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ABSTRACT 

An exact dynamic stiffness approach for vibration analysis of laminated composite beams with arbitrary ply 
orientation is introduced in this paper. The influences of Poisson effect, shear deformation and rotary inertia are 
accounted for in the formulation. The coupled equations of motion are derived first by using the Hamilton principle and 
the dynamic stiffness matrix is established based on the analytical solutions of the governing differential equations. The 
automated Muller root search algorithm is then applied to the developed dynamic stiffness matrix to calculate the 
natural frequencies and mode shapes of the particular composite beams. The influences due to Poisson effect, shear 
deformation, anisotropy, slenderness ratio and boundary condition on the natural frequencies of the composite beams 
are investigated. Numerical results of the present method are validated by comparison with those previously published 
in literature. 
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1. INTRODUCTION 

Composite materials are widely used in many branches of aerospace, mechanical and civil engineering in the past 
few decades. Laminated composite beams made of anisotropic materials are ideal for structural applications because of 
their high strength-to-weight and stiffness-to-weight ratios as well as their ability to be tailored to meet the design 
requirements of stiffness and strength and favorable fatigue characteristics. The great promise provided by the fiber-
reinforced composite materials can be used to improve the performance of the structures that operate in complex 
environmental conditions. Since the composite beam members have found increasing applications in various areas of 
technology, it is important to ensure that their design is reliable and safe. The determination of the natural frequencies 
of the structures is the first step and is usually critical in the design process because much structural behavior and 
integrity can be deduced from the knowledge of the natural frequencies. Therefore, it is essential for design engineers to 
evaluate the dynamic characteristics of the composite beam members accurately. 

Due to the practical interest and future potential of the laminated composite beams, particularly in the context of 
aerospace and mechanical applications, the dynamics of the composite beams is a subject of great interest. The different 
aspects concerning the free vibration behavior of the composite beams have been investigated by a number of 
researchers who have developed several theories. 

Abarcar and Cunniff / I / performed the free vibration analysis of a simple laminated composite beam without the 
effects of shear deformation and rotary inertia included. Miller and Adams 111 presented the vibration characteristics of 
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orthotropic fixed-free beams without including the shear deformation. Vinson and Sierakowski /3/ obtained the 
analytical solutions for simply-supported composite beams using the classical lamination theory. Banerjee and Williams 
/4/ developed the exact dynamic stiffness matrix for a uniform, straight, bending-torsion coupled, composite beam with 
the effects of shear deformation and rotary inertia ignored. Mahapatra et al. 151 proposed a spectral element for 
Bernoulli-Euler composite beams. 

The classical lamination beam theory, in which the transverse shear strain is neglected, overpredicts the natural 
frequencies. The high ratio of extensional modulus to shear modulus renders classical theory inadequate for the analysis 
of laminated beams made of advanced composites. An adequate theory must account for the transverse shear 
deformation. 

