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ABSTRACT 

A thermal buckling analysis of composite laminated 
plate is studied using the ABAQUS/Standard Finite 
Element simulation package. The effects of transverse 
shear deformation are accounted for by the use of the 
Mindlin first-order shear deformation (FSDT) theory on 
a plate of rectangular construction. The plate has 
antisymmetric lamination with respect to the middle 
plane. The intermediate class of deformation is 
employed for this non-linear analysis. The first variation 
of the total potential energy establishes the equilibrium 
equation and the second variation analyses the stability 
of the laminated composite. A displacement-based finite 
element with five degrees of freedom in each node is 
used. The effects of lamination angle, modulus ratio, 
plate aspect ratio, plate thickness ratio the and boundary 
constrains upon the critical buckling temperature are 
investigated and found to have a significant effect on 
the critical buckling temperature, especially the number 
of layers. 

INTRODUCTION 

Fiber-reinforced composites have found wider 
applications in recent years and this has resulted in 
renewed interest in their study under elevated 
temperatures. Studies have been conducted of the 
laminated composites under inplane mechanical loading 
and to a certain extent thermal loading has been 
investigated, but thermal buckling remains one of the 

challenges facing the aerospace and other industries. 
Shaikh et al. I\l proposed a higher-order theory of 
laminated composite plates and shells under thermal and 
static loading. Zeggane and Sridharan 121 used the 
Reissner-Mindlin 'infinite strip' to study the stability of 
long laminated composite plates. Chandrashekhara /3/ 
investigated thermal buckling of laminated plates using 
a shear flexible finite element. Chen et al IAI used the 
eight-noded Serendipity finite element to study thermal 
buckling under uniform and nonuniform temperature 
distribution. Mathew et al. 151 analysed an 
antisymmetric cross-ply composite laminate using a 
one-dimensional finite element having two nodes and 
six-degrees of freedom. 

This paper incorporates transverse shear stiffness as 
part of the finite element analysis. This is because 
bending-extension coupling in this type of structure 
requires that the effect of transverse shear deformation 
be not ignored, as is usually done by the classical 
laminated plate theory 111. The importance of 
accounting for shear deformation cannot be 
underestimated given the high ratio of inplane modulus 
to transverse shear modulus, especially under thermal 
loading conditions. Perhaps under different loading 
conditions the coupling would be not as effective, but 
subjecting a laminated composite plate to a change in 
temperature means that not only does the matrix-fiber 
arrangement experience the coupling phenomenon 
because of the difference materials that constitute the 
lamina, but the interface between the laminae that make 
up the stack would have to be considered, seeing that 
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each lamina would tend to expand or contract 
differently according to the stacking sequence. This is 
because there are two Poisson ratios: one giving the 
transverse strain caused by an axially applied stress and 
the other gives the axial strain caused by a transversely 
applied stress. The two are not independent but are 
related 191. 

In /14/ an approximation to thin shell theory is used 
for the buckling of cylindrical laminated composite 
panel with a circular hole. These shell elements are not 
"universally applicable to the analysis of composites 
since transverse shear effects can be significant in such 
cases" /14/. However, a relatively large number of 
laminae and the symmetrical lay-up will tend to 
minimise the importance of transverse shear 
deformation. The results in this paper will also show 
this to be the case, in that as the number of layers 
increases, the values of the critical buckling temperature 
tend not to deviate considerably from each of the 
stacking sequences. 

In general, if the operating or service temperature is 
different from the curing temperature during the 
fabrication process, thermal stresses will arise. In this 
particular study the assumptions are that the laminate 
thickness is small compared to its lateral dimensions. 
This means that the stresses acting on the interlaminar 
planes in the interior of the laminate, that is, away from 
the free edges, are negligibly small. Also there exists a 
perfect bond between any two laminae, and this implies 
that the laminae cannot slide over each other and the 
displacements across the bond are continuous. There 
exists also a perfect bond between the matrix and the 
fibrous material. Finally there are no empty spaces in 
the whole laminated composite. The present work uses 
the stiffnesses in the appropriate directions as will be 
indicated in the Results and Discussion section. 

