3.8(rDy, (r) + r"*@+20D), (3.26)
J (X —er| ity ()1 xns1|% dx < C3.8(r Dy, (r) + Prartr2(el)y, (3.27)
ity ()2 Xns1|* dX < C3.8(r2 Dy (1) + pmHar 120D, (3.28)

Br(xo)\B 1 (x0)

Proof. By the co-area formula for Lipschitz functions we check that

r
Huxo(r)=2j$ g (O 1 | A (3) (3.29)
I 9Bilxo)
and
r
Du, 0= | |Vuxo(x)|2|xn+1|“dx+%jdt | = 019, COP e 1 @370
By (x0) L 0B(x)

Therefore, an integration by parts gives

r
2
Duy M= [ dt [ 1V, 00 ral dx (3.30)
I Bixo)
By (3.8), as xo € Ay(u), [9, Lemma 2.13] and [21, Lemma 6.3] yield the Poincaré inequality
1
i | Pl 00 <€ [ ViR Rl dx e cemetn, 3a1)

0B¢(xo) Bi(xo0)
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with C = C(n, a) > 0. Integrating the latter inequality on (5, r), we find (3.26) in view of (3.30). Instead, by
first multiplying formula (3.31) by t and then integrating over (0, r), we infer

|, (01 X111 dx < Cr? j Vi, (001 [Xne1|? dx + Crrrarte2tad)

B, (xo0) B, (xo0)
In conclusion, (3.27) and (3.28) follow directly. O

Next we show an explicit expression for the radial derivative of I, at all points xo € B’1- We follow here
[18, Proposition 2.7].

Proposition 3.9. Let u be a solution to the fractional obstacle problem (3.1) in By. Then, if xo € B’1 is such that
Hy, (t) > Oforallt € [ro, r1], we have

Ly, (1) = Ly, (o) = j(Hf—t(t)(H (OFu, () - G, (6) + Ry, (0)) dt (3.32)

To

for0 <rg<ry <1-|xol, with

n+a+2k+1 Dy () H

X0

Ru, 01 = Co e (( s ) +1) (3.33)
X0

and C3.9 = C3_9(n, a) > 0.

Proof. Itis not restrictive to assume xo = 0. We use the identities in (3.19), (3.20) and (3.21) to compute (the
lengthy details are left to the reader)

d B 1§ (Guy(0)  §(Hy (1)
() = Ly (0 5 + ety EL )
Eyy(t)  Guy(D)
Guy(6)  Huy ()

= 21u9(t)( ) + Ry, (),

where

Ry (1) i= _Hui(t) j ¢<¥)((n +a - Dup() + 2(Vug(x) - x))La(ug(X)) dx

1(./1x
ts J ¢(|—t|)IXIu(X)La(ug(X)) dx.

From this we conclude (3.32) straightforwardly.
For (3.33), we estimate separately each term appearing in the integral defining Ry, (t). We start with

(3.8)
<

j ¢('it')|ug<x)||x’|k-1|xn+1|“ dx

< tkl(j sl dx>;<j B2 o0 b1 dx)%

B¢
nta+l X %
: *"1(j¢('—t')|uo(x)|2|xn+1|“dx)

n+a— 1 n+a—
CE™F (D () + 75+, (3.34)

[ (5 Juotwzatuon ax

< Ct

(3.27)
<

with C3.34 = C3.34(n, a) > 0. Arguing similarly we infer

“ ¢(|it|)(vug(x) - X)La(up(x)) dx| < tj ¢(¥)|Vug(x)||La(u9(x))| dx

nta-1

(3.8)
< tkj(;l)('—):l)IVug(x)llanI“dxs ct™s

k 1
HIDg (1), (3.35)
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and
1(./|x (3.8)
‘; [ &( 5 petuot0Latuoronax| =" 6t [ uo0olbensat dx
B/\B ¢
2
(327) n+a— 1 n+a—
<ot k(D (b + ¢ ), (3.36)
with C = C(n, a) > 0. Therefore, (3.33) follows at once from (3.34)-(3.36). O

Estimate (3.33) turns out to be useful to analyze the subsets of points [p,9(u) of T'y(u), for every 6 € (0, 1)
(cf. (1.8)). With fixed 0 € (0, 1), we then look at points of the free boundary in the subset

Zp,0,6(0) := {xo € Tp(u) N By : Hy, (1) 2 srmrar2+1-9) for all r € (0, 1)}, (3.37)
with 6 > 0.

Remark 3.10. Note that 2} 5,5(u) < 2%,0,6' (1) if §' < 6. Hence, in what follows it is enough to consider the
values of 6 small enough.

Proposition 3.11. Forevery§ > 0, 8 € (0, 1), there exist C3.11, 03.11 > O such that for every xo € % 0,5(u), the
function (0, 03.11] > 17— eC3-11rSIuXO(r) is non-decreasing. In particular, the ensuing limits exist finite and are

equal
rDuXO (r)

1m
rlo Hu,(0 (r)

s Luyg

= lim Ly, (1) =i T, (7). (3.38)
Proof. Since xo € %,0,5(u), formula (3.26) yields for r € (0, 3),
C3.8Du,, (1) = srra-1+20ke1-6) _ oo pnra-142(ke 1)
therefore, for p3.11 sufficiently small, we have for all r € (0, p3.11],
Dy, (N 2 Cyrra-1+2(k+1-6) (3.39)

In addition, from (3.19) and (3.34) we get for all r € (0, p3.11], if 3.11 small enough,

(3.19)

161y (1= Duy 1 27 || 9 E22 Yt 0200, 00

(3.34) prta+2k+l prta+2k+1 i
<" G, 0 (B ))
334Dy, (1) D D

(3.39)
< Dy, (N(2Cr® + 2cr*%)1) < Cr'Dy, (1). (3.40)

Therefore, from (3.33), if p3.11 is sufficiently small, we get for all r € (0, p3.11],

n+a+2k D r 1
|R”Xo Nl < C3-9I”x0 (r)r (( uXo( ) )2 . 1)

Gy, (1) ynt+a+2k+1
20
3.40) I, (1) rn+a+2k+1 3 rn+a+2k+1 (3.39)
< e (( ) )gcf’—ll . 41
r Do) T oo P g () (3.41)

Hence, from (3.18), (3.32) and (3.41) we find
%(I% (r) = =Crf I, (), (3.42)

and the monotonicity of (0, 03.11]>r+— eCMl’BI,,XO (r) follows by direct integration. In addition, we also
infer (3.38), because from (3.40) for all r € (0, p3.11] we have

Dy, (1)
Huxo(r)

Dy, (1)

0
(1-Cr) Hy, (1) .

