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ABSTRACT 

This study deals with elastic-plastic behavior of 

aluminum metal-matrix laminated cantilever beam 

subjected to a bending moment at the f ree end. The 

Bernoull i-Euler theory is utilized in the solution and 

small plastic de format ions are considered. The beam 

consists of four layers and its material is assumed to be 

linearly hardening. A few ply arrangements such as 

[9070° ] s , [ 3 0 7 - 3 0 ° ] s , [ 4 5 7 - 4 5 ° ] s and [607 -60° ] s are 

taken into considerat ion for such an analysis. The 

moment values that initiate plastic f low at any point of 

the beam are carried out for diverse stacking sequences. 

The variation of the elastic, elastic-plastic and residual 

stress components versus increasing plastic zone spread 

are given in tables and figures. 

INTRODUCTION 

Due to their specif ic s t i ffness, high temperature 

per formance and low density, metal-matrix composi tes 

have been used in structures and commercia l 

applications for a long time. Recently, many production 

techniques of M M C s such as cast ing and powder 

metallurgy methods have been utilized in numerous 

investigations /1 -3/. 

Bahai-El-Din and Dvorak /4/ investigated the 

elastic-plastic behaviour of symmetr ic metal-matrix 

composi te laminates under in-plane mechanical loading. 

Dadras 151 presented an elastic-plastic stress analysis of 

plane strain pure bending of a s train-hardening curved 

beam. In that study only a linear hardening case has 

been analyzed. Fares 161 presented a modi f ied version of 

Re issner ' s mixed variational formula for investigating 

general ized non-linear thermoelas t ic i ty problem in 

composi te laminated beam. Liu and Soldatos 111 

assessed the accuracy of the distr ibution of the 

interlaminar ( transverse shear and t ransverse normal) 

stresses through the entire beam thickness . Khdei r and 

Reddy ISI presented an exact solut ion for the bending of 

thin and thick cross-ply laminated b e a m s by using the 

classical first-order, second-order and third-order 

theories in the analysis. Cha t topadhyay and G u o 191 

developed non-linear structural design sensitivity 

analysis for structures undergo ing elastoplast ic 

deformat ion . Sayman and Zor 710/ investigated elastic-

plastic stresses in a thermoplas t ic cant i lever beam 

loaded uniformly. Karakuzu and Özcan / l l / carried out 

an elasto-plast ic stress analysis on a luminum composi te 

canti lever beam loaded by a single fo rce at the f ree end 

and a uniformly distributed force at the upper surface by 

using an analytical solution. Sayman and Qallioglu /12/ 

carried out an elastic-plastic stress analysis in composi te 

beams under a bending momen t by us ing the Bernouilli-

Navier hypotheses. 

On the other hand, in this s tudy an elastic-plastic 

stress analysis is carried out in steel fiber re inforced 

symmetr ic aluminum metal-matr ix laminated composi te 

beams consist ing of four o r t h o t o p i c layers subjected to 

a bending moment . They are p roduced by a squeeze 

casting method. The Tsai-Hill theory is used as a yield 

criterion during the solution. 
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ELASTIC S O L U T I O N 

Analysis of laminated beams subjected to pure 

bending can be developed from the Bernoulli-Euler 

theory /13/. According to this theory, the longitudinal 

normal strain at a distance from the neutral surface is 

given as 

ζ 

Ρ 
(1) 

where ρ is the radius of curvature of the neutral surface 

during flexure, ζ is the distance from neutral surface by 

the xz plane, as shown in Figure 1. The longitudinal 

stress in they'th ply is written by 

(ojj = (EJ, ( t j j (2) 

where (Ex)j is the Young ' s modulus ofy'th ply along the 

χ axis and (8x)j is the longitudinal strain in the y'th ply 

along the χ axis. From the Eqs. (1) and (2) the 

longitudinal stress can be evaluated as, 

( a x ) j =(£,) X> J (3) 

