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INTRODUCTION 

In recent years, there has been a growing interest in the 
treatment of strongly disordered systems as fractal 
objects /1,2/; typical in this respect is the fractal 
geometry approach to the so-called percolation conduc-
tivity /3,4/ and dielectric breakdown 15,61 problems. 
This approach treats stochastically heterogeneous 
systems consisting of conducting and non-conducting 
phases; the geometrical phase transition is assumed to 
occur at the volume concentration of the former ρ = pc, 
and the conductivity σ in the vicinity of the percolation 
threshold pc to scale with the difference (p-pc) as 

σ ~ (P-Pc)\ (1) 

where t is the critical conductivity index. 
The model of dielectric breakdown (DB) is 

representative of a family of generalized models of 
random growth. It is assumed that a model system 
consists of dielectric and conducting phases separated 
by a stochastic dynamic boundary, the dynamics of the 
latter being controlled by the growth rate of "damaged 
particles" at the cluster periphery. Properties of dielec-
tric and conducting phases should obey the following 

physical conditions, eq. (2) and (3), respectively. 

Δφ = 0; ZT = -Vcp, (2) 

Δφ = -Q: Ε = -Vcp, (3) 

where φ is the potential, Ε is the electric field voltage 
and Q is the charge density. The boundary problem is 
complemented by boundary conditions, cp[β = const, 
where Β means boundary. 

Disregarding for the sake of simplicity the complex 
pattern of the processes of charge nucleation, transfer 
and annihilation is equivalent to assuming φ = const 
throughout the conducting phase (i.e., the conductivity 
of this phase is ideal); in this case, the charge density 
will be non-zero and proportional to the field voltage in 
a dielectric phase at the interfacial boundary. The 
initially small fluctuation of the field variable may 
grow deterministically up to the onset of the cluster of 
"damaged particles" bridging the opposite electrodes. 
The breakdown voltage V in the vicinity of the 
percolation threshold is assumed to behave 
asymptotically as 

y~(p-pa)'p, (4) 
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where tp is the critical index for breakdown voltage. 
In analogy with thermodynamic phase transitions, 

one may assume scaling invariance for effective con-
ductivity in the critical region and estimate the relevant 
critical indices with the aid of the real space 
renormalization group (RSRG) technique 111, treating a 
disordered structure at the percolation event as a 
statistically self-similar (fractal) object, the mass of 
which, Mf, scales with its characteristic linear 
dimension L, as Mf~ Ldf (where df is the non-integer 
fractal dimensionality). 

Conductivity and Dielectric Breakdown of Heterogeneous Materials. 
Application of the Renormalization Group Approach 

Ρ„(σ) = (1 -p„) δ ( σ - σ / ) + ρ„δ (o-oc"), (6) 

where 

Pn = Ä (p„.i) (7) 

is the p„ change according to RSRG transformation. 
The function R(p) is defined as the ratio of the number 
of bonded configurations to the total number of all 
possible tries in a given RSRG step. As a result, the 
cluster size ξ« of T„ cell is related to that (ξ„+/) in the 
next step (T„+i) as 

RSRG TRANSFORMATION ξη+J = ξ»//· (8) 

Let the model system comprise a high-conductivity 
phase (of conductivity ac° and concentration pc) and a 
low-conductivity phase (of conductivity σ / and 
concentration (1- pc)), and let the ratio of conductivities 
be GcP'oc0 = c « 1. Let both phases be randomly 
distributed on the square unit cell Ixl according to the 
following partition density function: 

Ρφ) = (1-PQ) δ ( σ - σ / ) +Ρ0Δ (A-AC°) (5) 

This function (keeping po = const) may be realized 
by different ways with many possible bond 
configurations on a given unit cell. Thereafter, such a 
representative set of cells will be treated as a renormali-
zation cluster (RC) which may change its size, Ixl, but 
ought to maintain a symmetrical shape in each RSRG 
step. 