(3.43)

< Iy, (r) < 1+ Cr9)

The proof is complete. O
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Remark 3.12. The monotonicity for the truncated Almgren’s frequency function
r(1+ Cre)% log max{H,, (1), pra+2(cel=6)
proved in [9] and [21] is essentially equivalent to Proposition 3.11.

We derive next an additive quasi-monotonicity formula for the frequency.

Corollary 3.13. Forevery A, 6 >0, 6 € (0, 1), there exist C3.13, 03.13 > O with this property: if xo € Zy,0,5(u)
and Iy, (03.13) < A, then for all A > ACs 13 the function

(0,03.13] 51> Iy (N + Ar?  is non-decreasing. (3.44)
Proof. Under the standing assumptions, the quasi-monotonicity of I Uy, and (3.42) yield that
d _
3y Uy 1) 2 —CeGarft

for r sufficiently small. Hence, we conclude (3.44) at once by integration. O

3.3 Lower bound on the frequency and compactness

We first show that the frequency of a solution u to (3.1) at points in 2, ¢,s(u) is bounded from below by
a universal constant.

Lemma 3.14. Forevery 6 >0, 0 € (0, 1), there exists a constant p3.14 > O such that, for all xo € %, 9,s(u) and
re (0) 03.14])
(3.45)

I > .
o (1) 2 2C38

Proof. In view of (3.26) and since xq € Zp,0,5(u), we have for all r sufficiently small,
1 1Dy, () r?
— < +—.
C3s = Hy, (r) 6

Inequality (3.45) is a straightforward consequence of estimate (3.43) and the latter estimate provided that
03.14 is sufficiently small. O

For the free boundary analysis developed in [18] it is mandatory to consider the critical set of a solution. In
the current framework, the natural substitute for the critical set is given by

Hp) = {(',0) € By : u(x',0) - p(x') = V' (u(x', 0) - p(x"))]| = lim y?0n,1u(x', ) = o}.

Notice that T'y(u) € .4, (u) € Ay (u) (the first inclusion is a consequence of (3.10)).
We can then give the following compactness result. For u : B; — R solution of (3.1) and xq € B’1 we
introduce the rescalings

n+a
r'2 Uy, (Xo + 1Y)

Uy, r(y) 1= —————— forallr € (0,1~ |xol) and all y € Bl . (3.46)
Hy, (1) '
Note that uy,,, is a minimizer of the functional
J [VVI?Xpe1|® dx — 2 J VLa(@x,,r) dx (3.47)
Bl Bl

with obstacle function -
I Py, (Xo + 1Y)
1 s

H; ()

Uy,

Oxo,r(y) := (3.48)

among all functions v € uy,,r + Hé(Bl, dm) satisfying v(x', 0) > 0 on B’1-
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Corollary 3.15. Let§ > 0 and 6 € (0, 1) be given. Let (u;)icn be a sequence of solutions to the fractional obsta-
cle problem (3.1) in By with obstacle functions ¢; equi-bounded in C***(B,), and let x; € Zp1,6,6(ur) be such that
sup; Iw),, (01) < +oo, forsome g, | 0. Then there exist a subsequence lj T oo and a solution v, to the fractional
obstacle problem (3.1) in By with null obstacle function, such that on setting v; := (ulj)x,l. 01 We have

Vi = Voo in H' (B, dm), (3.49)

Vi = Voo in C?o’f(Bl),for all « < min{1, 2s}, (3.50)

V'vi = Vv in C?o’f(Bl),for alla < s, (3.51)
sign(Xn+1)1Xn+11%0x,,, Vi — SI8N(Xn+1)1Xn4110xpyy Voo IN Cloo’f(Bl),for alla <1 -s. (3.52)

Proof. By taking into account inequality (3.43) in Proposition 3.11, we get for [ large,

01Dy, (e1)
H,, (01)

In particular, we infer that sup; D(,,,, (1) < co. Thus, a subsequence v; := (ug)x, 0, converges weakly
HY(B1, dm) to some function v,. Moreover, vj is a local minimizer of

< (1 + Cllgy e gy Ty, (@1

Fj(v) := J IVVI2lyn1|® dy - 2 j VLa((P1)x;,0,,) dy
B B;

among all functions v € v; + H(l,(Bl, dm) satisfying v(x’, 0) > 0 on B'1 (cf. (3.46)-(3.47)).
By taking into account that x;, € Q@,},,g,g(ulj), inequality (3.7) implies that forally € By \ B},

1
|(La((pl,-)x1j 05 I < 5_1 gy, ||C’<+1(B’1)QZ [Vne1l®. (3.53)
2
Therefore, one can easily show that the sequence (Fj); I'(L?(B;, dm))-converges to the functional
Fo : L*(B1, dm) — [0, +00]

defined by
Foov) = [ 19VPlynaal? dy
B

ifveve+ H(l)(Bl ,dm) with v(x’, 0) > 0 on B'l, and +co otherwise on L?(B1, dm). In addition, being the func-
tionals F; equicoercive in L?(B1, dm), Fj(vj) — Foo(Veo), O that by (3.53) the convergence of (vj); to v, is
actually strong H'(B1, dm).

