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ABSTRACT 

In this article, an analytical method is presented for 
predicting the mechanical behaviour of materials with 
elastic properties in traction which are different from 
those under compression. The study was carried out on 
square, simply supported, non-symmetrical multi-layer 
orthotropic laminates under uniformly distributed 
sinosoidal load. Transverse shearing stresses were taken 
into consideration through the use of Touratier's refined 
theory. The present analytical results of deformation, 
strains and stresses in-flexure and by numerical analysis, 
are compared to the results of Papazoglou and Tsouvalis 
/1/ (based on the theory of Reddy /4/). 

NOTATION 

a,b dimensions of plate in x,y directions 
Aij, Bij, Dij, Eij, Fij, Gij laminate stiffness 
Et, Ec tensile and compressive Young's moduli, 

respectively 
G shear modulus 
h plate thickness 
kp, kq, he weighting factors 
Mi, Pi stress results 
q lateral load 
Q layer stiffness matrix 
S compliance matrix 
Τ transformation matrix 

u, v, w plate displacement in the x, y, ζ directions 
S compliance matrix 
Τ transformation matrix 
u, v, w plate displacement in the x, y, ζ directions 
znx, zny natural surface location in χ and y 

directions respectively 
j rotation 
p, q, χ subscripts for principal stress coordinate 

system 
1,2,3 subscripts for principal material 

coordinate system 
g superscript for geometrical direction 

indicator 
m superscript for principal material 

direction indicator 
pr superscript for principal stress direction 

indicator 

INTRODUCTION 

Some composite materials exhibit elastic moduli 
which are different when subjected to tension loading 
than when the loading is compressive, i.e., the elastic 
properties are load dependent. The characteristic 
behaviour is actually curvilinear, and is often 
approximated by two straight lines with a slope 
discontinuity at the origin (Fig. 1). Thus these materials 
are called bi-modulus . 
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Fig. I: Stress-strain relation of linearized different 
modulus material 

For example, differences of up to 60% have been 
reported between tensile and compressive moduli for 
orthotropic composites /2,3/, or even up to 100% for 
some rubber-matrix ones /4/. 

Initial research on the bimodulus materials studied 
by Jones 12,51, uses the Ambartsumyan material model 
for bimodulus materials in the buckling of circular 
cylindrical shells. The same author developed a new; 
more accurate, material model 13/. Subsequently Jones 
and Morgan 161 studied the cylindrical bending of 
bimodulus cross-ply laminates using classical 
lamination theory. Kamiya 111, first incorporated the 
transverse shear deformation theory (SDT) in the 
analysis of cylindrical bending of bimodulus material, 
while Fung and Doong /8/, using a higher-order SDT, 
evaluated results for the bending of cross ply laminates. 

All the above studies were restricted to laminates 
consisting at most of two layers. This restriction is 
overcome by Papazoglou and Tsouvalis /1 / in studying 
the multilayered cross-ply laminates by the Reddy 
higher-order S D T . 

In this article, the same method has been adopted for 
multilayered cross-ply bimodulus laminates, as defined 
by Papazoglou and Tsouvalis / l / with a more accurate 
definition of weighting factors kp, kq, for calculating 
the stiffnesses of 'stress zone', as well as well-known 
shear deformation laminated-plate theory of Touratier 
191 is used to incorporate the transverse shear stresses 
effect on each interface of the layers in a laminated 
structure. 

THREE-DIMENSIONAL STRESS MATERIAL 
MODEL 

For bi-modulus material, the different properties in 
tension and compression cause a shift in the neutral 
surface away from the geometric midplane, and 
symmetry about the midplane no longer holds. The 
result of this is that the bending-stretching coupling of 
an orthotropic type is exhibited, i.e. analogous to a two-
layer cross-ply plate (one layer at 0° and the other at 
90°) of ordinary orthotropic material. The governing 
equations of composite materials could be used for bi-
modulus materials except that the stress-strain relation 
must be of the bimodular form. 

The term "Material Model", used here, incorporates 
a way of defining the values of the stiffness or the 
compliance matrix members. For the sake of simplicity 
these relations are usually defined in the principal stress 
coordinates (p, q, ξ ) , rather than in the geometrical or 
principal material axes. 

The material model which will be used as a basis for 
the present extension is the Weighted Compliance 
Matrix material model (WCM Model), presented by 
Jones /3/. The WCM model introduces weighting factor 
which depend on the principal stress state and which 
determine the percentage of the tensile and compressive 
properties that form the final compliance matrix. In this 
article, weighting factors are introduced in a little bit 
different way as defined by Jones. 