Teh and Huang 16/ presented two finite element models based on a first-order theory for the free vibration analysis 
of fixed-free beams of general orthotropy. Chen and Yang 111 worked out free vibration analysis of symmetrically 
laminated beams based on the first-order shear deformation theory using finite elements. Chandrashekhara et al. /8/ 
derived the equations of motion of composite beams using a first-order shear deformation theory and obtained the exact 
frequencies and mode shapes of the composite beams with several boundary conditions. Bhimaraddi and 
Chandrashekhara 191 modeled laminated beams by a systematic reduction of the constitutive relations of the three-
dinensional anisotropic body and obtained the basic equations of the beam theory based on the-parabolic shear 
deformation theory. Soldatos and Elishakoff /10/ developed a third-order shear deformation theory for static and 
dynamic analysis of an orthotropic beam with the effects of transverse shear and transverse normal deformations 
incorporated. Abramovich /11/ gave the exact solutions, based on the Timoshenko type equations, for symmetrically 
laminated composite beams with ten different boundary conditions. The effects of the rotary inertia and shear 
deformation on the natural frequencies were investigated for simply-supported beams with square section. 
K.rishnaswamy>ef al. /12/ used the Hamilton principle to formulate the dynamic equations governing the free vibration 
of laminated composite beams. The influences of transverse shear deformation and rotary inertia were included, and the 
analytical solutions for unsymmetric laminated beams were obtained by applying the Lagrange multipliers method. 
Chandrashekhara and Bangera /13/ studied the free vibration characteristics of laminated composite beams using a 
higher-order beam theory. Abramovich and Livshits /14/ considered the free bending vibration of non-symmetric cross-
ply laminated composite Timoshenko beams. Nabi and Ganesan /15/ solved the free vibration problem of laminated 
composite beams using the finite element method based on the first-order shear deformation theory in which biaxial 
bending as well as both torsional and longitudinal oscillations were accounted for. Eisenberger et al. /16/ used dynamic 
stiffness analysis and the first-order shear deformation theory to study the free vibration of laminated beams. Teboub 
and Hajela /17/ used the first-order shear deformation theory to analyze the free vibrations of generally layered 
composite beams. The model used in this study accounted for both in-plane and rotary inertias. Banerjee and Williams 
/18/ presented an exact dynamic stiffness matrix for a composite beam with the effects of shear deformation, rotary 
inertia and coupling between the bending and the torsional deformations included. Kant et al. /19/ presented an 
analytical method for the dynamic analysis of laminated beams using higher-order refined theory. Shimpi and Ainapure 
/20/ studied the free vibration of two-layered laminated cross-ply beams using the variationally consistent layerwise 
trigonometric shear deformation theory. Yildirim and Kiral /21/ studied the out-of-plane free vibration problem of 
symmetric cross-ply laminated beams by the transfer matrix method based on the first-order shear deformation theory. 
Yildirim 1221 used the stiffness method for the solution of the purely in-plane free vibration problem of symmetric 
cross-ply laminated beams with the effects of rotary inertia, axial and transverse shear deformations included by the 
first-order shear deformation theory. Shimpi and Ainapure /23/ presented a simple one-dimensional beam finite element 
with two nodes and three degrees of freedom per node, based on the layerwise trigonometric shear deformation theory. 
Rao et al. /24/ proposed a higher-order mixed theory for determining the natural frequencies of a diversity of laminated 
simply-supported beams. Arya et al. 1251 developed a zigzag model for symmetric laminated beam in which a sine term 
was used to represent the nonlinear displacement field across the thickness as compared to a third-order polynomial 
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term in conventional theories. Zero transverse shear stress boundary conditions at the top and bottom of the beam were 
satisfied. Chakraborty et al. 1261 presented a new refined locking free first-order shear deformable finite element and 
demonstrated its utility in solving the free vibration and wave propagation problems in the laminated composite beam 
structures with symmetric as well as asymmetric ply stacking. Mahapatra and Gopalakrishnan /27/ presented a spectral 
finite element model for analysis of axial-flexural-shear coupled wave propagation in thick laminated composite beams 
and derived an exact dynamic stiffness matrix. Chen et al. /28/ presented a new approach combining the state space 
method and the differential quadrature method for freely vibrating laminated beams based on two-dimensional theory of 
elasticity. Ruotolo /29/ developed a spectral element for anisotropic, laminated composite beams. The axial-bending 
coupled equations of motion were derived under the assumptions of the first-order shear deformation theory and the 
spectral element matrix was formulated. 

A review of the literature indicates that, although a large number of publications address the vibration problem of 
the composite beams, most of the works on the subject focus on the cross-ply composite beams; only a few researches 
are available that pertain to the vibration of generally layered composite beams. In order to develop a valid 
mathematical model of generally laminated composite beams, the shear deformation and rotary inertia, which are of 
great importance from the existing studies, are considered in the present work. Also, the Poisson effect which is 
significant when considering the analysis of one-dimensional beams with arbitrary ply orientation is included in the 
beam constitutive equations. The aim of this paper is to formulate the dynamic stiffness matrix for an anisotropic, 
generally laminated composite beam based on first-order shear deformation theory. The dynamic stiffness method in 
vibration analysis of laminated beams has certain advantages over the traditional finite element method, particularly 
when higher frequencies and better accuracies of results are required. This is because, unlike the traditional finite 
element and other approximate methods, the dynamic stiffness method is based on the analytical solutions of the 
governing differential equations of motion, and it allows an infinite number of natural frequencies to be accounted for, 
without any loss of accuracy. Despite the outstanding features of the dynamic stiffness method, there have been few 
applications to generally lay-up composite beams. The available dynamic stiffness formulations of the composite beams 
mostly deal with the cross-ply configurations. 

This paper is partly motivated by the earlier works and gives the derivation of the exact dynamic stiffness matrix of 
a uniform generally laminated composite beam member, starting from its basic governing differential equations. The 
equations of motion of a laminated beam in free vibration are obtained by means of the Hamilton principle. The Poisson 
effect, shear deformation and rotary inertia are accounted for in the formulation. The application of the proposed 
dynamic stiffness matrix is discussed and the numerical results for natural frequencies and mode shapes of the 
laminated beams are presented. The present results are compared with those available in the literature, whenever 
possible. A parametric study of the influences of the Poisson effect, shear deformation, anisotropy, slenderness ratio and 
boundary condition on the natural frequencies of the composite beams is performed. 