Items (3.50)—(3.52) are then a straightforward consequence of Theorem 3.1 and (3.53) (cf. the arguments
in [9, Lemma 6.2]). O

A sharp lower bound on the frequency then follows.
Corollary 3.16. Let 6 > 0, 0 € (0, 1). If xo € Z,6,5(u), then
Iy, (0%) > 1 +s. (3.54)

Proof. Note that I Uy, (0%) = lim, o Iy, (r) =lim, oI uxo,,(l) =1, (1) for some v, homogeneous solution to the
fractional obstacle problem (3.1) with null obstacle function provided by Corollary 3.15. Thus, we conclude
(3.54) by [9, Proposition 5.1] (see also [18, Corollary 2.12]). O

4 Main estimates on the frequency

In this section we prove the principal estimates on the frequency that we are going to exploit in the sequel.
We start with an elementary lemma. Recall that all obstacles functions ¢ are assumed to satisfy the normal-
ization condition ||(p"ck+1(B’1 y< L
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Lemma 4.1. Let A, 6 > 0, 0 € (0, 1). Then, there exist C4.1, 04.1 > O such that, if u is a solution of to the frac-
tional obstacle problem (3.1) in By, with O € % 9,5(u) and I,,(20) < A, 0 < 04.1, then for every x € B,
- 2

H, D
L ux(g)<C4.1 and S HX(Q)<C4.1, (4.1)

Cu1 ~ Hylo) Car ~ Duy(0) ~
1y (@) = I, (0)] < Ca1. (4.2)

Remark 4.2. Note that as a byproduct of the first estimate in (4.1) in Lemma 4.1 frequencies at the scale g
are well-defined at every point x € B'g , recalling that 0 € 2 g,5(u).
2

Proof. In order to prove (4.1), we argue by contradiction: we can assume that there exist A, § > 0 and solu-
tions u; to the fractional obstacle problem with obstacles ¢j, ||(pj||ck+l(B’1) <1, with 0 € Z, o,5(1;), such that
), (@) < A, for some pj | 0, and there exist points x; € B’gi. contradicting one of the sets of inequalities
in (4.1). !

In particular, by almost monotonicity of the frequency function (cf. Proposition 3.11) and the lower
bound on the frequency (cf. Corollary 3.16) we infer that 1 + s < Iy, (t) < AeC311(20)° < AeCan =: A for all
t € (0, 2gj]. By Corollary 3.15, up to a subsequence, v; := (uj)o,o; converges strongly in H 1(B,, dm) to a func-
tion v, solution of the fractional obstacle problem in B, with zero obstacle function. We assume in addition
that 0; ' xj — Xeo € B’%.

To prove the first set of inequalities in (4.1), we compute

Hup, (0)) 20 Xns+1]?
Y ] 2 n+1
= (uj)s. (xj + pix) dx
Haypo(0))  Hy),(05) J UCACRR |x]
Bi\By
207+ [Xpe1]%
=—1 j [uj(x; + 0j%) — (@), (x5 + 0x")] i d
Hwy), () |x|
C BBy
nra)
-1 Qi ’ ! ’ 2 [Xn+11?
=2 V(0 xj + x) + ———((@j)o(xj + 0jx") = (@j)x; (X + 0jx")) N dx. (4.3)
Bi\B, He,, (@)
Moreover, by estimate (3.15) in Remark 3.2 and since g]Tlx,- — X0, We get forall x' € B’l,
(@0 (x; + 0ix") = (9 (x + 0jx")| < Cok*1. (4.4)
Therefore, recalling that 0 € 25, ,5(u;), from (4.4) we infer
o Xn+1]® C
T [ ot + i) - g+ o ax < 2o (4.5)

1 1

2

H(uj)g(gf) BB

Since gj | 0, by contradiction
Huy,, ()

im

i Huy),(0))
Moreover, by (4.3) and (4.5), by the strong L?(B1, dm) and local uniform convergence of Vj = Vo We conclude
that

€ {0, oo}.

“ a
2 J Vo) el dy = 2lim J V]'Z(Y)Mdy
=Xl J ly - o; %l
Bl(Xoo)\B%(Xoo) Bl(g;lxi)\Bl(Q;lxi) j
2
i - [Xne1l®
=2lim J V.2 '1X'+X dx
i i X +x) X
Bl\B%
Hey,, (0))

=lim ——.
j H(uj)g(Qj)
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Being the left-hand side finite, necessarily

[Vne1l® . H(uj)x- (0j)

2 J Vo) dy =lim ——— =0
Ol |y = Xool Y j H(”j)g(gi)

B1(Xeo)\B

1 (Xeo)
2

Hence, vy, = 0 on By (Xo) \B% (X00), and thus v, = 0 on the whole of B; by analyticity. A contradiction to
H,_(1) = 1 that follows from strong L?(B1, dm) convergence and the equality Hy,(1) = 1 for allj.
The second set of inequalities in (4.1) is proven by the same argument. Indeed, assuming that

D), (0))

im ———— € {0, oo},
i Day), (@)

we have
n+a+1l

Dy, () 0
= (IXDIV(uj(xj + 0jx) = (9))x; (% + 0jx" N Xn+1]* dx,
D(u})Q(Q]) D(u])g(Q]) ¢ JASA Q} (p] Xj\] Q} n+1

B

and since by (3.16) in Remark 3.2 and by (3.39),

n+a+1 n+a+1+2k
j

D), (05) ;

j C
DUXDIVPo +0ix") = (915 0 + X' NP IXnia | dx < C2—— < <07,
Dy, (0j) ~ 6

1
we get (recall g; | 0)

Doy, (@) 1

im im DTV (015 4 0 xner 19 dx.
j D(u;)g(@)') j 41(11,')9(9]’) ng(l DI 1(01 J N xXnaal

B
By the strong convergence of vj to v, in H L(B1,dm), we infer that the left-hand side is finite and then
actually 0, so that

j DX VYoo (Ko + X)X |4 dx = O,
By

Thus, by analyticity v, is constant on B1, and we may conclude that
[ BTVl ax =0
By
The latter equality contradicts
[ SOV (ORI dr € 145, 241)
B

that follows from strong H'(B1, dm) convergence and recalling that H y(1)=land 1+s<1,,(1)<2Dy(1) < A’
for j big enough (cf. (3.43)).
Finally, (4.2) follows straightforwardly from (4.1) for 4.1 sufficiently small by taking into account (3.43):

rGy, (1) ( Hy, (r) Gy, (0 )l (4.1)

[Ty (r) = Iy, ()] = Hy, () \Hyy ()~ Gug(1) < C. O

We introduce the following notation for the radial variation of (modified) frequency at a point x € 2 9,5(u)
of a solution u in B1: given 0 < rg < r1 < 1 - |x|, we set

AJE(X) = Iy (r1) + A1 — (I, (ro) + ATY).

