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ABSTRACT 

This paper explores the application of pattern 
recognition techniques in the characterization of a 
multiphase realistic disordered composite. Some 
descriptors based on Voronoi cells are extracted for 
different fiber distributions. Principal Components 
Analysis is used to find the best features to estimate 
effective thermal conductivity with a Multiple Linear 
Regression model instead of the Finite Element Method. 

K e y w o r d s : image analysis, composites, micro-

structure, thermal conductivity 

1. INTRODUCTION 

The effective properties of composite materials 
reinforced by unidirectional fibers play an important 
role in the design for several applications. Composite 
materials can improve systems reliability through 
enhanced thermal and mechanical performance. In this 
paper, the effective conductivity of composite in normal 
direction to the fiber axes has been considered. The 
effective properties of two phase composite material 
depend on (i) properties of each phase (matrix and 
reinforcement conductivities), (ii) fiber volume fraction, 
(iii) geometrical arrangements. This paper focuses on 
(iii), specifically having considered regular distributions 
of fibers (rectangular, squared, and hexagonal arrays), 

exploring realistic composites microstructures generated 
through computer simulations adding "noise" to the 
positions of fibers centres of each regular array 
distribution. 

In the literature, the estimation of composite 
properties has been based typically on the assumption 
that the microstructure is regular and then it can be 
represented by a repeating unit cell /1-3/. However, in 
the composites found in practice, the fibers hardly 
assume an ordered array, and the predicted conductivity 
could be considerably different from the actual value. In 
this work, the application of Voronoi tessellation of a 
planar two-phase composite has been explored, and then 
different geometric descriptors to quantify a given 
morphology have been calculated in an alternative way 
to that proposed in references /4-7/. Other approaches 
can be found in the papers by Kim and Torquato, and 
Smith and Torquato /8,9/. Also Pyrz /10/ has shown 
how to deal with disordered distributions using fractal 
description, and Pitchumani / l l / how to construct an 
equivalent fractal unit cell to estimate effective thermal 
conductivity. 

The first step of the work was the computer 
generation of simulated artificial microstructures. The 
conductivity fiber/matrix ratio was fixed at 10. The 
volume fraction considered is fixed at 25%. Each 
composite microstructure is limited to a 256x256 pixel 
resolution. Three different patterns of regular periodic 
arrangements are considered: squared, rectangular, and 
hexagonal. For each sample, a set of disordered 
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microstructures has been obtained by the addition of 
random noise to the coordinates of each fiber centre. 
The value of the introduced random noise is at 
maximum 10% of the inter-fiber distance in the original 
regular array. This random movement of the locations is 
applied to 100% of the fibers in the distribution. The 
ANSYS program was used to find out how a given 
microstructure design works under operating conditions, 
and then to compute the effective transversal thermal 
conductivity. ANSYS (copyright by SAS IP, Inc.) is a 
computer program for analysis and design with Finite 
Element Method (FEM) available on many kinds of 
computers. 

Several techniques based on automated image 
pattern recognition have recently been introduced for 
characterizing composites microstructures. Important 
contributions in this area have been made by 
Brockenbrough /12/, Everett /4/, Pyrz 151, Ghosh 16,11, 
and Yang /13/. Dirichlet tessellation has been used as a 
tool in the characterization. This tessellation allows the 
discovery of the "natural regions" of immediate 
influence of each fiber. These regions are called 
Voronoi cells. This facilitates characterization of an 
arrangement of fibers, computing some descriptors of 
the resulting Voronoi cells. These descriptors can be 
used to distinguish between different distributions and, 
as we have proposed here, as inputs in a regression 
model which computes an estimation of the transverse 
effective thermal conductivity. If a good estimate of 
some kind of property of the material is wanted, enough 
data will be required. In a situation where data are 
scattered, the location of the regressors will be highly 
sensitive to individual data points (outliers). This 
tendency to sparseness is referred to as "the curse of 
dimensionality" /14/, and methods such as Principal 
Component Analysis (PCA) should be used to reduce 
this effect. 

