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ABSTRACT 

The natural frequencies and mode shapes of composite stiffened plates with stiffener are presented by using the 
assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of 
carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for 
the stiffener made of composite materials is compared with that of the beam model. In the case of torsionally weak 
stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell 
elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and un-stiffened 
composite plates when subjected to the combination of in-plane compressive and shear loads. The in-plane compressive 
and shear loads affect the natural frequencies and mode shapes of the stiffened laminated composite plates. As a result 
of the increase in the in-plane compressive load and the variation of fiber angle of skin plate, the sequence of some of 
the mode shapes are interchanged. This implies that the present shell model for the stiffened plate produces more 
accurate results. Therefore, to obtain the correct vibration mode, the stiffeners are modeled as a shell element. To solve 
the eigenvalue problems, the Lanczos method is employed. 

Keywords: B. Vibration; C. Laminates; Composite stiffened plates; Assumed natural strain 

1. INTRODUCTION 

The wide applications of the laminated composite plates in the civil, aerospace, marine and other industries have 
found their advantages of high stiffness to weight ratio, high strength to weight ratio, resistance to corrosion and high 
damping property in comparison with metal plates. Most structures, whether used in air, sea or on land, are subjected to 
dynamic loads during their operation. Especially, exposed to a dynamic situation, these materials offer better 
characteristics than any other conventional materials. The weight saving is an important consideration for high 
performance applications. Also, for the vibration problem of plates, it is often necessary to minimize the maximum 
deflections of plates without introducing any considerable weight penalty. This can be achieved by adding stiffeners to 
the plates. 

The study on the free vibration analysis of isotropic plates using a shell element can be found in Lee and Han /!/. 

* Corresponding author. Tel.: +82-43-649-3267 ; fax.: +82-43-649-3137 
E-mail address : techvl l@mail.daewon.ac.kr (Sung-Cheon Han). 
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The analytical solutions for free vibration of laminated composite plates were discussed in the works of Reddy 121 and 
Kant et al. 111. Aydogdu and Timarci /4/ presented vibration analysis of cross-ply laminated plates with twelve different 
combinations of edge boundary conditions using the Ritz method. Han and Choi 151 have published static and vibration 
analysis of laminated composite plates and shells using the lumped mass matrix. Park et al. 16/ studied linear static and 
dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element. A 3-D 
analysis using a resultant 8-node solid element was presented by Kim et al. 111. 

A number of papers on isotropic stiffened plates have been proposed. Olsen and Hazell /8/ have presented results 
from a theoretical and experimental comparison study on the vibration characteristics of all clamped and eccentrically 
stiffened isotropic plates. They used a triangular finite element in the calculations. Mukherjee and Mukhopadhyay 191 
used an 8-node finite element model for vibration analysis. Palani et al. 1101 have published performance studies of the 
two models for static and vibration analysis of stiffened plates with various boundary conditions using four mass 
lumping schemes. Liu and Chen /11/ investigated the free vibrations of a skew cantilever plate with a stiffener by a 
finite element method. Recently, Lee et al. /12/ presented vibration analysis of laminated composite plates with 
stiffeners using shell element for the skin plate and beam element for the stiffener. Also, Rikards et al. /13/ studied 
vibration analysis of composite stiffened plates using the beam element for the stiffener. In order to reduce the degree of 
freedom of assembled structure, they used a beam element in the vibration analysis. But they presented that if the 
stiffener is flexurally and rotationally stiff and skin of the shell is thin, then the local mode of the skin is dominant. In 
this case for stiffeners the beam elements can be used. In the case of torsionally weak stiffener, a local buckling occurs 
in the stiffener. In this case, the stiffener should be idealized by using the shell elements. 

In order to overcome the shear locking problems Huang et al. /14/ developed a 9-node assumed strain shell element 
using the enhanced interpolation of the transverse shear strains in the natural coordinate system. Other finite elements 
employing the assumed strain method were then reported by Jang and Pinsky /15/ independently and also a variational 
background of the assumed strain method was presented by Simo and Hughes /16/. Belytschko et al. /17/ presented a 9-
node assumed strain shell element with a stabilized matrix to control the hourglass mode and calculated all the terms by 
using a reduced integration. In this paper, to avoid locking phenomena, the assumed natural strain method in the shell 
element by Han et al. /18-20/ and Lee and Han /21/ is used. The concept of resultant-stress shell element, which was 
based on the equivalent natural constitutive equation from an explicit transformation scheme, is used. This concept was 
extended to the nonlinear analysis in the 8-node finite element works of Kim et al. 1221. Attaf and Hollaway 1231 studied 
vibration analyses of eccentrically stiffened and un-stiffened GRP composite plates subjected to in-plane forces. 
However, work on the vibration analysis of the stiffened anisotropic plate under the combination of in-plane 
compression and shear loading has rarely been published. 