PROBLEM STATEMENT 

As in metallic structures, changes in temperatures 
are commonplace in composite structures during 
fabrication and structural usage. Changes in temperature 
result in expansion when the material is heated, and 
contraction when cooled, and in most cases this 

expansion is proportional to the temperature change. 
The equation governing the behaviour of a laminated 
composite under thermal loading is given by 
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where extensional stiffness Ay, flexural-extensional 
coupling stiffness By, and flexural stiffness Dy of the 
plate are defined as 

( A i j , B i j , D i j ) = ^ i ( Q i j ) k ( l , z , z 2 ) i Z ( i j , - 1,2,6) 

W - t o e l l - ( i J = 4 ' 5 ) 

β is the shear correction factor 111. 

MATHEMATICAL MODEL 

Based on the Mindlin plate theory 161, the 
deformation field can be written in the following form 

u(x, y, z) = u0(x, y) + ζθ χ(χ, y) 
v(x, y, z) = v0(x, y) + z9y(x, y) 
w(x, y, z) = w(x, y) (2) 

where v0, v0 and w0 are the displacements of the 
reference surface in the x, y and ζ direction, 
respectively, and θχ , 0y are the rotations of the 
transverse normal about the x-and y-axes. The 
intermediate class of deformation is defined by the 
limitations that the strains be small compared with 
unity, the rotations relative to the χ and y directions 
moderately small, and that the ε χ , e y , Yxy , Yyz and 

γ χ ζ components of the strain-displacement relations for 

a three-dimensional medium, including thermal strains 
are 

V x y F + 
{ε} = (εχ 

ζ(κχ Ky K x y ) T - ( a x Cty CXxy)TAT 
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M = f y z Yxz)T = 

( w , y + e y W > X + 0 X ) T 

(3) 

where 

ί ^ = ( u , x v ,y u , y + v , x ) T + Ey Y xy / 

ΐ ( φ 2 q)y 2 φ χ φ γ ) Τ 

Κ̂χ Ky K X y j = ( 0 x x 0yy θχ,γ+θγ,χ ) (4) 

E X ) E y , 7 x y , Y y z a n d γ χ ζ are extensional and 

shearing strains at any point through the plate thickness 

and εχ, 8y and yxy denote the corresponding quantities at 

points on the plate middle plane only. We note that 

<Px=w ,x <Py w 

where " x " and " y " represent partial differentiation with 

respect to χ and y. The stress-strain relation o f the k-th 

layer of a laminated composite plate is given by 

{N} T = ( n x , N y , N x y ) = β (ox,oy,Txy)dz 
JT 

{M} T = ( M x , M y , M x y ) = β ( o x , a y , T x y ) z d z 
2 

{ Q } T = ( Q x , Q y ) = / l ( x x z , X y z ) d z (7) 

where Ν, M, and Q are the inplane, bending and shear 

stress resultants over the thickness o f the plate. The use 

of Mindlin plate theory together with the intermediate 

class of deformation and the general plate theory results 

in the stress-strain relation o f the form o f equation (1). 

The stress state developed in the plate very much 

depends on the lay-up and boundary conditions, and it is 

this stress state that is responsible for plate buckling 

rather than the applied one. The loss o f stability is 

analysed by setting u = u0 + U], ν = v0 + v,, w = w0 + w ] ; 

θχ = θχ0 + θχι, and 0 y = 0yO + 0 y I , where the subscr ipt" , " 

denotes the incremental displacement on the primary 

path of equation (1). 
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where ai are thermal expansion coefficients in the 

principal material directions. ΔΤ is the temperature rise. 