Note that A% (x) = 0if x € 2 0,6(1), if r1 is sufficiently small and if A > AC3.13 (cf. Corollary 3.13). We do not
indicate the dependence of Ay} on A since such a parameter will be fixed according to the restriction above.
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Lemma 4.3. Let A,6 >0, 0 < (0,1). Then there exist C43 and p4.3 >0 such that, if xo € Z,9,5(u), and

u, (r1) < A, with 2rq < p4.3, then for every rg € (%, r1) we have
(4.6)

Pl 4 < CosHu, ()% 0)

| (V@ @x0) - 1y (3 st )) !
By (x0)\Brg (xo0)
2 2
Proof. Without loss of generality we prove the result for xo = 0. We start off with the following computation
a
21Zn11l dz

:J"‘l’('?)(vuo(z) 2= Luy(Dug(2)" =

2 1Zns1l®

(Vuo(2) - z = I, ()uo(2)) E
BB,
= 2By (6) — 2ty () Guy (8) + I2 (O Hy (8)

G (£)

2

2
Huo(l‘)

o (Euo (OHy, (0) -
(4.7)

We now use the integral estimate (whose elementary proof is left to the readers)
(4.8)

2py
J flz)dz < py! J I f(z)dzdt forallO < pg < p1,

By, \By, fo BB,

f > 0 a measurable function, in order to deduce
Z,
| TI+1| 1

J (V”O(Z) AT I“O( )0( )) B

2 z a
| n+1| dzdt

(z%s) 2 (Vug(z)-z _[ug(r30>u,(0(z)> Iz

|Zn+1

a
dzdt

( |(Vuo(@) - 2 - Ty (Oua()? + (T (0) - Iug(%’))zug(z)]

(4.7),G.44) 2
4.7), .44 2 EHug(t)<?dt(Iug(t))—Rug(f))dt

-

o
~

=

Hy,(6)dt

NS

(-1 (3) s wacs2(4-(3)))

r

< LH(r) j(%(lug(t» - Ruy(0)) dt
4 r—o)e)z). (4.9)

2

i 16r—1Hu0(r1)<(Iuo(r1) —IHQ(%O>>2 + (AC3.13)2(1’1 - ( )

In the last inequality we have used that, if g4 5 is sufficiently small, then we have Hy,(t) < Hy,(r1) for all
t < ry by (3.24), and that gt (I (1)) = Ry, (t) > O thanks to (4.7). Moreover, estimate (3.41) in Proposition 3.11,

I, (r1) < A, the quasi monotoﬁicity of the frequency function and the choice 2r; < g4 3 imply

r

0
J IRy, (D)] dt < AC;_lleCa.uri’<,g _ (%o) )

o

2
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Hence, from (4.9) we conclude that

J <Vuo(z) z- Iuo( )o( )) enil® g, o CHug(rl)(Iug(H“Af?—’ug(rio)"‘(r_())e)’

|z]
\Br

Br
2

NS

where we used that :—(1) <8,and C > 0. O

4.1 Oscillation estimate of the frequency
The following lemma shows how the spatial oscillation of the frequency in two nearby points at a given scale

is in turn controlled by the radial variations at comparable scales.

Proposition 4.4. Let A, 5 > 0, 0 € (0, 1). Then there exist C4 4, 04.4 > O such that, if 0 € 2 g,5(u), T € (0, ‘1’2—‘2)
with I,,(727) < A, then

Ly, (107) = I, (107)| < C4, 4[(A24T(X1))2 + (A24T(X2))%] +Cyu7? (4.10)
for every x1, X2 € By N %y 9,5(u).

Proof. We start off noting that by Remark 4.2 and the choice 14471 < g4 4, if the constant g4 4 is suitably
chosen, a simple scaling argument yields that I, (107) is well-defined for every x € B/ 1
To ease the readability of the proof we divide it in several substeps.

Step 1. With fixed x1, x, € B} N %, 6,5(u), let
Xe:=tx1+(1-t)x2, te]0,1],

and consider the map ¢ — I, (107). The differentiability of the functions x — Hy, (107) and x — Dy, (107)
yields that

4

T qu (101))d

1
qu1 (107) - quz (107) = J
0
Sete := x; — x»; then e - ey, 1 = 0; and set forall y € R™1,
d
Oi(y) := a(ux[()q +¥)).
Recalling the very definition of uy, in (3.6), it turns out that
8:(y) = 0cu(xt +y) = 0e@(xt + ') + T x, [0e@](x¢ + ¥") = E[Thx, [0 @] (Xt +¥), (4.11)
because by linearity (the details of the elementary computations are left to the readers)
d
E(Tk,xt [@1(x¢ + ") = Tix, [0e@](x¢ + V') (4.12)
and d
E(éa[Tk,xt [p]l(xt +y)) = &[Tk x,[0e @]l (Xt + ¥).
Moreover, from the very definition of u,, in (3.6) it is straightforward to prove that
dellx, (Xt +¥) = 0eU(X¢ +Y) = 0e@(X¢ + ¥') + Tie1,x, [0 @) (Xt + ') = E[Tho1,x, [0 @1 (x¢ + ¥).
Thus, from (4.11) and the latter equality, by direct calculation it follows that

51 - dettg i+ = Y. D@epee) L~ £(( Y D @eplep P ),
lal=k la|=k
and thus we may conclude that
18¢(y) = dettx, (x¢ + V)| < Clx1 - x2|lyl¥. (4.13)

Moreover, note also that q
Véi(y) = a(vuxt(xt +¥). (4.14)
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Step 2. Thanks to the previous formulas, for all A € R we infer

|yl
107

[Vns1l?
lyl

=-2 J ¢< U )(St(y) Ay, (Xt + YDy, (Xt + y)———

d
Si(Hu, (107 = 2 [ (T Y (xe + 18 VT dy

[Vne1l?

b dy + 2AH,,, (107). (4.15)

In addition, integrating by parts gives

lyl

(Duxt(lo 0“2 [9(48

)vo‘t(y) Vi, (x¢ +Y)lyns1|* dy

= [ (2 )oewin e+ ) Y222 ay 2 [ (2L Yo e+ ydy

57 Iyl 101
1 n+
o [ (2 )81~ A G+ YWt ) -y Ml' dy
+ 2061, 107) -2 [ (2 )3 Latut, (e + ) dy: (4.16)
Then, by formula (3.19) together with (4.15) and (4.16), we have that

d ~ 4Gy, (107))  L(H,, (107))
0, (107) = 1, (107 o 10D )

2 d

-~ rom ) 9 ) Be) = At )Tt (4 ) -y = T, (100 e+ y) T2
10
! ﬁfm) [/ (2 ) (1) it G+ Y = B9 Lt (0 )y
](1)

In what follows we estimate separately the two terms J Ei).