For this reason, we use the assumed natural strain 9-node shell element and concentrated on the vibration analysis of 
eccentrically stiffened rectangular composite plates under the circumstances of combining axial compression and shear 
loading. In this study, first-order shear deformation theory and the resultant shell element concept are used for 
composite stiffened plates. The analytical solutions are presented to show the application of the shell formulation to 
rectangular laminated composite plates under free vibration conditions. The Lanczos method is employed in the 
calculation of the eigenvalues of composite stiffened plates and the Gauss integration rule is adopted to evaluate the 
mass matrix. The solutions of the vibration analysis are numerically illustrated in a number of figures to show the 
influence of the types of in-plane loads, the magnitude of in-plane loads and the fiber-angle of skin plate and stiffener. 

2. GEOMETRY AND KINEMATICS OF SHELL 

The geometry of a 9-noded shell element with six degrees of freedom is shown in Fig. 1. 
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Z, 

Degenerated node a 

Fig. I: Geometry of 9-node shell element with six degrees of freedom 

Using the shell assumption of straight normal remaining straight, the initial configuration of the shell element 

having thickness h a can be written as 

Ζ( ί , ) = νξβ)+ξ*ν{ξβ) ; ' = 1 . 2 , 3 , β = 1,2 
9 

Ζ(ξβ) = ΣΝα(ξβ)Ζ" 
α=1 

y (4ß ) = Σ Ν α ( ξ β ) ^ α 

α=1 ί 

(1) 

(2) 

(3) 

where Ζ denotes the position vector of a generic point in the shell element; Ζ is the position vector of a point in the 
mid-surface; Na denotes the two-dimensional quadratic Lagrangian interpolation function associated with node a; 

Z° are position vectors which have three Cartesian components; ha is the thickness of the shell at node a; and V° is a 
unit normal vector at node a, which is normal to the mid-surface. The unit normal vector V° at node a can be easily 
determined by 

dZa dZa 

V" = 

χ 

s z ° dza 

>2 

(4) 

Finite rotations about the three Cartesian axes, unlike infinitesimal rotations, do not qualify as vectors (Groesberg, 
/24/). The use of rotations of shell normal about the three global coordinate axes, which is a common practice in linear 
analysis of shells, has to be abandoned because the transformation and the updating of these rotations require special 
treatments when finite rotations are involved. 

It has been noticed that in the rigid body dynamics, the rotational movement of a rigid body has been dealt with 
quite successfully by using Euler's angles (Gresberg, /24/), defined by a strict sequence of rotational displacements. The 
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transformation matrix can only represent two independent rotational modes, instead of three modes as required, thus 
indicating the shortcoming o f Euler's angles when small rotation is specialized. 

In Fig. 2, a new scheme proposed in this study is illustrated, which is based on another strict sequence o f three 
successive rotations: 

Transformation matrices for these rotations are : 

1 0 0 " C2 0 S2~ ~c3 - S 3 0" 

Ä, = 0 Cl - s i 

It 0 1 0 ; *3 = S3 c 3 0 (5) 
0 Sl Cl . s 2 0 c 2 . 0 0 1 

where c, = cos θ,, s, = sin Θ, (/ = 1 ,2,3) and the expression of transformation matrix R is 

R = Ä,Ä2Ä3 = 

c 2 c 3 

c, s 3 + s, s 2 c 3 

s, s 3 - c , s 2 C3 

- C 2 s 3 s 2 

c 1 c 3 - s 1 s 2 s 3 - s ( c 2 

S!C3 + C , S 2 S 3 C,C2 

(6) 

( C ) 

Fig. 2 : Proposed rotation expression schemc, (a) A rotation, 0 , , about Y] axis (b) A rotation, θ2 , about Y2 axis, (c) A 

rotation, fy, about K3 axis 

274 



S.-C. Han, S. Choi and W.-T. Park Science and Engineering of Composite Materials 

The three rotations define a unique transformation matrix R through Equation (6); thus they can be used as 
generalized coordinate for the attached reference system at each node. Then the fiber displacement with respect to the 
mid-surface will be described by these three rotations. 

The displacement field u in the shell element can be defined as 

U ( 6 ) = ΣΝα(ξβ) 
a-\ 

h a 

ΰ α + ζτ, ——e" = ΰ { ξ β ) + ξ , τ { ξ β ) (7) 

where u is the transitional displacement vector of a point in the mid-surface and e a is the fibre displacement vector at 
the node a, i.e., 

t a = R a V a - V a (8) 

Consequently, using Eq. (8), the displacement field in Eq. (7) can be expressed as 

<ξ,)=ΣΝο(ξβ) 
α=1 

ΰα+ξ3 -l3x3)V" (9) 

where l3x 3 is a unit matrix. 