The stress component σ χ must be related to the bending 

moment as, 

Μ = 2 |σχ ζ dz (4) 

or 

^ 7=1 

N/2 

(5) 

where 2c and t are the height and thickness of the beam, 

and Ν is the total number of plies and z, is the distance 

from the neutral surface to the outside of theyth ply. For 

an even number of plies of uniform thickness z, = j 2c/N 

and Eq. (5) becomes 

Μ 
16 tc 

3 p/V3 

3 N/2 
Σ { Ε χ ) ] (3j2 - 3j + 1) (6) 
7=1 

or, it is written as 

Μ = 
Ef 'yy 

(7) 

where Iyy is the inertia moment of the cross-section of 

the beam, Ef is the effective flexural modulus of the 

beam which is 

N/2 

(8) 

The stress component can also be written by 

eliminating the radius of curvature; 

, x Μ /r, , Μ ζ 
{ ( T x ) j = ~ n ~ { E x ) J z = T ~ 

f yy yy 

X'J 
(9) 
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The strain-stress relation in the composite laminated 

beam is written as, 

«11 
«12 
«16 
2 

« 1 2 

« 2 2 

«26 

2 

«16 
« 2 6 

«66 
2 

(10) 

where a - are the components of the compliance matrix 

/14/: 

«II = « n w 4 +(2an +a6e)m2n2 + a22n4 

«12 = « I 2 ( ' " 4 + " 4 ) + («l l + « 2 2 - « δ ό ) ' " 2 " 2 

«22 = « l l " 4 +(2«12 + «66 2 " 2 + « 2 2 w 4 

«16 = ( 2 « U - 2 « 1 2 - « 6 6 ) ' 7 ' " 3 - ( 2 « 2 2 ~ 2«12 ~ «66 ) " 3 

«26 = ( 2 « i l - 2 « 1 2 - « 6 6 ) " 3 m - ( 2 « 2 2 ~ 2 « | 2 ~ a 6 6 ) n m 3 

«66 = 2(2ί7,, + 2(722 - 4 « 1 2 - « 6 6 ) ' " 2 " 2 + « 6 6 ( w 4 + " 4 ) 

(11) 

where m=cos9, n=sin0, a n = l / E | , a 2 2=l/E 2 , a i 2 =-v l 2 /E | , 

a 6 6 =l /G | 2 . Eq. 3 can also be written as, 

K ) ; = — — 
P(a\\), 

(12) 

ELASTIC-PLASTIC S O L U T I O N 

During the elastic and elastic-plastic solution, it is 

assumed that the Bernoulli-Euler hypotheses are 

protected. According to these assumptions plane 

sections, which are normal to the longitudinal axis, 

remain plane and normal during flexure. Thus the unit 

strain for both the elastic and elastic-plastic cases is 

written as, 

ζ 

Ρ 
(13) 

where ρ is the radius of the curvature of the beam. 

The Tsai-Hill theory is used as a yield criterion due 

to the same yield points of the plies of the metal-matrix 

composite beams in the tension and compression. X and 

Y are the yield strength in the 1st and 2n d principal 

material directions, respectively. The yield strength in 

the 3rd direction, (Z) is assumed to be equal to the 

transverse yield point (Y). Also it is assumed that the 

shear strength in 2-3 and 1-3 planes is equal to S which 

is the shear strength in the 1-2 planes. 

The yield condition according to this criterion can be 

written as, 

X 1 

σ\°2 
X 2 

' 1 2 (14) 

multiplying it by X gives the equivalent stress in the 
first principal material direction as, 

°eq = c r = 1 | σ , 
/ 2 

0"|0"2 + CT2 + τ\1 (15) 

For a linear strain hardening material, the yield 

stress is given by the Ludwik equation as, 

σγ = σ 0 + Κερ (16) 

where σ 0 is equal to X which is the yield strength in 

the first principal material direction, Κ and are the 

plasticity constant and equivalent plastic strain, 

respectively. In the plastic region, the equations of 

equilibrium are written as, 

d(Jx , drx 

dx 

drY7 

dx 

dz 

3 σ ζ 

= 0 

(17) 

= 0 

After integration of the first equation o x is 

determined as C(z). Therefore, at any section, in the 

plastic region σ* is only a function of z. 