2. ANALYTICAL FORMULATION 

A laminated composite beam is considered, and referred to a system of Cartesian coordinates originating on the mid-
plane of the beam, with the x-axis being coincident with the beam axis, as shown in Fig. 1. The laminated beam is made 
of many plies of orthotropic materials, and the principal material axes of a ply may be oriented at an arbitrary angle 
with respect to the x-axis. The length, breadth and thickness of the beam are represented by L, b and h, respectively. 
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Fig. 1: Geometry o f a laminated composite beam. 

The displacements o f the beam based on first-order shear deformation theory are assumed to be o f the forms 

u(x,z,t) = uo(x,t) + z0(x,t) (la) 

v(x, z,t) = 0 (lb) 

w(x,z,0 = w0(x,t) (lc) 

where u0(x,t) and w0(x,t) represent the axial and lateral displacements o f a point on the mid-plane in the χ and ζ 

directions respectively, θ(χ, t) represents the rotation o f the normal to the mid-plane about the y axis and t is time. 

The constitutive equations o f the laminate based on the classical lamination theory can be expressed as 

m 
IM! 

A Β 

Β D 
(2) 

-Ir 0 x cy y YxyY and where Ν = {NX Ny Nxy}T and Μ = {Mx My Mxy}T are the resultant vectors, ε = { f 

κ = {κχ Ky K^ } 7 are the mid-plane vector and the curvature vector, respectively. 

For a laminated beam, the membrane forces Ny, Nxy and the moments My, M^ are zero while the mid-plane 

strains s y , y x y and the curvatures K y , κ ^ are nonzero. Thus, Eq. (2) can be rewritten as 

\NX 

I Mr 
L ~AU Bu M l . Bu ί δ κ 0 / δ * 1 

J ßn A i . k J Al A i . 1 θθ/δχ J 
(3) 

where Nx and Mx are the normal force and bending moment per unit length, respectively. 

A\ ß n 
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Bu Α ι . _B\2 B\6 Da A 6 . B22 B26 D22 D26 B12 A 2 

_B26 B66 D2 6 A 6. Ae a 6 . 

It is noted that e y , y x y , Ky and κ ^ are solved in terms of ε χ and κχ in order to obtain Eq. (3). 

I f the effect o f transverse shear deformation is taken into account, then 
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Qxz = Λ55 Yxz = Λ55 (δννο / a * + θ) (4) 

where Qxz is the transverse shear force per unit length. 

The laminate stiffness coefficients Ay , By , Dy (i,j = 1 , 2 , 6 ) and the transverse shear stiffness A55 , which are 

functions of laminate ply orientation, material property and stack sequence, are defined by 

(Ay,By,Dy)= ^ Qy(1,z,z2)dz (i,7 = 1 , 2 , 6 ) (5a) 

A55=klh/2Q55<h ( 5 b ) 

where k is the shear correction factor, which is chosen as 5/6 in order to compare with available results in the literature, 

although the factor may change with mode number, Poisson's ratio and lamination scheme. The transformed reduced 

stiffness constants Qy ( / , j = 1 , 2 , 6 ) and Q55 can be found in Ref. /30/. 

For the present laminated composite beam, the total strain energy V is given by the relationship 
> 

F = I j f [iVx duQ /dx + Mx δθ/δχ + Qxz (3w0 /dx + d)]bdx (6) 

The total kinetic energy Τ of the laminated beam is given by 

Τ = X- £ [/, (duo Idtf + /3 (de/dtf + 2h (du0 /dt)(de/dt) + /, (5w0 /dt)2 ]bdx (7) 

.vhere ρ is the mass density of beam material and 

-A/2' 

The governing equations of motion for the laminated composite beam are derived using the Hamilton principle 

^{5T~5V)dt = Q (8) 

Suq = <5h>o = δθ = 0 at t = /], i 2 

Substituting Eqs. (3) and (4) into Eq. (6), then substituting the resulting equation and Eq. (7) into Eq. (8) and 
carrying out the variational operations yields the following set of partial differential equations which govern the motion 
of laminated beam having constant properties along its length 

-/, (a2 «ο I dt2) -12 (52 θ/dt2 ) + Iu(ö2wo/ät2)+ßn id2 θ/θχ2) = 0 (9a) 

-/, (δ2 /dt2) + A55 (92 w0/dx2) + A55 (00/dx) = 0 (9b) 

-/3(d2e/dt2)-12(d2U0/dt2)+Bu(d2u0/dx2)+Du (d2e/dx2) - A55(dw0/dx)- Α55Θ = ο (9c) 
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3. D Y N A M I C STIFFNESS M A T R I X 

The harmonic solutions of Eqs. (9) for the displacements m0 , vv0 and rotation θ are assumed as 

u0(x, t) = (7(x)sin ωί w0 (x, t) = JV(x) sin cot 0 (x , r ) = ®(x)s in i»f (10) 

where ω is the circular f requency, U(x), W(x), and Θ ( χ ) are the ampli tudes of the sinusoidally varying axial 

displacement, lateral displacement, and normal rotation respectively. 