In the derivation of the above equations, the stresses and 

strains were transformed from the principal material 

directions of the orthotropic lamina to the x,y co-

ordinate system according to 

T i j = a i k a j l T k l 

From the general plate theory we know that 

(6) 

FINITE ELEMENT MODEL 

For a conservative structural system, the total 

potential energy Π of a loaded structure is defined as the 

sum o f the strain energy o f the structure itself and the 

potential energy o f the applied load. 

n = n m +ΠΗ + Πς (8) 

where m, b, and s are the membrane, bending and shear 

strain energies, respectively. The problem is solved by 

dividing the region Ω o f the plate into n-noded 

quadrilateral finite elements, each with five degrees o f 

freedom per node, such that 

n ( a ) = V n e ( a ) 
Μ 

(9) 

where Π and n W are potential energies o f the plate 

and element, respectively, a is the displacement vector 
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{uj ,v j ,W] , θ χ 1 , 0 y ] } . The variation in each element can 

be interpolated, for node i (i = 1,2, ...n), as 

η π η 
U J - J N j u J v j - 2 N i v l w l = 2 N i w i 

l-l i=l i=l 

θ χ , - ^ , θ « , 0 y , = 2 N i 0 i y i ( 1 0 ) 

i-1 1=1 

where Nj are the interpolation functions. Using the same 
shape function associated with node i, we can write 

4 

« ι , - g N . a i (11) 

where Nj are the interpolation functions and are used to 
interpolate both the nodal in-plane displacements u, v, 
the lateral displacement w as well as the normal rotation 
θχ, 0y. The shape functions are expressed in terms of the 
natural (local) element co-ordinate system (ξ, η), ut is 
the element displacement vector and a j is the vector of 

variables for node i in the element e. The normal and 
shear strain matrices and the curvature matrix are given 
by 

ε ι » = 2 B » ' a i £ib - 2 B b i a i e i s = 2 B i a i <12) 
l-l l-l l-l 

where Β«, Β«, and BSj are, respectively, the normal-, 
shear- and curvature-displacement matrix associated 
with element e. The bending stresses and the shear 
stresses are defined as 

o ~ V ( A B t i + B d B b i ) » i x - V X B s i a j (13) 
i-l l-l 

where, A, Bd and A material property matrices of the 
laminated composite as defined in equation (1). Using 
the constitutive equations, we have 

{ N i } - [ [ A l B t l ] + [ B d l B b i j f c } 

{MiMB d lB t i ] + [DlB b i ] ] | a| j 

{ Q i J - M B s i f c } (14) 

Substituting into the second variation of equation 
(9), and for arbitrary 5U) 8v] 6w, δθι δθι we have 

[ K 1 f e } + [ K 2 f c } + [ K 3 ] k } + 

[ K 4 f c } + [ K 5 f c } + [ K g f c } = 0 

and ( [K]+[K g ] )^ j}=0 (15) 

where [K] is the structural stiffness matrix and [Kg] is 
the geometric stiffness matrix. Due to space limitations 
the full form of [K] and [Kg] cannot be given in this 
paper. 

Classical eigenvalue buckling analysis is often used 
to estimate the critical (buckling) load of "stiff ' 
structures such as the laminated composite. "Stiff ' 
structures are those that carry design loads primarily by 
axial or membrane action, rather than by bending action. 
Their response usually involves very little deformation 
prior to buckling. In the finite element context, the 
classical eigenvalue-buckling problem may be stated as 
follows /8/. Given a structure with an elastic stiffness 
matrix, Kj j , a loading pattern defined by the vector 
{N,}, and an initial stress and loading stiffness matrix, 
K g , find load multipliers (eigenvalues),λ (, and 

buckling mode shapes (eigenvectors), a j , which satisfy 

equation (15). The critical buckling loads are then given 

by XjN J . In this study only the smallest load multiplier 

and its associated mode shape are of interest. The 

eigenvector a] associated with λ ε Γ defines the buckling 

mode. 

