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Abstract: Building upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure
of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 (2018), no. 1,
125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle
problem in ℝn+1 with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null
Hn−1 measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in
[M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional
obstacle problem, Arch. Ration. Mech. Anal. 230 (2018), no. 1, 125–184] and therefore we retrieve the same
results:
(i) local finiteness of the (n − 1)-dimensional Minkowski content of the free boundary (and thus of its

Hausdorff measure),
(ii) Hn−1-rectifiability of the free boundary,
(iii) classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most (n − 2) in

the free boundary.
Instead, if φ ∈ Ck+1(ℝn), k ≥ 2, similar results hold only for distinguished subsets of points in the free bound-
ary where the order of contact of the solution with the obstacle function φ is less than k + 1.

Keywords: Fractional obstacle problem, free boundary, rectifiability

MSC 2010: 35R35, 49Q20
||
Communicated by: Giuseppe Mingione

1 Introduction
Quasi-geostrophic flowmodels [10], anomalous diffusion in disorderedmedia [4] and American optionswith
jump processes [11] are some instances of constrained variational problems involving free boundaries for
thin obstacle problems. In this paper we analyze the fractional obstacle problem with exponent s ∈ (0, 1), a
problem that can be stated in several ways, each motivated by different applications and suited to be studied
with different techniques. We follow here the variational approach: given φ : ℝn → ℝ smooth and decaying
sufficiently fast at infinity, one seeks for minimizers of the Hs-seminorm

[v]2Hs := ∫
ℝn×ℝn

|v(x󸀠) − v(y󸀠)|2

|x󸀠 − y󸀠|n+2s
dx󸀠 dy󸀠, s ∈ (0, 1),
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on the cone
A := {v ∈ Ḣs(ℝn) : v(x󸀠) ≥ φ(x󸀠)},

where Ḣs(ℝn) is the homogeneous space defined as the closure in the Hs seminorm of C∞c (ℝn) functions.
Existence and uniqueness of a minimizer w follow for all s ∈ (0, 1) if n ≥ 2 (the case n = 1 requires some
care, see [30] and [3]). In addition, defining the fractional laplacian as

(−∆)sv(x󸀠) := cn,s P.V. ∫
ℝn

v(x󸀠) − v(y󸀠)
|x󸀠 − y󸀠|n+2s

dy󸀠

for v ∈ Ḣs(ℝn), with cn,s a suitable constant, the Euler–Lagrange conditions characterizew as adistributional
solution to the system of inequalities

{{{
{{{
{

w(x󸀠) ≥ φ(x󸀠) for x󸀠 ∈ ℝn ,
(−∆)sw(x󸀠) = 0 for x󸀠 ∈ ℝn such that w(x󸀠) > φ(x󸀠),
(−∆)sw ≥ 0 inℝn .

(1.1)

The most challenging regularity issues are then that of w itself and that of its free boundary

Γφ(w) := ∂{x󸀠 ∈ ℝn : w(x󸀠) = φ(x󸀠)}.

To investigate the fine properties of the solution w of (1.1) the groundbreaking paper by Caffarelli and
Silvestre [5] introduces an equivalent local counterpart for the fractional obstacle problem in terms of the
so called a-harmonic extension argument. Indeed, it is inspired by the case s = 1

2 , in which it is nothing
but the harmonic extension problem. More precisely, setting a = 1 − 2s for s ∈ (0, 1) and m = |xn+1|aLn+1,
it turns out that any function w satisfying (1.1) is the trace of a function u ∈ H1(ℝn+1, dm) solving for
x = (x󸀠, xn+1) ∈ ℝn+1,

{{{{{{
{{{{{{
{

u(x󸀠, 0) ≥ φ for (x󸀠, 0) ∈ ℝn × {0},
u(x󸀠, xn+1) = u(x󸀠, −xn+1) for all x ∈ ℝn+1,

div(|xn+1|a∇u(x)) = 0 for x ∈ ℝn+1 \ {(x󸀠, 0) : u(x󸀠, 0) = φ(x󸀠)},
div(|xn+1|a∇u(x)) ≤ 0 in D 󸀠(ℝn+1).

(1.2)

In particular, note that u is the unique minimizer of the Dirichlet energy

∫
BR

|∇ṽ|2 dm

on the class Ã := {ṽ ∈ H1(ℝn+1, dm) : ṽ(x󸀠, 0) ≥ φ(x󸀠), ṽ|∂BR = u|∂BR } for every R > 0. Viceversa, the trace
u(x󸀠, 0) on the hyperplane {xn+1 = 0} of the solution u to (1.2) is the solution to (1.1), as for all x󸀠 ∈ ℝn (cf. [5])

lim
xn+1→0+
|xn+1|a∂n+1u(x󸀠, xn+1) = −(−∆)su(x󸀠, 0).

One then is interested into the regularity of the free boundary Γφ(u) (with a slight abuse of notation we
use the same symbol as for the analogous set for w): the topological boundary, in the relative topology ofℝn,
of the coincidence set of a solution u

Λφ(u) := {(x󸀠, 0) ∈ ℝn+1 : u(x󸀠, 0) = φ(x󸀠)}.

The locality of the operator
La(v) := div(|xn+1|a∇v(x)) (1.3)

in (3.1) is the main advantage of the new formulation to perform the analysis of Γφ(u). Indeed, being
Γφ(u) = Γφ(w) it permits the use of (almost) monotonicity-type formulas analogous to those introduced
by Weiss and Monneau for the classical obstacle problem (cf. [6, 7, 27, 31]).

Optimal interior regularity for u has been established Caffarelli, Salsa and Silvestre in [9, Theorem 6.7
and Corollary 6.8] for any s ∈ (0, 1) (see also [8]). The particular case s = 1

2 had previously been addressed
by Athanasopoulos, Caffarelli and Salsa in [1]. Instead, despite all the mentioned progresses, the current



M. Focardi and E. Spadaro, The free boundary of the fractional obstacle problem | 325

picture for free boundary regularity theory is still incomplete. In this paper we go further on in this direction
and deal with the nonzero obstacle case following the recent achievements in [17–19]. Drawing a parallel
with the theory in the zero-obstacle case, the free boundary Γφ(u) can be split as a pairwise disjoint union of
sets

Γφ(u) = Reg(u) ∪ Sing(u) ∪ Other(u), (1.4)

termed in the existing literature as the subset of regular, singular and nonregular/nonsingular points, respec-
tively. These sets aredefinedvia the infinitesimal behavior of appropriate rescalings of the solution itself.More
precisely, for x0 ∈ Γφ(u) a function φx0 related to φ can be conveniently defined (cf. (3.46) and (3.48)) in a
way that if

ux0 ,r(y) :=
r n+a2 (u(x0 + ry) − φx0 (x0 + ry))

(∫∂Br (u − φx0 )
2|xn+1|a dHn)

1
2
,

then the family of functions {ux0 ,r}r>0 is pre-compact in H1
loc(ℝ

n+1, dm) (see [9, Section 6]). The limits are
called blowups of u at x0, they are homogeneous solutions of a fractional obstacle problemwith zero obstacle.
The set of all such functions is denoted by BU(x0). Their homogeneity λ(x0) depends only on the base point
x0 and not on the extracted subsequence, and it is called infinitesimal homogeneity or frequency of u at x0. It
is indeed the limit value, as the radius vanishes, of an Almgren’s-type frequency function related to u which
turns out to be non-decreasing in the radius. Given this, one defines

Reg(u) := {x ∈ Γφ(u) : λ(x0) = 1 + s},
Sing(u) := {x ∈ Γφ(u) : λ(x0) = 2m,m ∈ ℕ},
Other(u) := Γφ(u) \ (Reg(u) ∪ Sing(u)).

According to the regularity of φ different results are known in literature:
(i) Regular points: in [9] (see also [16, 22] for alternative proofs) for φ ∈ C2,1(ℝn) optimal one-sided C1,s-

regularity of solutions is established. Moreover, Reg(u) is shown to be locally a C1,α-submanifold of
codimension 2 inℝn+1.

(ii) Singular points: for φ analytic and a = 0 it is proved in [20] that Sing(u) is (n − 1)-rectifiable. The latter
result has been very recently extended to the full range a ∈ (−1, 1) and to φ ∈ Ck+1(ℝn), k ≥ 2, in [21].
Furthermore, fine properties of the singular set have been studied very recently by Fernández-Real and
Jhaveri [14].

It is also worth mentioning the paper by Barrios, Figalli and Ros-Oton [3], in which the authors study the
fractional obstacle problem (1.1) with nonzero obstacle φ having compact support and satisfying suitable
concavity assumptions. Under these assumptions, they are able to fully characterize the free boundary, show-
ing that Other(u) = 0 and that at every point of Sing(u) the blowup is quadratic, i.e. the only admissible value
of m is 1. In addition, they are able to show that the singular set Sing(u) is locally contained in a single
C1-regular submanifold (see also [8] for the case of less regular obstacles, [13, 24–26] for higher regularity
results on Reg(u) and [19] for the nonlinear case of the area functional).

For ease of expositionswe startwith the simpler case inwhich the obstacle functionφ is analytic, actually
the slightlymilder assumption (1.5) below suffices (see Section 3 for related results in the case φ ∈ Ck+1(ℝn)).
Indeed, after a suitable transformation (see Section 2.1) such a framework reduces to the zero obstacle. Thus,
in view of [18, Theorems 1.1–1.3] we may deduce the following result.

Theorem 1.1. Let u be a solution to the fractional obstacle problem (1.2) with obstacle function φ : ℝn → ℝ
such that

{φ > 0} ⊂⊂ ℝn , φ is real analytic on {φ > 0}. (1.5)

Then:
(i) The free boundary Γφ(u) has finite (n − 1)-dimensional Minkowski content: more precisely, there exists

a constant C > 0 such that
Ln+1(Tr(Γφ(u))) ≤ Cr2 for all r ∈ (0, 1), (1.6)

where Tr(Γφ(u)) := {x ∈ ℝn+1 : dist(x, Γφ(u)) < r}.
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(ii) The free boundary Γφ(u) is (n − 1)-rectifiable, i.e. there exist at most countably many C1-regular submani-
folds Mi ⊂ ℝn of dimension n − 1 such that

Hn−1(Γφ(u) \ ⋃
i∈ℕ

Mi) = 0. (1.7)

Moreover, there exists a subset Σ(u) ⊂ Γφ(u) with Hausdorff dimension at most n − 2 such that for every
x0 ∈ Γφ(u) \ Σ(u) the infinitesimal homogeneity λ(x0) of u at x0 belongs to {2m, 2m − 1 + s, 2m + 2s}m∈ℕ\{0}.

The analysis is more involved in case φ is not analytic, since one cannot in principle avoid contact points
of infinite order between the solution and the obstacle, and the free boundary can be locally an arbitrary
compact set K ⊂ ℝn (explicit examples are provided in [15]). In view of this, we follow the existing literature
and we consider obstacles φ ∈ Ck+1(ℝn) and only those points in the free boundary in which u has order of
contact with φ less than k + 1: given u a solution to the fractional obstacle problem (1.2) and given a constant
θ ∈ (0, 1) we set

Γφ,θ(u) := {x0 ∈ Γφ(u) : lim inf
r↓0

r−(n+a+2(k+1−θ))Hux0 (r) > 0}, (1.8)

where Hux0 is defined in the sequel and it is related to the L2(∂Br , dm󸀠) norm of ux0 ,r (cf. Section 3 for more
details). For this subset of points of the free boundary we can still prove some of the results stated in Theo-
rem 1.1.

Theorem 1.2. Let u be a solution to the fractional obstacle problem (1.2) with obstacle function φ ∈ Ck+1(ℝn),
k ≥ 2, and let θ ∈ (0, 1). Then Γφ,θ(u) is (n − 1)-rectifiable. Moreover, there exists a subset Σθ(u) ⊂ Γφ,θ(u)with
Hausdorff dimension at most n − 2 such that for every x0 ∈ Γφ,θ(u) \ Σθ(u) the infinitesimal homogeneity λ(x0)
of u at x0 belongs to {2m, 2m − 1 + s, 2m + 2s}m∈ℕ\{0}.