Substitution of Eqs. (10) into Eqs. (9) leads to the following ordinary differential equations 

co2I\U + o)2I2@ + AuU"+BuQ =0 (11a) 

ω2 ItW + A5SW'+ Α55θ = 0 ( l i b ) 

ω2Ι}Θ + ω2/2υ + Βηυ +Di]Q -A55W'-Α55Θ = 0 (11c) 

where the superscript primes refer to the derivatives with respect to the axial coordinate χ . 

Equations (11) are solved by choosing for U, f f a n d Θ the following dependence on at 

U(x) = AeKX W(x) = BeKX <~>{x) = CeKX (12) 

Inserting Eqs. (12) into Eqs. (11), the algebraic eigenvalue equation is obtained and the equation has nontrivial 

solutions when the determinant of the coeff icient matrix of the A , Β , and C vanishes. Setting the determinant equal 

to zero yields the characteristics equation, which is a sixth-order polynomial equation. 

η2κ6+η2κ*+ηικ2+η0 =0 (13) 

where 

η2 = -ß , 2 , / ,ύ> 2 + ( Λ , , ( / } , / , +I3A55) + (DLLIL -2BUI2)Α55)ω2 

Πι = -Asshλ\ω2 + ( D , , I 2 - 2 Β , , / , Ι 2 + ΑΧ,/,Ι3 -(12 -/,/3)Α55W 

m=l{co\-Assh+{-l2+hhW) 

Equation (13) can be rewritten as 

χ}+alX
2+α2χ + α3 = 0 (14) 

where 

Ζ = κ2 ^=η2/η3 C2=1\ hi ai =Πθ/ΐ3 

The three roots of Eq. (14) can be expressed as 

= c o s ( 5 / 3 ) - a, / 3 χ2 = 2^φ cos ((2π + S)/3) - α, / 3 X l = cos ( ( 4 * + 3)/3) - α , / 3 (15) 
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where 

q = -a2 + af / 3 i9 = cos 1 -2703 + 9a{a2 - 2 a \ 2 p i - ^ f 

The general solutions to Eqs. (11) are given by 

U(x) = Aie
K'x + A2e~K'x + A3e**x + A4e~^x + AseK>x + A6e~^x = £ (A2j_ xeK'x + A2je~K'x) 

7=1 
(16a) 

W(x) = 5]eK'x + B2e~K'x + B3eK*x + BAe~K*x + BseK*x + B6e~^x = £ (ß2,_\eKjX + B2je KjX) 
7=1 

(16b) 

Θ(χ) = C] e*1* + C 2 e - r ' * + C3e*»* + C 5 e ^ J t + C 6 f r ^ = £ ( C 2 y _ , e ^ +C2je~Kix) 
7=1 

(16c) 

where /η = - ^ Γ » = yfx2 > *3 = \ [ χ ϊ • ^ a n y £ / ' s a r e z e r 0 o r a r e repeated in the solution of Eq. (14), the 

solutions (16) have to be modified according to the well-known methods of ordinary differential equations with 
constant coefficients. From Eqs. (11), only six of the eighteen constants are independent. The relationship among the 
constants is given by 

A2j-l=tjC2j-\ A2j = t j C2 j 

Blj-X = ö c2 7-1 B2j= C2 j 

where 

t j = -(Βηκ) + Ι2ω2)/(Λ,xk] + W ) Tj=-Α55Κ;/(Α55Ή + 1{ω2) { j = 1 ~3) 

N. + ' N . 

Q, 

+ 
A 

cm) 
MX MX 

Fig. 2: Sign convention for positive normal force Nx (χ ) , shear force Q^ (χ), and bending moment Mx (x). 

According to the sign convention shown in Fig. 2, the expressions of normal force N x ( χ ) , shear force Q ^ ( χ ) , and 

bending moment Mx(x) can be obtained from Eqs. (3), (4) and (16) as follows 

Nx(x) = An dU/dx + Bll d Q l d x ^ ^ K j t j + B u K j X C y ^ -C2Je~K'x) 
7=1 
3 

Qxz(X) = - (^55 dW/dx + Ass®) = Σ -(ASSKjtj + ASS)(C2j_\eKjX + C2J«~KJS) 
7=1 

(17a) 

(17b) 
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Mx(x) = -(Bn dU/dx + Dl] d®/dx)^Yi-(BXXKjtj+DUKj)(C2jAeKJx -C2je K'x) 
7=1 

(17c) 

Referring to Fig. 3, the boundary conditions for displacements and forces of the laminated composite beam element 

are, respectively, 

jt = 0: U =U\ W = WX Θ = ©ι 

X = L:U = U2 W = W2 Θ = Θ 2 

χ = 0: Nx = -NxX Qv = QxzX Mx = MxX 

x = L : NX=NX2 Qxz= -Q^2 Mx = -Mxl 

Wx 

a z > 

(18a) 

(18b) 

. 5 

Qu ι 
Μ 

Μ 

Θ 

Ν 
Λ U. i 1 

Ly 
nJ Ν. 