In this analysis, a shear deformation theoiy of 
Touratier 191 is used and thus the need for a material 
model valid for the three-dimensional stress state 
becomes obvious. 

In principle stress coordinates, {apq = σηξ = = 0), 
stress-strain relation: 

£P Si l s 12 513 
ε ι S 1 2 

5 22 5 23 
£ξ S13 5 23 5 33 

ε9ξ s 1 4 S 24 s 34 
£ξρ 
ε 

515 S25 S35 £ξρ 
ε Sl6 S26 S36 PI Sl6 

ι (1) 

Here, ε ^ spq are not equal to zero, since the 
principal strain directions do not coincide with principal 
stress directions in an orthotropic material. 
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Using Jones's WCM model /1/ to the three-
dimensional stress state, with the compliance are 
assigned as follows, according to the sign of the 
principal stress (t: tensile, c: compressive) 

if σρ>0,σ<ι>0,σ(> 0 : 5 , - S j 

0: Ά 
S'y 

5 Μ = s< 

j =1,2,4,5,6 i f a , , > 0 , a q > 0 , a ( < 0 : , 

+ k Ä +k(Sh J = 1 > 2 

7 =1,3,4,5,6 > ο Λ Ά 

S.V 

sh 

+kqS'2j+k(S'2j 7 = 1 , 

< 0 : 2; mSv] . 7=2,3 ,4 ,5 ,6 

7 =1,4^,6 

* A +k(S« 7 = 2 , 3 

= 52;1 
• 7=2,3,4,5,6 

5 , . = 5G· 7=1,4,5,6 

if σρ < Ο,σ^ > Ο,σ^ > 0 : 
t. 

sv 

: / - * A + * A + * Ä V=2,3 

if σ < 0 , σ ? > 0,σ( < 0 : J1 ' ^ I j = 1,3,4,5,6 
5V = 5 v | 

S 2 / = ^ · j = 2,4,5,6 

ί ί σ < 0 , σ < 0 , σ , > 0 : 
- V 

- s ; 

Μ = si, 

7 =1 >2,4,5,6 

5 v + * A + k S j j - 1 ' 2 

if CTp < 0 , σ ί < 0 , a f <0 :5 , j 

where, 

|2 ι |2 

+ r i 

h 

2 ι i 2 
+ σ ^ 

Μ 

+ σ<7 + σ ί 

and (3) 

The weighting factor kq, k^ is unique for each 
stress state, hence this result is a unique compliance 
matrix. The compliances S,j and StJ

c are those which 
would have been calculated if the material properties 
were only the tensile or compressive ones. 

G O V E R N I N G EQUATIONS 

To determine the bending behaviour of simply 
supported unsymmetrical specially orthotopic 
laminates, the well-known shear deformation theory of 
Touratier will be used for small deflections. The most 
general form of the displacement field can be written as: 

U J , x 2 ,x3) =u°a- zw„ + f ( z + φα) α - 1 , 2 

U3( x, ,x2 ,z) = w" ( χ ι λ ) ; x3 = z 
(4) 

Where, 

m® = is the membrane displacement component along 

the xa axes of a point on midplane 
w a = dw/9x a i 

f(z) = shear deformation function. For the Touratier 
kinematics: f(z) = (h/π) sin(7n./h) 
φ α = rotation of the midplane normal about xa axes. 

By neglecting the non-linear terms of Von Karman, 
the strain-displacement relation can be written as: 

(2) 2 s i j = uiJ + u j,i (5) 
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Now, by the above strain-displacement relation, the 
field of strains from equation (4) can be written in the 
vector form as: 

"yy 

/xy 

k 
where, 

cxx 

byy 

Υ xy 

f ( 0 ) 
cxx 

byy 
(0) 

Υ xy 

"M? 

cxx M 3 ) l °xx 

• + Ζ byy 

yxy 

• + / ω byy 

(3) 
Υ xy (6) 

+ / ' ( z) M? 

"OJ 
vo,y 

u + ν uo,y T OyX 

cxx 

byy 

yxy 

wo,xx 
w 

o,yy 
2wosy 

* ( 3 ) cxx 

byy 

yxy 

[ r ? " U? 