This note extends the results of [18] to the case of nonconstant obstacles. It is clear by the examples of arbi-
trary compact sets as contact sets of suitable solutions of the problem, that in general the free boundary for
nonconstant smooth obstacles does not possess any structure and that the key ingredient for the analysis
of the free boundary is the analyticity of the obstacles as shown in Theorem 1.1. Nevertheless, for a distin-
guished of the free boundary, characterized as those points of finite order of contact, e.g. the points Γφ,θ(u)
already considered in the literature (see [21]), a partial regularity result still holds even in the framework of
non-analytic obstacles, as proven in Theorem 1.2. Themain novelty of this paper with respect to [18] consists
in the analysis of the spatial dependence of the frequency for nonconstant obstacles: indeed, in this case the
frequency is defined differently from point to point, by taking into account the geometry of the obstacle itself.
It is not at all evident to which extent the oscillation of the frequency can be controlled. The results of Sec-
tion 4 show that this kind of estimates are not completely rigid and extend to nonflat obstacles. Hence, this
paper contributes to the program of broadening the results initially proven for the Signorini problem with
zero obstacles to the case of the obstacle problem for the fractional Laplacian (see e.g. [1, 21, 22]), providing
a generalization of the known results on the structure of the free boundary firstly proven in [18].

2 Analytic obstacles
In this sectionwedealwith analytic obstacles.We report first on some results related to theCaffarelli–Silvestre
a-harmonic extension argument that will be instrumental to reduce the analytic-type fractional obstacle
problem to the lower-dimensional obstacle problem. We provide then the proof of Theorem 1.1.

2.1 Extension results

We start off with a lemma in which it is proved that there exists a canonical a-harmonic extension of a poly-
nomial in the class of polynomials (see [21, Lemma 5.2]). We denote byPl(ℝn) the finite-dimensional vector
space of homogeneous polynomials of degree l ∈ ℕ inℝn.
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Lemma 2.1. For every l ∈ ℕ, there exists a unique linear extension operator El : Pl(ℝn) →Pl(ℝn+1) such that
for every p ∈Pl(ℝn) we have

{{{
{{{
{

− div(|xn+1|a∇El[p]) = 0 in D 󸀠(ℝn+1),
El[p](x󸀠, 0) = p(x󸀠) for all x󸀠 ∈ ℝn ,

El[p](x󸀠, −xn+1) = El[p](x󸀠, xn+1) for all (x󸀠, xn+1) ∈ ℝn+1.

Proof. Let p ∈Pl(ℝn) and set

El[p](x󸀠, xn+1) :=
⌊ l2 ⌋

∑
j=0
p2j(x󸀠)x

2j
n+1,

with p2j(x󸀠) := − 1
4j(j−s)∆p2j−2(x

󸀠) if j ∈ {1, . . . , ⌊ l2 ⌋} and p0 := p. It is then easy to verify that El satisfies all the
stated properties.

Remark 2.2. In particular, El is a continuous operator.Wewill use inwhat follows that there exists a constant
C = C(n, l) > 0 such that for every p ∈Pl(ℝn) and for every r > 0,

‖El[p]‖L∞(Br) ≤ C‖p‖L∞(B󸀠
r). (2.1)

We provide next the main result that reduces locally the analytic case to the zero obstacle case (cf. [21,
Lemma 5.1]).

Lemma 2.3. Let φ : Ω → ℝ be analytic, Ω ⊂ ℝn open. Then for all K ⊂⊂ Ω × {0} there exists r > 0 such that, for
every x0 ∈ K, there exists a function Ex0 [φ] : Br(x0) → ℝ even symmetric with respect to xn+1 such that
(i) −div(|xn+1|a∇Ex0 [φ]) = 0 in D 󸀠(Br(x0)),
(ii) Ex0 [φ](x󸀠, 0) = φ(x󸀠) for all (x󸀠, 0) ∈ Br(x0),
(iii) Ex0 [φ] is analytic in Br(x0).

Proof. For every x0 as in the statement, we can locally expand φ in power series as φ(x󸀠) = ∑α cα(x󸀠 − x0)α.
Then we set Ex0 [φ](x) := ∑α cαE|α|[pα](x − x0) where pα(x󸀠) := (x󸀠)α. From the explicit formulas in the proof
of Lemma 2.1 it is easily verified that the power series defining Ex0 [φ] is converging in Br(x0) and gives an
analytic a-harmonic extension even symmetric with respect to xn+1 in Br(x0) with r > 0 uniform on com-
pact sets.

2.2 Proof of Theorem 1.1

Theorem 1.1 follows straightforwardly from [18, Theorems 1.1–1.3]. As explained in the introduction
w(x󸀠) = u(x󸀠, 0) solves the fractional obstacle problem (1.1). By the maximum principle u(x󸀠, 0) > 0 for
all x󸀠 ∈ ℝn. Therefore, Γφ(u) ⊂ {φ > 0} ⊂⊂ ℝn. Let r > 0 be the radius in Lemma 2.3 corresponding to the
compact set Γφ(u). By compactness we cover Γφ(u) with a finite number of balls Br(xi), with xi ∈ Γφ(u).
In each ball Br(xi) we consider the corresponding function u − Exi [φ], with Exi [φ] provided by Lemma 2.3,
and note that it solves a zero lower-dimensional obstacle problem (1.2). Hence, we can conclude by the
quoted [18, Theorems 1.1–1.3].

3 Ck+1 obstacles
In this section we deal with the more demanding case of Ck+1 obstacles, k ≥ 2. It is convenient to reduce the
analysis of (1.2) to that of the following localized problem:

{{{{{{
{{{{{{
{

u(x󸀠, 0) ≥ φ(x󸀠) for (x󸀠, 0) ∈ B󸀠1,
u(x󸀠, xn+1) = u(x󸀠, −xn+1) for x = (x󸀠, xn+1) ∈ B1,

div(|xn+1|a∇u(x)) = 0 for x ∈ B1 \ {(x󸀠, 0) ∈ B󸀠1 : u(x
󸀠, 0) = φ(x󸀠)},

div(|xn+1|a∇u(x)) ≤ 0 in D 󸀠(B1),

(3.1)
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for φ ∈ Ck+1(B󸀠1). In what follows, we shall assume that ‖φ‖Ck+1(B󸀠
1)
≤ 1. This assumption can easily be

matched by a simple scaling argument (cf. the proof of Theorem 1.2).
For any x0 ∈ B󸀠1 we denote by Tk,x0 [φ] the Taylor polynomial of φ of order k at x0:

Tk,x0 [φ](x󸀠) := ∑
|α|≤k

Dαφ(x0)
α! pα(x󸀠 − x0),

where α = (α1, . . . , αn) ∈ℕn, Dα = ∂α1x1 ⋅ ⋅ ⋅ ∂
αn
xn , pα(x󸀠) := (x󸀠)α = x

α1
1 ⋅ ⋅ ⋅ x

αn
n , |α| := α1 + ⋅ ⋅ ⋅ + αn, α! := α1! ⋅ ⋅ ⋅ αn!.

We will repeatedly use that (recall that ‖φ‖Ck+1(B󸀠
1)
≤ 1)

|Tk,x0 [φ](x󸀠) − φ(x󸀠)| ≤
1
(k + 1)! |x

󸀠 − x0|k+1 (3.2)

and that
|Tk,x0 [∂eφ](x󸀠) − ∂eφ(x󸀠)| ≤ 2|x󸀠 − x0|k (3.3)

for all unit vectors e ∈ ℝn+1 such that e ⋅ en+1 = 0.
Let then E [Tk,x0 [φ]] be the a-harmonic extension of Tk,x0 [φ], namely,

E [Tk,x0 [φ]](x) := ∑
|α|≤k

Dαφ(x0)
α! E|α|[pα(⋅ − x0)](x),

where El are the extension operators in Lemma 2.1. By the translation invariance of the operator, we point
out that

E|α|[pα(⋅ − x0)](x) = E|α|[pα](x − x0). (3.4)

Set
φx0 (x) := φ(x󸀠) − Tk,x0 [φ](x󸀠) + E [Tk,x0 [φ]](x) (3.5)

and
ux0 (x) := u(x) − φx0 (x). (3.6)

Recalling that E [Tk,x0 [φ]](x󸀠, 0) = Tk,x0 [φ](x󸀠), we have Λφ(u) = {(x󸀠, 0) ∈ B󸀠1 : ux0 (x󸀠, 0) = 0}, and thus in
particular Γφ(u) = ∂B󸀠

1
{(x󸀠, 0) ∈ B󸀠1 : ux0 (x󸀠, 0) = 0}, where ∂B󸀠

1
is the relative boundary in the hyperplane

{xn+1 = 0}. We note that ux0 is not a solution of a fractional obstacle problem as in (3.1) with null obstacle,
but rather of a related obstacle problem with drift as discussed in the sequel (cf. (3.14)).

First, from the regularity assumption on φ, from Lemma2.1 and from estimate (3.2) we infer that La(φx0 )
is a function in L1(B1) (recall the definition of the operator La given in (1.3)). Moreover, estimate (3.2) gives
for all x ∈ B1 \ B󸀠1,

|La(φx0 (x))| = |div(|xn+1|a∇(φ − Tk,x0 [φ])(x󸀠))|
= |xn+1|a|∆(φ(x󸀠) − Tk,x0 [φ](x󸀠))| ≤ |xn+1|a|x󸀠 − x0|k−1. (3.7)

In turn, this yields that the distribution La(ux0 ) is given by the sumof a function in L1(B1) andof a nonpositive
singular measure supported on B󸀠1, namely,

La(ux0 (x)) = div(|xn+1|a∇u(x)) − La(φx0 (x))Ln B1. (3.8)

The following result resumes the regularity theory developed in [9, Proposition 4.3].

Theorem 3.1. Let u be a solution to the fractional obstacle problem (3.1) in B1, x0 ∈ B󸀠r, r ∈ (0, 1), then
ux0 ∈ C0,min{2s,1}(B1−r(x0)), ∂xiux0 ∈ C0,s(B1−r(x0)) for i = 1, . . . , n, and |xn+1|a∂xn+1ux0 ∈ C0,α(B1−r(x0)) for
all α ∈ (0, 1 − s). Moreover, there exists a constant C3.1 = C3.1(n, a, α, r) > 0 such that

‖ux0‖C0,min{2s,1}(B 1−r
2
(x0)) + ‖∇

󸀠ux0‖C0,s(B 1−r
2
(x0);Rn) + ‖sign(xn+1)|xn+1|a∂xn+1ux0‖C0,α(B 1−r

2
(x0))

≤ C3.1‖ux0‖L2(B1−r(x0),dm), (3.9)

where ∇󸀠ux0 = (∂x1ux0 , . . . , ∂xnux0 ) is the horizontal gradient.
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In particular, the function u is analytic in {xn+1 > 0} (see, e.g., [23]) and the following boundary conditions
holds:

lim
xn+1↓0+

xan+1∂n+1u(x
󸀠, xn+1) = 0 for x󸀠 ∈ B󸀠1 \ Λφ(u), (3.10)

lim
xn+1↓0+

xan+1∂n+1u(x
󸀠, xn+1) ≤ 0 for x󸀠 ∈ B󸀠1. (3.11)

In particular,

(u(x󸀠, 0) − φ(x󸀠)) lim
xn+1↓0+

xan+1∂n+1u(x
󸀠, xn+1) = 0 for x󸀠 ∈ B󸀠1. (3.12)

Furthermore, for Br(x0) ⊂ B1 and x0 ∈ B󸀠1, an integration by parts implies that

∫
Br(x0)

|∇u|2|xn+1|a dx − ∫
Br(x0)

|∇φx0 |2|xn+1|a dx

= ∫
Br(x0)

|∇ux0 |2|xn+1|a dx + 2 ∫
Br(x0)

∇ux0 ⋅ ∇φx0 |xn+1|a dx

= ∫
Br(x0)

|∇ux0 |2|xn+1|a dx − 2 ∫
Br(x0)

ux0La(φx0 )dx + 2 ∫
∂Br(x0)

ux0∂νφx0 |xn+1|a dx, (3.13)

where in the second equality we have used that E [Tk,x0 (φ)] is even with respect to the hyperplane {xn+1 = 0}
to deduce that

lim
xn+1→0

∂n+1φx0 (x)|xn+1|a = 0.

In particular, since the last addend in (3.13) only depends on the boundary values of ux0 , it follows that ux0
is a minimizer of the functional

∫
Br(x0)

|∇v|2|xn+1|a dx − 2 ∫
Br(x0)

vLa(φx0 )dx (3.14)

among all functions v ∈ ux0 + H1
0(Br(x0), dm) and satisfying v(x󸀠, 0) ≥ 0 on B󸀠r(x0). Equivalently, we will say

that ux0 is a local minimizer of the functional in (3.14) subject to null obstacle conditions.

