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ABSTRACT: 

This paper presents results on the identification of 
delamination in composite beams via genetic search 
technique and changes in natural frequencies. Location 
and size of the delamination are carried out by 
minimisation of an error function involving the 
difference between calculated and "measured" natural 
frequencies. Simulation studies indicate that changes in 
natural frequencies and genetic algorithm allow the fast 
and accurate estimation of delamination parameters 
(location and size). The advantages and limitations of 
the present technique are also discussed. 

1. INTRODUCTION 

The field of system identification has become an 
essential part of many research and application activities 
in the area of mechanical, aerospace and civil 
engineering. The increasing complexity of structures 
and machinery, together with the requirement for 
rigorous safety and reliability aspects motivates a 
demand for effective methods for damage locations 
upon and within structures. 

Interest in various non-destructive damage detection 
methods has considerably increased over the past 
twenty years. During this time many methods founded 
on modal analysis techniques have been developed 
(Adams and Caw ley l\l, Caw ley et al. Ill, Messina et al. 
ß /, Krawczuk and Ostachowicz /4/, Lim and 
Kashangaki 151, Farrar and Jauregui /6/). These 
techniques are successfully used when monitoring 

structures where the presence of damage leads to 
changes in the some of the lower natural frequencies in 
modal parameters. 

Damage detection using changes in modal 
parameters has been a topic of extensive research over 
the past few decades /7, 8/. Damage will cause local 
changes in the stiffness of the structure, which will lead 
to changes in its dynamic response. Changes in natural 
frequencies, mode shapes or amplitudes of forced 
vibrations are most frequently considered as damage 
indicators. Two distinct methodologies have been 
applied to identify damage parameters (location and 
size) in a structure using vibration data. The first 
method is based on finite element model updating and 
error localisation 19, 10/. The second one assumes a 
candidate set of possible damage scenarios (i.e. type of 
damage, location and size). The calculated changes in 
dynamic characteristics for all damage scenarios are 
compared to measured ones and the closest damage case 
is chosen 12, 4/. 

Delamination, probably the most frequently 
occurring damage, appears as a debonding of adjoining 
plies in laminates composites. The causes of 
delamination such as imperfect bonding, crack in matrix 
materials, separation of adjoining plies, and broken 
fibres may originate during manufacturing. 
Alternatively, delamination may be induced during in-
service loading, such as by foreign object impact or by 
fatigue. 

This paper presents a study on the identification of 
delamination in composite multi-layered beams using 
genetic search technique and changes in natural 
frequencies. For the last ten years the genetic algorithm 
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has become one of the most effective tools available for 
damage detection. The location and size of delamination 
are estimated by the minimisation of an output error 
function, which expresses the difference between 
calculated and measured natural frequencies. The 
method is demonstrated using a model of delaminated, 
multi-layered, composite, cantilever beam. The results 
obtained for simulation studies indicate the applicability 
of the present approach to damage detection in 
composite structures. Simulation studies indicate that 
changes in natural frequencies allow the estimation of 
delamination location and magnitude at high levels of 
accuracy and speed. The advantages and limitations of 
this technique are also discussed. 

The paper presents a treatment of a more general 
case as appeared in /11-15/. In the work described in 
this paper the method has been extended to the more 
complex inverse problem. The paper presents a deeper 
discussion on genetic search identification than those 
presented in /16-18/. The results of this paper show that 
the number of calculations needed for damage detection 
is much less than for classical search theory. 

2. GENETIC ALGORITHM 

Genetic algorithm is a search technique based on 
ideas from the science of genetics and the process of 
natural selection. Differences between conventional 
search techniques and the genetic algorithm (GA) can 
be summarised as follows /19/: 

• GA operates on coded form of task parameters, 
• GA works with a population which represents 

numerical values of a particular variable, 

• GA uses only objective function, 
• GA applies only probabilistic rules of selection. 