<Pxjc 

<Py,y 

+ W, OJCX 
+ w. o,yy 

<Px,y +<Pys+2wosy 

(7) 

0 M?1 _\<Py+wo,y 1 0 • j [r?J \<Px +WOJ J 

By the static" version of the principle of virtual 
displacements; 

0 = J(<5U + SV)dn (B) 
a , 

The strain energy and potential energy of a plate in 
bending under lateral load q(x,y), is given by: 

hi 2 

0 - f f (<Τχχδεχχ + VyySSyy + σ ^ γ x y + σχζγχζ + 

A-h/2 

a y z y y z ) d z d A - j a(x,y)w(x,y)dA 

(9) 

where A is the plate area in the undeformed position. 
Now, by substituting equation (6) into equation (9): 

Μ " + / ' + fXzWy^Z-qix^Mlxd 

(10) 

+σ„ 

Stress results can be defined as for the Touratier 
theory: 

N. aß 

Μ. aß 

Α/2 

aß 
-h!2 

1 

ζ 

f ( z ) 

dz , 
Qa vZMmb 

(11) 

So, equation (10) becomes; 

o - j f c A , - m a , +/>„(<%, + < s o 

+Nyy&0j ~MyySvoyy +Pyy(ö<pyy +5vow) 

+ä>0J-2Mxy(Sv0Jcy)+Pxy(S<pxy +S<pyjc +2δν0„) 

-q(jc,y)<Sv„}dx:cfy 

(12) 

Now, by integration by parts: 

0 - j t - J V ^ A - M ^ A , -/>„,<% +PxvxSv„) 
Λ 

-Myy^o -PyyM + V » 

- " « Λ + 2 / 5 wA> 
+ RxS<pt - Λ , Α + RyS(Py - R y y f y 

(13) 

which gives the governing equations 
f o r V & 0 ,ä>0 ,äv0 ,δφχ ,δφ 

N x x j + Nxy,y =° 

Ν +N = 0 yy,y TJ* xyjc u 

Μxxjcx * yy,yy + 2^xyjcy + + ^y,y 

(Ρχχ^χ + Pyy,yy + 2^xyjcy ) + i7Cr>.y) = 0 

Pyy,y +Pxy,x = ^ 

(14) 
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For the laminate under consideration, which has 

simply supported boundary condit ions on all four edges, 

and which can be expressed mathematically as: 

u0(x,0) = u0(x,b) = vo(0, .y) = v0(a,y) - 0 

wo(*,0) = w0(x,b) = wo{0,y) = w0(a,y) = 0 
<px(x,0) = <px(x,b) = <py(0,y) - <py(a,y) = 0 ,(15) 

Nyy(x,0) = Nyy(x,b) = N ^ y ) = Ν^α,γ) = 0 

Myy(x,0) = Μπ(χΜ - Μ χ χ ( 0 , y ) = = 0 

the assumed solution forms for u,v,w, φχ and <py that 

satisfy the above boundary conditions are: 

mm . nny « . mm nm> 
cos sin- * * — Σ.. . m/K. r 

V„,„sin cos -

Σ„, . mm . nny ^ „ m7VC • nny 
MC„sin sin—, <px = >^m„cos sin-a b fa a 

mnx nny 
<Py =27"»·8ίη: 

b 

(16) 

The strain-displacement relation of equation (7), and 

the above assumed field of displacement, gives the 

strain relation as (for m=n=l): 

bxx 

tyy 

0) 
bxx 

byy 

bXX 

byy 

>9 
and, 

- t / a s i n a t s i n / ^ 
-V/Jsinocsin/^ I , 

Ußcosac cos β/ + Va cosca cosfy I 

-Wa s ina*s in# 
-Wß2 sineasin/^ 
2Waßcosaccosß 

- Χα sinac sin ß> - Wer sincac sin/? 
-Yßsmcxsmfy-Wß2 sinatsin/7 

Xßcosaxcosß> +yacoscaccos^ + 2Waßcosaxcosß 

Ύ sinew cos/φ»+W^?sinaccos/?' 
X cos at s i n # + W a c o s a c sin β 

(17) 

where α = (π/a) and β = (π/b). The stress results Ν α β , 

Μαβ and Ραρ are related to strains by the relations; 

w - M H · 

where, 

(Aij , Β i j , Dy , Ε j j , Fjj ,H i j ) = 

Ν z/fc+1 

(18) 

iV i V 
} ΰ ^ ( ΐ , ζ , ζ 2 , f ( z ) , z f ( z ) , f ( z ) 2 ] d z (19) 
ζ * 

η ζ* 

and Ty - Y ß { f(/'(z))2dz 
& Zk-l 

Now, by equations (17 to 19), the governing 

equations (14) can be written in matrix form as: 