2. QUANTITATIVE CHARACTERIZATION 

Given m data points in «-dimensional space, a 
Dirichlet tessellation (also known as Voronoi diagram) 
is the partition of «-dimensional space into m polyhedral 
regions, one region for each data point. Such a region is 
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called a Voronoi cell. A Voronoi cell satisfies the 
condition that it contains all points that are closer to its 
data point than any other data point in the set. In that 
way, the microstructure is covered with a unique cell for 
each fiber, defined as the smallest convex polygon 
surrounding it. In this work, an original region-growing 
algorithm based on an incremental rhomboidal growth 
of each fiber centre has been used /15/. This allows us to 
directly calculate which cell each individual pixel 
belongs to in the microscopic image. 

Tessellation of a microstructure has considerable 
importance in generating descriptors to quantify a given 
composite. It naturally identifies regions of immediate 
influence for each fiber. In related papers /4-7/, the main 
contributions concern how to characterize fiber 
clustering. This paper is an attempt to highlight how to 
distinguish different kinds of arrangements of real non-
ordered microstructures in order to estimate thermal 
conductivity as a pattern recognition approach 
alternative to descriptions found in the literature. 

3. DESCRIPTION 

Pattern Recognition techniques categorize or analyse 
objects based upon some measurements made on those 
objects /16/. The features must have sufficient 
information to uniquely characterize a kind of object. In 
our work, this description must be invariant to scale, 
since two microstructures with different numbers and 
diameters of fibers pan share the same volumetric 
fraction. Of course, it must be invariant to location, but 
not invariant to rotation because we want to predict a 
directional property of the composite material. In case 
of ordered microstructure, which contains a periodic set 
of fibers, it is possible to construct a repeating unit cell 
with only one fiber. However, realistic samples should 
include several fibers in a representative window and 
take the mean value of features (see Figure 1). Three 
different sets of features to describe a given object were 
used: 

i) Basic Geometric Features are the simplest descriptors 
from a computational point of view, since the required 
effort is less. However, it is easily understood that such 
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gives the Fourier description by means of coefficients 
(df(0),df(l),...,df(N-l)). These values need to be 
normalized for location and size. Element df(0) contains 
the centroid of the boundary. Normalisation for location 
is done by setting this value to 0. Coefficient df(l) had 
the largest magnitude when the boundary was scanned 
in counter clockwise direction. Normalisation by size is 
therefore achieved by dividing all Fourier Descriptors 
by df(l). A further normalisation to rotation is not 
necessary. Generally, these descriptors are only used to 
describe the overall shape without the need for too 
many details; therefore it is sufficient to set the number 
of used coefficients to 8 (Figure 1, features 4-9). 

Fig. 1: Set of the 16 extracted features to realistic 
squared, rectangular and hexagonal 
arrangements. Numbers 1-3 are basic 
geometric features, 4-9 are Fourier descriptors 
df(2)-df(7) and, 10-16 are the invariant 
moments to location and scale. Feature 
numbers 5, 6, 8, 9 (Fourier descriptors) can 
help to distinguish between the set of 
rectangular-squared arrangement patterns and 
the hexagonal set, simply by using a threshold. 
Basic geometric features, and features labelled 
numbers 11 and 12, allow to classify between 
hexagonal-squared set and rectangular one, but 
this is not the objective of this study. 

descriptors must be used carefully. In this case one can 
select (Figure 1, features 1-3): 
• height/width', its value is unity for squared shapes. 
• ix/iy: it has one greater order, it takes inertias with 

respect principal axes. 
• length/width: redefinition of PI number. For a square 

shape its value is four. 

ii) Fourier descriptors are another way to identify 
objects with the aid of the boundary points. The best 
and most complete introduction can be found in the 
paper by Wallace /17/. Firstly the boundary must be 
scanned and stored in a counter clockwise direction. 
Each point (a,b) will be addressed as a complex number 
z-a+jb and the sequence of these Ν numbers as a 
complex function f(z). The resulting transform F(u) 

iii) Invariant Moments are based on continuous 
moments of a multidimensional function {mpq) [16], 
Central moments of order pq(\x.pq), are invariants to 
location. In order to get scale invariance normalized 
central moments y\pq can be used: 

χ y 

Vpq p + q . 