Remark 3.2. We record here some bounds that shall be employed extensively in what follows. By using the
linearity and continuity of the extension operator Ek (cf. Remark 2.2), together with estimate (3.2) we get for
all z ∈ Br,

|ux0 (z) − ux1 (z)| = |φx0 (z) − φx1 (z)|

≤ |Tk,x0 [φ](z󸀠) − Tk,x1 [φ](z󸀠)| + |E [Tk,x0 [φ]](z) − E [Tk,x1 [φ]](z)|

≤ ‖Tk,x0 [φ] − Tk,x1 [φ]‖L∞(B󸀠
r) + ‖E [Tk,x0 [φ]] − E [Tk,x1 [φ]]‖L∞(Br)

(2.1)
≤ C‖Tk,x0 [φ] − Tk,x1 [φ]‖L∞(B󸀠

r)

≤ C(‖φ − Tk,x0 [φ]‖L∞(B󸀠
r) + ‖φ − Tk,x1 [φ]‖L∞(B󸀠

r))
(3.2)
≤ C(max

z∈B󸀠
r

|z − x0|k+1 +max
z∈B󸀠

r

|z − x1|k+1) (3.15)

for some constant C = C(n, a, k) > 0. Since ∇(Tk,xi [φ]) = Tk−1,xi [∇φ], i ∈ {0, 1}, arguing as above, using (3.3)
rather than (3.2), we conclude that

|∇(ux0 (z) − ux1 (z))| = |∇(φx0 (z) − φx1 (z))| ≤ C(max
z∈B󸀠

r

|z − x0|k +max
z∈B󸀠

r

|z − x1|k) (3.16)

for some constant C = C(n, a, k) > 0.
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3.1 A frequency-type function

Building upon the approach developed in [18], we consider a quantity strictly related to Almgren’s frequency
function (see [12]) and instrumental for developing the free boundary analysis in the subsequent sections.
Let ϕ : [0, +∞) → [0, +∞) be defined by

ϕ(t) :=
{{{
{{{
{

1 for 0 ≤ t ≤ 1
2 ,

2(1 − t) for 1
2 < t ≤ 1,

0 for 1 < t,

then given the solution u to (3.1), a point x0 ∈ B󸀠1 and the corresponding function ux0 in (3.6), we define for
all 0 < r < 1 − |x0|,

Iux0 (r) :=
rGux0 (r)
Hux0 (r)

,

where
Gux0 (r) := −

1
r ∫ ϕ̇(
|x − x0|
r )ux0 (x)∇ux0 (x) ⋅

x − x0
|x − x0|

|xn+1|a dx

and

Hux0 (r) := −∫ ϕ̇(
|x − x0|
r )

u2x0 (x)
|x − x0|

|xn+1|a dx. (3.17)

Here ϕ̇ indicates the derivative of ϕ. Clearly, Iux0 (r) is well-defined as long as Hux0 (r) > 0, therefore when
writing Iux0 (r) we shall tacitly assume that the latter condition is satisfied.

For later convenience, we introduce also the notation

Dux0 (r) := ∫ϕ(
|x − x0|
r )|∇ux0 (x)|

2|xn+1|a dx

and
Eux0 (r) := ∫−ϕ̇(

|x − x0|
r )
|x − x0|
r2
(∇ux0 (x) ⋅

x − x0
|x − x0|

)
2
|xn+1|a dx.

In particular, note that for all r > 0,

Hux0 (r) Eux0 (r) − G
2
ux0 (r) ≥ 0 (3.18)

by Cauchy–Schwarz inequality.

Remark 3.3. In case φ = 0, then ux0 = u for all x0 ∈ B󸀠1 and Gu = Du. Thus, Iux0 boils down to the variant of
Almgren’s frequency function used in [18].

Remark 3.4. If u is a solution to the fractional obstacle problem (3.1), then for every c > 0, x0 ∈ B󸀠1 and
r > 0 such that Br(x0) ⊂ B1, the function û(y) := cu(x0 + ry) solves (3.1) on B1 with obstacle function
φ̂(y) := cφ(x0 + ry). Therefore, if x1 = x0 + ry1 ∈ B󸀠1 we have

Tk,y1 [φ̂](y󸀠) = cTk,x1 [φ](x0 + ry󸀠)

and
ûy1 (y) = cux1 (x0 + ry).

Thus, Iûy1 (ρ) = Iux1 (ρr) for every ρ ∈ (0, 1).
In particular, this shows that the frequency function is scaling invariant, in the sequel we will use this

property repeatedly.

3.2 Almost monotonicity of Iux0 at distinguished points

In this subsectionwe prove the quasi-monotonicity of Iux0 for a suitable subset of points of the free boundary.
We show first some useful identities in a generic point x0 of B󸀠1.
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Lemma 3.5. Let u be a solution to the fractional obstacle problem (3.1) in B1. Then, for all x0 ∈ B󸀠1 and
t ∈ (0, 1 − |x0|), it holds

Dux0 (t) = Gux0 (t) − ∫ϕ(
|x − x0|

t )ux0 (x)La(ux0 (x))dx, (3.19)

d
dt (Hux0 (t)) =

n + a
t Hux0 (t) + 2Gux0 (t), (3.20)

d
dt (Dux0 (t)) =

n + a − 1
t Dux0 (t) + 2Eux0 (t) −

2
t ∫ϕ(
|x − x0|

t )∇ux0 (x) ⋅ (x − x0)La(ux0 (x))dx. (3.21)

Remark 3.6. With an abuse of notation, the integration in the last addends in (3.19) and (3.21) ismeant with
respect to the referencemeasure La(ux0 ). Actually, we use this notation because from the proofs of (3.19) and
(3.21) it turns out that one can consider equivalently its absolutely continuous part −La(φx0 ), see (3.8).

Proof. To show (3.19), (3.20) and (3.21), we assume without loss of generality that x0 = 0.
For (3.19) we consider the vector field V(x) := ϕ( |x|t )u0(x)∇u0(x)|xn+1|

a. Clearly, V has compact support
and V ∈ C∞(B1 \ B󸀠1,ℝn+1). Moreover, for xn+1 ̸= 0,

V(x) ⋅ en+1 = ϕ(
|x|
t )u0(x)∂n+1u0(x)|xn+1|

a ,

so that limy↓(x󸀠 ,0+) V(y) ⋅ en+1 = 0. Indeed, recalling that E [Tk,x0 (φ)] is even with respect to the hyperplane
{xn+1 = 0} (cf. Lemma 2.1): if (x󸀠, 0) ∈ Λφ(u), we exploit the regularity of u resumed in Theorem 3.1 to con-
clude; instead, if (x󸀠, 0) ∉ Λφ(u), it suffices to use (3.10). Thus, the distributional divergence of V is the L1(B1)
function given by

div V(x) = ϕ̇( |x|t )u0(x)∇u0(x) ⋅
x
t|x| |xn+1|

a + ϕ( |x|t )|∇u0(x)|
2|xn+1|a + ϕ(

|x|
t )u0(x)La(u0(x)).

Therefore, (3.19) follows from the divergence theorem by taking into account that V is compactly supported.
Next, (3.20) is a consequence of the direct computation

d
dt (Hu0 (t)) =

d
dt(−t

n+a ∫ ϕ̇(|y|)
u20(ty)
|y| |yn+1|

a dy)

=
n + a
t Hu0 (t) − 2tn+a ∫ ϕ̇(|y|)u0(ty)∇u0(ty) ⋅

y
|y| |yn+1|

a dy

=
n + a
t Hu0 (t) + 2Gu0 (t).

Finally, to prove (3.21) we consider the compactly supported vector fieldW ∈ C∞(B1 \ B󸀠1,ℝn+1) defined by

W(x) = ϕ( |x|t )(
|∇u0(x)|2

2 x − (∇u0(x) ⋅ x)∇u0(x))|xn+1|a .

Moreover, conditions (3.10)-(3.12) and Lemma 2.1 imply that limy↓(x󸀠 ,0)W(y) ⋅ en+1 = 0. Thus, divW has no
singular part in B󸀠1, and we can compute pointwise the distributional divergence as follows: for xn+1 ̸= 0,

divW(x) = ϕ̇( |x|t )
x
t|x| ⋅ (
|∇u0(x)|2

2 x − (∇u0(x) ⋅ x)∇u0(x))|xn+1|a

+ ϕ( |x|t )
n + a − 1

2 |∇u0(x)|2|xn+1|a − ϕ(
|x|
t )(∇u0(x) ⋅ x)La(u0(x)).

Therefore, we infer that

0 = ∫divW(x)dx

= ∫ ϕ̇( |x|t )
|x|
2t |∇u0(x)|

2|xn+1|a dx + tEu0 (t) +
n + a − 1

2 Du0 (t) − ∫ϕ(
|x|
t )(∇u0(x) ⋅ x)La(u0(x))dx,

and we conclude (3.21) by direct differentiation since

d
dt (Du0 (t)) = −∫ ϕ̇(

|x|
t )
|x|
t2
|∇u0(x)|2|xn+1|a dx.
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As a consequence we derive a first monotonicity formula for Hux0 in B1.

Corollary 3.7. Let u be a solution to the fractional obstacle problem (3.1). Then, for all x0 ∈ B󸀠1 and r0, r1 with
0 < r0 < r1 < 1 − |x0| such that Hux0 (t) > 0 for all t ∈ (r0, r1), we have

Hux0 (r1)
rn+a1
=
Hux0 (r0)
rn+a0

e2∫
r1
r0

Iux0 (t)
t dt . (3.22)

In particular, if A1 ≤ Iux0 (t) ≤ A2 for every t ∈ (r0, r1), then

(r0, r1) ∋ r 󳨃→
Hux0 (r)
rn+a+2A2

is monotone decreasing, (3.23)

(r0, r1) ∋ r 󳨃→
Hux0 (r)
rn+a+2A1

is monotone increasing. (3.24)

Moreover, for all x0 ∈ B󸀠1 and 0 < r < 1 − |x0|,

∫
Br(x0)

|ux0 |2|xn+1|a dx ≤ rHux0 (r). (3.25)

Proof. The proof of (3.22) (and hence of (3.23) and (3.24)) follows from the differential equation in (3.20).
The proof of (3.25) is a simple consequence of a dyadic integration argument:

∫
Br(x0)

|ux0 |2|xn+1|a dx = ∑
j∈ℕ

∫
B r

2j
(x0)\B r

2j+1
(x0)

|ux0 |2|xn+1|a dx ≤ ∑
j∈ℕ

r
2j
Hux0(

r
2j
) ≤ rHux0 (r),

where in the last inequality we used that Hux0 (s) ≤ Hux0 (r) for s ≤ r by (3.24) (with A1 = 0).

We establish next an auxiliary lemma containing useful bounds for some quantities related to the L2-norm
of ux0 , for points x0 in the contact set.

Lemma 3.8. Let u be a solution to the fractional obstacle problem (3.1) in B1. Then there is a positive constant
C3.8 = C3.8(n, a) > 0 such that for every point x0 ∈ Λφ(u) we have for all r ∈ (0, 1 − |x0|),

Hux0 (r) ≤ C3.8(rDux0 (r) + r
n+a+2(k+1)), (3.26)

∫ϕ( |x − x0|r )|ux0 (x)|
2|xn+1|a dx ≤ C3.8(r2Dux0 (r) + r

n+a+1+2(k+1)), (3.27)

∫
Br(x0)\B r

2
(x0)

|ux0 (x)|2|xn+1|a dx ≤ C3.8(r2Dux0 (r) + r
n+a+1+2(k+1)). (3.28)

Proof. By the co-area formula for Lipschitz functions we check that

Hux0 (r) = 2
r

∫
r
2

dt
t ∫
∂Bt(x0)

|ux0 (x)|2|xn+1|a dHn(x) (3.29)

and

Dux0 (r) = ∫
B r

2
(x0)

|∇ux0 (x)|2|xn+1|a dx +
2
r

r

∫
r
2

dt ∫
∂Bt(x0)

(r − t)|∇ux0 (x)|2|xn+1|a dHn(x).

Therefore, an integration by parts gives

Dux0 (r) =
2
r

r

∫
r
2

dt ∫
Bt(x0)

|∇ux0 (x)|2|xn+1|a dx. (3.30)

By (3.8), as x0 ∈ Λφ(u), [9, Lemma 2.13] and [21, Lemma 6.3] yield the Poincaré inequality
1
t ∫
∂Bt(x0)

|ux0 (x)|2|xn+1|a dHn(x) ≤ C ∫
Bt(x0)

|∇ux0 (x)|2|xn+1|a dx + Ctn+a−1+2(k+1), (3.31)
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with C = C(n, a) > 0. Integrating the latter inequality on ( r2 , r), we find (3.26) in view of (3.30). Instead, by
first multiplying formula (3.31) by t and then integrating over (0, r), we infer

∫
Br(x0)

|ux0 (x)|2|xn+1|a dx ≤ Cr2 ∫
Br(x0)

|∇ux0 (x)|2|xn+1|a dx + Crn+a+1+2(k+1).