RESULTS AND DISCUSSION 

The study is performed using a 4 χ 4, 9-noded 
doubly curved thin shell element, with reduced 
integration and five degrees of freedom per node 
(S9R5). However, to account for the transverse shear 
deformation, the transverse shear of 5/6 is introduced in 
the ABAQUS/Standard input file. 
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Isotropic Square Plate 

In order to establish a benchmark or the integrity of 
the present analysis, the critical buckling temperatures 
of a simply supported square isotropic plate subjected to 
a uniform temperature increase are compared with those 
of Chandrashekhara 131 in Table 1. The dimensions are a 
= b = 10mm and thickness t = 0.1mm with the following 
boundary conditions 

The following non-dimensional buckling 
temperatures were obtained in the ABAQUS/Standard 
computer simulations. 
E = 1.0 GPa, ν = 0.3, a/t = 100, 
a = b = 10, α = 1.0 χ 10-6/0C 

Table 1 
Comparison of nondimensional critical buckling 

temperature for a simply supported isotropic thin plate 

The results of the present analysis and reference 13/ 
are in excellent agreement. The next step is to change 
the properties of the isotropic plate to those of a 
laminated composite, and this is done throughout the 
remainder of this paper. 

Laminated Square Plate 

The properties associated with the shell elements 
used in this cofnposite analysis are: 
• the thickness of the plate 
• the number of integration points 
• the material, in this case the lamina and 
• the orientation of each layer 

In the analysis of a laminated, orthotropic, 
composite plate, each layer has the same material 
properties. The effects of the various parameters are 
studied and the graphs are used to show the trends as 
these parameters are changed. Two sets of graphs are 
shown for each type of analysis, one for simply 
supported edges and another for clamped edges. Unless 
otherwise stated, each lamina has the following material 
properties; 

Table 2 
Material properties of a composite 

VN a „ a , 2 K„ K22 
0.28 0.02 22.5 2.987 2.587 
E„ E „ GN G13 G23 
181.0 10.30 7.17 7.17 6.21 

where the 1-direction is along the fibres, the 2-direction 
is transverse to the fibres in the surface of the lamina, 
and the 3-direction is normal to the lamina, Figure 1 (a). 
En , E22, G i2 , G13 and G23 are in 109 Pascals and απ and 
0Ci2 are in 10"6 per degrees Celsius. Figure 1 (b) shows 
the dimensions and co-ordinates of a typically stacked 
laminate. 

Effect of ply orientation 

Figure 2 shows the critical buckling temperature Tcr 

versus lamination angle ψ for a simply supported and 
clamped plate. The variation in lamination angle ψ may 
result in large changes of Tcr as shown by the figure. 
Also the critical buckling temperature for a given 
thickness of laminated plates increases as the number of 
layers, N, increases. The maximum value of Tcr occurs 
at ψ = 45° for clamped Ν = 4 and Ν = 8 plates. 

Simply supported 
edges 

Clamped edges 

χ = 0,a uO = wO = 6y 
= 0 

χ = 0,a uO = vO = wO = θχ 
= 6y = 0 

y = 0,b vO = wO = θχ 
= 0 

y = 0,b uO = vO = wO = θχ 
= 0y = 0 

a!b a T c r x 10-4 

Present Ref. 191 

0.25 0.6730 0.6Ί2Ί 

0.50 0.7916 0.7913 

0.75 0.9892 0.989 

1.00 1.2659 1.2657 

1.25 1.6214 1.6234 

1.50 2.0558 2.0561 

1.75 2.5691 2.5696 

2.00 3.1607 3.1617 
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Fig. 1(a): Atypical lamina 

Fig. 1(b): Geometry of a typical two-layered laminated square plate 

Clamped 

•2 Layers 

•4 Layers 

• 8 Layers 

•16 layers 

Simply Supported 

0.5 
0.4 ο Ο 
0.5 
0.4 Ν/«Χ·Χ·Χιν v 

- ο — 2 Layers 

—ο— 4 Layers Χ 0.3 

- ο — 2 Layers 

—ο— 4 Layers 

ö 0.2 ° o o o o o " —δ— 8 Layers 

l·-

0.1 - - χ — 16 Layers 
0 

0 20 40 50 70 90 

Ψ 

Fig. 2: Effect of ply orientation on the critical buckling temperature of laminates (a / 1 = 20, a / b = 1) 

However, the reverse phenomenon is observed in two-
layer laminates. This is because bending-stretching 
coupling stiffness reach their maximum values at 
stacking layers N=2 and decrease rapidly as Ν 
increases. 