The stress components in the principal material 

directions for the orientation angle θ are written as, 

2 2 (7] = σχ m ,θ2 = ox η , τΙ2 = οχ mn (18) 

where m=cos9, n=sin0. Putting them in Eq. (15) gives 
the yield strength for the orientation angle Θ, 

1 Ν 
(19) 

where, 

N = 4 2 2 m - n m + 
X 2 n 4 X2n2m2 — + (20) 
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The plastic strain increments in the materials 
directions can be found by using the potential function 
f = σ - σ γ ( ε ρ ) / 15 / a s , 

def 

ds,ξ 

d £ n 

I L 
5(T] 

3 / 
δ σ 2 

d f 

δτ 

dX 

άλ 

άλ 
12 

(21) 

The total strain increments in the principal material 

directions are written as /16/, 

de\ =de * +άε f=a uda ] +a j 2άσ 2 -3^—--άλ 
2σ γ 

2σ2Χ2 

-σ>+
 γ2 

άε2=άε2+ άεζ = α\2άσ\ +α22άσ2 Η άλ (22) 
2σγ 

Χ' 

άε 12 

λ 1 τ η , 
=άε\2 +def2 · S άλ 

2 2 σγ 

The stress component σ χ for the orientation angle θ can 

σγ 
be written as σχ

 a n d dk is equal to the 

equivalent plastic increment dtp. Putting σ , , σ 2 and τ η 

into Eq. (22) and integrating them produces 

ε\ = α\\σ\ +α\2σ2 +• 
2 m 2 - « 2 

2N 
ε p + C| 

— m 2 + 2 « 2 —. 

ε2 = αχ2σχ + α 2 2 σ 2 +" 

ε η = 
α66Τ\2 

2mn 

2 Ν 

2 Ν 

- ε ρ + 0 3 

-£p+C2 (23) 

Integration constants Q , C2 and C 3 are determined at 

the boundary of the elastic and plastic regions by using 

the boundary conditions since at the boundary ερ is zero 

and elastic and plastic strains are equal each other. 

Using Eq. (10) and the transformation formula, the 

strain components in the principal material directions 

for the elastic region are written as, 

ε2 
ε\2 

m 

η 2 

- mn 

η 
2 

m 

mn 

2mn 

-2mn 

m ' 

(24) 

£•] =σχ[αΧ\ m2 + a\2 η2 + α16 mn) 

ε2 =σχ(οιι η2 + ä,2 m2 - ä,6 mn) 

ε\2=σχ\""\ \ mn + ö\2 mn + - η2) : 

(25) 

where σ χ = Χ, which is the yield strength of a ply for the 

orientation angle Θ. Equating the strain components at 

the boundary of the elastic and plastic regions gives the 

integration constants. Then the strain components in the 

plastic region are written as, 

2m2 - n 2 

2 Ν 

ε\ = ax(aum2+a]2n2)+ 

x\[{ä\\-au)m2+(äl2-an)n2+ä]6mn]-i 

ε2 =σχ (α12 " ι 2 + «22 " 2 ) + 

χ \ [(«, 1 ~ α22)" 2 + («12 - «12 ) η ι 2 - σ 1 6 mn\+ (26) 

? ~ ? χ 2 
— m + 2η —— 

2 Ν 

£12 =—γ<>66 + 

Χ\\ - ö] ι mn + θ|2 mn + ~~(m2 - n2) + -^-mn J -

2 mn 
X' 

2 Ν 

The strain components in the χ and ζ directions are 

obtained from the principal material directions by using 

the transformation formula, 

Μ 
2 2 m η - 2 mn 

u = 
2 2 η m 2 mn 

mn - mn m 2 2 -n 

They are determined as 

εχ = «11 σχ+Β}ερ, ε. = «12 Ο 

(27) 

« 1 6 σ v + B-i ε 3 b p (28) 
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where 