Assuming the three rotations of Eq. (6) are very small, one can obtain 

a=1 

ι W f3x3 I * 
a=1 

(10) 

where 

0 γα 
3 - ν α 

2 
ψ α _ 0 Κ 

η - κ 0 

,ua ={ü?,üZ,u°,θ?,θ°,Off , 

1 0 0 

0 1 ο 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

2 3 

ο 

ο 

ο 

ο 

ο 

ο 

ya γα 

Δα Λα 
2 3 ~ 2 ^ 

0 

2 1 

0 

(Π) 
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3. CONSTITUTIVE RELATIONS OF COMPOSITE LAMINATES 

Since the present formulation is based on the natural co-ordinate reference frame, we introduce here an explicit 
transformation scheme between natural co-ordinates and the global co-ordinate system, to obtain a natural co-ordinate 
based constitutive equation. The stress tensor in the natural coordinate can be written as follows: 

Sy - C i j k l E u = J 0 Τ D i j U Τ τ Έ α (12) 

where 70 is the determinant of the Jacobian matrix, Dyu is the constitutive matrix for orthotropic materials with the 
material angle θ . The transformation matrix Τ in Eq. (12) is given as 

*1111 *2121 *3131 2*1121 2*2131 2*1131 

*1212 *2222 *3232 2*1222 2*2232 2*1232 

*1313 *2323 *3333 2*1323 2*2333 2*1333 
*1112 *2122 *3 132 *1122 + *1221 *2132 +*2231 *1132 + *1231 
*1213 *2223 *3233 *1223 + *1322 *2233 + *2332 *1233 +*1332 

,*1113 *2123 *3133 Xl 123 + *1321 *2133 + *2331 *1133 + *1331. 

where 

Substituting Eq. (12) into the strain energy equation of the shell represented as a three-dimensional body can be 
expressed by 

V = \ \ A ElCljUEu άξ, dA (15) 

After integration throughout the thickness, the strain energy can be obtained in terms of shell quantities: stress 
resultants and couples and laminated shell stiffness characteristics 

Ααβγδ . Βαβγδ > DaßyS = f_hn ^αβγδ 0» 6 . I* ) > 

Λτ3/?3 = ks t-Μϊ Calßi (16) 

The value of 5/6 (Whitney /25/) is used as the transverse shear correction factor (A,) in the finite element 
formulation. 

The shell element displays resultant forces acting on a laminate which are obtained by integration of stresses 
through the laminate thickness. In this study, we impose the plane state on the natural constitutive equation of Eq. (12) 
before forming the equivalent constitutive equation. The constitutive relations of the composite laminate are as follows: 
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4. TORSIONAL STIFFNESS FOR COMPOSITE STIFFENED PLATE 

To model composite stiffened plates, the need for six degrees of freedom arises because the process of stiffness 
accumulation at any node lying on the junction must be carried out in a single reference frame. However, it is well 
known that this creates problems associated with rotation about the normal to the shell mid-surface. Initially, this 
torsional degree of freedom was specified in global co-ordinates but this leads to singularity problems when adjacent 
elements are exactly co-planar. This difficulty is overcome by providing a fictitious torsional spring along the local 
normal direction at each node of the element. However, this technique has the drawback that it interferes with the ability 
of the element to undergo strain free rigid body motions. Kanok-Nukulchai 1261 used an additional constraint to link the 
torsional rotation to the average in-plane rotation of the mid-surface. Adopting the continuum mechanics definition, the 
constraint equation can be written as follows: 

α , ( ξ ( 1 8 ) 

where a, is the in-plane torsional rotation; η and w2 are displacement components in the local coordinate system for 

expression of torsional energy; z, (i = 1,2,3) are local Cartesian coordinates with z3 axis normal to the shell mid-

surface. 
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In this study, based on the procedure proposed by Kanok-Nukulchai /26/, the drilling degree of freedom will be tied 
to the in-plane twist by a penalty functional through an additional strain energy as 

dV (19) 

where k, is a parameter to be determined (the value of 0.1 suggested); G is the shear modulus; ve is the volume of the 
element; and dV is the volume element. A two-by-two Gauss integration scheme is applied for the evaluation of the 
torsional stiffness in order to avoid the over-constrained situation. After integration throughout the thickness, Eq. (19) 
can be written as 

d4i (20) 

To derive a torsional stiffness from Eq. (20) the local variables are expressed in terms of global nodal variables by 
shape functions and using virtual work principle. This gives Eq. (20) in the form 

SU, = Λ K l L u (21) 

Since the virtual displacement is arbitrary, the torsional stiffness matrix ( K t L ) can obtain. A two-by-two Gauss 

integration scheme is applied for the evaluation of the torsional stiffness in order to avoid the over-constrained situation 

and the torsional stiffness term was added as described in Kanok-Nukulchai /26/. 