G i i G21 G31 G4i G5X 
G12 G22 G32 G 42 G52 
G13 G23 G33 G43 G53 
g 1 4 G24 G34 G44 G54 

Gis G25 G35 G45 G55 

r i / i Γ0Ί 
κ 0 
w Q 
X 0 
Y 0 

(20) 

In the above equation matrix G is symmetr ic 

(Gij-Gji), whereas its members are funct ions of the plate 

dimensions a,b and the plate s t i ffness 

ΑφΒψ. etc., 6,26, (Appendix A). On the r ight-hand 

side, Q is the coeff icient of the assumed double-Fourier 

series expansion of the applied transverse load q. 

q(x>y) = Q sin ax sin ßy , 

^ ab £21) 
where Q(z) - —JJ*9(;c,>>)sin ax sin ßydxdy 

0 0 

Now, by solving the system of equations (20), the 

coefficient U, V, W,X and Y at any point (x,y) can be 

evaluated. The strains at point z, in the thickness 

direction can be evaluated by strain-displacement 

relations, and corresponding stress can be calculated by 

the law of the o r t h o t o p i c materials (σ33 = 0). 

>1 
ε2 
ε4 , = 

Sn 
sn 

0 
0 
0 

5 12 
S 22 

0 
0 
0 

0 0 
0 0 

5 44 0 
0 S55 

0 0 

0 
0 
0 
0 

S66 

σ ι 
σ 2 
σ4 
σ5 
σ6 

(22) 
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C O M P U T E R I M P L E M E N T A T I O N 

To reduce t roublesome calculations, a computer 

programme has been developed for the proposed 

method to incorporate the "Material Model" into the 

computer program for the calculation of the bending 

behaviour of a simply supported, unsymmetrical , 

specially orthotropic laminate. It is obvious f rom 

equation (1), that the compliance matrix in principal 

stress coordinates S1 is needed, and has to be calculated 

twice, once by tensile properties S1, and once by 

compressive properties S*. The quantities that finally 

characterize a laminate are its laminate stiffnesses Αν, 

By, etc. 

Algorithm III 

To find the bending behaviour of a bimodulus 

laminated plate using the "Material Model" and the 

shear deformation theory of Touratier 191 previously 

presented, a computer programme on Mathematica was 

developed. 

The algorithm starts by assuming specific properties 

(tensile or compressive) for each layer. A parametric 

investigation showed that by considering in the first 

instance the upper half of the layers ( f rom the loading 

side) to have compressive properties and the lower half 

to have tensile ones, faster convergence can be attained 

than in the case of all layers having tensile or 

compressive properties only. This is followed by the 

computer code. With this in mind, the layer st iffness 

and the laminate st iffness Αν,Β„ ...etc., are calculated, 

resulting in displacements w,v,w, and rotations φχ q>y . 

With these quantities known, the through-thickness 

variation of the stresses is calculated and the various 

"stress zones" according to the principal stresses and 

equation (2). At this point it is assumed that every 

"stress zone" constitutes a single effect ive layer, with 

layer stiffness Q t j equal to the mean value of the 

stiffnesses calculated at the various points through its 

thickness. This is the only major assumption of the 

proposed method IM. Considering the new number of 

these effective layers, new laminate st iffnesses are 

calculated and the calculations started again from the 

beginning. The iterations stop when the deflection w 

and the z-points where the strains εχ and εν become zero, 

differ by less than 1% from the corresponding values 

calculated in the previous iteration. The code produced 

as an output result of the deflection and through-

thickness variation of the strains and stresses at a 

specific point (x,y), has given us an input. 

Finite Element Analysis 

Since no exact 3D solution exists for unsymmetrical 

laminated plates, finite element has been taken as a 

reference for the comparison of different models of 

laminated plate. Finite e lement analysis is done using 

numerical analysis software (Ansys 5.5). 