Step 3. We start off with ]El). With this aim, first note that I,,,(107) < Ae™’Cau1 by Proposition 3.11 since
1447 < 4.4, provided the latter is small enough. In turn, as x; € B}, by (4.2) in Lemma 4.1 we infer that

I, (107) < C4q + A’ Cn

We estimate separately the factors of the integrand defining J §1> (setting x; + y = z). We start off with the first
one as follows
16¢(z = xt) = Ay (2)] < 10Uy, (2) — AUy, (2)] + |8¢(z = X¢) — Oelix, (2)]

(4. 13)
106Uy, (2) = Ay, (2)] + Clx1 = X211z = x|,

with C = C(n, k) > 0. Moreover, by choosing A := Iy, (107) - Iy, (107), we infer
106Uy, (2) — Ay, (2)] = |V, (2) - € — Auy, (2)]
< Vg (2) - (2 = x1) = Ly, (10T)ux (2)] + [Vuy, (2) - (z = x2) = Ly, (10T)ux, (2)]
< Vuy, (2) - (2 = x1) = Ly, (10T)ux, (2)] + [Vux, (2) - (2 = X2) = L, (10T)uy, (2)]
+V(ux, (2) — ux, (2)) - (z = x1) — Ly, (107)(ux, (2) — ux, (2))]
+ V(U (2) = ux, (2)) - (z = x2) = I, (107)(ux, (2) — ux, (2))|.

Using inequalities (3.15)—(3.16) in Remark 3.2, we estimate the last two addends as follows:

Uy,

IV (ux, (2) - Uy, (2)) - (2 = xi) = Ly, (10T) (11, (2) — Uy, (2))] < CT¥!

for some constant C > 0, fori = 1, 2. In the last inequality we have used that |z — x;| < 127, being z € B1or(X¢).
Therefore, we have

18¢(z = x¢) = Ay, (2)] < [V, (2) - (z = x1) = Ly, (10T)ty, (2)] + [V, (2) - (2 = X2) = Ly, (10T)uy, (2)] + CTF?
= P(2). (4.17)
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For the second factor, we note that fori =1, 2,
IV, (2) - (z = Xt) = Ly, (10T)ux, (2)] < [VUux(2) - (2 = X¢) = Ly, (10T Uy, (2)] + V(U (2) — ux,(2)) - (2 = X¢)|
+ Iy, (107)||ux, (2) — ux, (2)] + [, (107) — L, (107)]|ux, (2)]
< T 4 Cluy (2)].

To estimate the last three addends, we have used the very definition of uy, in (3.6), formula (4.2) and inequal-
ities (3.15)—(3.16) in Remark 3.2, taking into account that |z — x;| < 127 being z € B1o:(x¢). Therefore, we get

Vi, (2) - (z = x¢) = L, (10T)ux, (2)] < $(2) + Clux, (2)] + [ux, (2)]). (4.18)

By collecting (4.17) and (4.18), using Holder inequality we conclude that there exists C > 0 such that

C n+
D < —J' ¢,< |z - ’|>¢( )(1/)(2)+|ux1(z)|+|ux2(2')|)| i

= H,, (107) 2 xil @
C 1z =x 1Znl? | \2

SHuXt(lor)q_d)( or Ve - dz)

L (12Xl o 2 alznal® |3
([ (5o ) 2@ + e @ + () P dz) (4.19)
Clearly, we have that
o (12 = Xt 2 |Zn411¢
J—¢( 107 )l/’ @ ¥
¢ | W@ e, (100, (2 21
! |z — x¢]

Bior (x¢)\Bsz(x¢)

a
+C j Vi, (2) - (z = X2) = I, (10T)uy, (2)? ral® g, | cprearatery

Uy

’ |z = x|

Bior (x¢)\Bsr(x¢)
|Zns1]®
s [ Mun@ ) - L, 00w, @ —
B¢ (x1)\B3¢(x1)
z a
+C J IViiy, (2) - (z = x2) = I, (10T)uy, (2)? % dz + crrar2teD)

— A2

Biar(x2)\B3(x2)

< CH,,, (24T)A24T(X1) + CHy,, 4T)A3 (x2) + Crmrar2(ed),
2

In the second inequality, we have used that Bio;(x¢) \ Bsz(x¢) € B12:(x;) \ B3 (x;) for t € [0, 1], and that

|z — xi| < 2|z - x¢| as z € B1or(X¢) \ Bs(x¢), i = 1, 2. Moreover, in the third inequality we have applied esti-

mate (4.6) in Lemma 4.3 to X1, X2 € B, N % 9,5(u), with r1 = 247 and ro = 37. Furthermore, thanks to
Corollary 3.7, we conclude

A 2 |Zn411¢

I _¢< 107 )l/’ (z ) Xl

In addition, thanks to (3.25) and |z — x¢| > 57 we get

b(Z= XY (0 P + @) P 47 < 2 (g, 2 Iz, 2 )
~P or )M @17 + lux (2 z=x 7 = 5 Malagg,dm Tl 816, dm)

dz < CH,,, (101)A2‘”(x1) +CH

Uy,

(10T)A%T(xp) + C™r 2D (4.20)
2

< 4H,, (107) + 4H,, (107). (4.21)
By collecting (4.19)—(4.21), we conclude that for some C > 0,

2471
< H,. (107) (10T)A (x1) + H

(10T)A24T(X2) + Tn+a+2(k+1))

Uy Uy,

C

+ W( uy, (107) + Hy,, (10‘[)) (H

Uyxy

(10T)A23£T(X1) +Hy,, (10T)A%£T(X2) + T"+a+2(k+1))%

20 0

< C(A%T(00) + (A3 () ?) + C(A%T(x2) + (M%7 (x2))?) + CT + Cal :

where, in the last inequality, we have used Lemma 4.1 and that x1, x> € B. n Zp,0,6(U).
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Finally, in view of the very definition of the spatial oscillation of the frequency and Corollary 3.13, we
deduce for some constant depending on A that

JU < C((A247(x1))7 + (M%7 (x2))?) + CTP. (4.22)
2 2
Step 4. We estimate next ]52). We start off noting that for all y € By \ B’1 (cf. (3.3))

d d ' '
5 Lalat (e + ) = |yn+1|“A(a(Tk,xt[<p1(xt +yY) - @O +y )))

4. 12
G2 ) A (Tex, [0e@1 (X + Y') = dep(xt + Y1)

< Clxy = Xallyna Y172 < CTlynally' 12 (4.23)
Then, arguing as in (4.4), thanks to estimate (3.15) in Remark 3.2, we getas k > 2

[ (2L Y )5 Lt sy ay] 7 e [ (L2 Y 0+ iyt ay

107
_ |z — x¢l
_ crkt j $(Zrt Jux Dllzna | dz
Bior(x¢)

comertkit et [ (B @zt dz

(3.15)
<

Buor(x1)

3. 27)

n+a+

Ct n+a+2k+1 +CT +le§X (4071).