In conclusion, (3.27) and (3.28) follow directly.

Next we show an explicit expression for the radial derivative of Iux0 at all points x0 ∈ B󸀠1. We follow here
[18, Proposition 2.7].

Proposition 3.9. Let u be a solution to the fractional obstacle problem (3.1) in B1. Then, if x0 ∈ B󸀠1 is such that
Hux0 (t) > 0 for all t ∈ [r0, r1], we have

Iux0 (r1) − Iux0 (r0) =
r1

∫
r0

(
2t

H2
ux0 (t)
(Hux0 (t)Eux0 (t) − G

2
ux0 (t)) + Rux0 (t))dt (3.32)

for 0 < r0 < r1 < 1 − |x0|, with

|Rux0 (t)| ≤ C3.9
tn+a+2k+1

Hux0 (t)
((

Dux0 (t)
tn+a+2k+1

)
1
2
+ 1) (3.33)

and C3.9 = C3.9(n, a) > 0.

Proof. It is not restrictive to assume x0 = 0. We use the identities in (3.19), (3.20) and (3.21) to compute (the
lengthy details are left to the reader)

d
dt (Iu0 (t)) = Iu0 (t)(

1
t +

d
dt (Gu0 (t))
Gu0 (t)

−
d
dt (Hu0 (t))
Hu0 (t)

)

= 2Iu0 (t)(
Eu0 (t)
Gu0 (t)
−
Gu0 (t)
Hu0 (t)
) + Ru0 (t),

where
Ru0 (t) := −

1
Hu0 (t)
∫ϕ( |x|t )((n + a − 1)u0(x) + 2(∇u0(x) ⋅ x))La(u0(x))dx

+
1
t ∫ ϕ̇(
|x|
t )|x|u(x)La(u0(x))dx.

From this we conclude (3.32) straightforwardly.
For (3.33), we estimate separately each term appearing in the integral defining Ru0 (t). We start with

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |x|t )u0(x)La(u0(x))dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(3.8)
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |x|t )|u0(x)||x

󸀠|k−1|xn+1|a dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ tk−1(∫
Bt

|xn+1|a dx)
1
2

(∫ϕ( |x|t )|u0(x)|
2|xn+1|a dx)

1
2

≤ Ct
n+a+1

2 +k−1(∫ϕ( |x|t )|u0(x)|
2|xn+1|a dx)

1
2

(3.27)
≤ Ct

n+a−1
2 +k+1(D

1
2
u0 (t) + t

n+a−1
2 +k+1), (3.34)

with C3.34 = C3.34(n, a) > 0. Arguing similarly we infer
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |x|t )(∇u0(x) ⋅ x)La(u0(x))dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ t∫ϕ( |x|t )|∇u0(x)||La(u0(x))|dx

(3.8)
≤ tk ∫ϕ( |x|t )|∇u0(x)||xn+1|

a dx ≤ Ct
n+a−1

2 +k+1D
1
2
u0 (t), (3.35)
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and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
t ∫ ϕ̇(
|x|
t )|x|u0(x)La(u0(x))dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(3.8)
≤ tk−1 ∫

Bt\B t
2

|u0(x)||xn+1|a dx

(3.27)
≤ Ct

n+a−1
2 +k+1(D

1
2
u0 (t) + t

n+a−1
2 +k+1), (3.36)

with C = C(n, a) > 0. Therefore, (3.33) follows at once from (3.34)–(3.36).

Estimate (3.33) turns out to be useful to analyze the subsets of points Γφ,θ(u) of Γφ(u), for every θ ∈ (0, 1)
(cf. (1.8)). With fixed θ ∈ (0, 1), we then look at points of the free boundary in the subset

Zφ,θ,δ(u) := {x0 ∈ Γφ(u) ∩ B 1
2
: Hux0 (r) ≥ δr

n+a+2(k+1−θ) for all r ∈ (0, 12 )}, (3.37)

with δ > 0.

Remark 3.10. Note that Zφ,θ,δ(u) ⊆ Zφ,θ,δ󸀠 (u) if δ󸀠 ≤ δ. Hence, in what follows it is enough to consider the
values of δ small enough.

Proposition 3.11. For every δ > 0, θ ∈ (0, 1), there exist C3.11, ϱ3.11 > 0 such that for every x0 ∈ Zφ,θ,δ(u), the
function (0, ϱ3.11] ∋ r 󳨃→ eC3.11rθ Iux0 (r) is non-decreasing. In particular, the ensuing limits exist finite and are
equal

lim
r↓0

rDux0 (r)
Hux0 (r)

= lim
r↓0

Iux0 (r) =: Iux0 (0
+). (3.38)

Proof. Since x0 ∈ Zφ,θ,δ(u), formula (3.26) yields for r ∈ (0, 12 ),

C3.8Dux0 (r) ≥ δr
n+a−1+2(k+1−θ) − C3.8rn+a−1+2(k+1),

therefore, for ϱ3.11 sufficiently small, we have for all r ∈ (0, ϱ3.11],

Dux0 (r) ≥ Cr
n+a−1+2(k+1−θ). (3.39)

In addition, from (3.19) and (3.34) we get for all r ∈ (0, ϱ3.11], if ϱ3.11 small enough,

|Gux0 (r) − Dux0 (r)|
(3.19)
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |x − x0|r )ux0 (x)La(ux0 (x))dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(3.34)
≤ C3.34Dux0 (r)(

rn+a+2k+1

Dux0 (r)
+ (

rn+a+2k+1

Dux0 (r)
)

1
2
)

(3.39)
≤ CDux0 (r)(2Cr

2θ + (2Cr2θ)
1
2 ) ≤ CrθDux0 (r). (3.40)

Therefore, from (3.33), if ϱ3.11 is sufficiently small, we get for all r ∈ (0, ϱ3.11],

|Rux0 (r)| ≤ C3.9Iux0 (r)
rn+a+2k

Gux0 (r)
((

Dux0 (r)
rn+a+2k+1

)
1
2
+ 1)

(3.40)
≤ C

Iux0 (r)
r ((

rn+a+2k+1

Dux0 (r)
)

1
2
+
rn+a+2k+1

Dux0 (r)
)
(3.39)
≤ Crθ−1Iux0 (r). (3.41)

Hence, from (3.18), (3.32) and (3.41) we find

d
dr (Iux0 (r)) ≥ −Cr

θ−1Iux0 (r), (3.42)

and the monotonicity of (0, ϱ3.11] ∋ r 󳨃→ eC3.11rθ Iux0 (r) follows by direct integration. In addition, we also
infer (3.38), because from (3.40) for all r ∈ (0, ϱ3.11] we have

(1 − Crθ)
rDux0 (r)
Hux0 (r)

≤ Iux0 (r) ≤ (1 + Cr
θ)
rDux0 (r)
Hux0 (r)

. (3.43)

The proof is complete.
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Remark 3.12. The monotonicity for the truncated Almgren’s frequency function

r(1 + Crθ) ddr logmax{Hux0 (r), r
n+a+2(k+1−θ)}

proved in [9] and [21] is essentially equivalent to Proposition 3.11.

We derive next an additive quasi-monotonicity formula for the frequency.

Corollary 3.13. For every A, δ > 0, θ ∈ (0, 1), there exist C3.13, ϱ3.13 > 0 with this property: if x0 ∈ Zφ,θ,δ(u)
and Iux0 (ϱ3.13) ≤ A, then for all Λ ≥ AC3.13 the function

(0, ϱ3.13] ∋ r 󳨃→ Iux0 (r) + Λr
θ is non-decreasing. (3.44)

Proof. Under the standing assumptions, the quasi-monotonicity of Iux0 and (3.42) yield that

d
dr (Iux0 (r)) ≥ −Ce

C3.11Arθ−1

for r sufficiently small. Hence, we conclude (3.44) at once by integration.

3.3 Lower bound on the frequency and compactness

We first show that the frequency of a solution u to (3.1) at points in Zφ,θ,δ(u) is bounded from below by
a universal constant.

Lemma 3.14. For every δ > 0, θ ∈ (0, 1), there exists a constant ϱ3.14 > 0 such that, for all x0 ∈ Zφ,θ,δ(u) and
r ∈ (0, ϱ3.14],

Iux0 (r) ≥
1

2C3.8
. (3.45)

Proof. In view of (3.26) and since x0 ∈ Zφ,θ,δ(u), we have for all r sufficiently small,

1
C3.8
≤
rDux0 (r)
Hux0 (r)

+
r2θ

δ .

Inequality (3.45) is a straightforward consequence of estimate (3.43) and the latter estimate provided that
ϱ3.14 is sufficiently small.

For the free boundary analysis developed in [18] it is mandatory to consider the critical set of a solution. In
the current framework, the natural substitute for the critical set is given by

Nφ(u) := {(x󸀠, 0) ∈ B󸀠1 : u(x
󸀠, 0) − φ(x󸀠) = |∇󸀠(u(x󸀠, 0) − φ(x󸀠))| = lim

y↓0+
ya∂n+1u(x󸀠, y) = 0}.

Notice that Γφ(u) ⊆ Nφ(u) ⊆ Λφ(u) (the first inclusion is a consequence of (3.10)).
We can then give the following compactness result. For u : B1 → ℝ solution of (3.1) and x0 ∈ B󸀠1 we

introduce the rescalings

ux0 ,r(y) :=
r n+a2 ux0 (x0 + ry)

H
1
2
ux0 (r)

for all r ∈ (0, 1 − |x0|) and all y ∈ B 1−|x0 |
r
. (3.46)

Note that ux0 ,r is a minimizer of the functional

∫
B1

|∇v|2|xn+1|a dx − 2 ∫
B1

vLa(φx0 ,r)dx (3.47)

with obstacle function

φx0 ,r(y) :=
r n+a2 φx0 (x0 + ry)

H
1
2
ux0 (r)

, (3.48)

among all functions v ∈ ux0 ,r + H1
0(B1, dm) satisfying v(x󸀠, 0) ≥ 0 on B

󸀠
1.
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Corollary 3.15. Let δ > 0 and θ ∈ (0, 1) be given. Let (ul)l∈ℕ be a sequence of solutions to the fractional obsta-
cle problem (3.1) in B1 with obstacle functions φl equi-bounded in Ck+1(B1), and let xl ∈ Zφl ,θ,δ(ul)be such that
supl I(ul)xl (ϱl) < +∞, for some ϱl ↓ 0. Then there exist a subsequence lj ↑ ∞ and a solution v∞ to the fractional
obstacle problem (3.1) in B1 with null obstacle function, such that on setting vj := (ulj )xlj ,ϱlj we have

vj → v∞ in H1(B1, dm), (3.49)
vj → v∞ in C0,αloc (B1), for all α < min{1, 2s}, (3.50)
∇󸀠vj → ∇󸀠v∞ in C0,αloc (B1), for all α < s, (3.51)

sign(xn+1)|xn+1|a∂xn+1vj → sign(xn+1)|xn+1|a∂xn+1v∞ in C0,αloc (B1), for all α < 1 − s. (3.52)

Proof. By taking into account inequality (3.43) in Proposition 3.11, we get for l large,

ϱlD(ul)xl (ϱl)
H(ul)xl (ϱl)

≤ (1 + C‖φlj‖Ck+1(B󸀠
1)
ϱθl )I(ul)xl (ϱl).

In particular, we infer that supl D(ul)xl ,ϱl (1) < ∞. Thus, a subsequence vj := (ulj )xlj ,ϱlj converges weakly
H1(B1, dm) to some function v∞. Moreover, vj is a local minimizer of

Fj(v) := ∫
B1

|∇v|2|yn+1|a dy − 2 ∫
B1

vLa((φlj )xlj ,ϱlj )dy

among all functions v ∈ vj + H1
0(B1, dm) satisfying v(x󸀠, 0) ≥ 0 on B

󸀠
1 (cf. (3.46)-(3.47)).

By taking into account that xlj ∈ Zφlj ,θ,δ(ulj ), inequality (3.7) implies that for all y ∈ B1 \ B󸀠1,

|(La(φlj )xlj ,ϱlj )(y)| ≤
1
δ 1

2
‖φlj‖Ck+1(B󸀠

1)
ϱθlj |yn+1|

a . (3.53)

Therefore, one can easily show that the sequence (Fj)j Γ(L2(B1, dm))-converges to the functional

F∞ : L2(B1, dm) → [0, +∞]

defined by
F∞(v) := ∫

B1

|∇v|2|yn+1|a dy

if v ∈ v∞ + H1
0(B1, dm)with v(x󸀠, 0) ≥ 0 on B

󸀠
1, and +∞ otherwise on L2(B1, dm). In addition, being the func-

tionals Fj equicoercive in L2(B1, dm), Fj(vj) → F∞(v∞), so that by (3.53) the convergence of (vj)j to v∞ is
actually strong H1(B1, dm).