U, 

Fig. 3: Boundary conditions for displacements and forces of composite beam element. 

Substituting Eqs. (18a) into Eqs. (16), the nodal displacements defined in Fig. 3 can be expressed in terms of C j ' s 

as 

{D} = [Ä]{C} 

where {D} is the nodal degree-of-freedom vector defined by 

(19) 

[*] = 

{ux wx Θ] U2 W2 θ 2 Γ 

{C, c 3 c 5 c2 c 4 Q } r 

h h '3 h '2 '3 

h h h -h " '3 
1 1 1 1 1 1 

txe^L t2eK*1 txe~*L t2e~K*L t3e~K>L 

T2eK>L 

f x ι e*iL eK) ι e-K2 L e-K>L 

Substituting Eqs. (18b) into Eqs. (17), the nodal forces defined in Fig. 3 can be expressed in terms of C j ' s as 

{F} = [ / / ]{C} (20) 
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where {F} is the nodal force vector defined by 

fxl Qxzl M* Nx2 Qxzl Mxl}T 

">2 
A A 

>2 h 

5 >2 h 
Λ. 

\ h 
A 

h 
A 

h 
A 

'3 " > 2 
A 

t2eK>L -i2e~KlL 

-leK'L -t2eK>L 
- / V 3 i -tie~K'L -72e-K*L -t3e-K>L 

-t2eK>L -i3eK>L i2e~KlL t3e-*>L 

in which 

tj=AUKjtj+BnKj tj =-(A55Kjtj+A55) t j =~(BUKJtJ ( 7 = 1 - 3 ) 

Eliminating the coefficients Cj's from Eqs. (19) and (20) gives the following relationship between the nodal forces 

and nodal displacements 

{F}=[H][RTl{D}=[K]{D} (21) 

where [AT] is the frequency dependent dynamic stiffness matrix. The dynamic equilibrium equatioa(21), from a purely 

formal point of view, resembles the well-known static equilibrium equation of the laminated beam. It should be 

mentioned that the explicit analytical expressions for the elements of the dynamic stiffness matrix could be derived 

using the symbolic manipulator software such as Mathematica /3 l / , although the expressions are too lengthy to list in 

the paper. 

4. AUTOMATED MULLER ROOT SEARCH METHOD 

Once the dynamic stiffness matrix is obtained, the appropriate boundary conditions for the particular laminated 
beams under consideration are applied to obtain the frequency characteristic equation. It should be noted that the 
conventional finite element method generally leads to a linear eigenvalue problem whereas the dynamic stiffness 
method often leads to a transcendental eigenvalue problem. A simple automated Muller root search method /32/ is 
adopted in the present study to obtain all the natural frequencies in a given frequency band. The mode shapes 
corresponding to the natural frequencies can be found in the usual way by making an arbitrary assumption about one 
unknown variable of the laminated beam and then calculating the remaining variables in terms of the arbitrarily chosen 

Let us denote the frequency characteristic determinant by / ( ω ) and consider the solution of f(a>) = 0 by Muller's 

method. Muller's method uses a quadratic approximation to the function / b y interpolating a quadratic polynomial 
through the last three computed points and then determining where this curve crosses the ω axis. The following 
algorithm is an implementation of Muller's method. This algorithm terminates when a prescribed error tolerance on 
I / ( ω ) I has been achieved or a maximum number of iterations has been performed. 
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(1) Pick three distinct values of ω , i.e., öq , «η, α>2. Set i = 1 and compute 

^ = co, -<wM ; hM =ωΜ -ω, \ St = (/(<», )-/(ö>m))/A, ; 

δΜ = ( / ( ® , + i ) - / ( ® , ) ) A + i ; d, = (<5,+i - S , ) / ( h , + [ +hi). 

(2) Compute 

bi = δΜ + Λ,+1 d,; D, = (bf - 4/(ß) i + , )</, )1 / 2 . 

(3) If I b, - D, |<| ^ + D, | then set E, = bt + D,; else set £, = b{ - D, 

(4) Se t hj+2 = - 2 / ( ω , + 1 ) / £ , ; ωι+2 =ωΜ + Α , + 2 · 

where ω ί + 2 is the new approximation of the root . The process is continued until a desired accuracy is obtained. 