5. NATURAL STRAIN TENSOR AND STRAIN INTERPOLATION 

Following the natural co-ordinate system (Han et al., /18/), the natural strain tensor corresponding to the Green 
strain tensor may be defined as 

- = dZ, dLj 
α β δξα Ηβ " 

(22) 

It should be noted that the Green strain tensor and the natural strain have the following tensor transformation 
relationship. 

Εαβ~\ 
dL[ duj + ^ j ÖZ j 

_δξα δξβ δξα δξβ _ 
(23) 

The strain expressions in Eq. (23) can be expressed as : 

Em = B m Ü , £ » = £ 3 Β „ ι ι , Ι ' - Β , η . (24) 

where Em , Eb and Es are membrane, bending and transverse shear strain components, and the strain-displacement 
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matrices Bm , and are presented in Han etal. /18/. 

In order to avoid locking problems, the assumed natural strain method in the 9-node shell element by Han et al. /18/ 
is used. Thus the transverse shear and membrane strain fields are interpolated with the following sampling points in Fig. 
4. 

ei 3 = Σ Σ ( 6 ) Hj ( 6 ) £ί*3 , β23 = Χ Σ Ω ί ) S J ( ä ) £23 > ®12 = Σ Σ Ωί 
i = l j = l i=l j = l i=l j= l 

(25) 

where λ = 2(j -1) + d e n o t e s the position of the sampling point as shown in Fig. 4 and the shape functions (ξι) and 

Hj (ξ2) are 

Ξ, = Ξ3(ξ2) = ^ξ2(ξ2-\). (26) 

in which Ω, (ξ2) and Ξ, ( ^ ) can be obtained by changing variables. The assumed strain elt ,e22 have the same 

interpolation scheme as e j j , e 2 3 , respectively. 

The assumed strains e derived from Eq. (25) are used in the present shell element instead of the strains Ε of Eq. 
(24) obtained from the displacement field. In this study, a B A S matrix is implemented from assumed natural strains 
instead of using the standard Β matrix as shown in Eq. (26). 

e m 0 

Ε" • = <?3Bb2 

V ( ^ ) a s 

(27) 

where e m and es are assumed membrane and assumed transverse shear strain components. 

6 5 

Fig. 4: Sampling points for assumed strains of e u , e 1 3 , e2 2 , e 2 3 and e12 
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6. DYNAMIC EQUILIBRIUM EQUATION 

Using virtual work principle, the following dynamic equilibrium equation is obtained based on the membrane, 
bending and transverse shear resultant forces. 

J ^ f e f * aß ^(Eysf M«ß + δ ( Έ β ΐ Ϊ Qa 3 

= J p 5 u r ü < / V 

dA 
(28) 

where ρ is the density of the element material. 

Since the virtual displacement <5u is arbitrary, the Eq. (28) may be written as 

K l U - M Ü = 0 (29) 

where 

« 1 - J 

12 
L 

21 ν-22 I Λ ι 

K L 
dA (30) 

in which the sub-matrix of K L is shown in Han et al. /18/, 

and 

M = J ρ 

O (NJN A ) : 
22 

'3*3 

dV 

6x6 

(31) 

where 

(N£N „)" = 
NaNb 

0 

0 

( n J N » ) 2 2 « ^ 

0 0 

NaNb 0 

0 NaNb 

hahb 

4 
(vfv>+v°v>) 

h"hb yayb 
4 2 1 

'Ζ 
h"hb wayb c2 h°hb 

[v°vb +v°vl 'Ζ 4 ' l '2 ^ 4 
[v°vb +v°vl 

h"hb yayb 
4 1 3 

h"h yayb 
4 2 3 

2 h a h b
 } a -b 

~ζ3 4 3 Ί 

c2 h"hb yayb 
3 a y3 2 

,α ι,b 
p2 h h 

'3 v° vb + VfVb} 

(32) 

in which Na and Nb are the shape function at node a and b. The Lanczos method which was used in Park et al. 161, is 

employed to solve Eq. (29). 
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7. N U M E R I C A L E X A M P L E S 

7.1 Vibration of laminated composite plates 

The examples of square anti-symmetric cross-ply and angle-ply laminated composi te plates with various layer 

stacking sequence are shown in Fig. 5. In this study, all the plates are analyzed with 10 χ 10 mesh. The fibers of the top 

and bottom layers are in the direction of x-axis. These examples are examined using both Navie r ' s method with first-

order shear deformation theory (Reddy, 121) and finite element method with lumped mass (Han and Choi 151). The 

material properties and geometry are as follow: 

£ , = 40 , E 2 = 1, G,2 = G 1 3 = 0 . 6 , G 2 3 = 0 .5 , v12 = 0 .25 , ρ = 1. 