Items (3.50)–(3.52) are then a straightforward consequence of Theorem3.1 and (3.53) (cf. the arguments
in [9, Lemma 6.2]).

A sharp lower bound on the frequency then follows.

Corollary 3.16. Let δ > 0, θ ∈ (0, 1). If x0 ∈ Zφ,θ,δ(u), then

Iux0 (0
+) ≥ 1 + s. (3.54)

Proof. Note that Iux0 (0
+) = limr↓0 Iux0 (r) = limr↓0 Iux0,r (1) = Iv∞ (1) for some v∞ homogeneous solution to the

fractional obstacle problem (3.1) with null obstacle function provided by Corollary 3.15. Thus, we conclude
(3.54) by [9, Proposition 5.1] (see also [18, Corollary 2.12]).

4 Main estimates on the frequency
In this section we prove the principal estimates on the frequency that we are going to exploit in the sequel.
We start with an elementary lemma. Recall that all obstacles functions φ are assumed to satisfy the normal-
ization condition ‖φ‖Ck+1(B󸀠

1)
≤ 1.
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Lemma 4.1. Let A, δ > 0, θ ∈ (0, 1). Then, there exist C4.1, ϱ4.1 > 0 such that, if u is a solution of to the frac-
tional obstacle problem (3.1) in B1, with 0 ∈ Zφ,θ,δ(u) and Iu0 (2ϱ) ≤ A, ϱ ≤ ϱ4.1, then for every x ∈ B󸀠ϱ

2
,

1
C4.1
≤
Hux (ϱ)
Hu0 (ϱ)

≤ C4.1 and 1
C4.1
≤
Dux (ϱ)
Du0 (ϱ)
≤ C4.1, (4.1)

|Iu0 (ϱ) − Iux (ϱ)| ≤ C4.1. (4.2)

Remark 4.2. Note that as a byproduct of the first estimate in (4.1) in Lemma 4.1 frequencies at the scale ϱ
are well-defined at every point x ∈ B󸀠ϱ

2
, recalling that 0 ∈ Zφ,θ,δ(u).

Proof. In order to prove (4.1), we argue by contradiction: we can assume that there exist A, δ > 0 and solu-
tions uj to the fractional obstacle problem with obstacles φj, ‖φj‖Ck+1(B󸀠

1)
≤ 1, with 0 ∈ Zφj ,θ,δ(uj), such that

I(uj)0 (ϱj) ≤ A, for some ϱj ↓ 0, and there exist points xj ∈ B󸀠ϱj
4
contradicting one of the sets of inequalities

in (4.1).
In particular, by almost monotonicity of the frequency function (cf. Proposition 3.11) and the lower

bound on the frequency (cf. Corollary 3.16) we infer that 1 + s ≤ I(uj)0 (t) ≤ AeC3.11(2ϱj)
θ
≤ AeC3.11 =: A󸀠 for all

t ∈ (0, 2ϱj]. By Corollary 3.15, up to a subsequence, vj := (uj)0,ϱj converges strongly in H1(B2, dm) to a func-
tion v∞ solution of the fractional obstacle problem in B2 with zero obstacle function. We assume in addition
that ϱ−1j xj → x∞ ∈ B̄󸀠1

2
.

To prove the first set of inequalities in (4.1), we compute

H(uj)xj (ϱj)
H(uj)0 (ϱj)

=
2ϱn+aj

H(uj)0 (ϱj)
∫

B1\B 1
2

(uj)2xj (xj + ϱjx)
|xn+1|a

|x| dx

=
2ϱn+aj

H(uj)0 (ϱj)
∫

B1\B 1
2

[uj(xj + ϱjx) − (φj)xj (xj + ϱjx󸀠)]
2 |xn+1|a

|x| dx

= 2 ∫
B1\B 1

2

[vj(ϱ−1j xj + x) +
ϱ

(n+a)
2

j

H
1
2
(uj)0 (ϱ)
((φj)0(xj + ϱjx󸀠) − (φj)xj (xj + ϱjx󸀠))]

2 |xn+1|a

|x| dx. (4.3)

Moreover, by estimate (3.15) in Remark 3.2 and since ϱ−1j xj → x∞, we get for all x󸀠 ∈ B󸀠1,

|(φj)0(xj + ϱjx󸀠) − (φj)xj (xj + ϱjx󸀠)| ≤ Cϱk+1j . (4.4)

Therefore, recalling that 0 ∈ Zφj ,θ,δ(uj), from (4.4) we infer

ϱn+aj

H(uj)0 (ϱj)
∫

B1\B 1
2

((φj)0(xj + ϱjx󸀠) − (φj)xj (xj + ϱjx󸀠))2
|xn+1|a

|x| dx ≤ Cδ ϱ
2θ
j . (4.5)

Since ϱj ↓ 0, by contradiction

lim
j

H(uj)xj (ϱj)
H(uj)0 (ϱj)

∈ {0,∞}.

Moreover, by (4.3) and (4.5), by the strong L2(B1, dm) and local uniform convergence of vj → v∞we conclude
that

2 ∫
B1(x∞)\B 1

2
(x∞)

v2∞(y)
|yn+1|a

|y − x∞|
dy = 2 lim

j
∫

B1(ϱ−1j xj)\B 1
2
(ϱ−1j xj)

v2j (y)
|yn+1|a

|y − ϱ−1j xj|
dy

= 2 lim
j
∫

B1\B 1
2

v2j (ϱ
−1
j xj + x)

|xn+1|a

|x| dx

= lim
j

H(uj)xj (ϱj)
H(uj)0 (ϱj)

.
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Being the left-hand side finite, necessarily

2 ∫
B1(x∞)\B 1

2
(x∞)

v2∞(y)
|yn+1|a

|y − x∞|
dy = lim

j

H(uj)xj (ϱj)
H(uj)0 (ϱj)

= 0.

Hence, v∞ ≡ 0 on B1(x∞) \ B 1
2
(x∞), and thus v∞ ≡ 0 on the whole of B1 by analyticity. A contradiction to

Hv∞ (1) = 1 that follows from strong L2(B1, dm) convergence and the equality Hvj (1) = 1 for all j.
The second set of inequalities in (4.1) is proven by the same argument. Indeed, assuming that

lim
j

D(uj)xj (ϱj)
D(uj)0 (ϱj)

∈ {0,∞},

we have
D(uj)xj (ϱj)
D(uj)0 (ϱj)

=
ϱn+a+1j

D(uj)0 (ϱj)
∫
B1

ϕ(|x|)|∇(uj(xj + ϱjx) − (φj)xj (xj + ϱjx󸀠))|2|xn+1|a dx,

and since by (3.16) in Remark 3.2 and by (3.39),

ϱn+a+1j

D(uj)0 (ϱj)
∫
B1

ϕ(|x|)|∇((φj)0(xj + ϱjx󸀠) − (φj)xj (xj + ϱjx󸀠))|2|xn+1|a dx ≤ C
ϱn+a+1+2kj

D(uj)0 (ϱj)
≤
C
δ ϱ

2θ
j ,

we get (recall ϱj ↓ 0)

lim
j

D(uj)xj (ϱj)
D(uj)0 (ϱj)

= lim
j

1
4I(uj)0 (ϱj)

∫
B1

ϕ(|x|)|∇vj(ϱ−1j xj + x)|
2|xn+1|a dx.

By the strong convergence of vj to v∞ in H1(B1, dm), we infer that the left-hand side is finite and then
actually 0, so that

∫
B1

ϕ(|x|)|∇v∞(x∞ + x)|2|xn+1|a dx = 0.

Thus, by analyticity v∞ is constant on B1, and we may conclude that

∫
B1

ϕ(|x|)|∇v∞(x)|2|xn+1|a dx = 0.

The latter equality contradicts

∫
B1

ϕ(|x|)|∇v∞(x)|2|xn+1|a dx ∈ [1 + s, 2A󸀠],

that follows from strongH1(B1, dm) convergence and recalling thatHvj (1) = 1 and 1+s ≤ Ivj (1) ≤ 2Dvj (1) ≤ A󸀠

for j big enough (cf. (3.43)).
Finally, (4.2) follows straightforwardly from (4.1) for ϱ4.1 sufficiently small by taking into account (3.43):

|Iu0 (r) − Iux (r)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

rGu0 (r)
Hux (r)
(
Hux (r)
Hu0 (r)
−
Gux (r)
Gu0 (r)
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(4.1)
≤ C.

We introduce the following notation for the radial variation of (modified) frequency at a point x ∈ Zφ,θ,δ(u)
of a solution u in B1: given 0 < r0 < r1 < 1 − |x|, we set

∆r1r0 (x) := Iux (r1) + Λr
θ
1 − (Iux (r0) + Λr

θ
0).

Note that ∆r1r0 (x) ≥ 0 if x ∈ Zφ,θ,δ(u), if r1 is sufficiently small and if Λ ≥ AC3.13 (cf. Corollary 3.13). We do not
indicate the dependence of ∆r1r0 on Λ since such a parameter will be fixed according to the restriction above.
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Lemma 4.3. Let A, δ > 0, θ ∈ (0, 1). Then there exist C4.3 and ϱ4.3 > 0 such that, if x0 ∈ Zφ,θ,δ(u), and
Iux0 (r1) ≤ A, with 2r1 ≤ ϱ4.3, then for every r0 ∈ (

r1
8 , r1) we have

∫
B r1

2
(x0)\B r0

2
(x0)

(∇ux0 (z) ⋅ (z − x0) − Iux0(
r0
2 )ux0 (z))

2 |zn+1|a

|z − x0|
dz ≤ C4.3Hux0 (r1)∆

r1
r0
2
(x0). (4.6)

Proof. Without loss of generality we prove the result for x0 = 0. We start off with the following computation:

2 ∫
Bt\B t

2

(∇u0(z) ⋅ z − Iu0 (t)u0(z))
2 |zn+1|a

|z| dz = ∫−ϕ̇( |z|t )(∇u0(z) ⋅ z − Iu0 (t)u0(z))
2 |zn+1|a

|z| dz

= t2Eu0 (t) − 2tIu0 (t)Gu0 (t) + I2u0 (t)Hu0 (t)

=
t2

Hu0 (t)
(Eu0 (t)Hu0 (t) − G2u0 (t))

(3.32)
=

t
2Hu0 (t)(

d
dt (Iu0 (t)) − Ru0 (t)). (4.7)

We now use the integral estimate (whose elementary proof is left to the readers)

∫
Bρ1 \Bρ0

f(z)dz ≤ ρ−10

2ρ1

∫
ρ0

∫
Bt\B t

2

f(z)dz dt for all 0 < ρ0 ≤ ρ1, (4.8)

f ≥ 0 a measurable function, in order to deduce

∫
B r1

2
\B r0

2

(∇u0(z) ⋅ z − Iu0(
r0
2 )u0(z))

2 |zn+1|a

|z| dz

(4.8)
≤

2
r0

r1

∫
r0
2

∫
Bt\B t

2

(∇u0(z) ⋅ z − Iu0(
r0
2 )ux0 (z))

2 |zn+1|a

|z| dz dt

≤
4
r0

r1

∫
r0
2

∫
Bt\B t

2

[(∇u0(z) ⋅ z − Iu0 (t)u0(z))2 + (Iu0 (t) − Iu0(
r0
2 ))

2
u20(z)]
|zn+1|a

|z| dz dt

(4.7), (3.44)
≤

2
r0

r1

∫
r0
2

t
2Hu0 (t)(

d
dt (Iu0 (t)) − Ru0 (t))dt

+
16
r0
((Iu0 (r1) − Iu0(

r0
2 ))

2
+ (AC3.13)2(rθ1 − (

r0
2 )

θ
)
2
)

r1

∫
r0
2

Hu0 (t)dt

≤
r1
r0
Hu0 (r1)

r1

∫
r0
2

(
d
dt (Iu0 (t)) − Ru0 (t))dt

+ 16 r1r0
Hu0 (r1)((Iu0 (r1) − Iu0(

r0
2 ))

2
+ (AC3.13)2(rθ1 − (

r0
2 )

θ
)
2
). (4.9)

In the last inequality we have used that, if ϱ4.3 is sufficiently small, then we have Hu0 (t) ≤ Hu0 (r1) for all
t ≤ r1 by (3.24), and that d

dt (Iu0 (t)) − Ru0 (t) ≥ 0 thanks to (4.7).Moreover, estimate (3.41) inProposition3.11,
Iu0 (r1) ≤ A, the quasi-monotonicity of the frequency function and the choice 2r1 ≤ ϱ4.3 imply

r1

∫
r0
2

|Ru0 (t)|dt ≤ AC3.11eC3.11r
θ
1(rθ1 − (

r0
2 )

θ
).
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Hence, from (4.9) we conclude that

∫
B r1

2
\B r0

2

(∇u0(z) ⋅ z − Iu0(
r0
2 )u0(z))

2 |zn+1|a

|z| dz ≤ CHu0 (r1)(Iu0 (r1) + Λrθ1 − Iu0(
r0
2 ) − Λ(

r0
2 )

θ
),

where we used that r1r0 ≤ 8, and C > 0.

