Abstract
We study the local regularity of the solution u of the following nonlinear boundary value problem:
where Ω is a bounded open subset of
Funding statement: The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This paper was supported by FIR 2018 and Piano Triennale della Ricerca 2016-2018 (UNICT).
Acknowledgements
The authors are indebted to the anonymous reviewer who contributed to improve the original manuscript with helpful suggestions.
References
[1] L. Boccardo, Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital. (9) 2 (2009), no. 1, 285–297. Search in Google Scholar
[2] L. Boccardo, S. Buccheri and G. R. Cirmi, Two linear noncoercive Dirichlet problems in duality, Milan J. Math. 86 (2018), no. 1, 97–104. 10.1007/s00032-018-0281-5Search in Google Scholar
[3] L. Boccardo and T. Leonori, Local properties of solutions of elliptic equations depending on local properties of the data, Methods Appl. Anal. 15 (2008), no. 1, 53–63. 10.4310/MAA.2008.v15.n1.a6Search in Google Scholar
[4] T. Del Vecchio and M. R. Posteraro, Existence and regularity results for nonlinear elliptic equations with measure data, Adv. Differential Equations 1 (1996), no. 5, 899–917. 10.57262/ade/1366896024Search in Google Scholar
[5] D. Giachetti and M. M. Porzio, Local regularity results for minima of functionals of the calculus of variation, Nonlinear Anal. 39 (2000), no. 4, 463–482. 10.1016/S0362-546X(98)00215-6Search in Google Scholar
[6] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud. 105, Princeton University, Princeton, 1983. 10.1515/9781400881628Search in Google Scholar
[7] G. Moscariello, A. Passarelli di Napoli and M. M. Porzio, Existence of infinite energy solutions of degenerate elliptic equations, Z. Anal. Anwend. 31 (2012), no. 4, 393–426. 10.4171/ZAA/1466Search in Google Scholar
[8] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189–258. 10.5802/aif.204Search in Google Scholar
[9] G. Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Les Presses de l’Université de Montréal, Montreal, 1966. Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In memoriam Emmanuele DiBenedetto (1947–2021)
- Local regularity results for solutions of linear elliptic equations with drift term
- On the existence of non-flat profiles for a Bernoulli free boundary problem
- On the blow-up of GSBV functions under suitable geometric properties of the jump set
- Anisotropic liquid drop models
- Rigidity and trace properties of divergence-measure vector fields
Articles in the same Issue
- Frontmatter
- In memoriam Emmanuele DiBenedetto (1947–2021)
- Local regularity results for solutions of linear elliptic equations with drift term
- On the existence of non-flat profiles for a Bernoulli free boundary problem
- On the blow-up of GSBV functions under suitable geometric properties of the jump set
- Anisotropic liquid drop models
- Rigidity and trace properties of divergence-measure vector fields