Home Local regularity results for solutions of linear elliptic equations with drift term
Article
Licensed
Unlicensed Requires Authentication

Local regularity results for solutions of linear elliptic equations with drift term

  • G. R. Cirmi , S. D’Asero , Salvatore Leonardi EMAIL logo and Michaela M. Porzio
Published/Copyright: November 20, 2019

Abstract

We study the local regularity of the solution u of the following nonlinear boundary value problem:

{ 𝒜 u = - div [ E ( x ) u + F ( x ) ] in  Ω , u = 0 on  Ω ,

where Ω is a bounded open subset of N , with N > 2 , 𝒜 is a nonlinear Leray–Lions operator in divergence form, and E ( x ) and F ( x ) are vector fields satisfying suitable local summability properties.

MSC 2010: 35J25; 35B65

Communicated by Jan Bruinier


Funding statement: The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This paper was supported by FIR 2018 and Piano Triennale della Ricerca 2016-2018 (UNICT).

Acknowledgements

The authors are indebted to the anonymous reviewer who contributed to improve the original manuscript with helpful suggestions.

References

[1] L. Boccardo, Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital. (9) 2 (2009), no. 1, 285–297. Search in Google Scholar

[2] L. Boccardo, S. Buccheri and G. R. Cirmi, Two linear noncoercive Dirichlet problems in duality, Milan J. Math. 86 (2018), no. 1, 97–104. 10.1007/s00032-018-0281-5Search in Google Scholar

[3] L. Boccardo and T. Leonori, Local properties of solutions of elliptic equations depending on local properties of the data, Methods Appl. Anal. 15 (2008), no. 1, 53–63. 10.4310/MAA.2008.v15.n1.a6Search in Google Scholar

[4] T. Del Vecchio and M. R. Posteraro, Existence and regularity results for nonlinear elliptic equations with measure data, Adv. Differential Equations 1 (1996), no. 5, 899–917. 10.57262/ade/1366896024Search in Google Scholar

[5] D. Giachetti and M. M. Porzio, Local regularity results for minima of functionals of the calculus of variation, Nonlinear Anal. 39 (2000), no. 4, 463–482. 10.1016/S0362-546X(98)00215-6Search in Google Scholar

[6] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud. 105, Princeton University, Princeton, 1983. 10.1515/9781400881628Search in Google Scholar

[7] G. Moscariello, A. Passarelli di Napoli and M. M. Porzio, Existence of infinite energy solutions of degenerate elliptic equations, Z. Anal. Anwend. 31 (2012), no. 4, 393–426. 10.4171/ZAA/1466Search in Google Scholar

[8] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189–258. 10.5802/aif.204Search in Google Scholar

[9] G. Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Les Presses de l’Université de Montréal, Montreal, 1966. Search in Google Scholar

Received: 2019-05-14
Revised: 2019-10-08
Accepted: 2019-10-25
Published Online: 2019-11-20
Published in Print: 2022-01-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/acv-2019-0048/html?lang=en
Scroll to top button