A simple genetic algorithm consists of three basic 
operations: reproduction, crossover and mutation. The 
algorithm starts with the randomly generated initial 
population. The members of this population are usually 
binary strings (called chromosomes). Particular 
elements of chromosomes are called genes. In these 
strings are coded values of a variable or variables, 
which can be a solution to examining a problem in the 
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search space. These variables are then used to evaluate 
the corresponding fitness value, which is the objective 
function. In the next step chromosomes are selected for 
reproduction. The selected processes can be carried out 
in many ways /19/; nevertheless the number of selected 
members is a function of their fitness. Thus individuals 
with higher fitness will receive more copies. In order to 
minimise the premature convergence for initial popu-
lations, special scaling methods are applied /19/. One of 
the most widely applied methods is linear scaling, 
proposed by Bagley 1201. After reproduction the process 
of crossover is realised. There are many ways of 
implementing this idea /19/. Generally crossover with 
one or many crossover points can be used. The 
crossover points are selected randomly, usually using a 
roulette wheel. In this way, exchanging some portions 
between selected chromosomes (called parents), two 
new strings (called children) are created. A crossover 
with two points is illustrated bellow. In this example 
two crossover points and numbers of exchanged parts of 
parents were randomly selected. 

For: 

Parent I 0 1 0 0 | 1 1 | 1 1 1 0 
Parent II 1 0 1 1 | 0 1 | 1 1 0 1 

with crossover points after position 4 and 6 and 
crossover strings I, 1 with II, 3, next I, 2 with II, 2 and, 
I, 3 with II, 1: we have 

Child I 1 1 0 1 | 0 1 | 1 0 1 1 
Child II 1 1 1 0 I 1 1 I 0 1 0 0 

where: I, II - denotes number of parent, whereas 1, 2, 3 
number of exchanged string of the parent chromosome. 

The final process is mutation. Here a particular gene 
in a particular chromosome is randomly changed. This 
means that 0 is changed to a 1, and vice versa. The 
process of mutation in nature is very rare and for this 
reason in genetic algorithm the probability of mutation 
in a chromosome is kept at a very low level. 

3. OBJECTIVE FUNCTION 

Objective function used in the presented paper is 
based on the changes in natural frequencies from 
"measurements". Changes in natural frequencies may be 
called the classical damage indicators if any. They are 
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without any doubt the most used damage indicators both 
formerly and nowadays. The main reason for their great 
popularity is that natural frequencies are fairly easy to 
determine with a relatively high level of accuracy. In 
fact, one sensor placed on a structure and connected to a 
frequency analyser gives estimates for several natural 
frequencies. Further, natural frequencies are sensible to 
all kind of damage - local and global damage. 

The form of objective function is based on a 
proposal by Messina et al. /3/, i.e., a Damage Location 
Assurance Criterion (DLAC): 

(1) 
{δΩ}τ{δω5} 

2 

({δΩ}Τ{δΩ })({δω5}τ{δω5}) 

i a=e2-ei 

L=600 

H=24 

Fig. 1: Dimensions of the delaminated composite 
beam. 

equation the shear effect is omitted. 

a V a V 
Β Ο , , , - ^ + ρ Λ — L " 0 , i = 1,23,4 

^ a , 4 dx' 
(2) 

where {δΩ} is the trial "experimental" frequency 
change vector and {δω,.} is the theoretical frequency 
change for damage at location s. 

DLAC values lie in the range 0 to / , with 0 
indicating no correlation and 1 indicating an exact 
match between the patterns of frequency changes. The 
value of (s) giving the highest DLAC values determines 
the predicted damage location and size. This correlation 
coefficient provides superior prediction success rates 
when compared with the Cawley-Adams algorithm /I/ . 
The use of percentage frequency change data (rather 
than absolute changes) provides the best results. A 
problem remains when the level of damage is low. The 
presence of measurement error will result in a 
degradation of the ability to predict the damage site 
accurately. Nevertheless, experience shows that the 
method is capable of making a prediction with sufficient 
confidence to give a useful warning of a problem. If the 
predicted site is confirmed by subsequent 
measurements, then the method will still be seen as a 
valid early warning exercise. 

