Home 𝒟1,2(ℝN) versus C(ℝN) local minimizer on manifolds and multiple solutions for zero-mass equations in ℝN
Article
Licensed
Unlicensed Requires Authentication

𝒟1,2(ℝN) versus C(ℝN) local minimizer on manifolds and multiple solutions for zero-mass equations in ℝN

  • Siegfried Carl , David G. Costa EMAIL logo and Hossein Tehrani
Published/Copyright: April 8, 2017

Abstract

We consider functionals of the form

J(u)=12N|u|2-Nb(x)G(u)

on a C1-submanifold M of 𝒟1,2(N), N3, where G is the primitive of some “zero-mass” nonlinearity g (i.e., g(0)=0), and the weight function b:N is merely supposed to belong to L1(N)L2*2*-p(N) for some 2<p<2*, and to possess a certain decay behavior. Let V be the subspace of 𝒟1,2(N) given by V:={v𝒟1,2(N):vC(N) with supxN(1+|x|N-2)|v(x)|<}. We prove that a local minimizer of the constrained functional J|M with respect to the V-topology must be a local minimizer with respect to the “bigger” 𝒟1,2(N)-topology. This result allows us to prove the existence of multiple nontrivial solutions of the zero-mass equation -Δu=b(x)g(u) in N, where g:R is a subcritical nonlinearity, which is superlinear at zero and at .

MSC 2010: 35J15; 35J20

Communicated by Juha Kinnunen


References

[1] W. Allegretto and P. Odiobala, Nonpositone elliptic problems in n, Proc. Amer. Math. Soc. 123 (1995), no. 2, 533–541. 10.2307/2160911Search in Google Scholar

[2] C. Alves, M. Souto and M. Montenegro, Existence of solution for two classes of elliptic problems in n with zero mass, J. Differential Equations 252 (2012), no. 10, 5735–5750. 10.1016/j.jde.2012.01.041Search in Google Scholar

[3] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 117–144. 10.4171/JEMS/24Search in Google Scholar

[4] J. G. Azorero, I. P. Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385–404. 10.1142/S0219199700000190Search in Google Scholar

[5] A. Azzollini and A. Pomponio, On a “zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud. 7 (2007), no. 4, 599–627. 10.1515/ans-2007-0406Search in Google Scholar

[6] A. Azzollini and A. Pomponio, Compactness results and applications to some “zero mass” elliptic problems, Nonlinear Anal. 69 (2008), no. 10, 3559–3576. 10.1016/j.na.2007.09.041Search in Google Scholar

[7] H. Berestycki and P. Lions, Nonlinear scalar field equations. I: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–345. 10.1007/BF00250555Search in Google Scholar

[8] H. Berestycki and P. Lions, Nonlinear scalar field equations. II: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 347–375. 10.1007/BF00250556Search in Google Scholar

[9] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271–297. 10.1002/cpa.3160420304Search in Google Scholar

[10] P. Candito, S. Carl and R. Livrea, Critical points in open sublevels and multiple solutions for parameter-depending quasilinear elliptic equations, Adv. Differential Equations 19 (2014), no. 11–12, 1021–1042. 10.57262/ade/1408367287Search in Google Scholar

[11] S. Carl, D. Costa and H. Tehrani, Extremal and sign-changing solutions of supercritical logistic-type equations in n, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 4143–4164. 10.1007/s00526-015-0934-ySearch in Google Scholar

[12] S. Carl, D. Costa and H. Tehrani, 𝒟1,2(n) versus C(n) local minimizer and a Hopf-type maximum principle, J. Differential Equations 261 (2016), no. 3, 2006–2025. 10.1016/j.jde.2016.04.019Search in Google Scholar

[13] S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal. 68 (2008), 2668–2676. 10.1016/j.na.2007.02.013Search in Google Scholar

[14] S. Carl and D. Motreanu, Multiple solutions for elliptic systems via trapping regions and related nonsmooth potentials, Appl. Anal. 94 (2015), no. 8, 1594–1613. 10.1080/00036811.2014.940520Search in Google Scholar

[15] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. 10.1016/0022-247X(74)90025-0Search in Google Scholar

[16] M. Flucher and S. Müller, Radial symmetry and decay rate of variational ground states in the zero mass case, SIAM J. Math. Anal. 29 29 (1998), no. 3, 712–719. 10.1137/S0036141096314026Search in Google Scholar

[17] J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 117–158. 10.2422/2036-2145.2007.1.07Search in Google Scholar

[18] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Search in Google Scholar

[19] Z. Guo and Z. Zhang, W1,p versus C1 local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), no. 1, 32–50. 10.1016/S0022-247X(03)00282-8Search in Google Scholar

[20] A. Iannizzotto, S. Mosconi and M. Squassina, Hs versus C0-weighted minimizers, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 3, 477–497. 10.1007/s00030-014-0292-zSearch in Google Scholar

[21] A. Khan and M. Motreanu, Local minimizers versus X-local minimizers, Optim. Lett. 7 (2013), no. 5, 1027–1033. 10.1007/s11590-012-0474-8Search in Google Scholar

[22] D. Siegal and E. Talvila, Pointwise growth estimates of the Riesz potential, Dyn. Contin. Discrete Impulsive Syst. 5 (1999), no. 1–4, 185–194. Search in Google Scholar

[23] K. Sreenadh and S. Tiwari, On W1,p(x) versus C1 local minimizers of functionals related to p(x)-Laplacian, Appl. Anal. 92 (2013), no. 6, 1271–1282. 10.1080/00036811.2012.670224Search in Google Scholar

[24] M. Struwe, Variational Methods, Springer, Berlin, 1990. 10.1007/978-3-662-02624-3Search in Google Scholar

[25] Z. Tan and F. Fang, Orlicz–Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402 (2013), no. 1, 348–370. 10.1016/j.jmaa.2013.01.029Search in Google Scholar

[26] H. Tehrani, H1 versus C1 local minimizers on manifolds, Nonlinear Anal. 26 (1996), no. 9, 1491–1509. 10.1016/0362-546X(95)00019-RSearch in Google Scholar

[27] Z.-Q. Wang, On a superlinear elliptic equation, Ann. Inst. Henri Poincaré 8 (1991), 43–57. 10.1016/s0294-1449(16)30276-1Search in Google Scholar

[28] P. Winkert, Local C1(Ω¯)-minimizers versus local W1,p(Ω)-minimizers of nonsmooth functionals, Nonlinear Anal. 72 (2010), no. 11, 4298–4303. 10.1016/j.na.2010.02.006Search in Google Scholar

Received: 2016-03-20
Accepted: 2017-03-04
Published Online: 2017-04-08
Published in Print: 2018-07-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/acv-2016-0012/html
Scroll to top button