The rate of convergence is high and may be increased if an estimate of the eigenvalue is available. Previously roots may 
ρ 

be removed from / ( ω ) by dividing it by (ω - ω* ) , where (ok (k = 1,2, • · ·, ρ ) are the first ρ roots. 
k=\ 

5. NUMERICAL RESULTS 

Four examples are presented to demonstrate the correctness and accuracy of the dynamic stiffiiess formulation 
presented in the preceding sections. For each example, the following boundary conditions: Clamped-Clamped, 
Clamped-Simply supported, Free-Free, Clamped-Free and Simply-Supported are considered. 

Clamped edge: U = W = ® = 0 
Simply supported edge: U = W = Mx = 0 
Free edge : Nx =QXZ =MX=Q 

As a first example, the natural frequencies of a glass-polyester composite beam of rectangular cross-section with 
lay-up scheme [40750°/40750°] are calculated and the results are given in Tables 1 and 2. The properties of the 
laminated beam are given as follows: 

Ex =37.41 xlO9Pa E2 = 13.67xl09 Pa G12 = 5.478xl09 Pa G13 =6 .03x l0 9 Pa 

G23 =6.666 xlO9 Pa v12 =0.3 ρ = 1968.9kg/m3 

L = 0.11179 m b = 12.7xl0~3 m ^ = 3.38xlO_ 3m 

The natural frequencies of the glass-polyester laminated beam with five different boundary conditions are calculated 
by using the dynamic stiffness matrix developed in this paper, and the numerical results of the first four frequencies of 
the case study are summarized in Tables 1 and 2. The results shown in Table 2 are obtained by neglecting the Poisson 
effect, i.e., assuming the composite beam in cylindrical bending. 

Tables 1 and 2 illustrates quite well that Poisson effect can have a strong influence on the natural frequencies of the 
composite beam. From this point of view, any modeling methods based on the assumption, that the influence of Poisson 
effect is neglected, may yield considerable inaccuracy for the natural frequency prediction. 
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Table 1 

Natural f requencies (in Hz) of glass-polyester composite beam 

Mode No. Clamped-Clamped Clamped-Simply supported Free-Free Clamped-Free Simply-Supported 

1 770.6 532.4 772.7 121.7 341.5 

2 2108.2 1715.1 2117.6 759.8 1360.0 

3 4091.2 3547.6 • 4116.3 2113.8 3038.3 

4 6678.5 5999.1 6729.8 4103.6 5348.9 

Table 2 

Natural f requencies (in Hz) of glass-polyester composite beam with Poisson effect ignored 

Mode No. Clamped-Clamped Clamped-Simply 

supported 

Free-Free Clamped-Free Simply-Supported 

1 899.3 621.9 903.0 142.3 399.4 

2 2454.5 1999.9 2471.5 887.3 1587.7 

3 4749.7 4126.6 4794.7 2464.0 3540.5 

4 7727.1 6957.3 7818.6 4772.0 6216.7 

The second example is a graphite-epoxy composite beam with lay-up [30°/500/30°/500]. This example is selected 

due to some comparative results being available in the literature /13, 33/. All layers of the composite beam have the 

same thickness and every orthotropic lamina has the following material properties: 

£ , = 1 4 4 . 8 0 x 1 0 9 Pa E 2 = 9 .65χ 1 0 9 P a G1 2 = G 1 3 = 4 . 1 4 x l 0 9 P a G 2 3 = 3 . 4 5 x l 0 9 P a 

v1 2 = 0.3 ρ = 1389.23 kg/m3 Z, = 0 .381m 0 = 2 5 . 4 x l 0 ~ 3 m Λ = 2 5 . 4 x l 0 ~ 3 m 

Table 3 lists the first five natural frequencies of the beam under various boundary conditions. A good agreement can 

be observed with the corresponding reference values given in Refs. /13, 33/. 

Considering Table 3, the authors think that the fourth natural frequency of Ref. /13/, obtained by the third-order 

shear deformation theory, is incorrect. As can be seen f rom the numerical results shown in Table 3, the fourth frequency 

of Ref. /13/ for Clamped-Clamped boundary condition is smaller than the one for Simply-Supported boundary 

condition. 

In order to investigate the effect of shear deformation on the natural frequencies, the numerical results of this 

example with the shear deformation excluded are displayed in Table 4. 