The 3D approximation of the behaviour is carried 

out by element type " S O L I D 4 5 " (Brick 8 node). In this 

finite element analysis, it is assumed that the upper half 

( from loading side) of the laminate has compressive 

orthotropic properties, and the lower half has tensile 

ones. Due to symmetry, the fourth part of the laminated 

plate has been studied. To validate the finite element 

results, firstly it is necessary to find out the convergence 

of laminate meshing. So, within the available resources 

and limitations of Ansys, we found the fol lowing 

convergence for different numbers of layers (Table 1): 

Table 1 

Convergence of meshing in finite element analysis 

Layers Numbers of Elements (h, a, b) 

2 10800(12 ,30 ,30) 
4 10800(12 ,30 ,30) 

6 11250(18 ,25 ,25) 

8 14400 (16,30,30) 

A N A L Y T I C A L R E S U L T S 

The numerical evaluation of the proposed method 

has been carried out in three stages. First the results are 

evaluated for different numbers of layers by the 

computer programme for the proposed analytical 

method, developed in "Mathematica" . In the second 

stage, the results of the first stage are verified by finite 

element analysis, i.e. a numerical model developed on 

"Ansys 5.5". In the final stage, results are compared 

with Papazoglou and Tsouval is ' s /1 / bi-modulus results. 
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The laminate under consideration is simply 
supported, unsymmetrical, specially orthotropic. 
Parametric study carried out for a square (a/b = 1), thin 
(a/h = 50), cross-ply laminate (0°/90°/0/90°/ .), under 
uniformly distributed lateral load, with η = 2,4,6,8 
layers, all from the same material and with the same 
thickness. 

The deflections, strains, and stresses are calculated 
at the laminate midpoint fx = a/2, y = b/2) for three 
material cases. 

Case 1 : The material was considered to be bi-
modulus for (E2'/E2

C = 0.6), 
Case 2 : The material was considered to be single-

modulus, with the tensile properties only, 

Case 3: The material was considered single-
modulus again, with the upper half of the layers (the 
ones from the loading side) having compressive 
properties and the lower half ones having tensile 
properties (this case is used for finite element analysis). 
For the sake of comparison, the material properties used 
are the same as those used by Papazoglou and 
Tsouvalis/1/, listed in Table 2: 

The following parameters are introduced for the 
non-dimensionalization of deflections and stresses: mi = 
(100 £/ h3)/ (q a4) for the deflections and m2= h2/ (q 
a2) for the stresses, while the strains are given with their 
absolute values. 

Table 2 
Elastic Properties of an Orthotropic Material 

Properties (MPa) Tensile Compressive 

E, 25 E2 ' 25 E2° 

E, e2Ve2
c 1000 

Ei e2' E2
C 

G12 0.5 BZ1 0.5 E2° 

G 23 0.2 E2
l 0.2 E2

C 

Vl2 0.25 0.25 

Gi3 = Gi2 t: tensile 

v23 = vi3 = v12 c: compressive 

In Figure 2, the variation of the non-dimensional 
deflections, w, is shown as a function of the number of 
layers for the three material cases. It can be observed 
that the first material case gives an accurate prediction 
of bi-modulus behaviour compared to the finite element 
results. Touratier's theory gives more or less the same 
prediction of central deflection over the theory of 
Reddy. The second material case introduces a 
considerable error as compared to the first material case. 

In Figures 3-6, the through-thickness variations of 
strain εχ is plotted for the 2,4,6, and 8 -layer laminates. 
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¥ 
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Fig. 2: Non-dimensional centre deflection versus number of layers 
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Fig. 3: Through-thickness variation of strain (εχ), for two layer cross-ply (0°/90°) 
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Fig. 4: Through-thickness variation of strain (εχ), for four layer cross-ply (0°/90°)2 
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Fig. 5: Through-thickness variation of strain (εχ), for six layer cross-ply (0790°)3 
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Fig. 6: Through-thickness variation of strain (sx), for eight layer cross-ply (0°/90°)4 
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Again the first material case with Touratier's theory 
gives quite accurate predictions with the finite element 
results. Analytical results of strains in the first material 
case are a little better than using Reddy's theory, and 
these differences will be clearer in thick laminates. The 
second material case again shows considerable errors as 
against the first material case. It can also be seen from 
these plots that the maximum of strain becomes smaller 
and converges to a single value, as the number of layers 
increases, similar to the plot of deflection (Figure 2). 
This improvement is rapid between laminates with two 
and four layers, while it becomes smoother for larger 
numbers of layers. Another point of interest is the fact 
that z-point where εχ becomes zero, moves towards the 
geometric midplane as the number of layers increases. 
This coincides with the generally accepted idea that 
cross-ply laminates behave like symmetric, specially 
orthotropic ones for large numbers of layers. 