/'oo 2 

A complete overview is given by Hu /18/. 
Commonly, it is only necessary to select the set of 
values pq = {11,20,02,12,21,30,03} to normalized 
central moments (Figure 1, features 10-16). Additional 
invariant moments can be derived, which are invariant 
to rotation, location and scale, but they are not 
necessary in this application. 

4. PRINCIPAL COMPONENT ANALYSIS 

The goal of PCA is to reduce the dimension of the 
working space, preserving as much as possible the 
relevant information maximising the variance. This 
linear dimensionality reduction procedure is also called 
Karhunen-Lo^ve transformation. PCA is discussed at 
length in Jollife /19/. The aim is to construct a new 
space, where no one component is correlated with any 
other components. The diagonal form of the final 
covariance matrix implies that the variance of a variable 
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with itself will be maximised whereas the covariance 
with any other variable will be nil. The amount of 
information of each new component is given by its 
eigenvalue. PCA has been calculated onto our 
composites database. For four new transformed 
components, the explained variance is 93.98 percent of 
total, if the number of reduced features decrease to 3 or 
2, variance also decrease to 84.28 and 64.87 percent, 
respectively. In such a case some principal components 
can be dropped because they explain only a small 
amount of the data. Figure 2 shows the first four 
eigenvectors obtained. 

ι 

1 2 3 4 5 6 7 θ 9 10 11 12 13 14 15 16 

Fig. 2: The new basis vectors are linear combination 
of the 16 original features. Only the values for 
the first four new principal components are 
shown since they retained most of the variance 
of the data (1 - solid+circle, 2 -
square+dashed, 3 - diamond+ dashdotted, 4 -
mark+dotted) 

5. THERMAL CONDUCTIVITY ESTIMATION 

The system considered was designed to take a 
microscopic image of a composite and estimate the 
value of its effective thermal conductivity. Thus, the 
overall system can be viewed as a mapping from a set of 
input features, X, to an output variable Key /14/. In 
general, it is not possible to determine a suitable form 
for the mapping, and we have to work with a set of 
examples, called the training set. The mathematical 
form of the mapping is determined with the help of the 
data. Of course, we need to build a system capable of 
making good predictions on unseen data. In order to 
measure this generalization capability, two-fold cross-
validation with another set of samples called the test set 
is used. Computing regression parameters by directly 
inverting matrix X of independent variables is really 

dangerous. There is a vast array of methods to solve 
Multiple Linear Regression (MLR) problems: Gauss-
Jordan, LU, or QR decomposition. However, the most 
effective method is Singular Value Decomposition 
which handles all problems that may arise, such as 
singularities or ill-conditioning /20/. It is very 
interesting to point out that PCA results in a set of 
features which are independent and uncorrelated. This 
fact permits the resolution MLR using a method such as 
QR. Tables 1-3 can help to clarify the results obtained 
when PCA is used versus the outcome of take all of the 
original features. Besides, the sizes of the training and 
test sets were changed as well as the number of final 
principal features. Figure 3 shows how similar were the 
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Fig. 3: FEM vs. MLR estimations. The range of values 
of effective conductivities in the case of 
samples belong to squared-rectangular class are 
bigger than the values for hexagonal samples 
which are less sensitive to orientation and noise 

(a) multiple linear regression (MLR) model for 
both of disordered squared-rectangular and 
hexagonal arrangements. The correlation 
coefficient R between FEM and MLR 
estimations was 0.724 for the hexagonal 
samples and 0.94 for squared-rectangular class 
(b) MLR model for disordered squared-
rectangular samples. R = 0.997 (c) MLR model 
for disordered hexagonal arrangement class. R 
= 0.88. These values of correlation coefficient 
R clarify that design two different MLR models 
improves the results obtained with only one. 

results obtained with FEM and MLR model, whether 
only one MLR model was designed for both kinds of 
arrangements or different MLR models were created for 
each separate class. 