Figure 3 gives a summary of the buckling modes 
predictions for Ν = 2. We note that the eigenvalue of the 
first buckling mode or (eigenmode) is smaller than the 
eigenvalue of the second buckling mode, and so on. 
These buckling modes are the same for Ν = 4, Ν = 8 and 
N = 16. 
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Buckling Mode 1 Buckling Mode 2 Buckling Mode 3 

Fig. 3: Buckling modes of a laminated square plate 

Effect of plate thickness ratio 

Figure 4 depicts the effects of plate thickness ratio 
a/t on the critical buckling temperature for a square 
laminated plates having lamination angle ψ = 45°. It is 
shown that the thermal buckling loads decrease with an 
increase in laminate thickness. This is in agreement with 
Ref. /10/. It is evident that the rigidity and hence the 
critical temperature decreases rapidly as the plate 
thickness ratio increases. This is because the stiffness of 
the laminate is greatly reduces when it becomes 
relatively thin. The effect of the number of stacking 
layers Ν on Tcr is insignificant when a/t is large. 

Effect of aspect ratio a/b 

The effect of aspect ratio a/b on the critical 
temperature is illustrated in Figure 5. It can be seen that 
Tcr goes up as the plate aspect ratio increases. Since 
geometry has a significant influence on in-plane loaded 
structures, it is expected that the buckling load of a 
laminate will be greatly influenced by the change in the 
plate geometry. However, for a thermally loaded 
laminate, the graph shows that at a/b > 1.2 the critical 
buckling temperature increases proportionally with the 
increase in the aspect ratio. There is no change of the 
buckling mode shape with the variation of aspect ratio, 

Clamped 

-O— 2 Layers 
—o— 4 Layers 
—A— 8 Layers 
- x — 1 6 Layers 

Simply Supported 

•2 Layers 

•4 Layers 

•8 Layers 

-16 Layers 

10 20 30 40 50 

a/t 

Fig. 4: Effect of plate thickness on the critical buckling temperature of laminates (a/b = 1, ψ = 450) 
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Clamped 

2.5 2.5 J 
2 A ~ e ~ 2 Layers 

χ 1.5 / Layers 
s 1 ο 1 

I 
^ JJ 8 Layers 

H 0.5 16 Layers 
0 0 

0.6 1.2 1.8 2.4 3 

a/b 

Simply Supported 

Fig. 5: Effect of aspect ratio on the critical buckling temperature of laminates (a /1 = 20, ψ = 450) 

since the curves go up smoothly without any cusp, more 
especially for dJb > 1.8. 

The buckling mode shapes for different aspect ratios 
are shown in Figure 6 below. 

The effect of the modulus ratio Ei / E2 

Figure 7 shows the influence of the modulus ratio 
Ei/E2 on critical buckling temperature. It is observed 
that in a simply supported plate of Ν = 4, N= 8 and Ν = 
16, Τςτ increases with increase of modulus ratio and 

plotted curves are rather flat when E1/E2 ^ 10. The 
increase in the number of layers means an increase in 
the material substance and hence the rigidity of a 
laminate. The interaction of the various stiffnesses 
means greater ability of the laminate to withstand 
buckling loads. For simply supported edges, Figure 7 
shows that the boundaries have less influence on the 
modulus ratio of a laminate. The graph of Ν = 2 for the 
simply supported and clamped plates shows that the 
plate is more susceptible to buckling as a result of the 
change in E]/E2. 