4. MODEL OF DELAMINATED, 
CANTILEVER COMPOSITE BEAM 

The model of delaminated, cantilever composite 
beam is presented in Fig.l. 

For each part of the presented beam the following 
equation of transverse vibration can be written. In this 

where: Β denotes width of the beam, Dn , i is a bending 
stiffness of the beam parts, pj is a material density 
whereas A; denotes cross-sectional area of particular 
beam parts. 

The bending stiffness for each beam parts is 
calculated as below: 

1 
(3) 

where: Ν is a number of laminate layers, hk denotes 

location of layer from neutral axis of the beam whereas 

( β , y )k is bending stiffness of k-th layer of i-th part of 

the beam calculated as follows: 

Q\\f = ß i i , ™ 4 + 2(0,2,· + 2Q66;)m2n2 + ß 2 2 , · « 4 (4) 

The coefficients m and η are equal to m=cos(a) and 
n=sin(a) respectively, a is an angle between fibres and 
neutral axis of the beam in each layer subsequently. The 
elements ( i=l,2,6, j= 1,2,6) are calculated to take 
into account the following relations 

Ql2 = V , 2 ^ + V 2 3 ) ^ - (5) 

Q66 = ° 1 2 
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where: 

Δ = l - v 23 •2v 12" 
122. 
h\ 

- 2 v r - ν 12 23 ' 122 
hi 

(6) 

The mechanical properties of the composite material 
used in equations (5-6) are calculated according to the 
following formulas /3/: 

E n = E F v o l + E M ( l - v o l ) 

E f + E m + ( E f - E m ) V Q 1 

E f + E m - ( E f - E m ) V O 1 

Vj2 = v F vol + v M ( l - v o l ) 

e 2 2 " EM 

(7) 

v 2 3 = v F v o l + v M ( l - v o l ) -

l + v M - v ] 2 - ^ -
E n 

l + v M - v M v 1 2 

JM 
i l l 

where: index F denotes fibres, Μ matrix and vol is the 
volume fraction of fibres in the composite. 

The solution of equation (2) can be expressed in the 
following form: 

y(x); = A; s in(kjx) + Bj cos(kjx) + 

Cj s inh(kjx) + D j cosh(kjx) i = 1,4 
(8) 

- fixed end: 
yi(0) = 0 yi (0) = 0 (10.1) 

left side of delamination: 

y i ( e i ) = y 2 ( e i ) y i ( e j ) = y 3 ( e 1 ) 
y i ( e i ) = y ' 2 ( e i ) y i ( e i ) = y3 (e i ) 
D i y i ' ( e 1 ) - D 2 y " 2 ( e 1 ) - D 3 y 5 ( e 1 ) = 0 
D i y r ( e i ) - D 2 y 5 ( e 1 ) - D 3 y 5 ( e 1 ) = 0 

right side of delamination: 
y i ( e 2 ) = y 2 ( e 2 ) y i ( e 2 ) = y 3 ( e 2 ) 
y i ( e 2 ) = y ' 2 ( e 2 ) y i ( e 2 ) = y 3 ( e 2 ) 
D 4 y i ( e 2 ) - D 2 y " 2 ( e 2 ) - D 3 y 5 ( e 2 ) = 0 
D 4 y r ( e 2 ) - D 2 y 2 ( e 2 ) - D 3 y 5 ( e 2 ) = 0 

(10.2) 

(10.3) 

- free end: 
y"4(L) = 0 y'KL) = 0 (10.4) 

Taking into account boundary conditions and form 
of the solution of equation of motion (2) the 
characteristic equation of the problem can be 
formulated. This equation allows determination of the 
natural frequencies of the delaminated, cantilever, 
multi-layered composite beam. 

where: parameter kj corresponds with natural 
frequencies of the analysed beam as follows: 

0); = ω • 

det 

where: 