4.1 Oscillation estimate of the frequency

The following lemma shows how the spatial oscillation of the frequency in two nearby points at a given scale
is in turn controlled by the radial variations at comparable scales.

Proposition 4.4. Let A, δ > 0, θ ∈ (0, 1). Then there exist C4.4, ϱ4.4 > 0 such that, if 0 ∈ Zφ,θ,δ(u), τ ∈ (0, ϱ4.4144 )
with Iu0 (72τ) ≤ A, then

|Iux1 (10τ) − Iux2 (10τ)| ≤ C4.4[(∆
24τ
3τ (x1))

1
2 + (∆24τ3τ (x2))

1
2 ] + C4.4τθ (4.10)

for every x1, x2 ∈ B󸀠τ ∩Zφ,θ,δ(u).

Proof. We start off noting that by Remark 4.2 and the choice 144τ < ϱ4.4, if the constant ϱ4.4 is suitably
chosen, a simple scaling argument yields that Iux (10τ) is well-defined for every x ∈ B󸀠77τ

4
.

To ease the readability of the proof we divide it in several substeps.

Step 1. With fixed x1, x2 ∈ B󸀠τ ∩Zφ,θ,δ(u), let

xt := tx1 + (1 − t)x2, t ∈ [0, 1],

and consider the map t 󳨃→ Iuxt (10τ). The differentiability of the functions x 󳨃→ Hux (10τ) and x 󳨃→ Dux (10τ)
yields that

Iux1 (10τ) − Iux2 (10τ) =
1

∫
0

d
dt (Iuxt (10τ))dt.

Set e := x1 − x2; then e ⋅ en+1 = 0; and set for all y ∈ ℝn+1,

δt(y) :=
d
dt (uxt (xt + y)).

Recalling the very definition of uxt in (3.6), it turns out that

δt(y) = ∂eu(xt + y) − ∂eφ(xt + y󸀠) + Tk,xt [∂eφ](xt + y󸀠) − E [Tk,xt [∂eφ]](xt + y), (4.11)

because by linearity (the details of the elementary computations are left to the readers)
d
dt (Tk,xt [φ](xt + y

󸀠)) = Tk,xt [∂eφ](xt + y󸀠) (4.12)

and
d
dt (E [Tk,xt [φ]](xt + y)) = E [Tk,xt [∂eφ]](xt + y).

Moreover, from the very definition of uxt in (3.6) it is straightforward to prove that

∂euxt (xt + y) = ∂eu(xt + y) − ∂eφ(xt + y󸀠) + Tk−1,xt [∂eφ](xt + y󸀠) − E [Tk−1,xt [∂eφ]](xt + y).

Thus, from (4.11) and the latter equality, by direct calculation it follows that

δt(y) − ∂euxt (xt + y) = ∑
|α|=k

Dα(∂eφ(xt))
(y󸀠)α

α! − E ( ∑
|α|=k

Dα(∂eφ(xt))
pα(⋅ − xt)

α! )(y),

and thus we may conclude that

|δt(y) − ∂euxt (xt + y)| ≤ C|x1 − x2||y|k . (4.13)

Moreover, note also that
∇δt(y) =

d
dt (∇uxt (xt + y)). (4.14)
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Step 2. Thanks to the previous formulas, for all λ ∈ ℝ we infer
d
dt (Huxt (10τ)) = −2∫ ϕ̇(

|y|
10τ)uxt (xt + y)δt(y)

|yn+1|a

|y| dy

= −2∫ ϕ̇( |y|10τ)(δt(y) − λuxt (xt + y))uxt (xt + y)
|yn+1|a

|y| dy + 2λHuxt (10τ). (4.15)

In addition, integrating by parts gives
d
dt (Duxt (10τ))

(4.14)
= 2∫ϕ( |y|10τ)∇δt(y) ⋅ ∇uxt (xt + y)|yn+1|

a dy

= −
1
5τ ∫ ϕ̇((

|y|
10τ)δt(y)∇uxt (xt + y) ⋅ y

|yn+1|a

|y| dy − 2∫ϕ( |y|10τ)δt(y)La(uxt (xt + y))dy

= −
1
5τ ∫ ϕ̇(

|y|
10τ)(δt(y) − λuxt (xt + y))∇uxt (xt + y) ⋅ y

|yn+1|a

|y| dy

+ 2λGuxt (10τ) − 2∫ϕ(
|y|
10τ)δt(y)La(uxt (xt + y))dy. (4.16)

Then, by formula (3.19) together with (4.15) and (4.16), we have that

d
dt (Iuxt (10τ)) = Iuxt (10τ)(

d
dt (Guxt (10τ))
Guxt (10τ)

−
d
dt (Huxt (10τ))
Huxt (10τ)

)

= −
2

Huxt (10τ)
∫ ϕ̇( |y|10τ)(δt(y) − λuxt (xt + y))(∇uxt (xt + y) ⋅ y − Iuxt (10τ)uxt (xt + y))

dm(y)
|y|

+
10τ

Huxt (10τ)
∫ϕ( |y|10τ)(uxt (xt + y)

d
dt (La(uxt (xt + y))) − δt(y)La(uxt (xt + y)))dy

=: J(1)t + J
(2)
t .

In what follows we estimate separately the two terms J(i)t .

Step 3. We start off with J(1)t . With this aim, first note that Iu0 (10τ) ≤ Ae72
θC3.11 by Proposition 3.11 since

144τ < ϱ4.4, provided the latter is small enough. In turn, as xt ∈ B󸀠τ, by (4.2) in Lemma 4.1 we infer that

Iuxt (10τ) ≤ C4.1 + Ae
72θC3.11 .

We estimate separately the factors of the integrand defining J(1)t (setting xt + y = z). We start off with the first
one as follows

|δt(z − xt) − λuxt (z)| ≤ |∂euxt (z) − λuxt (z)| + |δt(z − xt) − ∂euxt (z)|
(4.13)
= |∂euxt (z) − λuxt (z)| + C|x1 − x2||z − xt|k ,

with C = C(n, k) > 0. Moreover, by choosing λ := Iux2 (10τ) − Iux1 (10τ), we infer

|∂euxt (z) − λuxt (z)| = |∇uxt (z) ⋅ e − λuxt (z)|
≤ |∇uxt (z) ⋅ (z − x1) − Iux1 (10τ)uxt (z)| + |∇uxt (z) ⋅ (z − x2) − Iux2 (10τ)uxt (z)|
≤ |∇ux1 (z) ⋅ (z − x1) − Iux1 (10τ)ux1 (z)| + |∇ux2 (z) ⋅ (z − x2) − Iux2 (10τ)ux2 (z)|
+ |∇(uxt (z) − ux1 (z)) ⋅ (z − x1) − Iux1 (10τ)(uxt (z) − ux1 (z))|
+ |∇(uxt (z) − ux2 (z)) ⋅ (z − x2) − Iux2 (10τ)(uxt (z) − ux2 (z))|.

Using inequalities (3.15)–(3.16) in Remark 3.2, we estimate the last two addends as follows:

|∇(uxt (z) − uxi (z)) ⋅ (z − xi) − Iuxi (10τ)(uxt (z) − uxi (z))| ≤ Cτ
k+1

for some constant C > 0, for i = 1, 2. In the last inequalitywe have used that |z − xi| ≤ 12τ, being z ∈ B10τ(xt).
Therefore, we have

|δt(z − xt) − λuxt (z)| ≤ |∇ux1 (z) ⋅ (z − x1) − Iux1 (10τ)ux1 (z)| + |∇ux2 (z) ⋅ (z − x2) − Iux2 (10τ)ux2 (z)| + Cτ
k+1

=: ψ(z). (4.17)
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For the second factor, we note that for i = 1, 2,

|∇uxt (z) ⋅ (z − xt) − Iuxt (10τ)uxt (z)| ≤ |∇uxi (z) ⋅ (z − xt) − Iuxi (10τ)uxi (z)| + |∇(uxt (z) − uxi (z)) ⋅ (z − xt)|

+ |Iuxt (10τ)||uxi (z) − uxt (z)| + |Iuxi (10τ) − Iuxt (10τ)||uxi (z)|

≤ τk+1 + C|uxi (z)|.

To estimate the last three addends, we have used the very definition of uxt in (3.6), formula (4.2) and inequal-
ities (3.15)–(3.16) in Remark 3.2, taking into account that |z − xi| ≤ 12τ being z ∈ B10τ(xt). Therefore, we get

|∇uxt (z) ⋅ (z − xt) − Iuxt (10τ)uxt (z)| ≤ ψ(z) + C(|ux1 (z)| + |ux2 (z)|). (4.18)

By collecting (4.17) and (4.18), using Hölder inequality we conclude that there exists C > 0 such that

J(1)t ≤
C

Huxt (10τ)
∫−ϕ̇( |z − xt|10τ )ψ(z)(ψ(z) + |ux1 (z)| + |ux2 (z)|)

|zn+1|a

|z − xt|
dz

≤
C

Huxt (10τ)
(∫−ϕ̇( |z − xt|10τ )ψ

2(z) |zn+1|
a

|z − xt|
dz)

1
2

⋅ (∫−ϕ̇( |z − xt|10τ )(ψ
2(z) + |ux1 (z)|2 + |ux2 (z)|2)

|zn+1|a

|z − xt|
dz)

1
2
. (4.19)

Clearly, we have that

∫−ϕ̇( |z − xt|10τ )ψ
2(z) |zn+1|

a

|z − xt|
dz

≤ C ∫
B10τ(xt)\B5τ(xt)

|∇ux1 (z) ⋅ (z − x1) − Iux1 (10τ)ux1 (z)|
2 |zn+1|a

|z − xt|
dz

+ C ∫
B10τ(xt)\B5τ(xt)

|∇ux2 (z) ⋅ (z − x2) − Iux2 (10τ)ux2 (z)|
2 |zn+1|a

|z − xt|
dz + Cτn+a+2(k+1)

≤ C ∫
B12τ(x1)\B3τ(x1)

|∇ux1 (z) ⋅ (z − x1) − Iux1 (10τ)ux1 (z)|
2 |zn+1|a

|z − x1|
dz

+ C ∫
B12τ(x2)\B3τ(x2)

|∇ux2 (z) ⋅ (z − x2) − Iux2 (10τ)ux2 (z)|
2 |zn+1|a

|z − x2|
dz + Cτn+a+2(k+1)

≤ CHux1 (24τ)∆
24τ
3τ
2
(x1) + CHux2 (24τ)∆

24τ
3τ
2
(x2) + Cτn+a+2(k+1).