The main idea of the RSRG approach, that is, 
replacement of an initial non-homogeneous cell by its 
homogeneous counterpart with effective properties, 
may be realized by a series of successive averaging over 
the sizes of RC, each step involving formulation of a 
new partition function as a combination of δ-functions 
weighted in accordance with the step number. The dis-
ordered nature of RC, however, is preserved in each 
RSRG step in the scale interval / « ξ « L, where / 
and L are the smallest and largest size of RC, respec-
tively, and ξ is the RC size in the course of the RSRG 
procedure. The result of evolution of the partition 
function after η steps of renormalization may be ex-
pressed as 

It should be clear that the iteration process is 
completed if ξ„ tends to zero after η steps in so far as 
the cell T„ becomes homogeneous and the partition 
function transforms to Ρ„(σ) = δ(σ-σβ/), where oef is 
the effective conductivity of a percolation system with 
po as the concentration of a conducting phase. 

The RSRG transformation technique outlined above 
was used to analyze the conductivity and dielectric 
breakdown in model percolation systems. The starting 
cells were 3x3, 4x4 and 9x9 (two-dimensional case) or 
3x3x3 (three-dimensional case). The computed /^-func-
tion is shown in Fig. 1. The percolation threshold pc for 
each model was associated with an inflexion point of 
the corresponding Ä-function (i.e., the abscissa of the 
point of intersection of the R-function with a bisectrix). 
The fractal dimensionality df for each model was 
determined as df = d(ln Mf)/d(ln L), where Mf is the 
fractal mass at the percolation threshold (cf. Table 1). 

EFFECTIVE CONDUCTIVITY 

The conductivities σ0" and ad" of bonded and non-
bonded RC in the w-th step (two-dimensional case) 
were estimated using the relevant formula for lower 
and upper conductivity bounds /8/, i.e., 

oc
n+l = ay[l-(l-p„)l/2 + c"(l-p„)l/2(c" + (1-c") 

(1 -pn
mYll (9a) 

σ / + Ι = σ Λ 1 W n + P n m +/>„1/2[l+(C-l)/7„1/2]-1
>(9b) 
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1.00 π 

Model, Ixl Λ . 
3x3 
6x6 
9x9 
3x3x3 

0.4267 
0.4766 
0.4883 
0.2109 

1.623 
1.790 
1.843 
1.793 

where c" = 
In the three-dimensional case, Hashin-Shtrikman's 

formulae for upper and lower bounds 191 were used 
assuming conductivities of bonded and non-bonded RC 
to be given by the following expressions, respectively: 

with L as σ ~ Ldc, where dc is the corresponding ex-
ponent. The critical conductivity index t in the vicinity 
of the percolation threshold determined as t = d ln(a)/d 
In(p-pc) (Table 2) was in good agreement with t - 1.27, 
as reported in /10/. 

DIELECTRIC BREAKDOWN 

The relevant model is the Zd lattice /5,6/ with the S-
structure as a conducting phase, and its supplement 
Z'AS as a dielectric phase. It is assumed that the S-
structure grows by one unit in each DB step until the 

Ηττι ι ι ι ι ι rprtTTi 0.00 0.10 0.20 OJO Ο.ΛΟ O.SO o.eo 0.70 o.ao O.JO 1.00 

Fig. 1: /^-functions for the cells of dimensions: 3x3 
(1), 6x6 (2) and 9x9 (3). 

Table 1 
Geometrical parameters of fractal lattices 
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log(L)/log(l) 

Fig. 2: Dependence of effective conductivity on the 
RSRG transformation step at the 
concentrations (p-pj • 0.001 (1), 0.01 (2). 