Ai 0 0 0 
Bi B 2 B 3 

0 
0 C 2 C 3 c 4 

0 0 0 d 4 

= 0 (11) 

Boundary conditions for the analysed structure can 
be expressed in the following form: 

A, = 0 1 0 1 
k , 0 k , 0 (11.1) 

s u ^ k ^ ) c o s ^ ^ ) 
s i n i k ^ ) c o s C k ^ ) 
k i C o s C k ^ ) - k j s i n C k ^ ) 
k j c o s ( k 1 e 1 ) - k j s u ^ k ^ ) 

- ^ s i n ^ k j e j ) - k j c o s C k ^ j ) 

k ^ s i n ( k 1 e 1 ) - k x c o s C k j e i ) 

s h C k ^ i ) 
s h C k ^ O 
k i c h ( k j e i ) 
k 1 c h ( k 1 e j ) 

c h C k ^ ! ) 
c M k ^ i ) 
k ^ s h ^ e x ) 
k j s h C k ^ i ) 

k j s h ^ e i ) k j c h ^ e ^ 

k ^ c h C k ^ j ) k 1
3 s h ( k 1 e 1 ) 

(11.2) 
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- s in (k 2 e 1 ) 
0 

- k 2 c o s ( k 2 e j ) 
0 

2 D 2 k 2 s i n i k j e ! ) — 
u l 

k 2
3 c o s ( k 2 e 1 ) — ^ -

υί 

0 
- s in (k 3 e j ) 
0 

- k 3 cos(k 3 e i ) 
2 D-? k 3 s i n ( k 3 e j ) - ^ -

k 3 cos (k 3 e j ) D3 

D, 

- c o s ( k 2 e i ) 
0 
k 2 s in (k 2 e j ) 
0 

2 D? k 2 cos(k2ej)—— 

3 D 2 - k 2 sin(k2ei)-—— 
Ό \ 

0 
- cos (k 3 e j ) 

0 
k 3 s i n ( k 3 e j ) 

2 D 3 k 3 c o s ( k 3 e 1 ) - ^ · 

- k 3 s i n ( k 3 e , ) - ^ -

- s h ( k 2 e i ) 
0 

- k 2 c h ( k 2 e j ) 
0 

- k 2
2 s h ( k 2 e i ) - ^ -

- k 2
3 c h ( k 2 e i ) ^ 

0 
- sh (k 3 e j ) 
0 

- k 3 c h ( k 3 e j ) 

- k 3
2 s h ( k 3 e i ) ^ 

1 Do 
- k 3

3 c h ( k 3 e i ) - ^ -

- c h ( k 2 e j ) 
0 

- k 2 s h ( k 2 e 1 ) 
0 

- k 2
2 c h ( k 2 e i ) ^ 

- k 2
3 s h ( k 2 e i ) ^ 

0 
- c h ( k 3 e j ) 

0 
- k 3 sh (k 3 e 1 ) 

2 Do 
- k 3

2 c h ( k 3 e i ) - ^ -

- k 3
3 s h ( k 3 e i ) ^ . 

υ ι 

(11.3) 

(11.4) 

s in(k]e 2 ) 
s in(k 1 e 2 ) 
k, c o s i k ^ z ) 
k j c o s i k j e z ) 

- k j 2 s i n ( k j e 2 ) 

cos (k ie 2 ) 
cos (k ,e 2 ) 

- k j s i n i k ^ ) 
- k 1 s i n ( k 1 e 2 ) 

- k j cos(kje2) 
3 . 

s h ( k j e 2 ) 
sh (k !e 2 ) 
k , c h ( k 1 e 2 ) 
k j c h ( k j e 2 ) 

c h ( k j e 2 ) 
c h ( k j e 2 ) 
k jSh(k!e 2 ) 
k 1 sh (k 1 e 2 ) 

k j s h ( k j e 2 ) k j c h ( k j e 2 ) 