It can be observed f rom Tables 3 and 4 that the shear deformation is seen to have relatively marginal effect on 

the lower natural frequencies of this particular beam. Indeed, the fourth natural f requency of the Free-Free beam 

and Clamped-Free beam and the fifth natural frequency of the Simply-Supported beam are virtually unaltered due to 

these frequencies corresponding to the longitudinal modes, for which shear deformation would not be expected to 

have any major effect . It can also be seen that the effect of shear deformation increases when the number of modes 

increases. 
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Table 3 
Natural frequencies (in Hz) of graphite-epoxy composite beam 

Mode Clamped-Clamped Clamped-Simply Free- Clamped- Simply-
No. Present Ref. /13/ Ref. /33/ supported Free Free Supported 

1 639.0 640.5 639.1 451.0 660.1 105.4 295.2 

2 1656.7 1666.8 1663.5 1391.0 1741.4 638.2 1134.3 

3 3028.3 3059.5 3071.2 2724.8 3219.7 1699.0 2419.1 

4 4644.0 3397.8 N/A 4338.6 4951.1 2475.5 4022.6 

5 4950.7 4712.5 N/A 4949.7 4971.4 3120.7 4949.4 

Note: N/A denotes the result not available. 

Table 4 
Natural frequencies (in Hz) of graphite-epoxy composite beam with shear deformation ignored 

Mode No. Clamped-Clamped Clamped-Simply supported Free-Free Clamped-Free Sirflply-Supported 
1 673.5 464.5 668.9 106.0 298.5 
2 1845.2 1496.0 1824.2 660.9 1182.4 
3 3582.7 3091.6 3526.8 1835.4 2637.9 
4 4951.1 4942.7 4952.0 2475.6 4612.0 
5 5846.2 5228.1 5733.0 3554.6 4967.0 

The third example is related to a laminated composite beam with lay-up sequence [307-60°/307-60°]. The material 
properties of the beam are taken from Ref. /17/ and are given below 

£ 2 = 6 . 9 x l 0 9 P a G l 2 = 4 . 8 x l 0 9 Pa G,3 = 4 . 1 4 x l 0 9 P a G23 = 3 . 4 5 x l 0 9 P a 

V 1 2 =0 .3 ρ = 1550.1 kg/m3 Z> = 2 5 . 4 x l 0 _ 3 m A = 2 5 . 4 x l 0 - 3 m 

In order to illustrate the effect of material anisotropy on the natural frequencies of the beam, two different values of 

material constant , i.e. Ex = 2 2 1 x l 0 9 Pa and E{ = 303χ 109 Pa are investigated. Also two different beam lengths are 

considered: L = 0.381 m and L = 0.572 m. 

Results for the first six natural frequencies of the laminated beam with E\ = 221 χ 109 Pa and L = 0.381 m are shown 

in Table 5. The comparison indicates that the present results agree very well with the corresponding results from Ref. 
/17/, with a maximum relative error of 1%. 

Table 6 lists the results for the natural frequencies of the laminated beam with E{ = 303 χ 109 Pa and L = 0.381 m. 

Even here, the present results compare well with the results reported in Ref. /17/. As can be observed from Tables 5 and 
6, an increase in value of E\ results in increasing natural frequencies. 

Table 7 shows the natural frequencies of the composite beam with Ex = 2 2 1 x l 0 9 P a and L = 0.572 m. Results 

tabulated in Tables 5 and 7 indicate that the natural frequencies decrease with the increase of beam length. 

The normal mode shapes associated with the first six natural frequencies of the Clamped-Free beams in the cases of 

E\ = 221 xlO9 Pa, Z, = 0.381m; £, = 3 0 3 x l 0 9 Pa, L = 0 .381mand £, = 221x l0 9 Pa, L = 0.572 m are presented in 

Figs. 4-6, respectively. It is seen from Figs. 4-6 that the axial displacement is small as compared to the lateral 

displacement for each of the six modes except for the fourth mode in Figs. 4 and 5 and the fifth mode in Fig. 6. 
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It is apparent from Figs. 4 and 5 that there is little difference for the first six modes, except for the fourth mode. As 
can be seen from Figs. 4 and 6, there is noticeable difference for the first six mode shapes. 

Table 5 

Natural frequencies (in Hz) of composite beam with Ex = 221 χ 109 Pa and L = 0.381 m 

Mode No. Clamped-Clamped Clamped-Simply supported Free-Free Clamped-Free Simply-Supported 

Present Ref. /ΠΙ 

1 636.3 635.8 450.1 660.7 105.6 294.6 

2 1639.2 1633.0 1381.6 1735.5 637.0 1131.2 

3 2977.9 2957.5 2690.8 3191.9 1686.9 2398.7 

4 4541.8 4496.4 4261.2 4900.6 2472.1 3969.4 

5 4944.2 N/A 4943.9 4944.3 3080.7 4943.8 
6 6257.9 N/A 6004.7 6767.4 4714.2 5739.5 

Table 6 

Natural frequencies (in Hz) of composite beam with E\ = 303χ 109 Pa and L = 0.381 m 