The plate is simply supported and can be analyzed by means of the fol lowing boundary conditions: 

χ = 0, a : ü2 = ΰ3 = 0 ] = 0 , y = 0, b : wj = m3 = θ2 = 0 . 

Fig. 5: Geometry of laminated plates 

In Table 1, the results of the present study are compared with both Navier solution with first-order shear 

deformation theory (FSDT) and the finite element solution by Han and Choi 151. T h e present test results show very good 

agreement with the references. 

7. 2 Vibration of the isotropic stiffened plate 

The vibration of clamped isotropic plate with a single stiffener is examined. For the present single ribbed square 

plate, the experimental natural frequencies were measured in Olsen and Hazell /8/. The geometry and material 

properties are as follow: 

a = b = 203 mm , h = 1.37 mm , ts = 6.35 mm, hs = 12.7 mm , Ε = 68.7 G P a , ν = 0.3 , ρ = 2820 kg / wi3 . 
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Table 1 

Non-dimensional first frequency ( w = m \ ] p h 2 / E 2 , a /b= l , a/h=10) of the laminated composite plates 

Solutions 

Anti-symmetric 
a Anti-symmetric Angle-ply 

Cross-ply 
Solutions 

n=2 n=10 n = 2 4 Λ C n=4 n=10 i / 

FSDT 

(Reddy, Hi) 
10.473 15.779 13.044 14.742 17.634 19.380 

Han and Choi 151 10.534 15.823 13.100 - - 19.391 

Present 10.477 15.779 13.044 14.742 17.634 19.381 

a 0/90, (0/90) 5 ; h 45/-45 ; c (5/-5) 2 , (30/-30) 2 ; d (45/-45) 5 

The present results were obtained using the mesh 10 χ 10 for the plate and 1 χ 10 for the stiffener. A consistent mass 

matrix was employed in Eq. (28). The Olson and Hasell /8/, Rikards et al. /13/ and present results are presented in Table 

2, where it is shown that the best agreement with the experiment and A N S Y S is for numerical frequencies computed by 

present shell element. For comparison numerical frequencies have also been calculated employing the code ANSYS. In 

this case, the mesh 24 χ 24 was used and the assembly of the shell elements for the skin and stiffener was employed. 

Generally, all f requencies of present analysis employing the shell model with assumed natural strain formulation for 

the plate and stiffener are closer to the experiment and A N S Y S than other references. 

7. 3 Vibration of the composite stiffened plate with angle-ply single rib 

In order to verify the present assumed natural strain shell model for a composite st iffener, we compared the results 

of the present shell model with those of a beam model for stiffened anisotropic plate. In general, the symmetric 

vibration mode in the isotropic plates does not always become a symmetric mode in the anisotropic plates. Thus the full 

finite element modeling should be used for stiffened anisotropic plates. Numerical results are obtained for the composite 

stiffened plate made of a carbon-epoxy composi te materials (AS1/3501-6). The properties of that material are listed in 

Table 3. 
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Table 2 
Natural frequencies [Hz] of isotropic stiffened plate 

Mode 

Olson & Hazell /8/ 

Lee et al. /12/ 
Rikards et al. 
/13/ 

ANSYS 
(Rikards et al., 
/13/) 

Present Mode 
Theory Experiment 

Lee et al. /12/ 
Rikards et al. 
/13/ 

ANSYS 
(Rikards et al., 
/13/) 

Present 

1 718.1 689 711.1 693.2 712.6 720.7 

2 751.4 725 743.4 751.0 742.9 747.2 

3 997.4 961 975.2 984.8 983.8 989.6 

4 1007.1 986 993.4 1007 993.6 999.1 

5 1419.8 1376 1414.5 1417 1398.5 1408.1 

6 1424.3 1413 1423.0 1427 1402.5 1411.5 

7 1631.5 1512 1552.9 1651 1599.5 1612.9 

8 1853.9 1770 1886.6 1829 1831.0 1866.8 

9 2022.8 1995 2024.6 2019 1983.6 2003.9 

10 2025.0 2069 2064.1 2024 1985.8 2005.8 

11 2224.9 2158 - 2191 2175.6 2209.4 

12 2234.9 2200 - 2231 2185.0 2214.4 

13 2400.9 2347 - 2393 2344.6 2380.3 

14 2653.9 2597 - 2645 2585.9 2619.7 

15 2670.2 2614 - 2674 2597.5 2629.9 

16 2802.4 2784 - 2789 2733.9 2783.2 

17 2804.6 2784 - 2793 2735.1 2784.3 

18 3259.0 3174 - 3254 3143.7 3185.0 

19 3265.9 3174 - 3271 3148.8 3189.4 

20 3414.2 3332 - 3583 3316.8 3434.2 

21 3754.0 3660 - 3724 3644.3 3760.7 

22 3754.8 3730 - 3726 3644.8 3761.1 

23 3985.5 3780 - 3909 3798.8 3916.3 

24 4045.9 3913 - 4019 3862.9 3929.1 

Table 3 
Material properties of the composite stiffened plate 

Material Εχ Ei G, 2 - G, 3 σ 2 3 v12 Ρ Ply thickness 

Carbon-epoxy 128 11 4.48 1.53 0.25 1500 0.13 
(AS 1/3501-6) [GPa] [GPa] [GPa] [GPa] ikg/m] [mm] 