- k j cos (k j e 2 ) k j s in(k 1 e 2 ) k j ch (k !e 2 ) k j s h ( k j e 2 ) 

(11.5) 

- s i n ( k 2 e 2 ) 
0 
- k c o s ( k 2 e 2 ) 
0 

2 D 2 
k 2 s i n ( k 2 e 2 ) — 

U 4 

k 2 c o s ( k 2 e 2 ) 
Όι 

Ό Λ 

0 
- s i n ( k 3 e 2 ) 

0 
- k 3 co s (k 3 e 2 ) 

2 D3 
k 3 s i n ( k 3 e 2 ) - i 

d 4 

3 D-i 
k 3

J c o s ( k 3 e 2 ) - i 
D 4 

- c o s ( k 2 e 2 ) 
0 
k 2 s i n ( k 2 e 2 ) 
0 

2 D 2 k 2 c o s ( k 2 e 2 ) — 
U 4 

3 D 9 
- k 2 s i n ( k 2 e 2 ) - ± -

D 4 

0 
- cos (k 3 e 2 ) 

0 
k 3 s i n ( k 3 e 2 ) 

2 D , 
k 3 c o s ( k 3 e 2 ) - ^ -

υ 4 

3 D-i 
- k 3 s i n ( k 3 e 2 ) - i 

L>4 

- s h ( k 2 e 2 ) 
0 

- k 2 c h ( k 2 e 2 ) 
0 

2 D i 
u 4 

3 Do 
- k 2

3 c h ( k 2 e 2 ) - ^ -

0 
- s h ( k 3 e 2 ) 

0 
- k 3 c h ( k 3 e 2 ) 

- k 3
2 s h ( k 3 e 2 ) ^ 

- k 3
3 c h ( k 3 e 2 ) - j ^ -

- c h ( k 2 e 2 ) 
0 
- k s h ( k 2 e 2 ) 
0 

2 D , 
- k 2 c h ( k 2 e 2 ) — 

U 4 

- k 2
3 s h ( k 2 e 2 ) - j ^ -

0 

- c h ( k 3 e 2 ) 
0 

- k 3 s h ( k 3 e 2 ) 

- k 3
2 c h ( k 3 e 2 ) - j ^ -

- k 3
3 s h ( k 3 e 2 ) - j ^ -

L»4 

• k 4 s in(k 4 L) - k 4 cos(k 4 L) k 4 s h ( k 4 L ) k 4
2 c h ( k 4 L ) 

• k 4 cos(k 4 L) k 4
3 s i n ( k 4 L ) k 4

3 c h ( k 4 L ) k 4
3 s h ( k 4 L ) 

(11.6) 

(11.7) 

(11.8) 

From the above equation it arises that changes in 
natural frequencies due to delaminations will be 

functions of the length of delamination, their location 
along the beam length and also along the beam height. 
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5. NUMERICAL EXAMPLES 

The numerical calculations were performed for 
cantilever, delaminated composite beam. The length of 
beam was equal to 0.4 m, width 0.02 m and height 0.012 
m. The beam had twelve layers (+45Z-45) glass-epoxy 
(see also Table 1) composite material. The volume 
fraction of glass fibers in the analyzed beam was equal 
to 30%. 

Table 1. 
Material properties of composite material components. 

Matrix-Epoxy Fibers-Glass 
Young's 
modulus 

Em=3.43 GPa Ef =66.5 GPa 

Poisson ratio vm=0.35 Vf =0.23 
Kirchoff 
modulus 

Gm=1.27 GPa Gf =27.0 GPa 

Density pin=1250 kg/m3 pf =2250 kg/m3 

ο Η 
S 0.6 Ο 
§ 05 

Two cases were tested: = J 0.4 

Ε 
a o.3 

Case I - the delamination had a length equal to 35% β 
of total beam length, and was located between 6 and 7 
layer (neutral axis of the beam). The left end of the 
delamination was located 0.1 m from the fixed end 
(e1=Li/L=0.25), whereas the right end of the 
delamination was located 0.24m from the fixed end 
{e2=WL=0.6). 