Mode No. Clamped-Clamped Clamped-Simply supported Free-Free Clamped-Free Simply-Supported 
Present Ref. /17/ 

1 646.9 629.2 458.0 672.8 107.6 299.9 
2 1663.2 1617.4 1403.6 1764.8 648.0 1150.5 
3 3016.0 2931.1 2728.6 3240.5 1713.5 2435.6 
4 4592.5 4459.7 4313.9 4966.7 2517.5 4023.6 
5 5035.1 N/A 5034.9 5035.2 3123.7 5034.8 
6 6319.0 N/A 6069.4 6847.6 4772.1 5807.8 

Table 7 

Natural frequencies (in Hz) of composite beam with E\ = 221 χ 109 Pa and L = 0.572 m 

Mode No. Clamped-Clamped Clamped-Simply supported Free-Free Clamped-Free Simply-Supported 

1 291.9 203.6 297.0 47.0 131.7 
2 778.2 643.0 800.3 289.7 516.8 
3 1464.7 1295.0 1519.1 789.5 1129.4 
4 2310.9 2122.2 2412.4 1491.3 1933.0 
5 3282.4 3087.6 3293.1 1646.6 2890.0 
6 3293.3 3293.2 3442.7 2360.4 3292.5 
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Fig. 6: First six normal mode shapes of Clamped-Free composite beam with Ex = 221 χ 109 Pa and L = 0.572 m (a) 

mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6. 

The final example is chosen for further verification of the present results compared to the known values. This 
example is for a [0°/90°] cross-ply composite beam taken from Refs. /14, 16/. The beam is of rectangular cross-section 
and the data used in the analysis are as follows: 

£, =144.80xlO9 Pa £ 2 = 9 6 5 x 1 ° 9 P a G\2 = G 13 = 4 .14x l0 9 Pa G2 3 = 3 .45x l0 9 Pa 

vj2 = 0.3 ρ = 1389.23 kg/m3 L = 0.381m 6 = 25 .4x l0" 3 m A = 3 8 .1 x l0 - 3 m 

The numerical results for the first ten natural frequencies of the beam with four different boundary conditions are 
calculated and shown in Table 8, along with the results from Refs. /14/ and /16/. The axial displacements were 
restrained in the clamped edge and simply-supported edge. It can be seen that the present results are in very good 
agreement with the results obtained in Refs. /14/ and 716/ for all the frequencies and boundary conditions. 

Table 8 
Natural frequencies (in Hz) of cross-ply composite beam 

Mode Clamped-Clamped Clamped - Clamped-Free Simply-Supported 
No. Present Ref. Ref. Simply Present Ref. Ref. Present Ref. Ref. 

/14/ 716/ supported /14/ /16/ /14/ /16/ 
1 1093.6 1094.9 1091.9 865.5 201.9 202.2 202.0 733.3 734.4 733.5 
2 2565.7 2567.7 2558.5 2310.9 1125.2 1126.7 1124.1 1950.8 1953.4 1948.6 
3 4338.8 4341.3 4323.5 4116.3 2743.9 2746.7 2738.2 3945.3 3948.7 3935.9 
4 6260.2 6262.8 6235.1 6062.2 4573.7 4577.9 4564.2 5747.6 5752.2 5732.0 
5 8270.8 8273.2 8234.4 8046.5 4926.5 4933.4 4928.9 8029.9 8039.4 8019.3 
6 9244.7 9257.7 9249.5 8697.5 6689.0 6692.7 6665.3 8050.5 8054.1 8022.6 
7 10334.1 10336.3 10285.8 10313.1 8784.3 8787.8 8748.6 10304.6 10307.4 10259.3 
8 12386.7 12388.7 12325.3 12335.3 10841.8 10844.9 10794.4 12250.5 12253.4 12193.7 
9 14466.4 14467.3 14391.4 14437.9 12786.6 12793.6 12744.9 14424.4 14425.8 14351.1 
10 15817.0 15830.8 15786.6 15515.7 13242.5 13251.7 13226.8 15171.0 15187.9 15150.7 
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6. CONCLUDING R E M A R K S 

In the present paper the dynamic stiffness method is introduced for the free vibration analysis of laminated 
composite beams. The shear deformation, rotary inertia, axial deformation and Poisson effects are considered in the 
formulation. The exact dynamic stiffness matrix is derived by use of the analytical solutions of the governing 
differential equations of the laminated beam in free vibration. The accuracy of the natural frequencies obtained by the 
present formulation is demonstrated by comparison with the reported results in the literature. The influences of Poisson 
effect, shear deformation, anisotropy, slenderness ratio and boundary condition on the natural frequencies of the 
laminated beams are investigated. 
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