283 



Vol. 14, No. 4, 2007 Effect of Varying In-plane Loads and Stacking Sequence 
on Vibration Analysis of Composite Stiffened Plates 

The lamination scheme of the skin plate is (0 / ± 45 / 90) ä and the (O3 / ± #3 composite stiffener is used to 

investigate the effect of the f iber orientation of the stiffener on the natural f requency. The boundary conditions and 
geometry are presented Fig. 7. The size of the stiffener is ts = 2.34 mm and hs = 30.0 mm . The mesh of the skin plate 

is 10x10 . The results are presented in Fig. 8. Lee et al. /12/ showed that the frequencies of first and third modes were 

dependent on the fiber orientation of the stiffener and the stiffener with 30 ply angle had the maximum values of the 

frequencies. But there is almost no change in the frequencies. It can also be observed f rom Fig. 8 that the stiffener 

should be idealized by using the shell elements. 

In Fig. 9, the lamination scheme of the skin plate is ( 0 / ± e / 9 0 ) s and the (0 3 / ± 4 5 3 ) 5 composite stiffener is used to 

study the effect of the fiber orientation of the skin plate on the natural frequency. As shown in Fig. 9, the skin plate with 

35 - 40 ply angle has the maximum values of the first natural frequency. The first frequencies of two types of 

lamination scheme are presented in Fig. 10. The fiber orientation of the skin plate is more significant than the fiber 

orientation of the stiffener. 

1.04 

500 (mm) 

Fig. 7: Laminated composite plate with stiffener 

200 -

J 160 — 

i 

ί 120 - f t - B - -Θ-

20 30 

~r 
40 50 

Angle 

Fig. 8: Effect of the fiber orientation of stiffener on natural frequencies 
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Angle 

Fig. 9: Effect of the fiber orientation of skin plate on natural frequencies 

Angle 

Fig. 10: Effect of the fiber orientation of skin plate and stiffener on first natural frequencies 

7. 4 Vibration of the composite stiffened plate with double stiffener 

The dimensions of the doubly stiffened laminated composite plate are presented in Fig. 11. The layer-up of the skin 
plate and stiffener are (02 /± 452 / 902 ) s and (04 / 904 ) s , respectively. Results are compared with the Lee et al. /12/ in 
Table 4. Table 4 shows the effect of the location of stiffeners on the frequencies. As the location of stiffeners becomes 
farther from the center line, the frequency of the lowest five modes goes up and down. The frequencies are severely 

285 



Vol. 14, No. 4, 2007 Effect of Varying In-plane Loads and Stacking Sequence 
on Vibration Analysis of Composite Stiffened Plates 

I 
I 

250 4 

J 
500 (mm) 

2.08 

C ! . 
f 2b 2d 

:2.08 

30.0 

Fig. 11: Anisotropic plate with double stiffeners 

Table 4 
Natural frequencies of doubly stiffened plates 

Stiffener 
location 
(d/b) 

Frequencies of five modes [Hz] 
Stiffener 
location 
(d/b) 

1 2 3 4 5 
Stiffener 
location 
(d/b) a b a b a b a b a b 

0.2 138.2 138.5 141.2 139.3 252.3 256.3 259.2 262.2 424.1 431.8 

0.4 170.3 171.3 200.7 194.6 294.8 299.8 318.1 319.3 471.4 425.6 

0.6 189.8 192.5 301.7 300.2 326.4 330.9 382.3 357.2 434.6 444.2 

0.8 144.2 145.9 266.2 271.9 375.2 372.6 438.5 451.0 499.0 504.6 

1.0 110.7 111.7 227.9 232.4 269.1 268.4 372.7 385.4 409.2 413.5 

a : Lee et al. 112/, b : Present 

dependent on the location of the stiffeners. As shown in Table 4 the proper location to increase the fundamental 
frequency is a position about 60% from the center line. The present and reference fundamental frequency of position 
(d/b=0.6) showed the difference of about 1.4%. The first three mode shapes of five models are shown in Fig. 12. The 
ansymmetric first mode about the stiffener becomes the symmetric mode as the distance of stiffener increases. 