In Figures 7-10, the through-thickness variations of 
stress σχ are plotted for the 2,4,6,8 layers. Again, it is 
clear that the first material case gives an accurate 
prediction of bi-modulus behaviour compared to the 
finite element results except for the laminate with two 
layers. As previously, Touratier's theory again predicts 

Mechanical Behaviour of Materials With Different Moduli 

more accurately the stresses of bi-modulus laminates 
than Reddy's theory as compared to finite element 
results, and this difference will be more obvious in thick 
laminates. The second material case again has the same 
response as previously compared to the first material 
case. 

CONCLUSION 

A new approach has been used to predict the 
bending behaviour of a simply supported, 
unsymmetrical, specially orthotropic laminate, based on 
the Touratier shear deformation theory and with a 
different method of defining the weighting factors for 
"stress zone". Using this method, the deflections and the 
through-thickness variations of strains and stresses at 
any point (x,y) of a multilayered laminate can be 
calculated. The validity of this method is established by 
comparing it with Papazoglou and Tsouvalis' results, 
and with numerical analysis on "Ansys". A parametric 
study showed that the assumption of a single-modulus 
material for a bimodulus one can lead to significant 
errors. Bimodulus behaviour of a laminate by 

Fig. 7: Through-thickness variation of strain {σχ), for two layer cross-ply (0°/90°) 
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Fig. 8: Through-thickness variation of strain (σχ), for four layer cross-ply (0790°) 2 

Fig. 9: Through-thickness variation of strain (σχ), for six layer cross-ply (0790°) 3 
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Fig. 10: Through-thickness variation of strain (σ,), for eight layer cross-ply (0790°)4 

Touratier's theory is more accurate than by that of 
Reddy as compared to the finite element results. 
Accuracy of the bi-modulus behaviour by Touratier's 
theory can be seen more clearly in thick laminates and 
this difference is more significant in transverse shear 
stresses. Future developments of this method include: a 
more accurate definition of the weighing factors kpi kqi 
kf , a better way of calculating the stiffnesses of a 
"stress zone", by incorporation of a more accurate shear 
deformation theory and also by considering the 
continuity of transverse shear stresses on the layers 
interfaces in a laminate. 
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A P P E N D I X - A 

THE TERMS OF THE MATRIX G IN EQUATION ( 1 3 ) : 

G „ = A U Α 2 + Α 6 6 Β 2 , G , 2 = ( A , 2 + A 6 6 ) A Β G 3 4 -

G , 3 = [ H | 2 - F|2 — 2 ( - H 6 6 + F 6 6 ) ] Α Β 2 + (HN - F N ) A 3 + A T55 

( E „ - B „ ) A 3 + / E , 2 - B , 2 - 2 ( E 6 6 - B 6 6 ) / Α Β 2 G 3 3 = 

G 1 4 = E N A 2 + E 6 6 Β 2 , [H12 - F12 - 2 ( - H 6 6 + F 6 6 ) ] Α 2 Β + ( H 2 2 - F 2 2 ) Β 3 + Β T 4 4 

G , 5 = ( E , 2 + E 6 6 ) Α Β G 4 I = 

G 2 I = GI2, G 3 I = G N , G32 = G23, G i 4 , G 4 2 = G 2 4 , G 4 3 = G 3 4 , 

G22 = A 6 6 A 2 + A 2 2 Β 2 G44 = 
G 2 3 = H U A 2 + H 6 6 ß 2 + T J 5 ) 

[ - B , 2 + E , 2 - 2 ( - B « + Ε « ) ] Β A 2 + ( -B22 + E 2 2 ) Β 3 
G45 = 

G 2 4 = G 1 5 ) G 2 5 = E 2 2 Β 2 + E 6 6 A 2 ( H 1 2 + H 6 6 ) A ß , 

G 3 3 = G 5 , = 

( D U + HU - 2 F 1 1 ) A 4 + ( 2 D 1 2 + 2 H , 2 - 4 F , 2 + 4 D 6 6 + G U , G 5 2 = G 2 3 ) G53 = G35, G34 = G45, 

4 H 6 6 - 8 F 6 6 ) A 2 ß 2 + ( D 2 2 + H 2 2 - 2 F 2 2 ) Β4 + T 5 5 A 2 + G55 = 

τ 4 4 β 2 H 2 2 Β 2 + H 6 6 A 2 + T 4 4 
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