8.00 

Oc' n+1 = 

Od" + 1 = 

ac"pn+a/>( 1 -p„)+p„( 1 -pn){oc
n-af)2l 

\ρπσ/·+(\-ρη)σα"+σο"], (10a) 

σα"Ρη+σΛ 1 -Pn)+Pn{ 1 -Pn)(<3c
n-ad")2/ 

[p„o/ '+a-p„)a c"+o<n (10b) 

The step-by-step averaging for a conductivity 
problem was carried out making use of eq. (7) and Fig. 
1. As can be seen from Fig. 2, the conductivity scales 

Table 2 
Critical conductivity indices for a fractal cluster 

Model, lxl t 

3x3 1.19 1.19 

6x6 1.21 1.08 

9x9 1.23 — 

3x3x3 2.12 — 
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opposite electrode is touched at the onset of bonded 
configuration. Discretizing eq. (3), one obtains 

Δφ= ^ 5, j (cp , -2 i /cp y ) , (11) 

where (/',_/') are the nearest neighbors in Z\S, d = 2, and 

\a,Zd\S 
δ , . ;= ( λ » 1 ) 

[ λ . σ . 5 

Before DB, the conductivity σ is assumed to be 
distributed over the square lattice according to the 
following partition function, 

p ( a ) = (l-/?)8(CT) + / > 8 ( a - a c ) , (12) 

where ρ is the concentration of resistors of conductivity 
σ [thus, (1-jD) will be the concentration of resistors of 
zero conductivity]. 

The elementary acts of transition from one phase 
into another will be simulated by irreversible changes 
of conductivity. Assume that a constant voltage V < Vc 

is applies to a resistor before DB (where Vc is a certain 
"critical" voltage); the DB at V > Vc is accompanied by 
a conductivity increase from σ to λσ and remains there-
after unchanged at all values of V. 

The system of linear equations (11) may be solved 
numerically using the following algorithms /6/ 
i. Calculate the conductivity σ with partition function 

(12) for each bond of the square lattice so as to 
ensure the onset of a bonding cluster between 
opposite electrodes; 

ii. Apply the boundary condition U to opposite 
electrodes; 

iii. Solve eq. (11) for φ,; 
iv. Calculate the conductivity of a system before DB; 
v. Check every resistor (excluding those in which DB 

has already occurred) and replace δ// = σ by δ,/ = 
λσ in the conditions ensuring DB, (φ,-φ/) > Vc\ 

vi. Stop the process if the electrodes are connected by 
a cluster of "damaged particles"; otherwise, relax 
the boundary condition so as to ensure the DB 
condition at one of the resistors available and 
return to item iii. 
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I 
Let the limiting voltage corresponding to the onset 

of the first cluster of "damaged particles" be named 
"DB voltage" (DBV) of a given unit cell; the mean DB 
voltage will be obtained by averaging the function (12) 
over different ways of its realization. The effective 
DBV is estimated in each step of the RSRG trans-
formation; in the next step, both effective conductivity 
σ„ and DBV, Vc", are assigned to cach bond and the 
process of DBV renormalization with the number of 
iteration steps η is continued until Vc

n eventually 
becomes independent of n. 

As can be seen from the numerical results of this 
procedure (Fig. 3), the DBV in the vicinity of the 
percolation threshold obeys the following asymptotic 
law, Vc ~ Ldp (where dp is the corresponding critical 
index). The critical index for concentration dependence 
of DBV, Vc ~ (p-pj'p, was arrived at by a standard 
procedure as tp = d ln(Vv)/d Infp-pj; a similar 
procedure was used to estimate the critical index for 
conductivity, t. The values of the cited critical indices 
for different lattices, Ixl, are listed in Table 2. 

«— I I I I I I I I I I I I I II I II I I I I I I I I I I I ι I II I I 1 I I I I 
Φ.00 2.00 3.00 4.00 5.00 

l o g ( L ) / l o g ( l ) 

Fig. 3: Dependence of effective breakdown voltage 
on the RSRG transformation step at the 
concentrations (p-pc) : 0.001 (1), 0.01 (2). 
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CONCLUSIONS 

Application of the real space renormalization group 
transformation technique to the problem of conductivity 
of percolating systems permitted estimation of the 
corresponding critical indices and prediction of the 
effective conductivity over the entire interval of 
concentrations of components at any ratio of their 
conductivities. 

The same approach was used to prove the difference 
in the scaling behavior of dielectric breakdown voltage 
and conductivity in the vicinity of the percolation 
threshold for a model disordered percolation cluster. 
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