In addition, (3.8) and (4.13) yield

U‘{b( 1”(;' )5t()’)L (Ux, (x¢ +y)) dy| < CT"+“+2k+1+U¢< 1'3' )aeuxt(xt+y)L (uxt(xt+y))dy‘

< camantket o g 2 DL g xc + lymal dy

n+ﬂ+

< CTn+a+2k+1 +CT +leiX (107).

Therefore, by applying repeatedly Lemma 4.1, by taking into account (3.43) and by choosing g4 4 sufficiently
small, we infer that

] Hu (ClOT) (Tn+a+2(k+1) n T"*“*l +k+1Dz (40_[) : T”*g* +k+1D§Xt(10T))
Xt
(3.37) 200 16 ,TD, (407))\1 79 1
< c(T— ¥ T—l(”l—)z LS (101))
6 53\ Hy, (107) 51 ¢
(3.22) 1 1
< C(T + 'reljx1 (407) + TGIIfX[(lOT)) < ct?, (4.24)
since 14471 < 94 4.
The conclusion in (4.10) follows at once from estimates (4.22) and (4.24). O

5 Proof of the main result

5.1 Mean-flatness

Here we show a control of the Jones’ -number by the oscillation of the frequency. Given a Radon measure y
in R"*1, for every xo € R" and for every r > 0, we set

Bu(xo, 1) :=i2f<r‘”‘1 J distz(y,L)dy(y))j, (5.1)
B, (x0)

where the infimum is taken among all affine (n — 1)-dimensional planes £ ¢ R"*1,
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If xo € R™! and r > 0 is such that u(B,(xo)) > 0, set Xy,,, the barycenter of y in B,(xo), i.e.

1
Xxo,r 1= m J x du(x)
B, (xo0)
and
By, (v, W) := J (¢ = Xxgr) - V) (X = Xyr) - W) dpu(x) forall v, w e R™ 1,
B, (xo0)
Then

Bulxo, 1) = (r"™ 1Ay + An+1))%’ (5.2)

where 0 < Ay41 < Ay < -+ < Ag are the eigenvalues of the positive semidefinite bilinear form By, .

Proposition 5.1. Let A,6 >0, 0 € (0, 1). Then there exist constants Cs.1, 5.1 > O with this property. Let
122r < p5.1, 0 € Zy,0,6(u) and I,,(66r) < A. Let p be a finite Borel measure with spt(u) € Z,,0,6(u). Then,
for all points p € B, N %, 9,5(u), we have

Ba(p, r)sf,f—_'i( j Ag‘;%x)du(xwr”u(B,(p))). (5.3)
B:(p)

Proof. The proofis a variant of the [18, Proposition 4.2], which in turn follows closely the original arguments
by Naber and Valtorta in [28, 29], therefore we only highlight the main differences.

Without loss of generality assume that p € By N Ty (u) N 2, 9,5(u) is such that p(B,(p)) > O (otherwise,
there is nothing to prove). Let {v1, ..., vns+1} be any diagonalizing basis for the bilinear form B, introduced
in Section 5.1, with corresponding eigenvalues 0 < A1 <A, <--- < A3,

Since spt(u) ¢ T'p(u) ¢ R™ x {0}, we may assume that v,41 = ens1, Ane1 = 0, so that B, (p, 1) = (r‘"‘liln)%
by (5.2). Clearly, we may also assume that A,, > O.

From the very definitions of B, and of its barycenter we deduce

"B, 1) j IV'up(2)|* dm(z)
Bi11r(p)\B1or(p)

(5.4)
<n J J (2= %) - Vup(2) - aup(2))? dm(z) dp(x),
B;(p) B12r(X)\Bo, (x)
where 1
a:= I, (97r) du(x).
B | TeOnaue
B, (p)
Next we estimate the two sides of (5.4).
For estimating the left-hand side of (5.4), we can show by compactness that
Dy,,(12r < C J IV'up(2)|* dm(z). (5.5)

Bi1(p)\B1or(p)

Here we use the same contradiction argument in [18, Proposition 4.2] using the compactness given by Corol-
lary 3.15.

For what concerns the right-hand side of (5.4) we proceed as follows. By the triangular inequality we
have

r.h.s.of (5.4) < 4n I J ((z = X) - Vuy(2) = I, (9)ux(2))? dm(z) du(x)
By (p) B12¢(x)\Bg;(x)
+4n J J ((z = x) - V(ux — up)(2) - a(ux — up)(2))* dm(z) du(x)
By(p) B12r(x)\Bg;(x)

van [ [ Gon-fR@dn@ @@ =T s 56)
By (p) B12r(x)\Bo,(x)
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The addends J; and J3 can be treated as in [18, Proposition 4.2]. Indeed, for J; we use Lemma 4.1 and
Lemma 4.3 for a suitable choice of the constants to get

JisCr J Hy, (247)A2 (x) du(x) < CrH,,, (127) J A2 (x) dp(x). (5.7)

B,(p) B:(p)
For J3 we use Jensen’s inequality, Proposition 4.4, Fubini’s Theorem, inequality (3.25) and (4.1) in Lemma 4.1
to get

J3 < CrHup(12T)< J Azgzrr(x) d},l(X) + rze}l(Br(p)))- (58)

2
B (p)
Note that the extra term with respect to [18, Proposition 4.2] arises as a consequence of the additional error
term in Proposition 4.4.
To estimate J, in (5.6), we first note that
V(Ti,x[@]) = Tk-1,x[Vel.