In the second inequality, we have used that B10τ(xt) \ B5τ(xt) ⊂ B12τ(xi) \ B3τ(xi) for t ∈ [0, 1], and that
|z − xi| ≤ 2|z − xt| as z ∈ B10τ(xt) \ B5τ(xt), i = 1, 2. Moreover, in the third inequality we have applied esti-
mate (4.6) in Lemma 4.3 to x1, x2 ∈ B󸀠τ ∩Zφ,θ,δ(u), with r1 = 24τ and r0 = 3τ. Furthermore, thanks to
Corollary 3.7, we conclude

∫−ϕ̇( |z − xt|10τ )ψ
2(z) |zn+1|

a

|z − xt|
dz ≤ CHux1 (10τ)∆

24τ
3τ
2
(x1) + CHux2 (10τ)∆

24τ
3τ
2
(x2) + Cτn+a+2(k+1). (4.20)

In addition, thanks to (3.25) and |z − xt| ≥ 5τ we get

∫−ϕ̇( |z − xt|10τ )(|ux1 (z)|
2 + |ux2 (z)|2)

|zn+1|a

|z − xt|
dz ≤ 2

5τ (‖ux1‖
2
L2(B10τ ,dm) + ‖ux2‖

2
L2(B10τ ,dm))

≤ 4Hux1 (10τ) + 4Hux2 (10τ). (4.21)

By collecting (4.19)–(4.21), we conclude that for some C > 0,

J(1)t ≤
C

Huxt (10τ)
(Hux1 (10τ)∆

24τ
3τ
2
(x1) + Hux2 (10τ)∆

24τ
3τ
2
(x2) + τn+a+2(k+1))

+
C

Huxt (10τ)
(Hux1 (10τ) + Hux2 (10τ))

1
2 (Hux1 (10τ)∆

24τ
3τ
2
(x1) + Hux2 (10τ)∆

24τ
3τ
2
(x2) + τn+a+2(k+1))

1
2

≤ C(∆24τ3τ
2
(x1) + (∆24τ3τ

2
(x1))

1
2 ) + C(∆24τ3τ

2
(x2) + (∆24τ3τ

2
(x2))

1
2 ) + C τ

2θ

δ + C
τθ

δ 1
2
,

where, in the last inequality, we have used Lemma 4.1 and that x1, x2 ∈ B󸀠τ ∩Zφ,θ,δ(u).
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Finally, in view of the very definition of the spatial oscillation of the frequency and Corollary 3.13, we
deduce for some constant depending on A that

J(1)t ≤ C((∆
24τ
3τ
2
(x1))

1
2 + (∆24τ3τ

2
(x2))

1
2 ) + Cτθ . (4.22)

Step 4. We estimate next J(2)t . We start off noting that for all y ∈ B1 \ B󸀠1 (cf. (3.3))
d
dt (La(uxt (xt + y))) = |yn+1|

a∆( ddt (Tk,xt [φ](xt + y
󸀠) − φ(xt + y󸀠)))

(4.12)
= |yn+1|a∆(Tk,xt [∂eφ](xt + y󸀠) − ∂eφ(xt + y󸀠))
≤ C|x1 − x2||yn+1|a|y󸀠|k−2 ≤ Cτ|yn+1|a|y󸀠|k−2. (4.23)

Then, arguing as in (4.4), thanks to estimate (3.15) in Remark 3.2, we get as k ≥ 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |y|10τ)(uxt (xt + y)

d
dt (La(uxt (xt + y)))dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(4.23)
≤ Cτk−1 ∫ϕ( |y|10τ)|uxt (xt + y)||yn+1|

a dy

= Cτk−1 ∫
B10τ(xt)

ϕ( |z − xt|10τ )|uxt (z)||zn+1|
a dz

(3.15)
≤ Cτn+a+2k+1 + Cτk−1 ∫

B40τ(x1)

ϕ( |z − x1|40τ )|ux1 (z)||zn+1|
a dz

(3.27)
≤ Cτn+a+2k+1 + Cτ

n+a+1
2 +kD

1
2
ux1 (40τ).

In addition, (3.8) and (4.13) yield
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |y|10τ)δt(y)La(uxt (xt + y))dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cτn+a+2k+1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ϕ( |y|10τ)∂euxt (xt + y)La(uxt (xt + y))dy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Cτn+a+2k+1 + τk ∫ϕ( |y|10τ)|∇uxt (xt + y)||yn+1|
a dy

≤ Cτn+a+2k+1 + Cτ
n+a+1

2 +kD
1
2
uxt (10τ).

Therefore, by applying repeatedly Lemma 4.1, by taking into account (3.43) and by choosing ϱ4.4 sufficiently
small, we infer that

J(t)2 ≤
C

Huxt (10τ)
(τn+a+2(k+1) + τ

n+a+1
2 +k+1D

1
2
ux1 (40τ) + τ

n+a+1
2 +k+1D

1
2
uxt (10τ))

(3.37)
≤ C( τ

2θ

δ +
τθ

δ 1
2
(
τDux1 (40τ))
Hux1 (10τ)

)
1
2
+
τθ

δ 1
2
I
1
2
uxt (10τ))

(3.22)
≤ C(τ2θ + τθ I

1
2
ux1 (40τ) + τ

θ I
1
2
uxt (10τ)) ≤ Cτ

θ , (4.24)

since 144τ < ϱ4.4.
The conclusion in (4.10) follows at once from estimates (4.22) and (4.24).

5 Proof of the main result

5.1 Mean-flatness

Here we show a control of the Jones’ β-number by the oscillation of the frequency. Given a Radon measure μ
inℝn+1, for every x0 ∈ ℝn and for every r > 0, we set

βμ(x0, r) := inf
L
(r−n−1 ∫

Br(x0)

dist2(y,L)dμ(y))
1
2
, (5.1)

where the infimum is taken among all affine (n − 1)-dimensional planes L ⊂ ℝn+1.
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If x0 ∈ ℝn+1 and r > 0 is such that μ(Br(x0)) > 0, set x̄x0 ,r the barycenter of μ in Br(x0), i.e.

x̄x0 ,r :=
1

μ(Br(x0))
∫

Br(x0)

x dμ(x)

and
Bx0 (v, w) := ∫

Br(x0)

((x − x̄x0 ,r) ⋅ v) ((x − x̄x0 ,r) ⋅ w)dμ(x) for all v, w ∈ ℝn+1.

Then
βμ(x0, r) = (r−n−1(λn + λn+1))

1
2 , (5.2)

where 0 ≤ λn+1 ≤ λn ≤ ⋅ ⋅ ⋅ ≤ λ1 are the eigenvalues of the positive semidefinite bilinear form Bx0 .

Proposition 5.1. Let A, δ > 0, θ ∈ (0, 1). Then there exist constants C5.1, ϱ5.1 > 0 with this property. Let
122r ≤ ϱ5.1, 0 ∈ Zφ,θ,δ(u) and Iu0 (66r) ≤ A. Let μ be a finite Borel measure with spt(μ) ⊆ Zφ,θ,δ(u). Then,
for all points p ∈ B󸀠r ∩Zφ,θ,δ(u), we have

β2μ(p, r) ≤
C5.1
rn−1
( ∫
Br(p)

∆24r5
2 r
(x)dμ(x) + r2θμ(Br(p))). (5.3)

Proof. The proof is a variant of the [18, Proposition 4.2], which in turn follows closely the original arguments
by Naber and Valtorta in [28, 29], therefore we only highlight the main differences.

Without loss of generality assume that p ∈ B󸀠r ∩ Γφ(u) ∩Zφ,θ,δ(u) is such that μ(Br(p)) > 0 (otherwise,
there is nothing to prove). Let {v1, . . . , vn+1} be any diagonalizing basis for the bilinear form Bp introduced
in Section 5.1, with corresponding eigenvalues 0 ≤ λn+1 ≤ λn ≤ ⋅ ⋅ ⋅ ≤ λ1.

Since spt(μ) ⊂ Γφ(u) ⊂ ℝn × {0}, we may assume that vn+1 = en+1, λn+1 = 0, so that βμ(p, r) = (r−n−1λn)
1
2

by (5.2). Clearly, we may also assume that λn > 0.
From the very definitions of Bp and of its barycenter we deduce

rn+1β2μ(p, r) ∫
B11r(p)\B10r(p)

|∇󸀠up(z)|2 dm(z)

≤ n ∫
Br(p)

∫
B12r(x)\B9r(x)

((z − x) ⋅ ∇up(z) − αup(z))2 dm(z)dμ(x),
(5.4)

where
α := 1

μ(Br)
∫

Br(p)

Iux (9r)dμ(x).

Next we estimate the two sides of (5.4).
For estimating the left-hand side of (5.4), we can show by compactness that

Dup (12r) ≤ C ∫
B11r(p)\B10r(p)

|∇󸀠up(z)|2 dm(z). (5.5)

Here we use the same contradiction argument in [18, Proposition 4.2] using the compactness given by Corol-
lary 3.15.

For what concerns the right-hand side of (5.4) we proceed as follows. By the triangular inequality we
have

r.h.s. of (5.4) ≤ 4n ∫
Br(p)

∫
B12r(x)\B9r(x)

((z − x) ⋅ ∇ux(z) − Iux (9r)ux(z))2 dm(z)dμ(x)

+ 4n ∫
Br(p)

∫
B12r(x)\B9r(x)

((z − x) ⋅ ∇(ux − up)(z) − α(ux − up)(z))2 dm(z)dμ(x)

+ 4n ∫
Br(p)

∫
B12r(x)\B9r(x)

(Iux (9r) − α)
2u2x(z)dm(z)dμ(x) =: J1 + J2 + J3. (5.6)
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The addends J1 and J3 can be treated as in [18, Proposition 4.2]. Indeed, for J1 we use Lemma 4.1 and
Lemma 4.3 for a suitable choice of the constants to get

J1 ≤ Cr ∫
Br(p)

Hux (24r)∆24r9r (x)dμ(x) ≤ CrHup (12r) ∫
Br(p)

∆24r9r (x)dμ(x). (5.7)

For J3weuse Jensen’s inequality, Proposition4.4, Fubini’s Theorem, inequality (3.25) and (4.1) in Lemma4.1
to get

J3 ≤ CrHup (12r)( ∫
Br(p)

∆22r5
2 r
(x)dμ(x) + r2θμ(Br(p))). (5.8)

Note that the extra term with respect to [18, Proposition 4.2] arises as a consequence of the additional error
term in Proposition 4.4.

To estimate J2 in (5.6), we first note that

∇(Tk,x[φ]) = Tk−1,x[∇φ].

Thenweuse estimates (3.15) and (3.16) in Remark 3.2 to deduce that for all x ∈ Br(p) and z ∈ B12r(x) \ B9r(x)
we have

((z − x) ⋅ ∇(ux − up)(z) − α(ux − up)(z))2 ≤ C(r2|∇(Tk,x[φ](z) − Tk,p[φ](z))|2 + α2|Tk,x[φ](z) − Tk,p[φ]|2(z))
≤ Cr2(k+1).

Therefore, integrating the last estimate we conclude that

J2 ≤ Crn+a+2k+3μ(Br(p)). (5.9)

We can now collect estimates (5.5)–(5.9) and use Corollary 3.13 to get

rn+1β2μ(p, r)Dup (12r) ≤ CrHup (12r) ∫
Br(p)

(∆24r9r (x) + ∆
22r
5
2 r
(x))dμ(x)

+ Cr1+2θμ(Br(p))Hup (12r) + Crn+a+2k+3μ(Br(p))

≤ CrHup (12r)( ∫
Br(p)

∆24r5
2 r
(x)dμ(x) + (r2θ + r

n+a+2(k+1)

Hup (12r)
)μ(Br(p))).

Finally, by assumption p ∈ Zφ,θ,δ, then eC3.11‖φ‖(12r)
θ Iup (12r) ≥ 1 + s (cf. Proposition 3.11, Corollary 3.16 and

the choice 122r ≤ 1), so that the upper inequality in (3.43) yields (5.3).

5.2 Rigidity of homogeneous solutions

In this subsection we extend the results on the rigidity of almost homogeneous solutions established in [18].
We denote by Hλ the space of all nonzero λ-homogeneous solutions to the thin obstacle problem (3.1)

with zero obstacle,

Hλ := {u ∈ H1
loc(ℝ

n+1, dm) \ {0} : u(x) = |x|λu( x
|x| ), u|B1 solves (3.1) with φ ≡ 0},

and setH := ⋃λ≥1+sHλ. The spine S(u) of u ∈ H is the maximal subspace of invariance of u,

S(u) := {y ∈ ℝn × {0} : u(x + y) = u(x) for all x ∈ ℝn+1}.

As observed in [18], themaximal dimension of the spine of a function inH is atmost n − 1 andwe set u ∈ Htop

if u ∈ H and dim S(u) = n − 1, andHlow := H \Htop. All functions inHtop are classified in [18, Lemma 5.3].
Note also that by Caffarelli, Salsa and Silvestre [9]

H1+s ⊆ Htop. (5.10)

We next introduce the notion of almost homogeneous solutions. Given δ > 0 and x0 ∈ Zφ,θ,δ, we set

Jux0 (t) := e
C3.11 tθ Iux0 (t) for all t ∈ (0, ϱ3.11].
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Definition 5.2. Let η > 0 and let u : B1 → ℝ be a solution to thin obstacle problem (3.1) with obstacle φ (as
usual ‖φ‖Ck+1(B󸀠

1)
≤ 1). Assume that 0 ∈ Zφ,θ,δ and ϱ ≤ ϱ3.11, u is called η-almost homogeneous in Bϱ if

Ju0(
ϱ
2) − Ju0(

ϱ
4) ≤ η.

The following lemma justifies this terminology and it is the analog of [18, Lemma 5.5].