7. 5 Vibration of the composite stiffened plate under in-plane load 

The stacking sequence of the skin plate is ( 0 / 9 0 / 9 0 / 0 ) and the ( 4 5 / — 4 5 / — 4 5 / 4 5 ) composite stiffener is 

used to investigate the effect of the combination of in-plane compression and shear loading on the natural frequency. 

The dimensions of stiffened plate are presented in Fig. 7. The geometry and material properties are as follow: 
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Stiffener 
location 

m . 

0.2 

First 
mode 

Second 
mode 

Third 
mode 

Fig. 12: Mode shapes of doubly st iffened plates 

a = b = 10.0/μ , h = \.0m, ts = 1 . 0 m , hs = 2 . 0 m , ρ = l .OxlO 1 0 N-sec2/mA, El = 4 0 E 2 , E2 = l .OxlO 1 0 Nim1, 

Ga = G,3 = 0 . 6 E 2 , G 2 3 = 0 . 5 E 2 , v = 0.25 . 

The boundary conditions are as fol low: 

x = 0, 1 0 m : «3 =θ\ = 0 , >> = 0, 10/w: «3 =θ2 = = 0 , ζ =0,-2m : =θ\ = 0 . 

(for stiffener) 

The mesh of the skin plate is 10 χ 10. The types of in-plane compression and shear loading are presented in Fig. 13. 

The results are presented in the non-dimensional form using the equation: 
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(a) (b) (c) 
N o stiffener, no force No stiffener, Nx=0.2 With stiffner, no force 

1 1 \ \ 

t t 

(d) (e) (f) 
Nx=0.2 Ny=0.2 Nxy=0.2 

I I ι ι ι 
1 1 

- · 
-

t t 

(g) (h) (i) 
Nxy=-0.2 Nx=Ny=0.1 Nx=Ny=Nxy=0.1 

Fig. 13: Load types for stiffened plate with in-plane loads 

f 2 I Λ a 

V £2 J 

The results are presented in Table 5 and Fig. 14. In case (b), the in-plane compressive load reduces the natural 
frequencies of un-stiffened plate about 62.1%. Therefore, we can predict the buckling load using the vibration analysis. 
But in-plane shear load increases the natural frequencies. The combination of in-plane compression and shear loading 
has influence on the change of the natural frequency according to the magnitude of the in-plane compression and shear 
load, respectively. In case (i), the variation of the frequencies are very small. Thus, the magnitude, direction of the in-
plane compression and shear loading in laminated composite stiffened plates should be selected properly to control the 
specific frequency and mode shape. 

Fig. 15 illustrates the dynamic behaviour of the composite stiffened plate. The aim of this example is to investigate 
the resonant frequency characteristic under in-plane compression loading. The intersection, between the curves, 
interchanges the sequence of some of the mode shapes as a result of the increase in the in-plane compressive load. It is 
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Table 5 
Natural frequencies of composite stiffened plates under in-plane load 

Type 

Frequencies [ / ] 

Type First 
mode 

Second mode 
Third 
mode 

Fourth 
mode 

Fifth 
mode 

(a) 2.410 5.124 6.136 7.427 7.667 

(b) 0.913 4.211 4.608 6.234 6.683 

(c) 2.266 4.172 4.933 5.650 6.150 

(d) 1.256 4.172 4.230 4.566 5.651 

(e) 1.262 3.049 4.153 4.525 5.599 

(0 3.832 3.955 4.166 5.235 5.455 

(g) 3.825 3.954 4.166 5.235 5.451 

(h) 1.474 3.992 4.159 5.334 5.624 

(0 2.157 3.216 3.713 3.931 4.159 

related to the change in the number of half-waves which are parallel to the load direction. The various mode shapes 
have been defined in Fig. 16. These values are known to be the points at which the intersections between the different 
sets of curves, shown in Fig. 15, occur. 

Figs. 17-20 illustrate the dynamic behaviors of the composite stiffened plates subjected to the combination of in-
plane shear and unidirectional compressive loads. The effect of the applied shear and in-plane compressive loads is 
shown. As expected, the natural frequencies of composite stiffened plates with shear loads exhibit higher values than 
the case of without shear loads as shown in Fig. 17 and Fig. 19. 

Fig. 21 shows the natural frequencies of the composite stiffened plates under the combination of in-plane shear and 
bidirectional compressive loads. As expected, the natural frequencies of composite stiffened plates are decreased when 
the in-plane bidirectional compressive loads increase. However, the buckling load of composite stiffened plate 
decreases when compared with the case of the in-plane unidirectional compressive loads. Similar to the case of only in-
plane compressive load, the intersection, between the curves, interchanges the sequence of some of the mode shapes as 
a result of the increase in the in-plane compressive loads in Fig. 17, Fig. 19 and Fig. 21. 