2 o t 4 - 2 w V + 2 » 4 - — + 4m2n2~-
Β ,=-

2N 

~ 7 7 4 4 ^ 7 7 λ 7 7 2m η - η -m + 2 m η —— - 4 mz η —— Β, 
2 Ν 

Χ 2 Χ 2 

Im^n - m n 3 - 2wn 3——+ (~2min+ 2mn}) —— 
Y2 S 2 

2 Ν 

(29) 

The stress component σ* in the elastic region varies 

linearly in terms of the curvature of the radius as, 

Μ = 2 
td 2 ζ 

J z = 0 p j a , 
• zt dz + 

ll2 

J
z =4 p h i | 2 ' l 

zt dz + (34) 

r 
Jz=A 

Χ + Κε, 

Ν 
ζ t dz 

where t is the thickness of the beam and zp = a + bz 
found in the previous section; X is the yield strength of 
the first layer. The curvature is evaluated from the yield 
strength of the first layer as 

σ γ = 
a \ ι Ρ" ii 

(30) 

Therefore, the distances between the plastic regions 
and the χ axis are equal to +h and - h , as seen from 
Fig. 1. 

At the yield point, σ* is equal to X\ and 
h 

σχ = X\ = — = — , hence, the curvature of the radius is 
Ρ «Ii 

determined as, 

h 
X\ ä\\ 

The total strain in the plastic region is written as, 

flu 

(31) 

ζ 

Ρ Ν 
•σγ + Ν j £

P 
(32) 

Putting Oy in the equation gives ερ as |ερ|. = \a + b z\. 

where, 

a = 
_ σ 0 «11 

Κ ι + B\ Ν 
b = 

Ν 
ρ {Κ a u +Ä, Ν) 

(33) 

σγ = Χ, = 1 
h i l l ρ 

Ρ = Ί= 
«111,^1 

(35) 

where Χ, is the yield strength of the first layer and is 
equal to X/N. 

If the plastic region is spread from the bottom layer 
(first layer) into the second layer, the bending moment 

Μ - 2 
Jz=0 

rc/2 
Jz=h 

p \ a 1 1 I 2 

X + Κέ„ 

i c z=— 
2 

Ν 

Χ+Κε, 

Ν 

:t dz + 

zt dz+ 

zt dz 

(36) 

where indices show the mechanical properties of the 
layers, ερ=\α + bz\ . , a and b are different in each 
layer. 

RESIDUALSTRESSES 

DETERMINATION OF BENDING MOMENT 

The moment at any section can be evaluated 

according to the boundary of the plastic region. The 

moment of the stress component of o x has to be equal to 

the bending moment M. If the plastic region is spread in 

the first layer (bottom layer), the bending moment 

If h is known, the bending moment Μ in Eqs. (34) 
and (36) can be calculated. Afterwards, elastic and 
elastic-plastic stress components of σ χ for a each ply can 
be calculated from the following equations, 
respectively: 

Κ ) . = 
Μ ζ XJj (37) 
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(σχ)ρ = 
ay _ σ0 + Κερ σ0+ Κ(α + bz) 
Ν Ν 

j 
Ν 

(38) 

The superposition of the elastic and elastic-plastic 
stresses gives the residual stress components as, 

M r = M P ~ M e (39) 

where subscripts r, ρ and e indicate residual stress, 
elastic-plastic stress and elastic stress, respectively. 

A SAMPLE AND DISCUSSION 

The analytical method is carried out on the 
symmetric aluminum metal-matrix composite laminated 
cantilever beam reinforced steel fibers unidirectionally. 
The beam is manufactured by the squeeze casting 
method. The mechanical properties of the ply are given 
in Table 1. 

The bending moment starting plastic yielding at the 
upper and lower surfaces for the orientations of plies is 
given at Table 2. As seen from this table, the bending 
moment value is found to be the highest for [30°/-30°]s, 
that is [307-307-30°/30°], orientation. When the 
orientation angle is chosen as [457-45°]s, [607-60°]s 

and [9070°] s the bending moment value which starts 
plastic yielding decreases gradually. It is 11360 Nmm 
for the laminated beam of [307-30°]s. It is the lowest 
for [9070°]s orientation as 9553 Nmm. 