126 



P.S. Simelane and B. Sun Science and Engineering of Composite Materials 

Buckling Mode 1 Buckling Mode 2 Buckling Mode 3 

Buckling Mode 1 Buckling Mode 2 Buckling Mode 3 

Buckling Mode 1 Buckling Mode 2 Buckling Mode 3 

Buckling Mode 1 
Buckling Mode 2 Buckling Mode 3 

Buckling Mode 1 Buckling Mode 2 Buckling Mode 3 

Fig. 6: Buckling mode shapes for each of the aspect ratios 

127 



Vol. 10, No. 2, 2002 Buckling Behaviour of Laminated Composite Plates 
Under Thermal Loading 

Clamped 

1 0 20 30 4 0 50 

E I / E 2 

- o — 2 L a y e r s 
— • — 4 L a y e r s 
—A— 8 L a y e r s 

1 6 L a y e r s 

Simply Supported 
χ 
δ 

1 0 20 30 4 0 50 

E , / E a 

- O — 2 L a y e r s 
—o—4 L a y e r s 
—£t— 8 L a y e r s 
- x — 1 6 L a y e r s 

F i g . 7: Effect of the modulus ratio on the critical buckling temperature of laminates (a 7 b = 1, a 71 = 20, ψ = 450) 

The effect of thermal expansion coefficient ratio 
α 2 / α ι 

The effect of thermal expansion coefficient ratio 
a2/oci on the critical temperature is shown in Figure 8. 
The higher the ratio of thermal expansion coefficients, 
the higher the value of Tcr. This means that the thermal 
coefficient of expansion has a linear relationship with 
the buckling temperature of a laminate. It is pointed out 
that in the present analysis αϊ was varied while a 2 was 
left constant. An increase in the coefficient of expansion 
means that more temperature has to be applied to cause 
buckling on a laminated composite. The interaction of 
the different coefficients of the different materials in a 
laminate has a tendency to increase the temperature 
needed to cause buckling. We note that in Ref. 74/ the 

opposite trend is observed for Tcr versus α2 /αι as a ] is 
varied. The expansion coefficients of a laminated 
composite have a direct influence on the buckling 
temperature as expected from the strain equation (5). 

The effect of boundary conditions 

Figure 9 shows the effect of boundary condition on 
the variation of critical temperature. The boundary 
condition has a strong impact on the critical temperature 
T„, as shown in the figure. Also, the variation of Tcr for 
different aspect ratios is presented in Figure 9 for both 
simply supported and clamped plates with Ν = 4 in 
order to compare the effect of the boundary condition. It 
can be seen that the critical temperatures of clamped 
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Clamped 

Simply Supported 

•2 Layers 
•4 Layers 
• 8 Layers 
•16 Layers 

Fig. 8: Effect of thermal expansion ratio on the critical buckling temperature of laminates (a / b = 1, a / 1 = 20, ψ = 

450) 

cases are higher than those of the simply supported 
cases. This is because of the enhanced stiffness of the 
laminate by the clamping of the laminate. The simply 

supported edges make the plate susceptible to buckling, 
as the edges are not restricted from expanding. The 
effect of the aspect ratio was presented in Figure 5. 

Fig. 9: Influence of boundary condition and aspect ratio on the critical buckling temperature of laminates (a/t =20, Ν = 

4, ψ = 450) 

129 



Vol. 10, No. 2, 2002 Buckling Behaviour of Laminated Composite Plates 
Under Thermal Loading 

CONCLUSION 

The performance of laminated composites under 
adverse temperature variation dictates that careful 
analysis be made to determine the optimum 
configuration of the composite structures. It has been 
seen that of all the variables that were used to study the 
behaviour of a laminated plate, the number of layers 
affects the buckling temperature the most. For two 
layers, the bending-stretching coupling is at the 
maximum and as the number of layers increases, the 
laminate approaches orthotropy and the critical buckling 
temperature decreases. The effects of lamination angle, 
aspect ratio, and material parameter, etc have a 
significant influence on the critical buckling 
temperature of laminated plates. 
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