7. 6 Vibration of the composite stiffened plate with angle-ply skin plate under in-plane shear and 
compression 

Fig. 22 illustrates the dynamic behaviour of the composite stiffened plate with symmetric and antisymmetric angle-
ply skin plate. The stacking sequence of the skin plate is (Θ/-Θ/-Θ/Θ), ( Θ Ι - Θ Ι Θ Ι - Θ ) and the ( 4 5 / - 4 5 / - 4 5 / 4 5 ) 
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First 
mode 

Second 
mode 

Third 
mode 

Fig. 14: Mode shapes of stiffened plates under in-plane loadings 

composite stiffener is used to investigate the effect of the variation of fiber angle on the natural frequency. The 
intersection, between the curves, interchanges the sequence of some of the mode shapes as a result of the increase in the 
fiber angle. It is related to the change in the number of half-waves which are parallel to the load direction. Fig. 23 "shows 
that the antisymmetric laminated composite plates have larger fundamental frequency and intersection point than the 
symmetric plates. 

Fig. 24 illustrates the dynamic behaviour of the composite stiffened plate with antisymmetric angle-ply skin plate. 
The stacking sequence of the skin plate is (Θ/-Θ), (θ/-θ)2, (θ/-θ)4 and the ( 4 5 / - 4 5 / - 4 5 / 4 5 ) composite 

stiffener is used to investigate the effect of the variation of fiber angle and number of layers on the natural frequency. 
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Fig. 15: Non-dimensionalized frequencies of laminated composite stiffened plate under in-plane compressive load 

(a) Ny= 0 

(c) Ny = 0.2 

Fig. 16: Mode shapes of stiffened plates under in-plane compressive load 
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Fig. 17: Non-dimensionalized frequencies of laminated composite stiffened plate under in-plane shear and 

unidirectional compressive loads = O.l) 
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(a) Ny =0 

(c) Ny = 0.2 

Fig. 18: Mode shapes of stiffened plates under in-plane shear and unidirectional compressive loads ( a ^ = O.l) 
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Fig. 19: Non-dimensionalized frequencies of laminated composite stiffened plate under in-plane shear and 
unidirectional compressive loads ( Λ ^ = 0.2) 

(C) Ny = 0.2 

Fig. 20: Mode shapes of stiffened plates under in-plane shear and unidirectional compressive loads ( λ ^ = 0.2) 
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Fig. 21: Non-dimensionalized frequencies of laminated composite stiffened plate under in-plane shear and 

bidirectional compressive loads ( Ν ^ = 0 . l ) 

(a) Nx = Ny = 0 

(b) Nx = Ny = 0.1 

(c) Nx = Ny = 0.2 

Fig. 22: Mode shapes of stiffened plates under in-plane shear and bidirectional compressive loads = 0.1 
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Fig. 23: Non-dimensionalized frequencies of laminated composite stiffened plate under in-plane shear and 

bidirectional compressive loads 
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Fig. 24: Non-dimensionalized frequencies of laminated composite stiffened plate under in-plane shear and 

bidirectional compressive loads 
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As expected, the intersection, between the curves, interchanges the sequence of some of the mode shapes as a result of 
the increase in the fiber angle. The intersection point decreases upon increasing the number of layers. The number of 
layers and fiber angle of skin plate in laminated composite stiffened plates should be selected properly to control the 
specific frequency and mode shape. 

6. CONCLUSIONS 

Vibration analysis of laminated composite stiffened plates under the circumstance of combining of in-plane shear 
and compressive loads is investigated. The 9-node shell element, which is based on assumed strain method and 
resultant-stress concept, is used. In order to compare with the other references, the vibration analysis of the laminated 
composite un-stiffened and stiffened plates have been proposed. Natural frequencies for composite stiffened plates 
obtained from the present analysis are found to be in good agreement with the reference solutions and experiment. In 
the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be 
idealized by using the shell elements. This result shows that the present shell model for the stiffened plate gives more 
accurate results. The change of stiffener size and location influences the natural frequencies and mode shapes. The fiber 
orientation of the skin plate affects the natural frequencies of composite stiffened plate more than the fiber orientation 
of the stiffener. 

Relationships between the natural frequencies and the in-plane loads for rectangular composite stiffened plates have 
been presented. It has been shown that the increase in magnitude of the in-plane compressive load reduces the natural 
frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The 
natural frequencies of composite stiffened plates with shear loads exhibit higher values than the case of without shear 
loads. The intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of 
the mode shapes as a result of the increase in the in-plane compressive load. Also, the change of direction and 
magnitude of in-plane load influences the natural frequencies and mode shapes. Besides, the number of layers and fiber 
angle of skin plate become the reason to change the frequency and the intersection happens in specific fiber angle under 
the constant in-plane shear and compressive load 

Therefore, the magnitude, direction of the in-plane loads, the number of layers and fiber angle of skin plate in 
laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. 
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