Elastic, plastic and residual stress components of σ* 
and equivalent plastic strain for h=5, 4, 3, 2, 1 and 0.5 
mm are given in Table 3. The equivalent plastic strain is 
found to be the highest for [9070°] s orientation for the 
h=0,5 mm which is the boundary of elastic and plastic 
regions. It is 0.0133 at the upper and lower surfaces for 
the [9070°]s orientation and h=0.5 mm. The magnitude 
of the residual stress component of σ , is found to be 
maximum at the upper and lower surfaces. However, if 
the plastic zone is expanded further the highest residual 
stress component of σ* occurs at the boundary of the 
elastic and plastic regions. It is the highest (124.15 
MPa) at the boundary of the elastic and plastic regions 
for h=0.5 mm and [9070°]s orientation. The equivalent 
plastic stress in the principal material directions is the 
highest for [9070°] s orientation and then gradually 
decreases for [307-30°]s, [607-60°]s and [457-45°]s 

orientations. However, the equivalent plastic stress 
component of σχ approaches nearly the same value at 
the principal material axes. 

The distribution of the plastic, elastic and residual 
stresses for h=2.5 mm is shown in Figs. 2, 3, 4 and 5 for 
[90°/0°]s, [30°/-30°]s, [457-45°]s and [60%60°]s 

orientations, respectively. It is seen from Figure 2 that 
plastic and residual stress components for cross-ply 
laminated beam change dramatically at the region where 
90° and 0° plies are bonded to each other due to the 
different elastic moduli. At this region, plastic and 
residual stress components of σχ gain higher values, 

Table 1 
Mechanical properties and yield strengths of a layer. 

Ε, 
(GPa) 

Ε2 

(GPa) 
G , 2 

(GPa) 
V,2 Axial 

strength 
X (MPa) 

Transverse 
strength 
Y (MPa) 

Shear strength 
S (MPa) 

Plasticity constant 
Κ (MPa) 

8 2 7 3 2 8 0 . 2 9 1 4 0 9 8 6 4 9 8 0 

Table 2 
Bending moment values starting plastic yielding in the beam. 

Orientation angles 
[9070°] s [30%30°] s [457-45°]s [607-60°]s 

Bending moment (Nmm) 
9553 11360 10288 9700 
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Table 3 

Elastic, elastic-plastic, residual stress componen t and plastic strain at the lower sur face , 

and the residual s tress at the elastic and plastic boundary . 

In principal At the elast ic-

At tl le lower surface material axes plast ic bounda ry 

Orientation Μ h Ep.lO"4 
( σ χ ) ρ (σχ)ε ( ° x ) r (<Wp (σ*)Γ 

angles ( N m m ) (mm) ( M P a ) ( M P a ) ( M P a ) ( M P a ) ( M P a ) 

1 1 0 2 2 5 2 9 8 . 1 3 1 1 3 . 0 0 - 1 4 . 9 4 1 4 0 . 1 8 3 . 7 7 

1 2 2 5 2 4 5 9 8 . 3 2 1 2 5 . 6 9 - 2 7 . 3 7 1 4 0 . 4 6 1 4 . 2 0 

[ 9 0 ° / 0 ° ] s 1 3 2 6 4 3 9 9 8 . 6 4 1 3 6 . 0 7 - 3 7 . 4 3 1 4 0 . 9 1 3 3 . 6 6 

1 5 0 2 2 2 2 6 9 9 . 8 0 1 5 4 . 1 1 - 5 4 . 3 0 1 4 2 . 5 8 8 2 . 3 0 

1 5 8 4 0 1 6 2 1 0 2 . 2 5 1 6 2 . 5 0 - 6 0 . 2 5 1 4 6 . 0 7 1 0 9 . 5 8 

1 6 5 0 8 0 . 5 1 3 3 1 0 7 . 1 3 1 6 9 . 3 5 - 6 2 . 2 2 1 5 3 . 0 5 1 2 4 . 1 5 