Then we use estimates (3.15) and (3.16) in Remark 3.2 to deduce that forall x € B,(p) and z € B12,(x) \ Bo,(x)
we have

(2= X) - V(uy — up)(2) = a(ux — up)(2))* < C(r* V(T x[@](2) - Ticp[@1(2)I* + @*| Ticx[0](2) - Tip[@]1*(2))
< CrZ(k+1).

Therefore, integrating the last estimate we conclude that
J2 < Cr e 283 (B, (p)). (5.9)
We can now collect estimates (5.5)—(5.9) and use Corollary 3.13 to get

r1B2(p, Dy, (121) < CrHy, (127) J (857700 + A3700) dpo)
B:(p)
+ Cr“zey(Br(p))Hup(er) + Cr"“”z"”y(Br(p))

” » rn+a+2(k+1)
r
< CrHup(lzr)< j A2 A + <r + W)y(Br(p))).
B:(p)
Finally, by assumption p € %, ¢ 5, then eC3'11”‘P"(12’)GIup(12r) > 1 + s (cf. Proposition 3.11, Corollary 3.16 and
the choice 122r < 1), so that the upper inequality in (3.43) yields (5.3). O

5.2 Rigidity of homogeneous solutions

In this subsection we extend the results on the rigidity of almost homogeneous solutions established in [18].
We denote by H, the space of all nonzero A-homogeneous solutions to the thin obstacle problem (3.1)

with zero obstacle,

X

(R™1, dm) \ {0} : u(x) = IXIAu(—), ulp, solves (3.1) with ¢ = O},

Ky = {u € H!
|x|

loc
and set J := ;51,5 (1. The spine S(u) of u € 3 is the maximal subspace of invariance of u,
S(u) := {y e R" x {0} : u(x +y) = u(x) for all x € R"*'}.

As observed in [18], the maximal dimension of the spine of a function in H is at most n — 1 and we set u € J(*P
ifu e Hand dim S(u) = n — 1, and H°W := F¢\ K'°P. All functions in H'°P are classified in [18, Lemma 5.3].
Note also that by Caffarelli, Salsa and Silvestre [9]

Higs € HOP, (5.10)
We next introduce the notion of almost homogeneous solutions. Given 6 > 0 and xo € Z5,4,5, wWe set

Juy, (8) := €51, (t) forallt € (0, 03.11].
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Definition 5.2. Letn > 0 and let u : B; — R be a solution to thin obstacle problem (3.1) with obstacle ¢ (as
usual [@llcrr(pry < 1). Assume that 0 € 2 9,5 and ¢ < p3.11, u is called n-almost homogeneous in B, if

() 1(2)

The following lemma justifies this terminology and it is the analog of [18, Lemma 5.5].

Lemma5.3. Let €, A > 0, 0 € (0, 1). There exists 1s.3 > O with the following property: for every § > O there
exists ps.3 such that, if u is an ns.3-almost homogeneous solution of (3.1) in B, with g < ps.3 and obstacle
®,0 € Zp0,6(u) and I,,(05.3) < A, then

luo.e = Wlai(B, ,dm) < € (5.11)
4
for some homogeneous solution w € K.

Proof. The proof follows by a contradiction argument similar to [18, Lemma 5.5]. Assume that for some
g, A > 0 we could find infinitesimal sequences of numbers 6;, o; and of %-almost homogeneous solutions
u; of (3.1) in By, such that 0 € %, ¢,5(u;) and

inf inf (up)o,o, — Wla1 (B, ,dm) = €, (5.12)
1 weH 4

and satisfying the bounds I(y,),(01) < A.

Consider v; := (u1)o,9;3 then by Corollary 3.15 applied to v; there would be a subsequence, not relabeled,
converging in H(B1, dm) to a solution v, of the thin obstacle problem with zero obstacle. By Proposition 3.11
there is some A’ independent of I such that I, (t) < A’ for all t € (0, g;], then from (3.23) in Corollary 3.7
we would infer that B

4
p 2|X|)|Voo|2 . (21X [vil? . Hupo(F) —(n+a+24")
- ) —=—|x |“dx=—11m[ (—)—Ix |dx = lim ———=— > 2~\mra+ea),
Jo(=8) o | o) g e ™ Heao (@0

in turn implying that v, is not zero. On the other hand, we would also get

T 3) = Ho(5) = 1 (e (3) = o () = (1 (§) - Fon (1)) -0

and thus we would conclude that v, € J being a solution to the lower-dimensional obstacle problem with
constant frequency (see for instance [18, Proposition 2.7]). We have thus contradicted (5.12). O

A rigidity property of the type shown in [18, Proposition 5.6] holds for the nonzero obstacle problem.

Proposition 5.4. Let A, > 0, 6 € (0, 1). There exists 15 4 > O with this property. For every § > O there exists
0s.4 such that, if u is an ns.4-almost homogeneous solution of (3.1) in B, with p < ps.4 and obstacle ¢,
0 € % 9,6(u) and L, (05.4) < A, then the following dichotomy holds:
(i) Either for every point x € B}, n Zp,0,5(u) we have

2

NORNGI

(ii) or there exists a linear subspace V c R" x {0} of dimension n — 2 such that

y€ B'% N Zp,0,5(U),

T (2) -1 (2 ) < ns.4

Proof. The proof proceeds by contradiction and follows the strategy developed in [18, Proposition 5.6].
Let A, T > O be given constants and assume that there exist infinitesimal sequences 6;, o; and a sequence
(Up)ien of %-almost homogeneous solutions in By, such that 0 € 2, 9,5,(1), I(),(01) < A and such that:
(i) there exists x; € By, N %, 6,5, (1) for which

4

Jn () ~Jano(5)|> 7 (5.15)

= dist(y, V) < 1p. (5.14)
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(ii) for every linear subspace V € R" x {0} of dimension n — 2 there exists y; € BQ, N Zp,.0,6(ur) (a priori
depending on V) such that
1

](u,)w(gl) ](“l)yz< o ) 7 and dist(y;, V) > 1. (5.16)

We consider the rescaled functions v; := (u;)o,p, : B2 — R. By the compactness result in Corollary 3.15 we
deduce that, up to passing to a subsequence (not relabeled), there exists a nonzero function v, solution to
the thin obstacle problem (3.1) in B; with null obstacle such that v; — v, in H'(B1, dm). Moreovet, v, € H
thanks to Lemma 5.3.

