Home Regularity of solutions to a fractional elliptic problem with mixed Dirichlet–Neumann boundary data
Article
Licensed
Unlicensed Requires Authentication

Regularity of solutions to a fractional elliptic problem with mixed Dirichlet–Neumann boundary data

  • Jose Carmona , Eduardo Colorado ORCID logo EMAIL logo , Tommaso Leonori and Alejandro Ortega
Published/Copyright: January 17, 2020

Abstract

In this work we study regularity properties of solutions to fractional elliptic problems with mixed Dirichlet–Neumann boundary data when dealing with the spectral fractional Laplacian.

MSC 2010: 35R11; 35B65

Communicated by Juan Manfredi


Award Identifier / Grant number: MTM2016-80618-P

Funding statement: E. Colorado and A. Ortega are partially supported by the Ministry of Economy and Competitiveness of Spain and FEDER, under grant number MTM2016-80618-P. J. Carmona is partially supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under grant number PGC2018-096422-B-I00 and Junta de Andalucía FQM-194.

References

[1] B. Abdellaoui, A. Dieb and E. Valdinoci, A nonlocal concave-convex problem with nonlocal mixed boundary data, Commun. Pure Appl. Anal. 17 (2018), no. 3, 1103–1120. 10.3934/cpaa.2018053Search in Google Scholar

[2] B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, https://doi.org/10.1017/prm.2018.77. 10.1017/prm.2018.77Search in Google Scholar

[3] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39–71. 10.1017/S0308210511000175Search in Google Scholar

[4] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), no. 5, 2052–2093. 10.1016/j.aim.2010.01.025Search in Google Scholar

[5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1245–1260. 10.1080/03605300600987306Search in Google Scholar

[6] J. Carmona, E. Colorado, T. Leonori and A. Ortega, Semilinear fractional elliptic problems with mixed Dirichlet–Neumann boundary conditions, preprint (2019), https://arxiv.org/abs/1902.08925v1. 10.1515/fca-2020-0061Search in Google Scholar

[7] E. Colorado and A. Ortega, The Brezis–Nirenberg problem for the fractional Laplacian with mixed Dirichlet–Neumann boundary conditions, J. Math. Anal. Appl. 473 (2019), no. 2, 1002–1025. 10.1016/j.jmaa.2019.01.006Search in Google Scholar

[8] E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003), no. 2, 468–507. 10.1016/S0022-1236(02)00101-5Search in Google Scholar

[9] S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2017), no. 2, 377–416. 10.4171/RMI/942Search in Google Scholar

[10] E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. 10.1080/03605308208820218Search in Google Scholar

[11] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math. 88, Academic Press, New York, 1980. Search in Google Scholar

[12] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss. 181, Springer, New York, 1972, 10.1007/978-3-642-65217-2Search in Google Scholar

[13] G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia Math. Appl. 162, Cambridge University, Cambridge, 2016. 10.1017/CBO9781316282397Search in Google Scholar

[14] E. Shamir, Regularization of mixed second-order elliptic problems, Israel J. Math. 6 (1968), 150–168. 10.1007/BF02760180Search in Google Scholar

[15] G. Stampacchia, Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie Hölderiane, Ann. Mat. Pura Appl. (4) 51 (1960), 1–37. 10.1007/BF02410941Search in Google Scholar

Received: 2019-04-11
Revised: 2019-09-17
Accepted: 2019-12-10
Published Online: 2020-01-17
Published in Print: 2021-10-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/acv-2019-0029/html
Scroll to top button