1 3 0 9 8 5 2 1 1 8 . 4 6 1 3 6 . 4 4 - 1 7 . 9 7 1 4 0 . 1 6 4 . 6 3 

1 4 5 2 9 4 4 1 1 8 . 6 6 1 5 1 . 3 5 - 3 2 . 6 9 1 4 0 . 3 9 1 7 . 4 3 

[ 3 0 ° / - 3 0 ° ] s 1 5 6 5 9 3 8 1 1 8 . 9 9 1 6 3 . 1 2 - 4 4 . 1 3 1 4 0 . 7 8 3 6 . 7 7 

1 6 5 0 7 2 1 6 1 1 9 . 6 5 1 7 1 . 9 5 - 5 2 . 3 0 1 4 1 . 5 5 6 1 . 0 2 

1 7 1 6 7 1 4 0 1 2 1 . 6 2 1 7 8 . 8 2 - 5 7 . 2 0 1 4 3 . 8 9 8 8 . 5 3 

1 7 6 6 3 0 . 5 8 7 1 2 5 . 5 6 1 8 3 . 9 9 - 5 8 . 4 3 1 4 8 . 5 5 1 0 3 . 0 0 

1 1 8 6 2 5 1 1 0 7 . 2 7 1 2 3 . 5 7 - 1 6 . 3 0 1 4 0 . 1 3 4 . 2 0 

1 3 1 5 7 4 3 1 0 7 . 4 2 1 3 7 . 0 5 - 2 9 . 6 3 1 4 0 . 3 2 1 5 . 8 0 

[ 4 5 ° / - 4 5 ° ] s 1 4 1 7 6 3 7 1 0 7 . 6 6 1 4 7 . 6 7 - 4 0 . 0 1 1 4 0 . 6 4 3 3 . 3 3 

1 4 9 3 4 2 1 3 1 0 8 . 1 5 1 5 5 . 5 7 - 4 7 . 4 2 1 4 1 . 2 8 5 5 . 3 2 

1 5 5 0 2 1 3 3 1 0 9 . 6 3 1 6 1 . 4 8 - 5 1 . 8 6 1 4 3 . 2 1 8 0 . 2 6 

1 5 8 9 2 0 . 5 7 2 1 1 2 . 5 7 1 6 5 . 5 4 - 5 2 . 9 7 1 4 7 . 0 6 9 3 . 3 8 

1 1 1 8 3 5 1 1 0 1 . 1 3 1 1 6 . 4 9 - 1 5 . 3 6 1 4 0 . 1 3 3 . 9 6 

1 2 4 0 4 4 3 1 0 1 . 2 7 1 2 9 . 2 0 - 2 7 . 9 3 1 4 0 . 3 4 1 4 . 9 0 

[ 6 0 ° / - 6 0 ° ] s 1 3 3 6 5 3 7 1 0 1 . 5 2 1 3 9 . 2 2 - 3 7 . 7 0 1 4 0 . 6 7 3 1 . 4 2 

1 4 0 8 2 2 1 4 1 0 2 . 0 0 1 4 6 . 6 9 - 4 4 . 6 9 1 4 1 . 3 4 5 2 . 1 6 

1 4 6 2 4 1 3 4 1 0 3 . 4 5 1 5 2 . 3 3 - 4 8 . 8 8 1 4 3 . 3 5 7 5 . 6 4 

1 5 0 0 3 0 . 5 7 5 1 0 6 . 3 6 1 5 6 . 2 8 - 4 9 . 9 2 1 4 7 . 3 8 8 8 . 0 1 

whereas the elastic stress componen t of σ ν reaches its 

highest value at the upper and lower surfaces. However , 

the plastic and residual stress components of a x are the 

highest at the elastic and plastic boundary, as shown in 

Fig. 2 for cross-ply laminated beam. T h e magn i tude of 

the plastic and elastic stress componen t s of σ χ is found 

to be max imum at the upper and lower sur faces for 

angle-ply laminated beams. But the residual stress 

component of ox is the highest at the elastic and plastic 

boundary, as shown in Figure 3 for [30°/-30°] s 

orientation. T h e distribution of the stress componen t of 

σχ for [45°/-45°] s and [60°/-60°] s or ienta t ions is 

similar to [30°/-30°] s or ientat ion, as shown in Figs. 4 

and 5. Similarly plastic and elastic stresses are found to 

be max imum at the upper and lower surfaces , whereas 

the residual stress c o m p o n e n t is found to be the highest 

at the boundary of the elastic and plastic regions. 