Case 2 - the delamination had a length equal to 15% 
of total beam length, and was located between 4 and 5 
layer. The left end of the delamination was located 0.28 
m from the fixed end (e,=L,/L=0.7), whereas right end 
of the delamination was located 0.34 m from the fixed 
end (,e2=L2/L=0.85). 

In all cases the population had 6 members. One 
member had 33 bits (11 for each variable). During 
numerical calculations it was assumed that probability 
of crossover is 95% and probability of mutation is 
0.05%. The delamination length and location were 
identified using the eigen sensitivity approach described 
in point 3. The first four natural frequencies were used 
in numerical tests. Only one run of the genetic algorithm 
was used for each case. Results of numerical 
calculations are presented in Figs. 2-9. 

Ο — min. valu· 
0 . 9 

0 . 8 

0 .7 

0 . 6 

0 . 5 

0 . 4 

0.3 

0.2 

Fig. 2: 

15 20 25 30 35 40 45 

Population number 

Delamination location ei as a function of 
number of population - case 1. 

1 .0 

0.9 

10 15 20 25 30 35 40 
Population number 

Fig. 3: Delamination location e2 as a function of 
number of population - case 1. 

10 — 

Fig. 

0 5 10 15 20 25 30 35 40 45 

Population number 

4: Delamination location between layers as a 
function of number of population - case 1. 
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950 

900 

850 
C Ο τ> βοο u c 
= 750 
a 2. 700 

ο 
600 

550 

500 

450 

Fig. 5: 

1.0 

0 10 20 30 40 50 60 70 80 

Population number 
Fig. 9: Objective function as a function of number of 

population - case 2. 

A combined genetic algorithm and eigensensitivity 
criterion DLAC as an objective function has been used 
to identify location and size of delamination from 
"experimental" vibration data. The genetic algorithm 

0 5 10 15 20 25 30 35 40 45 
Population number 

Objective function as a function of number of 
population - case 1. 

0 10 20 30 40 50 60 70 80 
Population number 

Fig. 8: Delamination location between layers as a 

function of number of population - case 2. 
1000 —I 

— ivg. value 

0 10 20 30 40 50 60 70 80 
Population number 

Delamination location e2 as a function of 
number of population - case 2. 

-Θ-
min. valu· 

max. value 

•vg. valu· 

0.8 
β 

i 0 7 
S3 
S 0.6 Ο 

1 0 5 

2 0-4 

Ε 
2 0.3 

02 

0.1 

0.0 

0 10 20 30 40 50 60 70 80 

Population number 

Fig. 6: Delamination location ei as a function of 
number of population - case 2. 

1.0 

0.9 

12 — 

10 — 

8 

6 

4 

2 

950 

900 

B50 
C Ο ••g 800 
c 

2 750 
Ο 
> 700 

2> 650 Ο 
600 

550 

500 

I 

Ε 
« 0.3 
β 
Q 

02 

0.1 

0.0 

Fig. 7: 

From Figs. 2-9 it is seen that the genetic algorithm 
correctly locates the damage and also correctly 
estimates its size. The convergence to proper results was 
obtained after no more than 45 populations in the first 
case and 80 populations in case number 2. 

6. CONCLUSIONS 
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presented in this paper is very simple. Nevertheless the 
results obtained are promising. The number of 
calculations needed for damage detection is much less 
than for classical search algorithms. For this reason the 
time of numerical calculations is shorter. 

Future works should be devoted to implementation 
in this algorithm of processes that are observed in 
nature. For example elitism, where the best solution is 
always passed on to the next generation, is a particular 
feature for which good results have been reported 111. It 
is also planned to check other vibration criteria applied 
in structural health monitoring based on changes in 
mode shapes and amplitudes of forced vibrations as 
objective functions. Such comparative analysis should 
explain which damage indicator is most sensitive to 
changes in stiffness of the structure due to damage. 
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