Lemma 5.3. Let ε, A > 0, θ ∈ (0, 1). There exists η5.3 > 0 with the following property: for every δ > 0 there
exists ϱ5.3 such that, if u is an η5.3-almost homogeneous solution of (3.1) in Bϱ with ϱ ≤ ϱ5.3 and obstacle
φ, 0 ∈ Zφ,θ,δ(u) and Iu0 (ϱ5.3) ≤ A, then

‖u0,ϱ − w‖H1(B 1
4
,dm) ≤ ε (5.11)

for some homogeneous solution w ∈ H.

Proof. The proof follows by a contradiction argument similar to [18, Lemma 5.5]. Assume that for some
ε, A > 0 we could find infinitesimal sequences of numbers δl , ϱl and of 1

l -almost homogeneous solutions
ul of (3.1) in Bϱl such that 0 ∈ Zφ,θ,δ(ul) and

inf
l

inf
w∈H
‖(ul)0,ϱl − w‖H1(B 1

4
,dm) ≥ ε, (5.12)

and satisfying the bounds I(ul)0 (ϱl) ≤ A.
Consider vl := (ul)0,ϱl ; then by Corollary 3.15 applied to vl there would be a subsequence, not relabeled,

converging inH1(B1, dm) to a solution v∞ of the thinobstacle problemwith zeroobstacle. ByProposition3.11
there is some A󸀠 independent of l such that I(ul)0 (t) ≤ A󸀠 for all t ∈ (0, ϱl], then from (3.23) in Corollary 3.7
we would infer that

−∫ ϕ̇(2|x|t )
|v∞|2

|x| |xn+1|
a dx = − lim

l
∫ ϕ̇(2|x|t )

|vl|2

|x| |xn+1|
a dx = lim

l

H(ul)0 (
ϱl
2 )

H(ul)0 (ϱl)
≥ 2−(n+a+2A󸀠),

in turn implying that v∞ is not zero. On the other hand, we would also get

I(v∞)0(
1
2) − I(v∞)0(

1
4) = liml

(J(vl)0(
1
2) − J(vl)0(

1
4 )) = liml

(J(ul)0(
ϱl
2 ) − J(ul)0(

ϱl
4 )) = 0,

and thus we would conclude that v∞ ∈ H being a solution to the lower-dimensional obstacle problem with
constant frequency (see for instance [18, Proposition 2.7]). We have thus contradicted (5.12).

A rigidity property of the type shown in [18, Proposition 5.6] holds for the nonzero obstacle problem.

Proposition 5.4. Let A, τ > 0, θ ∈ (0, 1). There exists η5.4 > 0 with this property. For every δ > 0 there exists
ϱ5.4 such that, if u is an η5.4-almost homogeneous solution of (3.1) in Bϱ with ϱ ≤ ϱ5.4 and obstacle φ,
0 ∈ Zφ,θ,δ(u) and Iu0 (ϱ5.4) ≤ A, then the following dichotomy holds:
(i) Either for every point x ∈ B󸀠ϱ

2
∩Zφ,θ,δ(u) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Jux(

ϱ
2) − Ju0(

ϱ
2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ τ, (5.13)

(ii) or there exists a linear subspace V ⊂ ℝn × {0} of dimension n − 2 such that

{{
{{
{

y ∈ B󸀠ϱ
2
∩Zφ,θ,δ(u),

Juy(
ϱ
8) − Juy(

ϱ
16) ≤ η5.4

󳨐⇒ dist(y, V) < τϱ. (5.14)

Proof. The proof proceeds by contradiction and follows the strategy developed in [18, Proposition 5.6].
Let A, τ > 0 be given constants and assume that there exist infinitesimal sequences δl , ϱl and a sequence
(ul)l∈ℕ of 1

l -almost homogeneous solutions in Bϱl such that 0 ∈ Zφl ,θ,δl (ul), I(ul)0 (ϱl) ≤ A and such that:
(i) there exists xl ∈ B󸀠ϱl

4
∩Zφl ,θ,δl (ul) for which

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
J(ul)xl (

ϱl
2 ) − J(ul)0(

ϱl
2 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> τ, (5.15)
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(ii) for every linear subspace V ∈ ℝn × {0} of dimension n − 2 there exists yl ∈ B󸀠ϱl
4
∩Zφl ,θ,δl (ul) (a priori

depending on V) such that

J(ul)yl (
ϱl
8 ) − J(ul)yl (

ϱl
16) ≤

1
l and dist(yl , V) ≥ τϱl . (5.16)

We consider the rescaled functions vl := (ul)0,ϱl : B2 → ℝ. By the compactness result in Corollary 3.15 we
deduce that, up to passing to a subsequence (not relabeled), there exists a nonzero function v∞ solution to
the thin obstacle problem (3.1) in B1 with null obstacle such that vl → v∞ in H1(B1, dm). Moreover, v∞ ∈ H
thanks to Lemma 5.3.

If v∞ ∈ Htop, then (5.15) is contradicted. Indeed, up to choosing a further subsequence, we can assume
that zl := ϱ−1l xl → z∞ ∈ B̄ 1

2
. Note that the points zl ∈ N(vl), as xl ∈ Γφl (ul), so that

vl(zl) = (ul)0,ϱl (zl) =
ϱ
n+a
2
l

H
1
2
(ul)0 (ϱl)

(ul)0(xl) = 0.

In addition, by (3.10) and being E [Tk,0[φl]] even with respect to {xn+1 = 0} (cf. Lemma 2.1), for all l we infer
that

lim
t↓0

ta∂n+1vl(z󸀠l , t) =
ϱ
n+a
2
l

H
1
2
(ul)0 (ϱl)

lim
t↓0

ta∂n+1(ul(x󸀠l , t) − E [Tk,0[φl]](x󸀠l , t)) = 0.

Hence, we conclude that z∞ ∈ N(v∞) in view of (3.52). Moreover, by taking into account the very definition
of vl and Remark 3.4 we get by scaling
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
I(v∞)z∞(

1
2) − I(v∞)0(

1
2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
2 ∫ϕ(2|x − z∞|)|∇v∞|

2|xn+1|a dx

−∫ ϕ̇(2|x − z∞|) |v∞|
2

|x−z∞| |xn+1|
a dx
−

1
2 ∫ϕ(2|x|)|∇v∞|

2|xn+1|a dx

−∫ ϕ̇(2|x|) |v∞|2|x| |xn+1|a dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
2 ∫ϕ(2|x − zl|)|∇vl|

2|xn+1|a dx

−∫ ϕ̇(2|x − zl|) |vl |
2

|x−zl | |xn+1|
a dx
−

1
2 ∫ϕ(2|x|)|∇vl|

2|xn+1|a dx

−∫ ϕ̇(2|x|) |vl |2|x| |xn+1|a dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ϱl
2 ∫ϕ(

|z−xl |
ϱl
2
)|∇(ul)0|2|zn+1|a dz

−∫ ϕ̇( |z−xl |ϱl
2
) |(ul)0|

2

|z−xl | |zn+1|
a dz
−

ϱl
2 D(ul)0 (

ϱl
2 )

H(ul)0 (
ϱl
2 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ϱl
2 D(ul)xl (

ϱl
2 )

H(ul)xl (
ϱl
2 )
−

ϱl
2 D(ul)0 (

ϱl
2 )

H(ul)0 (
ϱl
2 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(3.43)
= lim

l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
I(ul)xl (

ϱl
2 ) − I(ul)0(

ϱl
2 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
J(ul)xl (

ϱl
2 ) − J(ul)0(

ϱl
2 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ τ,

which is a contradiction to the constancy of the frequency at critical points of the homogeneous solution
v∞ ∈ Htop (see [18, Lemma 5.3]). The fourth equality is justified by taking into account that xl ∈ Zφl ,θ,δl (ul)
(cf. (3.37) and (3.39)), and in view of estimates (3.15) and (3.16) in Remark 3.2, in turn implying for all
z ∈ B ϱl

2
(xl) (recall that ϱ−1l xl → z∞)

|(ul)0(z) − (ul)xl (z)| ≤ Cϱk+1l , |∇((ul)0(z) − (ul)xl (z))| ≤ Cϱkl .

Moreover, (3.43) can be employed in the last two equalities as xl ∈ B󸀠ϱl
4
∩Zφl ,θ,δl (ul).

Instead, if v∞ ∈ Hlow, we show a contradiction to (5.16) with V any (n − 2)-dimensional subspace con-
taining S(v∞). Indeed, let yl be as in (5.16) for such a choice of V. By compactness, up to passing to a sub-
sequence (not relabeled), zl := ϱ−1l yl → z∞ for some z∞ ∈ B̄ 1

2
with dist(z∞, V) ≥ τ. In addition, arguing as

before
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
I(v∞)z∞(

1
8) − I(v∞)z∞(

1
16)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= lim
l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ϱl
8 D(ul)yl (

ϱl
8 )

H(ul)yl (
ϱl
8 )
−

ϱl
16D(ul)yl (

ϱl
16 )

H(ul)yl (
ϱl
16 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(3.43)
= lim

l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
I(ul)yl (

ϱl
8 ) − I(ul)yl (

ϱl
16)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
l→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
J(ul)yl (

ϱl
8 ) − J(ul)yl (

ϱl
16)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

Again, note that (3.43) can be employed since yl ∈ B󸀠ϱl
2
∩Zφl ,θ,δl (ul). By [18, Proposition 2.7, Lemma 5.2] it

follows that z∞ ∈ S(v∞), thus contradicting S(v∞) ⊆ V and dist(z∞, V) ≥ τ.
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5.3 Proof of Theorem 1.2

Westart offnoting that it suffices toprove that Γφ,θ(u) ∩ B̄1(x0) satisfies all the conclusions for all x0 ∈ Γφ,θ(u).
For all R ∈ (0, 1), we can find a finite number of balls B R

2
(xi), xi ∈ Γφ,θ(u) for i ∈ {1, . . . ,M}, whose union

cover Γφ,θ(u) ∩ B̄1(x0). We shall choose appropriately R in what follows. Moreover, with fixed i ∈ {1, . . . ,M},
by horizontal translation we may reduce to xi = 0 ∈ Γφ,θ(u) without loss of generality.

Then, recalling the definition of Γφ,θ(u) in (1.8) we have that

Γφ,θ(u) ∩ B󸀠R
2
= ⋃
j∈ℕ

Z R
φ,θ, 1j
(u),

where
Z R
φ,θ, 1j
(u) := {x0 ∈ Γφ(u) ∩ B󸀠R

2
: Hux0 (r) ≥

rn+a+2(k+1−θ)

j for all r ∈ (0, R2 )}

Hence, we may establish the result for Z R
φ,θ, 1j
(u) with j ∈ ℕ fixed.

Note that as 0 ∈ Γφ(u), the function

ũ(y) := u(Ry) − u(0)

solves the fractional obstacle problem (3.1) in B1 with obstacle function φ̃( ⋅ ) := φ(R ⋅ ) − φ(0). Moreover,

Γφ̃,θ(ũ) ∩ B󸀠1
2
=
1
R (Γφ,θ(u) ∩ B

󸀠
R
2
),

with ũ z
R
( ⋅ ) = uz(R ⋅ ) if z ∈ Γφ,θ(u) ∩ B󸀠R

2
, being Tk, zR [φ̃]( ⋅ ) = Tk,z[φ](R ⋅ ). Thus, we get that z ∈ Z R

φ,θ, 1j
(u) if

and only if zR ∈ B
󸀠
1
2
∩Zφ̃,θ, R2(k+1−θ)j

(ũ). In addition, it is easy to check that

‖φ̃‖Ck+1(B󸀠
1)
≤ R‖∇φ‖Ck(B󸀠

R ,ℝn).

We choose R > 0 sufficiently small so that ‖φ̃‖Ck+1(B󸀠
R)
≤ 1 and the smallness conditions on the radii in all the

statements of Sections 3–5 are satisfied.
In such a case the proof, of the main results can be obtained by following verbatim [18, Sections 6–8].

Indeed, [18, Proposition 6.1], that leads both to the local finiteness of theMinkowski content ofZφ̃,θ,δ(ũ) and
to its (n − 1)-rectifiability, is based on a covering argument that exploits the lower bound on the frequency
in Corollary 3.16, the control of the mean oscillation via the frequency in Proposition 5.1, the rigidity of
almost homogeneous solutions in Proposition 5.4, the discrete Reifenberg theorem by Naber and Valtorta
[28, Theorem 3.4, Remark 3.9], and the rectifiability criterion either by Azzam and Tolsa [2] or by Naber
and Valtorta [28, 29]. Therefore, the only extra-care needed in the current setting is to start the covering
argument from a scale which is small enough to validate the conclusions of the lemmas and propositions of
the previous sections.

Finally, the classification of blowup limits is exactly that stated in [18, Theorem 1.3], and proved in
[18, Section 8], in view of Lemma 3.14 and Corollary 3.15.
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