T h e distribution of the residual stress componen t o f 

o x for h = l , 2, 3, 4 and 5 m m is shown in Figure 6 for 

[90°/0°] s or ientat ion. As shown in this f igure , the 

magni tude of the residual stress componen t is the 

highest at the upper and lower surfaces . W h e n the 
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Fig. 2: The distribution of the elastic-plastic, elastic and residual stress component of σ χ for the [90o/0o] s orientation, 

h=2.5 mm. 
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Fig. 3: The distribution of the elastic-plastic, elastic and residual stress component of σ χ for the [30°/-30°]s orientation, 

h=2.5 mm. 
-6mm ν -6mm -6mm / 

-3 

-200MPa 
200MPa 

-2OOMP4 
200MP4 

-200MPa 

/ 

200MPa 

6mm J 6mmJ \ / J 6mm 

( Ο , (°x)e ( σ χ ) Γ 

Fig. 4: The distribution of the elastic-plastic, elastic and residual stress component of σ χ for the [450/-45°]s orientation, 

h=2.5 mm. 
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Fig. 5: The distribution of the elastic-plastic, elastic and residual stress component of σ χ for the [60°/-60°]s orientation, 

h=2.5 mm. 
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6 mm 

200 MPe 
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Fig. 6: The distribution of the residual stress component of σ χ for the [90°/0°]s orientation. 

plastic region is further expanded it becomes the highest 

at the boundary of the elastic and plastic regions. The 

distribution of the residual stress component of o x for 

[30°/-30°]s, [45°/-45°]s and [60°/-60°] s orientations is 

shown in Figs. 7, 8 and 9. As shown in all the figures, it 

is the highest at the upper and lower surfaces; however 

when the plastic zone is further expanded it is the 

greatest at the boundary of the elastic and plastic zones. 

CONCLUSION 

In this study, an analytical elastic-plastic stress 

distribution is carried out on a steel fiber reinforced 

symmetric aluminum metal-matrix laminated composi te 

beam under the action of bending moment applied at the 

free end. The composite beam is linearly strain 

hardening and Bernoull i -Euler hypotheses are valid in 

the solution; the following are concluded: 

• The plastic region starts first at the upper and lower 

surfaces. 

• The elastic-plastic stress solution gives the 

maximum stress of σχ at the boundary of the layers 

for cross-ply laminated beam. 

• The elastic-plastic stress solution gives the highest 

stress of σ χ at the upper and lower surfaces for 
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h = 1 m m h = 2 m m h = 3 m m h = 4 m m h = 5 m m 

Fig. 7: The distribution of the residual stress component of σ χ for the [30°/-30°]s orientation. 

h = l m m h = 2 m m h - 3 m m h = 4 m m h = 5 m m 

Fig. 8: The distribution of the residual stress component of σ χ for the [45%45°] s orientation. 

h = l m m h = 2 m h = 3 m m h = 4 m m h = 5 m m 

Fig. 9: The distribution of the residual stress component of σ χ for the [60°/-60°]s orientation. 
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angle-ply laminated beam. 

• The magnitude of the residual stress component of 
σ* is the highest at the upper and lower surfaces for 
all the other orientations, except for the [90°/0°]s 

orientation. When the plastic region is further 
increased, it becomes the largest at the boundary of 
the elastic and plastic regions for both angle-ply and 
cross-ply laminated beams. 

• The magnitude of the residual stress component of 
σχ is the greatest for the [90°/0°]s orientation angle 
in comparison with [30°/-30°]s, [45°/-45°]s and 
[60%60°] s orientation angles. 

• The magnitude of the equivalent plastic strain is 
found to be highest for the [90°/0°]s orientation. 
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