If voo € H'°P, then (5.15) is contradicted. Indeed, up to choosing a further subsequence, we can assume
that z; := Ql’lxl — Zso € B%. Note that the points z; € N(v;), as x; € I'y,(u1), so that

n+a
2
Y

vi(z1) = (up)o,p,(21) = (u)o(x1) =0

HE,, (e

In addition, by (3.10) and being &[Tx,o[¢:]] even with respect to {x,,1 = 0} (cf. Lemma 2.1), for all [ we infer
that

n+a

0,
hmt Ons1vi(z), t) = —hmt Ons1(u1(x], ) = & [Tiol@i]l(x, 1) = 0.
H,p, (@)

Hence, we conclude that z, € N(v,) in view of (3.52). Moreover, by taking into account the very definition
of v; and Remark 3.4 we get by scaling

1 1 3 [ QI = Zeo) Voo P IXna1|* dx 5 [ @21x])IVVeo* X1 dx
Toor(3) Toon(3)] -

- [ @I - zeo DS nal@dx - [ pIxDEEE |7 dx
~lim %f¢(2IX—ZII)|Vvl| Pnsrl®dx 3 [ @QIXDIVVII[xns1 | dx
oo | - [ 2Ix - zI) 2L |2 dx = [ QUKD [xn.1 19 dx
o lz=xl Xll a
. 7 [ oGNPzl dz  ap,, &)
[—+0c0 J‘¢(|z71xI| |f:i)xglll |Zs1]2 dz Hyyy (%
2
%D (%) §Dwy(3)| cas) .. 01 01
= llm ] - ] = 1 I(ul)xl ? _I(ul)o E
I=+00 H(”I)xl(_) H(”I)O(T) l—+00 0

= lim ](u;)x,( ) Jano <Ql)l>r

l—>+00

which is a contradiction to the constancy of the frequency at critical points of the homogeneous solution

€ 3{'°P (see [18, Lemma 5.3]). The fourth equality is justified by taking into account that x; € 25, 6,5,(u1)

(cf. (3.37) and (3.39)), and in view of estimates (3.15) and (3.16) in Remark 3.2, in turn implying for all
z € By (x)) (recall that o' x; — Zoo)

l(uDo(2) - (u)x, ()] < Cof*™,  1V((u)o(2) - (w)x, (2))] < Cof.

Moreover, (3.43) can be employed in the last two equalities as x; € Bgl N Zp,.0,6 (U0,

Instead, if vo, € H!°%, we show a contradiction to (5.16) with V any (n - 2)-dimensional subspace con-
taining S(v,). Indeed, let y; be as in (5.16) for such a choice of V. By compactness, up to passing to a sub-
sequence (not relabeled), z; := Ql‘lyl — Zoo for some zo, € B 1 with dist(z.,, V) > 7. In addition, arguing as

before
01 01
T, (§) ~ o (35

1 1
I — -1 _)|: li
voren(g) T (76| = Jim,

= lim
I->+00

%D(ul)y (s) B 16D(”1)y1( )
H(ul)y (Q_) H(ul)yl(16)

Juna ()~ (1) -

Again, note that (3.43) can be employed since y; € Bﬂ N Zp,,0,6,(u1). By [18, Proposition 2.7, Lemma 5.2] it
follows that z, € S(v), thus contradicting S(ve,) <€ V and dist(ze, V) = 1. O

(.43)
=" lim

l—+00
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5.3 Proof of Theorem 1.2

We start off noting that it suffices to prove that I'y g(u) N B (xg) satisfies all the conclusions forall xq € Lyp,o(u).
For all R € (0, 1), we can find a finite number of balls Bg(xi), xij € Ty p(u) fori e {1,..., M}, whose union
cover I'p g(u) N B1(Xo). We shall choose appropriately R in what follows. Moreover, with fixed i € {1, ..., M},
by horizontal translation we may reduce to x; = 0 € Ty g(u) without loss of generality.

Then, recalling the definition of I'y g(u) in (1.8) we have that

Foeu)n By = J 2, LW,
jeN

where
n+a+2(k+1-6)

ff(fg L(u) = {xo €Ty(u) N By : Hy, (1) 2 forallr € (0, 3)}
0.1 d

Hence, we may establish the result for 2% 01 (u) with j € N fixed.
Note that as 0 € I'y(u), the function

u(y) := u(Ry) - u(0)

solves the fractional obstacle problem (3.1) in B; with obstacle function @(-) := ¢(R-) — ¢(0). Moreover,
_ 1
T5,0(H) N B, = ﬁ(rtp,(‘}(u) N BY),
2 2

with @iz (+) = u(R-) if z € Ty p(u) nB’R, being Ty, : [@](+) = Tr,z[@](R-). Thus, we get that z € fng 1(u) if
and only if ; € B’ nZ. 7.0, Rz(k+1 o) (U). In addition, it is easy to check that

1@l cerpry < RIVQIl kB, rry-

We choose R > 0 sufficiently small so that | @]| ke By <1 and the smallness conditions on the radii in all the
statements of Sections 3-5 are satisfied.

In such a case the proof, of the main results can be obtained by following verbatim [18, Sections 6-8].
Indeed, [18, Proposition 6.1], that leads both to the local finiteness of the Minkowski content of Z5,0,6(1) and
to its (n — 1)-rectifiability, is based on a covering argument that exploits the lower bound on the frequency
in Corollary 3.16, the control of the mean oscillation via the frequency in Proposition 5.1, the rigidity of
almost homogeneous solutions in Proposition 5.4, the discrete Reifenberg theorem by Naber and Valtorta
[28, Theorem 3.4, Remark 3.9], and the rectifiability criterion either by Azzam and Tolsa [2] or by Naber
and Valtorta [28, 29]. Therefore, the only extra-care needed in the current setting is to start the covering
argument from a scale which is small enough to validate the conclusions of the lemmas and propositions of
the previous sections.

Finally, the classification of blowup limits is exactly that stated in [18, Theorem 1.3], and proved in
[18, Section 8], in view of Lemma 3.14 and Corollary 3.15.

Funding: The authors have been partially funded by the ERC-STG Grant n. 759229 HiCoS “Higher Co-dimen-
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