6. CONCLUSIONS 

The results suggest that this work provides an 
effective way of computing conductivities on real-

disordered arrangements, obtaining very similar results 
to those of FEM with a MLR model, as well as 
characterization based on the features explained above 
was adequate to reach that estimation. However, as is 
clearly shown in Figure 3.a, with only one regression 
model for all the samples the outcome of the fitting is 
not good enough since a clear curvature can be observed 
in the correlation between FEM and MLR estimations. 
Furthermore, the set of disordered hexagonal patterns 
does not fit as well as rectangular and squared 
arrangements, as can be seen in the values of correlation 
coefficients. To avoid this problem, one regression 
model was built for each class of considered patterns, 
improving the results in such a way as Figures 3.b-c 
point out, where a much better correlation between 
FEM and MLR is displayed. The numeric values of the 
root mean square errors can be found in Tables 1-3. It is 
worth mentioning that the regression model for 
hexagonal class of patterns produces the best results in 
the test stage, much better than those obtained with only 
one model for both classes. In the MLR model designed 
for class of squared-rectangular disordered arrange-
ments, it is difficult to reach those results, since the 
samples do not cover entirely the space of possible 
values of effective conductivity and this clear tendency 
to sparseness is impossible to avoid with the available 
simulated data, as could happen in real life. 

Eigenvectors from PCA transformation, especially 
the first one, show that the Fourier descriptors are the 
strongest weighted, and therefore, the most relevant 
original features in order to perform a regression 
analysis for such kinds of fiber distributions. 

PCA improves the results obtained when all of the 
features are used over test sets. As can be seen in Table 
1-3, increasing the size of the sets produces greater error 
in the training stage, since it is more difficult to find the 
parameters of the regression model. In the test stage, the 
size of the test set does not matter so much, since results 
were very similar with the different sizes considered. 
Although the use of all of the features makes the error 
of the training stage smaller, PCA gives better results in 
the testing stage. 

Future research will address the application of other 
kinds of regression models such as artificial neural 
networks. 

/ 
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Table 1 
One multiple linear regression model (MLR) was designed for the patterns belong to all kinds of disordered 

arrangements (squared-rectangular and hexagonal). Root Mean Square Errors (RMSE) found in regression over 
training and test sets. These results were obtained as means of 30 times resampling random procedure. 

Training/Test 
Sets Sizes 

RMSE PCA-MLR 
2 reduced features 

RMSE PCA-MLR 
4 reduced features 

RMSE MLR 
16 original features 

Training Test Training Test Training Test 

5 0 / 5 0 7.92 E-05 1.14 E-03 1.85 E-05 1.22 E-03 5.82 E-06 1.23 E-03 

2 5 / 2 5 6.80 E-05 1.14 E-03 1.52 E-05 1.29 E-03 2.70 E-06 1.25 E-03 

Table 2 

MLR model designed for realistic squared-rectangular arrangements. RMSE in regression over training and test sets. 
These results were obtained as means of 30 times resampling random procedure. 

Training/Test RMSE PCA-MLR RMSE PCA-MLR RMSE MLR 

Sets Sizes 2 reduced features 4 reducec features 16 original features Sets Sizes 

Training Test Training Test Training Test 

5 0 / 5 0 2.28 E-05 2.35 E-03 4.96 E-06 2.32 E-03 1.94 E-06 2.43 E-03 

2 5 / 2 5 2.01 E-05 2.42 E-03 4.27 E-06 2.53 E-03 9.31 E-07 2.35 E-03 

Table 3 
MLR model designed for realistic hexagonal arrangements. RMSE in regression over training and test sets. 

These results were obtained as means of 30 times resampling random procedure. 

Training/Test 
Sets Sizes 

RMSE PCA-MLR 
2 reduced features 

RMSE PCA-MLR 
4 reduced features 

RMSE MLR 
16 original features 

Training/Test 
Sets Sizes 

Training Test Training Test Training Test 

5 0 / 5 0 1.42 E-05 5.70 E-05 1.20 E-05 5.34 E-05 8.24 E-06 6.08 E-05 

2 5 / 2 5 1.46 E-05 5.32 E-05 1.06 E-05 6.08 E-05 3.96 E-06 6.47 E-05 
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